11 Novembre 2018

1. Gruppo Generale Lineare

Sia $GL(n, \mathbb{F}_p)$ il gruppo delle matrici invertibili $n \times n$ a coefficienti in \mathbb{F}_p^{-1} . Si indichi con a_{ij} ogni singolo elemento di queste matrici; in particolare i rappresenta l'indice di riga dell'elemento e j l'indice di colonna. Sia $G = \{D \in GL(n, \mathbb{F}_p) | a_{ij} = 0 \text{ se } i \neq j\}^2$.

- i) Dimostrare che G è un sottogruppo commutativo di $GL(n, \mathbb{F}_p)$ rispetto alla moltiplicazione fra matrici.
- *ii*) Determinare Z(G), il centro del gruppo G, e dimostrare che $Z(G) \triangleleft G^3$ (ed è contenuto propriamente).

Non è difficile notare che $Z(G) = Z(GL(n, \mathbb{F}_p))$.

iii) La cardinalità di $GL(n, \mathbb{F}_p)$ è data dalla seguente formula

$$|GL(n, \mathbb{F}_p)| = (p^n - 1)(p^n - p)(p^n - p^2)...(p^n - p^{n-1})$$

Si consideri adesso il gruppo $GL(2, \mathbb{F}_5)$.

Sia $G = \{ D \in GL(2, \mathbb{F}_5) | a_{ij} = 0 \text{ se } i \neq j \}.$

Sia inoltre $\pi:GL(2,\mathbb{F}_5)\longrightarrow GL(2,\mathbb{F}_5)/Z(GL(n,\mathbb{F}_p))$ la proiezione canonica.

Si definisce $PGL(2, \mathbb{F}_5) = GL(2, \mathbb{F}_5)/Z(GL(n, \mathbb{F}_p))$ come il gruppo proiettivo⁴. Calcolarne la cardinalità. Dire che relazione c'è tra il numero di sottogruppi di $PGL(2, \mathbb{F}_5)$ e il numero dei sottogruppi di $GL(2, \mathbb{F}_5)$ che contengono Z(G).

- iv) Dimostrare che $G \simeq \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.
- v) Sia $\mathbb{F}_5^* = \mathbb{F}_5 \setminus \{0\}$. Sia $\varphi : GL(2, \mathbb{F}_5) \longrightarrow \mathbb{F}_5^*$ l'omomorfismo definito da $\varphi(A) = det(A)$, con $A \in GL(2, \mathbb{F}_5)$, dove det(A) indica il determinante della matrice A.

della matrice A. Definire $Ker\varphi \stackrel{def}{=} SL(2,\mathbb{F}_5)$ il gruppo lineare speciale⁵.

 $\varphi|_{Z(G)}$ è iniettivo? Si suggerisce di calcolare $|SL(2,\mathbb{F}_5)|$ e

 $|SL(2,\mathbb{F}_5)\cap Z(G)|$.

vi) Sia $f:G\longrightarrow \mathbb{Z}/16\mathbb{Z}$ un omomorfismo. Dire quanti omomorfismi f surgettivi/iniettivi/bigettivi esistono.

¹Campo finito di caratteristica p, con p primo, cioè vale che "p=0".

²si precisa che $a_{ii} \neq 0$.

³Si ricorda che il centro di un gruppo è sempre un sottogruppo normale; tuttavia non è deleterio fare una verifica.

⁴Non si chiede di studiarlo in questa occasione poichè è un argomento che richiede conoscenze più approfondite; è comunque interessante scoprire la sua esistenza.

⁵preferibilmente senza guardare la definizione su un motore di ricerca