
Università degli Studi di Pisa

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Matematica

Tesi di Laurea Magistrale

Parity and Mean-payoff games

25 October 2019

Candidato
Dario Balboni

Relatore
Dott.Marcello Mamino

Università di Pisa

Anno Accademico 2018/2019





Contents

Introduction and Historical Notes 1

History of graph games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Infinite duration Graph Games 5

1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Common graph games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Strategies and Determinancy . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Positional determinancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Different types of positional determinancy . . . . . . . . . . . . . . . 10

1.4.2 Proving positional determinancy . . . . . . . . . . . . . . . . . . . . 13

2 Reductions between Games 23

2.1 Computational Problems for Graph Games . . . . . . . . . . . . . . . . . . 23

2.2 Brief Introduction to Complexity Theory . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Main complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Reductions among problems . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Reductions for Graph Games . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 A graph game hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Stochastic games: introducing chance . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Complexity Status of Graph Games . . . . . . . . . . . . . . . . . . . . . . . 35

3 Solving Graph Games 39



CONTENTS

3.1 Algorithms for Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Zielonka Recursive algorithm . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Progress Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Lehtinen Register-Index . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Lower bounds via universal trees . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Algorithms for mean-payoff games . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Zwick and Paterson value-iteration . . . . . . . . . . . . . . . . . . . 58

3.3.2 Canonical form for Mean-payoff games . . . . . . . . . . . . . . . . . 59

3.4 LP-type problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 A new Game 69

4.1 Stacked unary mean-payoff games . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Resolution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Adaptation of Small Progress Measure . . . . . . . . . . . . . . . . . 74

4.3 Value-iteration algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Acknowledgements 81

Bibliography 83



Introduction and Historical Notes

This thesis deals with aspects of the algorithmic complexity of some infinite games, called
graph games. In particular we will focus on parity games and mean-payoff games. We
will survey the state of the art of the problem of solving parity games and mean-payoff
games efficiently, a problem which is still open. We will also see how the complexity of
solving these games plays an important role in the solution of several interesting computa-
tional problems as, for instance, combinatorial linear programming and LP-type problems,
scheduling with conjunctive and disjunctive constraints, formal verification of temporal
logics and constraint satisfaction problems.

Solving a finite two-players game is elementary, as long as the game is presented as the
graph of all possible positions. In general, however, infinite combinatorial games can be
nontrivial, for instance only some infinite games (notably Borel games [Mar75]) admit
optimal strategies.

Graph games are special among infinite games, in that their strategies are amenable to
computation. We will now review the history of the study of graph games and describe
their importance, and the progresses made in solving them computationally.

History of graph games

Possibly the first to introduce graph games has been Lord Shapley [Sha53] in the fifties,
because they allow to model competitive situations that can have arbitrary duration. For
example, one can consider the interaction between the market and a firm as a sequence of
moves, each of which changes the state of the market and produces gains or losses for the
firm. In this situation there is usually no point at which the firm wins and also there is
no point at which the firm suffers a decisive loss; the firm indeed strives to get the highest
long-term averaged gain.

Mathematically the outcome of a play generating a sequence w1, w2, . . . of gain or losses
can be described as the Cesaro limit of the outcomes

lim
n→∞

1

n

∑
i≤n

wi

where the limit is usually expressed with a lim inf to encompass cases where the limit may
not exist.

1



2 CONTENTS

In general Shapley’s games were multi-agent and stochastic, namely the outcome of a move
is partially random. We will deal however with the simpler case of deterministic two-players
game: in contrast with the general case, these subclass always admit optimal strategies,
assuming that one of the player strives to maximize the outcome of the play and the other
strives to minimize it. This particular case of Shapley’s games is called mean-payoff games,
which were introduced at the end of the seventies by Ehrenfeucht and Mycielski [EM79].

Mean-payoff games are obviously less suitable to model financial markets. They have
found however applications to several areas of computational complexity. Let us mention
that mean-payoff are equivalent to scheduling under and/or constraints [MSS04], the sort
of problem one needs to solve for instance to prepare a train schedule, and generally
when organizing tasks under constraint of overlapping or non-overlapping type. Mean-
payoff games have also been used in analyzing various pivoting strategies of combinatorial
simplex algorithms [All+14], where proved to be a useful tool to build strong exponential
counterexamples.

A different game that turns out to be strictly related comes from a completely different
background: formal verification of transition systems. A transition system is any system
that can be in one of finitely many states, and that changes state receiving inputs and
returning outputs; one is usually interested in proving that a transition system posseses
some desiderable properties. For example, viewing a computer program as a transition
system, one may be interested in proving that it does always terminate, or that it always
executes correctly according to a specification.

Such problems can informally be modeled as a game, where one player is the system
that tries to satisfy the constraints and the other is a supposedly malicious environment
that tries to make the system fail. Most propositions that one might ask for in a transition
system turn out to be expressible in µ-calculus, a formal logic introduced by Kozen [Koz82]
in the eighties, which in turn is equivalent to the problem of solving a certain class of graph
games called parity games [EJ91; Eme97].

Parity games and mean-payoff games are strictly related; in particular they are two steps
of a hierarchy of graph games. At the present state of research, parity games appear to be
easier to solve than mean-payoff games. In particular, in a recent breakthrough [Cal+17],
parity games have been solved in almost polynomial-time while similar results are not in
sight for mean-payoff games.

State of the art

In this thesis we are interested in the problem of determining the computation complexity
of solving certain graph games. In general, the theory of computation complexity tries
to measure in a precise way the amount of resources that are necessary to solve a class
of problems with the best algorithm. This theory is peculiar in that almost no practical
problem is amenable to an unconditional precise classification: in most cases, one can only



CONTENTS 3

prove upper and lower bounds that result in defining hierarchies of problems.

For instance, the two most prominent classes are P, class of problems that can be solved in a
polynomial number of steps in the length of the problem representation, and NP, problems
for which, given a solution claim, one can verify if it is really a solution in polynomial
time. It is common to consider “tractable” the problems in the class P, while problems
NP-complete (maximal elements of the NP class, those that every other problem in NP
can be reduced to) are usually considered untractable. For the foreseeable future there is
no hope of proving P ( NP, even for those so prominent classes. This doesn’t however
impede of classifying problems in NP as being in P, NP-complete, or NP-intermediate.

We already mentioned parity games and mean-payoff games: they are in the class NP and,
by leveraging the inherent symmetry of those games, one can easily see that they must
be also inside coNP, the dual class of NP. The problems that, like these, are found in
NP ∩ coNP are rare and have peculiar traits in complexity theory: from one side there is
no known algorithm that proves they are in P, and from the other side if a problem in
NP ∩ coNP were found to be NP-complete, a collapse of the polynomial hierarchy to ΣP

1

would occur, which is deemed improbable by experts.

Many rather think that problems in NP ∩ coNP (graph games also belong to the stricted
class UP∩coUP [Jur98]) show tractability traits: it happened in the past that problems in
these class later were found to be in P like PRIMES [AKS04] (the problem of establishing
primality of a number) or fell in more tractable classes, like the factoring problem that can
be solved in polynomial time on a quantum computer [Sho99].

Generally in complexity theory one considers notions of reducibility between problems,
where a problem A is said to be reducible to a problem B if there is an algorithm that
solves instances of problem A by calling repeatedly an oracle-subroutine for solving B.
In the same way, even though the exact complexity of graph games has not yet been
established, it is possible to cast them in a hierarchy under the reducibility relation [ZP96;
AM09; Jur98], which can be seen in Figure 1. Condon [Con92] has been the first to raise
the question of graph games being in P, a problem which is still open for the vast majority
of graph games.

Recently the breakthrough of Calude et al. [Cal+17] gave rise to a series of works that
adapted previously known algorithm to obtain quasi-polynomial time1 variants for solving
parity games. Among these we would like to mention the succinct progress measures by Ju-
rdzinski and Lazic [JL17], the register-index method of Lehtinen [Leh18], a variation of the
Zielonka algorithm by Parys [Par19], and an algorithm based on strategic decompositions
by Daviaud et al. [DJL18].

Unfortunately the complexity of mean-payoff games is not as well constrained. There is an
obvious polyspace (and hence exptime) bound on their complexity but, that apart, they

1We remind the reader that an algorithm is quasi-polynomial when it needs eO(logα n) steps before
stopping, where n is the problem description size, and α ∈ R is a real number. The class of quasi-
polynomial algorithms has gained a respectable status since another important but uncorrelated problem,
namely graph isomorphism, was solved by Babai [Bab16].



4 CONTENTS

Safety games Unary mean-payoff games

Parity games

Mean-payoff games

Discounted-payoff games

Stochastic graph games

PT
IM

E
Q

PT
IM

E
SU

BE
XP

TI
M

E

Figure 1: Main kinds of infinite graph games, with arrows meaning polynomial Turing-
reductions. Stochastic games have been shown to have equivalent complexity by Andersson
and Miltersen [AM09; Mam17], and the only games for which a polytime algorithm is
known are safety games and unary-coded mean-payoff games [ZP96].

share the same subexponential upper bound [LP07] as the whole hierarchy of graph games,
coming from the theory of LP-type problems [Lud95; Hal07].

Scope of the thesis

We concentrate on parity games and mean-payoff games. We will review known results
of structural nature on these games; in particular we will prove that they are positionally
determined, i.e. they possess memoryless optimal strategies. We will present reducibility
results between graph games, proving that they fit in a hierarchy of problems. We will then
focus on their computational complexity, proving the recent result of Calude et al. [Cal+17]
and reviewing critically the principal algorithms discovered after the breakthrough. Finally
we will propose a new graph game, identifying its position inside the hierarchy, and checking
some of its algorithmic aspects.

In Chapter 1 we will define the basic notions for graph games and prove positional deter-
minancy of the basic games we will consider. In Chapter 2 we introduce the notion of game
reduction and prove various reductions between games, as well as their complexity status
in NP ∩ coNP. In Chapter 3 we present many algorithms to solve such types of games.
Finally, in Chapter 4, we give the definition of a new game, which is intermediate between
parity games and mean-payoff games, and prove some properties about it.



Chapter 1

Infinite duration Graph Games

1.1 Basic Definitions

We give in this section the necessary definitions for the two-players zero-sum infinite du-
rations graph games, that will be the topic of the whole thesis.

Definition 1.1.1 (Graph Game): A graph game G is a tuple (W, ν), where

• W is a set, called the set of weights

• ν : WN → R is the payoff function from sequences of weights to R

Definition 1.1.2 (Game Arena): A game arena A for a graph game G = (W, ν) is:

• An underlying directed graph G = (V,E)

• A partition of the vertices V in two subsets VMax and VMin

• A map w : E →W from the edges to the weight set

We will abuse the word game to mean game arena when the meaning is clear by the context.

Definition 1.1.3 (Game Play): Given an arena A for a graph game G, a play starting
from vertex vp0 is a sequence vp0 , vp1 , vp2 , . . . of vertices such that (vpi , vpi+1) ∈ E.
We require that the graph G has no cul-de-sac, i.e. every vertex has at least one
successor, to ensure that every partial play can continue1.

Player Min moves (i.e. decides which outgoing edge to follow) when the token is on
one of its vertices, i.e. vpi ∈ VMin, and similarly for player Max. The sequence of
vertices determines a sequence of weights: ai = w(vpi , vpi+1) which can be used to

1Such requirement is not necessary, since if a vertex of the underlying graph has no outgoing edges, it
is customary to say that the player that cannot move loses. Note though, that one can build an equivalent
game by adding two additional vertices v−, v+ with a loop that makes player Max (respectively Min) lose,
and wire each vertex where player Max cannot move to v−, and each Min vertex with no outgoing edges
to v+. Therefore we won’t deal with such cases.

5



6 CHAPTER 1. INFINITE DURATION GRAPH GAMES

compute the value of the play ν(v·) = ν(a·) ∈ R.

The play is won by Max if ν(a·) > 0, and by Min if ν(a·) < 0, and it is a draw
otherwise.

There are many questions one can ask given a game arena: can player Max win if the play
starts at vp0? Which is “the maximal value” that he can obtain in a play? Can we describe
a strategy that allows him to win? Those questions will be answered through the thesis,
first in theoretical terms and then from the point of view of complexity theory. But let’s
start introducing the type of games we will be talking about.

1.2 Common graph games

We will now describe some of the major graph games that will be studied. As was already
said in the introduction, those are particularly interesting because of their complexity
status and their fruitful connections with other areas of mathematics.

Note that even though weight sets will be infinite, in every game arena there will only be
a finite quantity of those, since the underlying graphs are finite.

Definition 1.2.1 (Parity games): The weights are natural numbers W = N. We
are interested in the quantity ρ(w·) = lim supnwn, the highest number that occurs
infinitely often. The value function can be espressed as ν(w·) = (−1)ρ(w·)ρ(w·), that
is the Min player (also called Odd) wants ρ(w·) to be an high odd number, while
Max player (also called Even) wants ρ(w·) to be a high even number.

Parity games have many applications to formal verification theory, because they are the
model-checking games corresponding to µ-calculus, a formal logic with fix point opera-
tors [Koz82].

Definition 1.2.2 (Mean-payoff games): The weights are integer numbers W = Z.
The value function is ν(w·) = lim supn

1
n

∑n−1
k=0 wk, which is the limit of the mean of

the weights encountered during the play.

Definition 1.2.3 (Discounted-payoff games): The weights are integer numbers
W = Z and a parameter 0 < β < 1 has to be specified. The value function is then
ν(w·) = (1− β)

∑∞
k=0 β

kwk.

1.3 Strategies and Determinancy

Definition 1.3.1 (Strategy): Given a game arena G, a strategy for player i =

Max,Min is a function describing what vertex to choose next basing on past history
of the play. Formally it is a function σ : Hist(V )→ V , where Hist(V ) = ∪∞k=1V

k.



1.3. STRATEGIES AND DETERMINANCY 7

The chosen vertex must be connected through an edge to the previous vertex in the
sequence, that is if σ(vp0 , . . . , vpk) = vpk+1 it must be the case that (vpk , vpk+1) ∈ E.

Definition 1.3.2 (Play consistent with a strategy): A play vp0 , . . . is said to be
consistent with a strategy σ for player Max (respectively Min) if when the pebble
is on a vertex owned by Max (Min), the next visited vertex in the play is the one
chosen by the strategy. More formally if it holds that

vpi+1 = σ(vp0 , . . . , vpi) whenever vpi ∈ VMax (respectively VMin)

Remark 1.3.3: Given a strategy σ for player Max and τ for player Min, there exists a
unique play consistent with both strategies and starting from a given vetex vp0 , and
the sequence of vertices can be determined by the rules:

vpi+1 = σ(vp0 , . . . , vpi) if vpi ∈ VMax

vpi+1 = τ(vp0 , . . . , vpi) if vpi ∈ VMin
(1.1)

We will use the notation νσ,τ (vp0) to describe the value of the play starting from vp0
which is consistent with both σ and τ , i.e. νσ,τ (vp0) = w(vp0 , . . .).

Definition 1.3.4 (Determined game): Given a game arena G, a game strating from
vi ∈ V is said to be determined if ∃ai ∈ R and there ∃σ∗ a strategy for Max and ∃τ∗

a strategy for Min such that ∀σ, τ strategies respectively of Max and Min it holds
that

νσ∗,τ (vi) ≥ ai
νσ,τ∗(vi) ≤ ai

(1.2)

The value ai is said to be the value of the game starting from vi. We note that by
using σ = σ∗ and τ = τ∗ one gets that the value of the game is ai = νσ∗,τ∗(vi).

Definition 1.3.5 (Optimal Strategies): Given a determined game arena G, if σ∗

and τ∗ are two strategies (respectively of Max and Min player) satisfying equation
1.2, they are said to be optimal strategies.

In other words, an optimal strategy for Max guarantees a minimal outcome against what-
ever strategy the other player chooses.

Definition 1.3.6 (Winning Set): Given a determined game arena G we will call
winning set WMax for player Max (respectively WMin for player Min) the set of
vertices for which there exists two optimal strategies for the two players, with ai > 0

(respectively ai < 0).

Definition 1.3.7 (Winning Strategies): Given a determined game arena G, a strat-
egy σ for Max (respectively τ for Min) is said to be winning if it archieves at least
zero (at most zero) for every vertex for which it is possible, i.e. if ∀v ∈WMax and ∀τ
strategies of Min (resp. ∀σ strategies of Max) it holds νσ,τ (v) > 0 (resp. νσ,τ (v) < 0).



8 CHAPTER 1. INFINITE DURATION GRAPH GAMES

We now mention a well-known theorem of Martin [Mar75; Mar85] about determinancy
of general infinite duration games, that we state without proof. Such theorem can be
successfully used to prove determinancy of our games, but we will prove a more explicit
result in the next section.

Remark 1.3.8 (Proving determinancy): Define a tree T to be a set of finite se-
quences such that

• All prefixes of the sequences in T belong to T :

〈x1, . . . , xn〉 ∈ T =⇒ ∀k ≤ n 〈x1, . . . , xk〉 ∈ T

• Every sequence in T can be extended to a longer sequence:

〈x1, . . . , xn〉 ∈ T =⇒ ∃y 〈x1, . . . , xn, y〉 ∈ T

Denote by [T ] the set of all infinite sequences whose initial segments are in T :

[T ] = {〈x1, . . . , xn, . . .〉 | ∀k 〈x1, . . . , xk〉 ∈ T}

A game on T is played by two players alternatingly: the first player chooses a0, the
second one chooses a1, then the first one chooses a2 and so on. It is required that
〈a0, . . . , an〉 ∈ T for each n.

Given a set A ⊆ [T ], we denote by G(A, T ) the game on T with the following winning
condition: the first player wins the play 〈a0, a1, . . .〉 if and only if 〈a0, a1, . . .〉 ∈ A,
otherwise the second player wins.

We say that a set A ⊆ [T ] is Borel if it is in the Borel σ-algebra of the pointwise
convergence topology, i.e. where the open sets are the plays with a predefined initial
sequence of moves.

Borel Determinancy Theorem: If A ⊆ [T ] is Borel, then G(A, T ) is determined.

By modifying our definition of games only a little2 we can use the Borel determinancy
theorem to prove determinancy for our games. This determinancy result is not effective,
so that we are interested in a stronger notion of determinancy that also allows one to
compute optimal strategies, which will be useful in designing algorithms to solve these
games.

For these reasons we are introducing the notion of positional determinancy.

1.4 Positional determinancy

Definition 1.4.1 (Memoryless strategy): Given a graph game arena G, a strategy
σ : Hist(V )→ V is said to be memoryless if it is induced by a function f : V → V in

2We should require that the graph on which the game is played is bipartite, that is there are only edges
connecting one vertex in VMax to one vertex in VMin. It is not difficult to transform each game arena to
be bipartite without modifying the essence of the game.



1.4. POSITIONAL DETERMINANCY 9

the following way: σ(v0, . . . , vi) = f(vi), i.e. if the next vertex depends only on the
current one, and not on past vertices.

Definition 1.4.2 (Strong optimal positional determinancy): A game is said to
be strong optimally positionally determined if each player has a memoryless optimal
strategy for all starting vertices v0. These two strategies can be seen as functions
σ : Vi → V satisfying (vk, σ(vk)) ∈ E for i = Max,Min.

Remark 1.4.3 (Computing the game value for positionally determined games):
Given two positional optimal strategies σ∗, τ∗ for the two players, the value of
each vertex can be computed in polynomial time for both parity, mean-payoff and
discounted-payoff games: for each vertex we have a unique outgoing edge that is se-
lected from the two strategies and the vertices visited in a play are forced to repeat.

We can thus identify in polynomial time a preperiod vp0 , . . . , vpk of the play, followed
by a period of repeating vertices vpk+1

, . . . , vpk+s
such that vpk+s+1

= vpk+1
.

Given such decomposition in preperiod and period, the game value can be computed
for all previously outlined game types by noting that the play value can be split
in a part depending on the weights encountered during the preperiod and a part
depending only on the weights of the period.

For example, for β-discounted games we have

νσ∗,τ∗ = (1− β)

(
k∑
i=0

βiwi +
βk+1

1− βs
k+s∑
i=k+1

βi−k−1wi

)

so the only interesting part is detecting where the period begins and how long it is.

Remark 1.4.4 (Solving single-player graph games): For all games that we are
going to examine, solving a single-player arena is known to be feasible in polynomial
time, since it usually reduces to finding an “extremal” cycle on a directed graph
and which can be usually solved by a variation of the Bellman-Ford shortest-path
algorithm [Bel58; FF62].

Consider for instance the case of single-player parity games: if the vertices are all
owned by Even player, he will be interested in converging to the cycle with the
maximal even priority. To compute the path he has to follow we can use an updating
algorithm to locally compute the best strategy: start with µ : V → N⊥ given by
µ(v) = ⊥, i.e. undefined, and iteratively compute µ′ : V → N as

µ′(v) = Evenmax(v,u)∈E max(w(v, u), µ(u)) (1.3)

by selecting at each step the maximal even priority that can be reached. Computing
the transformation n = |G| times, Even is able to know which is the maximal even
recheable priority and to converge to it by remembering for each vertex the edge on
which the maximum in Equation 1.3 is reached. Therefore computing the optimal



10 CHAPTER 1. INFINITE DURATION GRAPH GAMES

path for single-player parity games can be done in time O(n2), without counting the
time required to do a max operation.

A similar result hold for the other classes of games. For example consider the case of
single-player mean-payoff games: if the vertices are all owned by Min player, he will
be interested in converging to the cycle with the minimal mean. This case has been
solved by Karp [Kar78] via a characterization of the min-cycle.

1.4.1 Different types of positional determinancy

We set aside for a while the question of proving optimal positional determinancy to discuss
about other possible definitions of positional determinancy. We will introduce a seemingly
weeker notion of positional determinancy – that for every vertex there exists a winning
positional strategy – and prove that it implies weak optimal positional determinancy, i.e.
that there exists an optimal positional strategy for every starting vertex. This in turn
will imply our strong notion of positional determinancy, namely that there exists a global
optimal positional strategy, i.e. a single strategy that ensures to reach the vertex value for
every vertex at once. This digression is necessary since we will be proving weak winning
positional determinancy for all games, but we will need to use strong optimal positional
determinancy in the algorithm chapter. A presentation of such lemma was inspired by the
work of Björklund, Sandberg and Vorobyov [BSV04].

Definition 1.4.5 (Subgame specified by a strategy): Given a positional strategy
σ for Max we denote the subgame Gσ of G obtained by first removing from the arena
A all the edges coming out of vertices in VMax except for those agreeing with σ, and
then by removing all vertices unreachable from v0 via the edges left.

Note that plays in the game G starting in vi and consistent with the strategy σ

correspond exactly to the set of all plays in the game Gσ.

Definition 1.4.6 (Weak winning positional determinancy): A game is said to
be weak winning positioanlly determined if there exist a strategy σ for Max and a
strategy τ for Min such that:

• If the play starts from a vertex v0 with non-negative value, then by playing
according to σ, Max can win every play starting from v0.

• If the initial vertex v0 has negative value, then by playing according to τ , Min
can win every play starting from v0.

Definition 1.4.7 (Weak optimal positional determinancy): A game is said to
be weak optimally positionally determined if for every starting vertex v with value
α, there exists a strategy σv of Max and a strategy τv of Min such that:

• By playing according to σv, Max ensures that every play starting from v has value
which is at least α.



1.4. POSITIONAL DETERMINANCY 11

• By playing according to τv, Min ensures that every play starting from v has value
with is at most α.

We are now going to talk about value recovery: given the existance of weak positional
winning strategies for every vertex, can we recover weak positional optimal strategy?

Definition 1.4.8 (Value shifting): We say that a graph game G admits value shifting
if, given any game arena G with a vertex v of value a, a new game arena G′ with the
same underlying graph as G but with different weights can be computed such that a
positional strategy σ is optimal on G starting from v if and only if it is winning on
G′ starting from v.

Lemma 1.4.9: Let G be a graph game which is weak winning positionally determined
and admits value shifting. Then G is weak optimally positionally determined.

Proof: Given a game arena G and a vertex v, we use the value shifting property to get
a new arena G′ such that a positional σ is optimal on G from v if and only if it is
winning on G′ starting from v. The notion of weak winning positional determinancy
for G exactly says that there is a strategy σ on G′ which is winning from v.

It is now enough to prove that parity games, mean-payoff games, and discounted-payoff
games all admit value shifting, because their payoff function is translation-invariant.

Definition 1.4.10 (Translation-invariant payoff): A payoff function ν : WN → R
is said to be translation-invariant if for every sequence α ∈ RN and every constant
c ∈ R one has:

ν(c+ α) = c+ ν(α)

where c+ α means adding c to every weight in the sequence α.

Lemma 1.4.11: Let G be a graph game with translation-invariant payoff. Then it admits
value shifting.

Proof: Let G be a graph game arena with a vertex v of value a. We can consider the
new graph game arena G′ = G − a in which a is subtracted to the weight in every
edge . In G′ the value of v is zero, and therefore a winning strategy σ ensures the
exact value of the vertex. By using the same strategy in the original arena, it ensures
the original value a.

Now we are going to see a pair of lemmas that allows us to pass from weak optimal
positional determinancy to strong optimal positional determinancy, which was our initial
goal. The idea of what follow is that, given a weak optimal positionally determined game
arena, an equivalent game can be obtained by fixing the outgoing edge from a single vertex.
Iterating such construction, one is able to fix a single outgoing edge from every vertex of one



12 CHAPTER 1. INFINITE DURATION GRAPH GAMES

player without changing the game values, therefore obtaining a global positional optimal
strategy for him. To see this we are going to use an intermediate game, where we just fix
the starting vertex value.

Definition 1.4.12 (Non-decreasing payoff): A payoff function ν : WN → R is said
to be non-decreasing if there exists a function f : R2 → R such that:

• For every a ∈ R and sequence α ∈ RN we have

ν(a ∩ α) = f(a, ν(α))

where ∩ denotes sequence concatenation.

• f is non-decreasing in each variable.

Remark 1.4.13 (Graph games with non-decreasing payoff): We note that if a
payoff is prefix-independent, i.e. if ν(a ∩ α) = ν(α), then it is also non-decreasing.
This is the case of parity games and mean-payoff games.

Discounted-payoff also is non-decreasing, since f(a, ν) = (1− β)a+ βν.

Definition 1.4.14 (Game with fixed node value): Given a game arena G and
a vertex v∗ ∈ V , we can build another game G[v∗ = α] where we postulate that
whenever a play vp0 , . . . reaches the vertex v, the play ends with value α, i.e. if
vpi = v∗ then ν(vp0 , . . .) = α.

Lemma 1.4.15: Given a weak optimal positionally determined game arena G with non-
decreasing payoff, let v∗ ∈ V be one of its vertex of value α. Then a strategy (even
non-positional) σ is optimal on a vertex v in G if and only if it is optimal for the
same vertex in G[v∗ = α].

Proof: Let σ be an optimal strategy for Max from v in G[v∗ = α]. We want to prove
that it can archieve at least the value νG(v) no matter what the counter-strategy τ
of Min is. Let π = v, vp1 , . . . be the play consistent with both σ and τ and starting
from v in G. If the play does not passes through v∗, then its value is the same in G
and in G[v∗ = α].

On the other hand if a play passes through v∗, i.e. vpi = v∗ then we denote by ν ′ the
value of a play in G[v∗ = α] and it is easy to see that:

ν ′(π) = f(w1, f(. . . f(wi−1, α) . . .))

ν(π) = f(w1, f(. . . f(wi−1, ν(wi, . . .)) . . .))
(1.4)

Since f is non-decreasing we also have for any set of real numbers {bi}i∈N ⊆ R that
f(a,mini bi) = mini f(a, bi) and combining this observation with the definition of the
value we obtain minτ ν(wi, . . .) = α. This concludes by induction on the number of
f that ν ′(π) = ν(π) since it holds that

f(w,α) = f(w,min
τ
ν(wi, . . .)) = min

τ
f(w, ν(wi, . . .))



1.4. POSITIONAL DETERMINANCY 13

The converse statement trivially holds since α is the value of the vertex v∗ in G.

Definition 1.4.16 (Game with fixed exit edge): Given a game arena G, we can
define the fixed exit edge arena G[v∗ → u] as the arena with all exit edges removed
from v∗ except the one going to u.

Lemma 1.4.17: Given a weak optimal positionally determined game arena G[v∗ = α]

with non-decreasing payoff, let σ be an optimal positional strategy for Max for the
vertex v∗. Then a positional strategy σ which is optimal on G[v∗ → σ(v∗)] is also
optimal in G[v∗ = α].

Proof: It is enough to prove that the value of each vertex remains unchanged. Because
of the equality ν(a ∩ α) = f(a, ν(α)) it is also enough to prove that the value of the
vertex v∗ remains unchanged. Since σ is an optimal positional strategy for Max from
v∗ in G[v∗ = α], the value of the vertex v∗ is the minimal value that can be attained
in the single-player game G[v∗ = α]σ = G[v∗ → σ(v∗)]σ.

Lemma 1.4.18 (Proving strong optimal positional determinancy): Let G be
a game arena of a weak optimal positionally determined game with non-decreasing
payoff. Then G is also strong optimal positionally determined.

Proof: We prove the theorem by induction on the number m = |E| of edges of the
game arena. If m = 1 there is nothing to prove since the two notions of positional
determinancy coincide.

For the inductive case, consider a vertex v∗ of value α in G with at least two outgoing
edges. By weak optimal positional determinancy there exists a strategy σ attaining
maximal value in G from v∗. By the two previous lemmas, an optimal positional
strategy ρ in the game G[v∗ → σ(v∗)] is also optimal in the game G[v∗ = α] and
thus in the original game G. The existance of the strategy ρ is a consequence of the
inductive hypothesis.

1.4.2 Proving positional determinancy

Before proving positional determinancy of discounted-payoff games, let us state the con-
traction principle, which will be used in the proof.

Fact 1.4.19 (Contraction principle): Let (X, d) be a complete metric space and
f : X → X be an L-Lipschitz function with L < 1.

Then f admits a unique fix-point x̂ ∈ X to which all iterated f -sequences converge,
i.e. fix x0 ∈ X and let xk+1 = f(xk), then

d(x̂, xk) ≤
Lk

1− L
d(x, T (x))

that is xk → x̂ exponentially fast.



14 CHAPTER 1. INFINITE DURATION GRAPH GAMES

Theorem 1.4.20: Discounted-payoff games are positionally determined.

Idea of the proof: We proceed in multiple steps:

1. We write equations that should determe the value of the game from each vertex.

To do this, suppose the current vertex is owned by player Max. Then Max will
preferrably choose an edge that leads to a vertex such that the new value of the
game plus the weight encoutered in the edge is maximal.

By the contraction principle the system of equations has a unique solution.

2. Such solution induces a positional strategy for both players.

3. We then prove that by playing this strategy, Max player can force the game to
have at least a value, and Min player can force the game to have at most the
same value. This allows us to conclude that the game is positionally determined.

Proof: Notation: Let wij = w(vi, vj) be the weights along the edges. Let opi be max

if vi ∈ VMax and min if vi ∈ VMin.

Step 1: System of Equations: Consider the following system of equations:

xi = max
j

((1− β)wij + βxj) if vi ∈ VMax

xi = min
j

((1− β)wij + βxj) if vi ∈ VMin
(1.5)

We can define the map T : R|V | → R|V | as T (x)i = opi {(1− β)wij + βxj}j=1,...,n.
Such map is a contraction in the max-norm ||x|| = maxi xi because it is the compo-
sition of x 7→ c + βx which is β-Lipschitz and of max : Rn → R or min which are
1-Lipschitz.

Therefore, by the contraction principle, T has a unique fixpoint x that is the iterated
limit of every starting point, that is ∀y ∈ R|V | we have x = limn→∞ T

n(y).

Step 2: Induced strategies: Given the solution x to the above system of equation
we can extract a pair of positional strategies (σ∗, τ∗) for the two players:

• If vi ∈ VMax we can choose σ∗(vi) ∈ argmaxj((1−β)wij+βxj), that is σ∗(vi) = vj

where vj is a vertex such that (1− β)wij + βxj = maxk((1− β)wik + βxk).

• Similarly, if vi ∈ VMin we can choose τ∗(vi) ∈ argminj((1− β)wij + βxj).

Step 3: Determinancy: We want to prove that by playing accordingly to σ∗, Max
can be sure to win at least xi, against every strategy of Min. We will prove by
induction that (

(1− β)
n−1∑
i=0

βiw(vpi , vpi+1)

)
+ βnxpn ≥ xp0 . (1.6)

For n = 0 we have β0xp0 ≥ xp0 which is trivially true. Suppose now that Equation
1.6 holds for all k ≥ n: to prove it for n + 1 we observe that it is enough to prove



1.4. POSITIONAL DETERMINANCY 15

that

(1− β)w(vpn , vpn+1) + βxpn+1 ≥ xpn (1.7)

since by adding it multiplied by βn to Equation 1.6 one gets the inductive step.

Equation 1.7 can be easily proven:

• If vpn ∈ VMax then Max has chosen the successor node as to maximize equation
1.5 so we have that xpn = (1− β)w(vpn , vpn+1) + βxpn+1

• If vpn ∈ VMin then, whichever next vertex Min chooses, we surely have from
equation 1.5 that βxpn+1+(1−β)w(vpn , vpn+1) ≥ minj(βxj+(1−β)w(vpn , vj)) =

xpn

Then we note that |βnxpn | ≤ βn||x|| and so in the limit n → ∞ it tends to zero, so
that we obtain (1− β)

∑∞
i=0 β

iw(vpi , vpi+1) ≥ xp0 as we wanted to prove.

Conclusions: Now it is easy to see that Step 3 can be repeated for Min player with
a similar reasoning to prove that if he plays according to τ∗, he can ensure that the
value of the play is at most xp0 , thereby proving positional determinancy.

Definition 1.4.21 (Associated DPG to a MPG): Given a mean-payoff game arena
G, the associated discounted-payoff game arena Gβ of discount factor β has the same
underlying graph, vertex ownership and weights as G, but the value of the play
vp0 , vp1 , . . . is given by ν =

∑∞
k=0 β

kw(vpk , vpk+1).

We outline a procedure that will be useful in the proofs of positional determinancy, as well
as later in the chapter about game reductions:

Procedure 1.4.22 (Cycle decomposition of a play): Given a play π = 〈vp0 , . . .〉
we can decompose it into simple cycles (i.e. cycles without repeating vertices) in the
following way: we maintain a stack containing a sequence of distinct nodes forming
a finite path u0, . . . , uh on the graph, where h is the height of the stack.

Whenever the next vertex from the path π to be considered happens to be already
on the stack, we remove the vertices forming the cycle from the top of the stack.
Otherwise we push the new vertex onto the stack.

Theorem 1.4.23: Mean-payoff games are positionally determined.

Idea of the proof: We prove this via discounted-payoff games:

1. There exist a sequence of discount factors βn ↗ 1 such that ∃ limn→∞ vi(βn),
where vi(β) is the game value of the vertex vi for the β-discounted game and
those games have the same optimal positional strategy.

2. We then deduce that every Min-reachable loop in Gσ̃ has a value which is bounded
by below by the limit Li = limn→∞ vi(βn), which proves potional determinancy.



16 CHAPTER 1. INFINITE DURATION GRAPH GAMES

Proof: Step 1: Since positional strategies are finite, we know that there exist a sequence
of βn such that ∀n we have σ̃ is an optimal positional strategy for Max in the βn-
discounted game and τ̃ is an optimal positional strategy for Min in the βn-discounted
game. We now show that such sequence admits values’ limit.

One can easily see that |vi(β)| ≤ (1−β)
∑∞

i=0 β
i|wi| ≤W , which means that, given a

sequence βn, the sequence (vi(βn))n∈N is bounded, therefore there exists a converging
subsequence βnk

which admits limit Li = limk→∞ vi(βnk
).

Then ∀ε > 0 there ∃N such that ∀n > N and ∀τ strategy of Min we have ν(βn)σ̃,τ (vi) ≥
Li − ε because of the definition of limit, and similarly for Min player.

Step 2: Now consider a play on the graph Gσ̃ starting from vi which ends in a loop
with sequence of weights wi. We want to deduce that every min-reachable loop in
Gσ̃ has a mean-payoff value of at least Li − ε. All the limits in the following chain
are done when β → 1, w′j = wn0+j .

vi(β)− ε︸ ︷︷ ︸
→Li−ε

≤ (1− β)

n0−1∑
i=0

βiwi︸ ︷︷ ︸
→0

+(1− β)
∞∑
i=0

n1−1∑
j=0

βn0+n1i+jw′j

= (1− β)βn0

( ∞∑
i=0

βn1i

)
n1

1

n1

n1−1∑
j=0

βjw′j︸ ︷︷ ︸
→ 1

n1

∑
w′j

= βn0n1
1− β

1− βn1︸ ︷︷ ︸
→1

1

n1

n1−1∑
j=0

w′j

=
1

n1

n1−1∑
j=0

w′j

This means that the mean-payoff value of each Min-reachable cycle in Gσ̃ starting
from vertex vi is ≥ Li − ε for every ε, which means that it is ≥ Li.

Positional determinancy: By the previous step we have shown that, using the
positional strategy σ̃, no matter what Min does, Max archieves ≥ Li on every cycle.
Similarly it can be shown that by using τ̃ , Min can ensure that every cycle Max can
reach in Gτ̃ has value ≤ Li.

Now using Procedure 1.4.22 about cycle decomposition of plays we can show that,
by using σ̃ and no matter which strategy Min uses, Max can archieve at least Li in
the play. The symmetric argument for Min proves positional determinancy of the
games.

Lemma 1.4.24 (Subsubsequence): Let (X, d) be a metric space and {an}n∈N ⊆ X be
a sequence. If every subsequence of an has a subsubsequence converging to a limit
L, and this limit is the same for all subsubsequences, then the original sequence
converges to it an → L.



1.4. POSITIONAL DETERMINANCY 17

Proof: By contradiction assume an does not converge to L, then there exists a subse-
quence ank

and ε > 0 such that ∀k d(ank
, L) ≥ ε, but the hypothesis implies that

ank
has a subsubsequence converging to L, thus contradicting the inequality.

Remark 1.4.25 (Value of a mean-payoff game): In the proof we showed that a
positional strategy which is optimal frequently on a sequence Gn of discounted games
is optimal also on the mean-payoff game and the value of the limit mean-payoff game
is exactly the limit of the values of the discounted games which have such positional
strategy as optimal.

We would now like to show that limβ→1 vi(β) = Li, that is that the whole sequence
of discounted games converges to the value of the limit mean-payoff. This follows
from the subsubsequence lemma noting that step 1 of the above proof allows, starting
from any sequence of βn, to extract a sequence of βnk

such that limk→∞ vi(βnk
) = Li

where Li = vi is the mean-payoff game value, so that if every subsequence has a
subsubsequence that converges to the same limit, the whole sequence converges to it.

Remark 1.4.26 (Optimal positional strategies on an open interval (β0, 1)):
We can find some positional strategies σ∗ and τ∗ which are optimal finally in β ↗ 1,
and not only frequently.

This can be proven by using o-minimality of the real field (R,+, ·, <, 0, 1) noting that
the formula φσ,τ (β) expressing the fact that σ is an optimal strategy for Max and
τ is an optimal strategy for Min is a first-order formula in the language of the real
field with variables vi (one for each vertex, representing the values of the game) and
the parameter β.

Since for each β there is a unique assignment of the vi variables that makes the
formula true, the formula is true on a finite union of intervals of the real line depending
only on β. As we know that positional strategies are finite, it follows that there must
be some σ∗ and τ∗ for which the formula is true on an open interval (β0, 1).

Theorem 1.4.27 (Parity games are positionally determined): Gven a parity
game G the winning regionsWE of Even andWO of Odd partition the set of vertices.
Moreover there is one positional strategy for Even (Odd) following which Even (Odd)
can win the game starting at any vertex in its winning region.

Idea of the proof: The proof is by induction on the number of priorities, and then
proceeds by contradiction on the single priority. We start by partitioning our game
into three sets: WE where Even has a positional winning strategy,WO where Odd has
a positional winning strategy and U where neither of them has a positional winning
strategy. By a simple reasoning on priorities in U and the inductive hypothesis we
obtain the contradiction.

Proof: We first note that the theorem holds for the base case where there is exactly one



18 CHAPTER 1. INFINITE DURATION GRAPH GAMES

priority. Consider then a game with d priorities, where we assume without loss of
generality that d is odd. As noted in the idea, let (WE ,WO, U) be the positional
partition of G. We will show by contradiction that U = ∅.

First let τE and τO be the two positional winning strategies from WE and WO for
Even and Odd respectively.

Now observe that if a vertex u ∈ U is owned by Even, then u has no edge which
takes it to some vertex v ∈WE , otherwise u will also be inWE by setting σE(u) = v.
Similarly if u ∈ U ∩ VOdd, then u has no edge which takes it to WO.

Define H ⊆ U to be the set of vertices from which player Odd can force the game
to take an edge of priority d in U , and consider the graph generated by the vertices
U \H. In this subgraph, if an edge (u, v) has priority d, then u is owned by Even.

Moreover, define K to be the arena obtained by removing from the subgraph U \H
the edges of priority d. Then the arena K has at most d − 1 priorities and the
induction hypothesis holds. K can then be partitioned into winning regions AO and
AE for Odd and Even respectively. Moreover there is a positional winning strategy
σO and σE for Odd and Even.

�� ��

�� ��

�

�

�{ }

�

Figure 1.1: Regions of the parity game in the proof

We are now ready to show that U is empty by showing that AO, H and AE are
empty. Suppose that AE 6= ∅ and consider the following positional strategy for Even
in the original graph: in WE even will play according to its strategy τE and in AE it
plays according to the strategy σE . We show that this strategy is winning for Even
starting the game from vertices in AE in the original arena G.

Assume that there is a vertex in AE from which Even cannot win: this only happens
if there is a vertex u ∈ AE owned by Odd and from which there is an edge (u, v) such
that v ∈ AO∪WO∪H. We first note that v /∈WO since otherwise u would have been
in WO as already noted. If v ∈ AO ∪H then the edge (u, v) should have priority d
because these are the only vertices that were removed in K. But we already noted
that this cannot happen, hence the strategy is a win for vertices in AE and therefore



1.4. POSITIONAL DETERMINANCY 19

these should have been part of WE .

The set AO∪H is also empty because of the following positional strategy for Odd: in
WO he plays accordingly to his strategy in G, in AO he plays according to his strategy
in K and in H he plays the forcing strategy which takes the edge with priority d,
always remaining inside of U .

Suppose by contradiction that this is not a winning strategy for Odd from AO ∪H.
Then there is a vertex u ∈ AO ∪H from which Even can escape. Even cannot force
to exit from H to WE because on H Odd has a strategy to forcing until reaching an
edge with priority d inside of U , therefore the terminal vertex is either inside H or
in AO.

Therefore it must be the case that Even can force to exit from a vertex u ∈ AO

to another vertex v ∈ WE , but then u should have belonged to WE already. The
outlined strategy is hence a win for Odd and therefore the vertices in AO ∪H should
be in WO, which concludes the proof by contradiction.

In order to acquire familiarity with graph games, we proved positional determinancy for
them one at a time and using their peculiarities. We could have avoided such work with
a theorem of Gimbert and Zielonka [GZ05] which characterizes positionally determined
game by some properties of their payoff function. We provide a clear statement of their
result in this part.

Remark 1.4.28 (Single-player positional determinancy): The most surprising
and useful corollary to their result, Gimbert and Zielonka prove that a two-player
game is positionally determined if and only if in every single-player arena (i.e. when
VMin = ∅ or VMax = ∅) the player has a positional optimal strategy.

Obviously single-player arenas are much simpler to treat, and this corollary provides a
very useful tool to prove positional determinancy of new games. We now provide the full
setting and a precise statement of their result.

Definition 1.4.29 (Preference relation): A preference relation over a set of colours
C is a bnary complete, reflexive and transitive relation over the set Cω of infinite
colour sequences.

Complete here means that ∀x, y ∈ Cω either x v y or y v x.

Intuitively, if x v y then the player whose preference relation is v appreciates the sequence
y at least as much as the sequence x. On the other hand, if x v y and y v x then the
outcomes x and y have the same value for our player, we shall say that x and y are
equivalent for v.

Notation 1.4.30 (Inverse of a preference relation): We denote by v−1 the



20 CHAPTER 1. INFINITE DURATION GRAPH GAMES

inverse of v: that is x v−1 y if and only if y v x.

We shall also write x @ y to denote that x v y but not y v x.

In their treatment, Gimbert and Zielonka only investigate antagonistic games where the
preference relation for player Min is just the inverse of the preference relation of player
Max. Antagonistic games are then just pairs (G,v) where G is a finite arena and v is the
preference relation of player Max.

Definition 1.4.31 (Preference relation induced by a payoff): Most often pref-
erence relations are introduced by means of payoff or utility mappings: such mapping
u : Cω → R ∪ {−∞,+∞} maps infinite colour sequences to extended real numbers.

This obviously induces a preference relation defined by x vu y ⇔ u(x) ≤ u(y).

Now let Rec(C) denote the family of recognizable subsets of C∗, which means that for
every L ∈ Rec(C) there exists a finite subset B ⊆ C such that L is a recognizable subset of
B∗. For any language of finite words L ⊆ C∗, Pref(L) will stand for the set of all prefixes
of the words in L.

Definition 1.4.32 ([·] operator): The operator [·] associates with each language L ⊆
C∗ of finite words a set [L] ⊆ Cω of infinite words:

[L] = {x ∈ Cω | every finite prefix of x is in PrefL}

We also extend the preference relation ⊆ to subsets of Cω: for X,Y ⊆ Cω:

X v Y ⇔ ∀x ∈ X ∃y ∈ Y x v y

and we also write
X @ Y ⇔ ∃y ∈ Y ∀x ∈ X x @ y.

Definition 1.4.33 (Monotone preference relation): A preference relation v is
said to be monotone if for all recognizable sets M,N ∈ Rec(C),

∃x ∈ C∗ [xM ] @ [xN ] =⇒ ∀y ∈ C∗ [yM ] v [yN ]

Definition 1.4.34 (Selective preference relation): A preference relation v is
said to be selective if for each finite word x ∈ C∗ and all recognizable languages
M,N,K ∈ Rec(C),

[x(M ∪N)∗K] v [xM∗] ∪ [xN∗] ∪ [xK]

Roughly speaking, a preference relation of Max is monotone if at each moment during the
play the optimal choice of player Max between two possible futures does not depend on
the preceding finite play, while the selective property expresses the fact that player Max



1.4. POSITIONAL DETERMINANCY 21

cannot improve his payoff by switching between different behaviours. The main result of
Gimbert and Zielonka [GZ05] is the following:

Theorem 1.4.35 (Characterization of positionally determined game): Given
a preference relation v, both players have optimal positional strategies for all games
(G,v) over finite arenas G if and only if the relations v and its inverse v−1 are
monotone and selective.



22 CHAPTER 1. INFINITE DURATION GRAPH GAMES



Chapter 2

Reductions between Games

2.1 Computational Problems for Graph Games

We are interested in effectively solving parity games and mean-payoff games, but we have
not yet formally defined what we mean by “solving”. In the literature we find several
slightly different notions of solution, which can be generally summarized as follows.

Problem 2.1.1 (Qualitative Solution): A graph game G is said to be solved quali-
tatively if, given a game arena, we are able to tell effectively which player wins from
each starting vertex.

Problem 2.1.2 (Quantitative Solution): A graph game G is said to be solved quan-
titatively if, given a game arena, we are able to compute the game-values of each
vertex.

Problem 2.1.3 (Strategic Solution): A graph game G is said to be solved strategi-
cally if, given a game arena, we are able to compute an optimal positional strategy
for both players.

We aim to study the computation complexity of these problems for parity games and
mean-payoff games. We have already seen in Remark 1.4.3 that for deterministic games
from a strategic solution one can easily compute – in polynomial time – the game values,
i.e. the quantitative solution. Moreover, it is obvious that given the value of each vertex,
we are able to solve the game qualitatively since this only requires a comparison between
the actual vertex value and zero.

One may also see that in case of translation-invariant payoffs, that is if adding a constant
c to all weights of an arena does increase the game value of all vertices by c, being able to
solve a game qualitatively allows us to also solve it quantitatively up to a finite precision
by binary search on vertex values. Other connections between various types of solutions,
such as Strategy Recovery, which consists in trying to go from a quantitative solution to

23



24 CHAPTER 2. REDUCTIONS BETWEEN GAMES

a strategic solution, have been analyzed in the literature. The complexity class of the
various types of solutions is usually the same, therefore we will mainly focus on solving
games qualitatively.

2.2 Brief Introduction to Complexity Theory

We will be mainly interested in decision problems, that is given a binary string of finite
length the goal is to decide if it belongs to a certain language or not. By language we mean
a fixed subset of {0, 1}∗, consisting of all binary strings of finite length.

2.2.1 Turing Machines

A Turing machine is a machine with a finite number of states, that can read from an input
tape, write on an output tape and has various working tapes that are read-write (see Figure
2.1).

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5 �6 �7

�1 �2 �3 �4 �5 �6

�1 �2 �3 �4

�(�)

�

Fi
ni

te
 c

on
tro

l

Working Tapes

Output Tape

Input Tape

Figure 2.1: Multitape deterministic Turing Machine

Each tape has an infinite number of cells in both directions. At each time step the machine
reads a symbol from each of its tapes at the current head positions. The machine then uses
its current internal state q and the read symbols s1, . . . , sk to know in which state q′ the
machine will be next, which symbols s′1, . . . , s′k it will write on the current head positions,
and in which position m1, . . . ,mk the heads of each tape will move, either left or right.

This information is implemented as a finite table which fully describes the machine be-
haviour. Mathematically, each Turing Machine operating on k tapes with alphabet Σ and



2.2. BRIEF INTRODUCTION TO COMPLEXITY THEORY 25

interal state set S can be described by a function S × Σk → Σk × {−1, 0, 1}k.

There exists an initial state from which the machine starts and some final states in which
the machine halts. The final states can be either accepting or rejecting. A run of the
machine M on a string s, written on the input tape before the machine start, determines
whether s belongs or not to the language specified by the machine: if the final state is
accepting, s belongs to it, and if the final state is rejecting, s does not belong to the
language.

Until now we have described what is known as deterministic Turing machine. Another
important class of machines are the nondeterministic ones, where at each step the machine
may transition to multiple internal states and thus continue executing among different
execution paths at the same time.

2.2.2 Main complexity classes

We give the definition of some complexity classes for decisional problems:

• DTIME(t(n)): A language L ∈ DTIME(t(n)) if there exists a deterministic Turing
machine M that always halts in at most t(n) steps (n is the input length) such that
the language is the set of accepted strings of the machine.

The most famous class in DTIME is the class P of languages which are deterministically
decidable in polynomial time, that is the union of DTIME(p(n)) for all polynomials p.

• DSPACE(t(n)): A language L ∈ DSPACE(t(n)) if there exists a deterministic Turing
machine that always halts such that the language is the set of accepted strings which
use at most t(n) tape cells.

• NTIME(t(n)): A language L ∈ NTIME(t(n)) if there exists a nondeterministic Turing
machine that always halts in at most t(n) steps, and such that the language is the
set of strings which result in at least a final accepting state, i.e. for which there is at
least an accepting execution path. The class NP is the union of NTIME(p(n)) for all
polynomials p.

• coNTIME(t(n)): A language L ∈ coNTIME(t(n)) if there exists a nondeterministic
Turing machine that always halts in at most t(n) steps and such that the language is
the set of string for which every final state is accepting, i.e. the string is rejected if
there is at least a rejecting path. The class coNP is defined analogously to NP.

2.2.3 Reductions among problems

We want to say that some computation problems are “more difficult” than others. To
formally do so, we introduce the notion of reduction which basically say that problem B is
more difficult than problem A if we can use a solver for B to also solve A. The exact way
in which one can use such a solver is important, and different constraints on it give rise to
different notions of reduction:



26 CHAPTER 2. REDUCTIONS BETWEEN GAMES

Definition 2.2.1 (Polynomial-time Turing reduction): We say that a language
A is Turing-reducible to B if there exists a deterministic machine M ∈ P which can
decide A having access to an oracle for B, i.e. if the machine can call a black-box
solver for the problem B as a subroutine and such calls have constant execution time.

Definition 2.2.2 (Polynomial-time many-one reduction): We say that a lan-
guage A is many-to-one-reducible to B if there exists a polynomial-time computable
function f such that x ∈ A⇔ f(x) ∈ B.

In other words, Turing reducibility means that having a subroutine for B helps in solving
A. Whereas many-one reducibility means that the program solving A may only call the
subroutine for B once and then just return the answer of the subrouting without doing
any further calculation.

The motivation for introducing these types of reductions is the following lemma:

Proposition 2.2.3: Let A ∈ P a computational problem and let B another computa-
tional problem which is polynomial-time Turing reducible to A. Then B ∈ P.

Proof: Let MA be the deterministic Turing machine solving A, and let MB be the de-
terministic Turing machine which solves B with A as oracle. We can substitute each
call of MB to the oracle for A with an execution of the machine MA to obtain a
deterministic Turing machine without oracles that is able to solve B.

In other words we can embed the states and the transitions of the machine A inside
the states of the machine B corresponding to oracle calls. If the machine MA always
halts in time pA(n) and the machine MB stops in time pB(n), then the newly built
machine can call the oracle at most pB(n) times, and each call can have an input of
length at most pB(n), thus the total machine running time is at most pA(pB(n))pB(n)

which is still polynomial.

Observe that a many-one reduction is also a Turing reduction, so that using many-one
reduction allows for a finer distinction between complexities.

Remark 2.2.4 (Stability of complexity classes under reductions): Note that
the classes NP and coNP are not stable for polynomial-time Turing reductions, but
are stable for polynomial-time many-one reductions. To see this one can observe
that the complement L of a language L is Turing-reducible to L, which is exactly the
distinction between the classes NP and coNP: a language L ∈ NP if and only if its
negation L ∈ coNP.

On the other hand their intersection NP∩ coNP is preserved under polynomial-time
Turing reductions.



2.3. REDUCTIONS FOR GRAPH GAMES 27

2.3 Reductions for Graph Games

We mentioned that some graph games are “more difficult” than other; now that we have
introduced the computational problems, we may give a more specific notion of difficulty by
using polynomial-time many-one reductions of the qualitative solution problem. For each
reduction we will also discuss whether it is also a many-one reduction for the strategic
solution problem.

Definition 2.3.1 (Game Translation): A translation from a graph game G = (W, ν)

to a graph game G′ = (W ′, ν ′) is a family of functions (Fn)n∈N, one for each graph
dimension, where Fn : WG →WG′ .

Remark 2.3.2 (Applying a game translation to a game arena): Given a game
arena A = (G,VMax, VMin, w) for the graph game G, we can obtain a game arena for
the graph game G′ by applying to it the game translation F and thus obtaining the
game arena A′ with G′ = G, V ′Max = VMax, V ′Min = VMin and w′(e) = F|G|(w(e)).

Note that the only thing that changes are the edge weights, as well as the payoff function.
Thus this reduction is stricter than the notion of many-one reductions. Nevertheless, for
our games this is already enough to prove reducibility.

Definition 2.3.3 (Strong reduction): We say that a graph game G is strongly
reducible to another game G′ if and only if there exist a game translation (Fn)n∈N

that is computable in polynomial time and, given a G-arena A, a player wins from
vertex vi in A if and only if the same player wins from vertex vi in F (A).

In other words it allows us to restate the qualitative solution problem of G in terms
of the same problem for G′.

Definition 2.3.4 (Strategic reduction): A graph game G is said to be strategically
reducible to another game G′ if and only if there exist a game translation (Fn)n∈N

that is computable in polynomial time and, given a G-arena A, a positional strategy
σi for player i = Max,Min of the arena F (A) is optimal for the game G′ if and only
if σi is an optimal positional strategy of the arena A for the game G.

In other words it allows us to restate the strategic solution problem of G in terms of
the same problem for G′.

To be able to link the given definitions to the corresponding notions of reducibility for
computational problems, one has to be explicit about the way in which graph games are
codified as binary strings. We note that reasonable codification of the graph structure are
easily converted into one another in polynomial-time and are thus equivalent for our aim.
In cases where an explicit coding is needed we assume the underlying graph coded as an
adiacency matrix, and numbers written in binary.



28 CHAPTER 2. REDUCTIONS BETWEEN GAMES

2.4 A graph game hierarchy

We will now examine some reductions between the games we presented that, as anticipated,
can be casted in a game hierarcy (see Figure 2.2).

Safety games Unary mean-payoff games

Parity games

Mean-payoff games

Discounted-payoff games

Stochastic graph games

PT
IM

E
Q

PT
IM

E
SU

BE
XP

TI
M

E

Figure 2.2: Reduction graph between many kinds of game

We recall Procedure 1.4.22 about cycle decomposition of a play that will be useful in proving
the reductions between games and then we will see the actual proofs of the reductions.

Procedure 2.4.1 (Cycle decomposition of a play): Given a play π = 〈vp0 , . . .〉
we can decompose it into simple cycles (i.e. cycles without repeating vertices) in the
following way: we maintain a stack containing a sequence of distinct nodes forming
a finite path u0, . . . , uh on the graph, where h is the height of the stack.

Whenever the next vertex from the path π to be considered happens to be already
on the stack, we remove the vertices forming the cycle from the top of the stack.
Otherwise we push the new vertex onto the stack.

Theorem 2.4.2 (Parity games are reducible to mean-payoff games): The
game translation Fn(p) = (−1)pnp is a reduction from parity to mean-payoff games.

Idea of the proof: First we give the game translation and we prove that it works
well on cycles. After that we show the reducibility by using the cycle decomposition
outlined above.

Lemma 2.4.3: Let σ be a memoryless strategy for player Max in G and let Fn(p) =

(−1)pnp be the game translation to apply. Then:

1. For every simple cycle c in Gσ the highest priority of a vertex on c is even if and
only if the sum of the weights of the edges on c in F (G) is nonnegative.



2.4. A GRAPH GAME HIERARCHY 29

2. If σ is a winning strategy for player Max from v0 in G then for every simple cycle
c in Gσ the highest priority of a vertex appearing on c is even.

3. If σ is a winning strategy for player Max from v0 in F (G) then for every simple
cycle c in F (G)σ the sum of the weights of the edges of c is nonnegative.

Proof (of the lemma): Fact 1: This follows trivially by the fact that the weights are
spaced enough: the biggest cycle can have at most n vertices, and at most n − 1 of
them can have priority at most p (odd), while there is at least one with priority p+1

(even), so that the sum is positive.

Fact 2: Suppose that there exists a simple cycle c with the highest priority of a
vertex on c being odd. Then player Min can force the play from v0 to c and also to
stay in c indefinitely and thus win. This however contradicts our assumption that σ
is a winning strategy for player Max.

Fact 3: This is proven in the same way as Fact 2.

Proof (of the theorem): Suppose that player Max has a winning strategy from vp0
in the game G and let σ be one of its positional winning strategies from vp0 . We
show that the strategy σ is also a winning strategy for player Max from vp0 in F (G).
In order to do that we have to argue that for every play 〈vp0 , vp1 , . . .〉 consistent with
the strategy σ the following inequality holds:

lim inf
n→∞

1

n

n∑
i=1

w(vpi−1 , vpi) ≥ 0

In the cycle decomposition of the play, whenever we remove a cycle from the top of
the stack the sum of the weights of the edges on the cycle is nonnegative. In this
way only the weights of the edges which are on the stack may sum up to a negative
value. Hence:

lim inf
n→∞

1

n

n∑
i=1

w(vpi−1 , vpi) ≥ lim inf
n→∞

1

n

h(n)∑
i=1

w(ui−1, ui) = 0

because h(n) ≥ |V |, so the absolute value of the sum
∑h(n)

i=1 w(ui−1, ui) is bounded
by a constant.

To finish the proof of the theorem we also have to show the reverse, i.e. if player Max
has a winning strategy from v0 in F (G), then player Max also has a winning strategy
from v0 in G. This can again be proven by restricting to memoryless strategies and
applying the same technique of decomposing plays in F (G)σ into simple cycles and
using the facts from the previous lemma.

We have proven that parity games are reducible to mean-payoff games, but note that
optimal positional strategies are not preserved under this reduction: an example of this
fact can be seen in Figure 2.3, where square vertices are owned by Even and circle vertices



30 CHAPTER 2. REDUCTIONS BETWEEN GAMES

�

�

�

��

6

6

6

3

3

3

�

�

�

��

5
6

5
6

5
6

5
3

5
3

5
3

Figure 2.3: A reduction from parity games to mean-payoff games in which optimal posi-
tional strategies are not preserved.

are owned by Odd. The maximal priority in the parity game is 6 and there are two distinct
cycles with a different number of occurrences of it (the cycle ABCA has two occurrences,
while the cycle ADEA has only one).

The two strategies are equally optimal for player Even in the parity game, but the one
cycling on ADEA is suboptimal in the mean-payoff game.

Theorem 2.4.4 (Mean-payoff games are reducible to Discounted-payoff

games): The game translation on weights is the identity, but the value of β to
be choosen has to satisfy

β ≥ 1− 1

4n3W

Notice that the size of a binary expansion of a β satisfying the relation β ≥ 1 − 1
4n3W

is bounded polynomially in n and logW and thus the reduction that we obtain is a
polynomial-time many-one reduction.

To prove such a theorem we need a quantitative lemma about relation between values of
vertices of an arena for mean-payoff games and β-discounted games.

Lemma 2.4.5: Given a game arena A, let β ∈ (0, 1) and let v(β) and v be respectively
the value of the β-discounted game and the value of the mean-payoff game played on
the same arena starting at a ∈ V . Then it holds

v − 2n(1− β)W ≤ v(β) ≤ v + 2n(1− β)W

Proof (of the theorem): By choosing β ≥ 1− 1
4n3W

it is easy to verify that |v(β)− v| ≤
1

2n(n−1) , and v can be obtained from v(β) by rounding to the nearest rational with a
denominator less than n.

This allows to compute the value v of the mean-payoff game and thus to compute



2.5. STOCHASTIC GAMES: INTRODUCING CHANCE 31

the winning player.

Proof (of the lemma): Consider the outcome of a discounted game in which player
Max uses a positional optimal strategy for the non-discounted game and player Min
uses a positional optimal strategy to counter the strategy of player Max. The outcome
of such a game clearly supplies a lower bound on the value v(β) of the discounted
game. The play in such a case consists of path of length k, followed by a cycle of
length l which is repeated indefinitely as per remark 1.4.3, where 0 ≤ k ≤ n − 1,
1 ≤ l ≤ n and k + l ≤ n.

Assume for the moment that all the edge weights are non-negative and let w0, . . . , wl−1

be the weights of the edges in the cycle formed. As player Max uses an optimal
strategy for the non-discounted game we get that

∑l−1
i=0wi ≥ lv. The outcome of the

discounted game is then at least

(1− β)βk

(
l−1∑
i=0

wiβ
i

) ∞∑
j=0

βjl

 =
(1− β)βk

1− βl
l−1∑
i=0

wiβ
i

≥ (1− β)βk+l−1

1− βl
l−1∑
i=0

wi

≥ β(1− β)

1− βl
βk+l−1v

As l(1−β)
1−βl > 1 and βk+l−1 > βn > 1− n(1− β), this is at least (1− n(1− β))v.

In the general case where the edge weights are not assumed to be non-negative, one
may simply addW to each weight, thus changing the value and outcome of the game
exactly by W and making all the weights non-negative.

By applying the previous inequality to the resulting non-negative game we get that

v(β) +W ≥ (1− n(1− β))(v +W )

or equivalently that

v(β) ≥ v − n(1− β)(v +W ) ≥ v − 2n(1− β)W

and the opposite inequality is proved in a similary way.

2.5 Stochastic games: introducing chance

If we allow our games to also contain random vertices (denoted by VR), we obtain a whole
set of interesting graph games. Their complexity is equivalent [AM09; Mam17] so we will
only define simple stochastic games, introduced by Condon [Con92]. The reduction from
discounted-payoff games to simple stochastic games was then proven by [ZP96].

Definition 2.5.1 (Simple Stochastic Games): When the play is on a vertex labeled
random, then the exit edge is chosen uniformly at random.



32 CHAPTER 2. REDUCTIONS BETWEEN GAMES

The graph also has a special vertices called the 1-sink. The game ends when the play
reaches the sink vertex: player Max wins if the play reaches the 1-sink vertex and
player Min wins if the play never reaches the 1-sink.

The value to be Maximized is the expected probability of a play ending in the 1-sink.

Simple Stochastic Games are used to model reactive systems, where random vertices are
used to model stochastic environmental changes. We briefly note that the qualitative
version asks if the expected probability p of a play ending in the 1-sink is greater than 1

2 .

Simple Stochastic Games also share with parity games and mean-payoff games the property
of having positional strategies, a proof of which can be found in Peters and Vrieze [PV87]
or in Condon [Con92].

Theorem 2.5.2 (Positional strategies for simple stochastic games): Both
players of a simple stochastic game have optimal pure stationary strategies, i.e. they
do not make probabilistic choices in choosing a move and each player chooses the
same move from a vertex every time that vertex is reached.

Now, fixed σ and τ strategies respectively of Max and Min player, consider the graph Gσ,τ :
let vσ,τ (i) denote the probability of reaching the 1-sink in a play (remember that now each
vertex owned by a player has only one exit), then we have the equations:

vσ,τ (i) =
1

|i→ j|
∑
i→j

vσ,τ (j) on average vertices

vσ,τ (i) = vσ,τ (j) on player vertices, for the unique arc i→ j

(2.1)

Remark 2.5.3 (Expanding definition of simple stochastic games): Note that
we can expand the definition of simple stochastic games to also include a 0-sink, a
special vertex which has a single leaving edge which is a loop, since this provides a
way to ensure that it is never left, and so is winning for player Min.

In this context we can consider the halting probability of a simple stochastic game,
which is the probability that a play ends in one of the two sink vertices. Restricted
to SSG with halting probability equal to one, the definition of SSGs can be formu-
lated symmetrically in the two players, where the quantity to maximize is still the
probability of ending in the 1-sink vertex for Max, while it is ending in the 0-sink
vertex for Min.

We will call halting simple stochastic game this variation of simple stochastic game.

Halting simple stochastic games are much simpler to reason about and will be employed
in what follows.

Lemma 2.5.4 (Unique solution of play equation for simple stochastic games):
Let G be a halting simple stochastic game arena, and let σ and τ be strategies of



2.5. STOCHASTIC GAMES: INTRODUCING CHANCE 33

Max and Min respectively. Equation 2.1 has a unique solution, which is also the
solution of the value equation

v = Qv + b

where

• b(i) is the probability to reach the 1-sink from vertex i in a single step

• Q is the stochastic matrix of transition probabilities in Gσ,τ , i.e. Qij = pr(i→ j)

Idea of the proof: It is easy to see that if v is a vector of non-negative entries that
satisfied v = Qv + b, then it is also a solution to the value-equation (Equation 2.1).
Moreover, the equation v = Qv + b has a unique solution if and only if (I − Q) is
invertible.

The idea is to show that limkQ
k = 0, from which follows that (I − Q) is invertible

and all entries of (I − Q)−1 are non-negative, and the entries along the diagonal
are strictly positive, which allows to prove that the unique solution of the equation
v = Qv + b is non-negative.

Proof: Invertibility: We will now show that liml→∞Q
l = 0: note that the ij-th entry

of Qmn is the probability of reaching vertex j from vertex i in exactly mn steps.
When m = 1, the sum of the terms of the ith row of Qmn is at most 1 minus the
probability of reaching a sink vertex of Gσ,τ from i in n steps. Since a sink vertex
is reachable from i, there must be a path of length ≤ n in Gσ,τ from i to a sink.
Hence the probability of reaching a sink from i in n steps is at least 1

rn , where r is
the maximal number of exit edges of a vertex in VR.

Therefore, the sum of the terms in any row of Qn is at most 1− 1
rn , and by induction

on m one obtains that the sum of the terms in any row of Qmn is at most (1− 1
rn )m.

Since all terms of Ql are non-negative for any l, it follows from this that, as l→∞,
Ql → 0. Now, since liml→∞Q

l = 0, 1 cannot be an eigenvalue of Q. Hence I −Q is
invertible.

Positiveness: Consider now the equation

(I −Ql) = (I −Q)(I +Q+Q2 + . . .+Ql−1)

and multiply it by (I −Q)−1 to the left:

(I −Q)−1(I −Ql) = I +Q+Q2 + . . .+Ql−1

Taking the limit for l→∞, the left hand side of the equation is (I−Q)−1; hence the
limit of the right hand side must exist and the equality (I−Q)−1 = I +Q+Q2 + . . .

holds. This means that every entry of (I−Q)−1 is non-negative and the entries along
the diagonal are strictly positive.



34 CHAPTER 2. REDUCTIONS BETWEEN GAMES

Theorem 2.5.5 (Discounted-payoff games are reducible to simple stochas-

tic games): For every given discounted-payoff game with discount factor λ there is
a polynomially sized equivalent simple stochastic game.

Idea of the proof: We first rescale the weight range to get all positive rational weights,
noting that it can be done since discounted payoff games are linear games. A tran-
sition of the discounted-payoff game can then be simulated using the trick shown in
Figure 2.4.

Figure 2.4: Simulating a transition of a discounted-payoff game

Proof: Let G = (VMax ∪ VMin ∪ VR, E) be a discounted-payoff game with discounting
factor λ.

If we add a constant c to all the weights of the game, the value of the game is
increased by c, and if we multiply all the weights of the game by a constant c > 0,
the value of the game is multiplied by c.

We can therefore scale the weights so that they will all be rational numbers in the
interval [0, 1]. If the original weights were in the range {−W, . . . , 0, . . . ,W}, then
the new weights will be rational numbers with denominators and numerators in the
range {0, 1, . . . , 2W}.

We construct in the following way a simple stochastic game G′ = (V ′, E′) with the
same value as the scaled discounted-payoff game G with discounting factor λ: each
edge (u, v) with weight w in G is replaced by the construction shown in Figure 2.4,
where the added vertex is a random vertex with fixed escaping probabilities.

The simple stochastic game G′ is halting, as in each transition there is a probability
of 1−λ of reaching a sink vertex. The values of the vertices of the discounted-payoff
game G satisfy Equation 1.5. The values of the vertices of the simple stochastic game
G′ satisfy the set of equations given in Lemma 2.5.4.

These two sets of equations become identical once the intermediate variables, that
correspond to the intermediate vertices introduced by the described transformation,
are eliminated. As this set of equations has a unique solution, the values of the two
games are equal. Moreover, the transformation of G to G′ can clearly be carried out



2.6. COMPLEXITY STATUS OF GRAPH GAMES 35

in polynomial time, which completes the description of the reduction.

2.6 Complexity Status of Graph Games

As we mentioned in the introduction, all of the games we have seen are in the complexity
class NP ∩ coNP, and even in the more restricted class UP ∩ coUP, where the checkable
certificates are required to be unique. In this section we will prove that all games lie in
NP ∩ coNP: having alredy proven reductions between games, it will suffice to show that
the qualitative problem for simple stochastic games is in NP ∩ coNP.

Moreover, restricting to halting simple stochastic games, it suffices to show that the prob-
lem is in NP; from this we know it must also belong to coNP because of the symmetry
between players in halting simple stochastic games.

Theorem 2.6.1: Quantitative solution of simple stochastic games is in NP ∩ coNP.

Proof: As already noted, it is enough to prove containment in NP because of the inher-
ent symmetry of the game. Using Lemma 2.5.4 one may prove the result with the
reformulation: non-deterministically claim a value v for vertices, values for b and for
non-random places of Q which satisfy constraints on being a positonal strategy and
then check it by using Equation 2.1. The only possible problem is that one should
be sure that the values of vetices can be written in a polynomial number of bits in
the graph description. This is what we prove in the next lemma, originally proved
by Condon [Con92].

Lemma 2.6.2: The value of a simple stochastic game G with n non-sink vertices is of the
form p

q where p and q are integers such that 0 ≤ p, q ≤ nn.

Proof: Consider the solution to the equation (I − Q)v = b, for Q, v, b defined as in
the previous lemma. By Lemma 2.5.4 we know that det(I − Q) 6= 0, so defining
A = I − Q, by the cramer rule we know that v = det(Ai)

det(A) where Ai is the matrix
formed by replacing the i-th column of A by the column vector b.

If we denote by ri the outdegree of the node i in the game Gσ,τ , it is trivial to note
that ∀i, j one has Qij = 0 ∨Qij = 1

ri
and bi = 0 ∨ bi = 1

ri
. Therefore all matrices Ai

and A have, on their k-th row, at most rk + 1 rational positive numbers, everyone
of which has a denominator of rk and a numerator ≤ rk. We will now prove that
every square matrix M which satisfies such condition has a determinant which is a
rational number p

q with 0 ≤ p ≤ Rn where R = maxk rk and q =
∏
i ri, from which

the required bound will be derive.

The proof will be by induction on the size n of the matrix: it is clear that such
bound holds if n = 1. For the inductive case consider the laplace row-expansion of



36 CHAPTER 2. REDUCTIONS BETWEEN GAMES

the determinant of M on the first row:

det(M) =

r1∑
i=0

αi
r1

det(Mi) =
1

r1

r1∑
i=0

αi
βi
qi

=
1

q

r1∑
i=0

αiβi

where the second equality follows by the inductive hyphothesis. This proves the
required bound on the numerator.

Let now q =
∏
i ri and let p and pi be the numerators of the determinants of A and Ai

respectively. Then the game values v = det(Ai)
det(A) = pi

p , each of which is ≤ Rn ≤ nn.

A proof that the deterministic games are in UP ∩ coUP can be obtained by carefully
analyzing discounted-payoff games: we would like to obtain a unique polynomial-sized
certificate for the solution of discounted-payoff games; we already know that the values of
a discounted-payoff game determine two optimal positional strategies for the players and
as such also the respective winning sets. One must only prove that the values of the games
vertices can be written using only a polynomial number of bits in the size of the graph,
which was proven by Jurdziński [Jur98].

We conclude the section by showing that the qualitative, quantitative and strategic prob-
lems are polynomial-time Turing reducible one another. We show a way to recover vertex
values in a game with a translation-invariant payoff (Definition 1.4.10) and a polynomial
number of possible values. We then show how, given a procedure computing the value of a
vertices for any arena, it is possible to extract a strategic solution by recursively removing
edges and checking whether the vertex values change.

Remark 2.6.3: We note that a vertex in a fixed parity game arena or in a mean-payoff
game arena G can assume a small number of values:

• In the case of a parity game, the possible values are the different priorities, so
there are only d ≤ n possibilities.

• In the case of a mean-payoff game, the possible values are the means of a cycle,
so they are fractions with denominator not greater than n and numerator which
is the sum of at most n different weights up to W , therefore there are at most
nW · n possibilities.

Theorem 2.6.4: Let G be a graph game with translation-invariant payoff and with at
most r(n) possible values. Given an algorithm that computes whether a player wins
in a graph game arena G from a vertex v in time O(f(n)), there exists an algorithm
for computing a single vertex value in the arena which runs in time O(f(n) log r(n)).

Proof: Note that the possible values are ordered and Max player wins from a vertex if
and only if the vertex value is greater than or equal to zero. Therefore the required
complexity can be obtain by performing a binary search on the set of possible values,
and asking for each candidate value α if Max player wins from vertex v in the shifted
game arena G− α, where all weights are shifted of −α.



2.6. COMPLEXITY STATUS OF GRAPH GAMES 37

Theorem 2.6.5: Given an algorithm that computes the vertex values of a graph game
arena G in time O(f(n)), there exists an algorithm for computing positional optimal
strategies for both players which runs in O(nf(n) log n)

Proof: Start by computing the values v(a) for each vertex a ∈ V . If all vertices a ∈ VMax

have outdegree one, then player Max has a unique strategy and this strategy is
positional and optimal.

Otherwise, consider any vertex a ∈ VMax with outdegree d > 1. Remove any dd/2e of
the edges leaving a, and recompute the value of a, v′(a) say, for the resulting graph.
If v′(a) = v(a) then there is a positional optimal strategy for Max which does not use
any of the removed edges; if on the contrary v′(a) 6= v(a) then there is a positional
optimal strategy for this player using one of the removed edges. Whichever is the
case, we can now restrict attention to a subgraph G′ with at least bd/2c fewer edges.

Let d(a) be the initial outdegree of vertex a ∈ V . The computation of a positional
optimal strategy for both players thus requires

∑
a∈V

log d(a) = log

(∏
a∈V

d(a)

)
≤ log

(∑
a∈V d(a)

|V |

)|V |
= |V | log

|E|
|V |
≤ n log n

calls to the value computing algorithm, thus obtaining the bound.



38 CHAPTER 2. REDUCTIONS BETWEEN GAMES



Chapter 3

Solving Graph Games

Among the various graph games we have presented, parity games are currently the most
computationally tractable, i.e. can be solved in less than subexponential time. Higher
games on the hierarchy, such as mean-payoff and simple stochastic games, have not as
strong upper bounds and ad-hoc algorithms archieve only a pseudo-polynomial running
time (i.e. exponential). On the other hand, lower games on the hierarchy, such as safety
games, have longly been known to be solvable in linear time.

In this part of the thesis we are going to see various algorithms that can be used to solve par-
ity and mean-payoff games. We will concentrate on parity because after the recent work of
Calude et al. [Cal+17] many adaptations of previously known algorithm have been devised
to run in quasi-polynomial time. Among these we must cite Parys [Par19] for adapting
the early algorithm of Zielonka for parity games [Zie98]; Jurdziński and Lazić [JL17] for
creating the Succinct Progress Measure algorithm, an adaptation of a former algorithm
of Jurdziński [Jur00]; Lehtinen [Leh18] that invented a new approach to the problem by
exploiting the strong connection between parity games and the modal µ-calculus.

This will give us the opportunity to present them beside the original idea, to give a better
overview of the current situation and of how the tractability results were obtained. We will
also explore the framework of universal trees by Czerwiński, Daviaud, Fijalkow, Jurdziński,
Lazić and Parys [Cze+19] which fully explains the similarities of some of the various
algorithms and proves that the currently known techniques for solving parity games cannot
be used to beat the quasi-polynomial running time.

Concerning mean-payoff games we will expose two algorithms: a value-iteration procedure
by Zwick and Paterson [ZP96] which is a clever adaptation of the classical Bellman-Ford
algorithm for shortest path; and another algorithm based on potential theory for weighted
graphs due to Gurvich, Karzanov and Khachivan [GKK88] which allows to compute a
canonical form for mean-payoff games where locally optimal strategies are also globally
optimal strategies. Both run in pseudo-polynomial time, i.e. exponential time.

In the chapter we also explain the connection of graph games with the theory of LP-type
problems due to Halman [Hal07] which obtains the currently strongest bound valid for the

39



40 CHAPTER 3. SOLVING GRAPH GAMES

whole family of problems, namely randomized subexponential time.

3.1 Algorithms for Parity Games

In the treatment of algorithms for parity the two players will be called Even and Odd,
since Min and Max are counterintuitive in this setting. We remind the reader that Even
corresponds to Max, while Odd corresponds to Min. We also assume that priorities are
written on vertices and not on edges.

3.1.1 Zielonka Recursive algorithm

This was the first algorithm to solve parity games [Zie98] and today is still the practically
fastest algorithm known for parity games [Dij18]. We present it before the other algorithms
because its operation can be clearly understood from a single picture and the algorithm
itself only needs a single definition to be stated, which makes it ideal as foundation to get
a wider understanding of the other algorithms.

The original presentation of Zielonka is rather technical and is carried out in a more
descriptive complexity setting, which we have not dealt with. Recently Parys [Par19]
simplified the presentation of this classical algorithm and also adapted it to obtain a quasi-
polynomial variant.

Definition 3.1.1 (Attractor Set): Given a set of nodes N in the game graph G,
and a player P = Max,Min, we define the attractor of N to be the set of nodes of
the graph from which P can force to reach a node from N .

In other words, it is the smallest set such that:

• N ⊆ AttrP (G,N)

• If v ∈ VP and some of its successor are in AttrP (G,N), then v ∈ AttrP (G,N)

• If v ∈ V¬P and all its successors are in AttrP (G,N), then v ∈ AttrP (G,N)

We now outline the algorithm that computes the winning region of one player, which only
makes use of attractor computations and later prove its correctness.

The procedure SolveE(G, h) in returns the winning region of Even WinE(G), if h is an
even number that is greater or equal than all priorities appearing in G. The analogous
procedure SolveO(G, h) is identical with the roles of Even and Odd exchanged.

With G \ S we mean the game obtained by removing from G all nodes in S and all edges
leading to nodes in S or starting from nodes in S. We use this construct only when S is an
attractor; in such a case, if all successors of a node v are removed, then v is also removed.

Structure of winning sets: The algorithm can be clearly understood while looking at
Figure 3.1: let h be the highest priority used in G and assume that it is even. We know that



3.1. ALGORITHMS FOR PARITY GAMES 41

Algorithm 1 Zielonka Algorithm [Zie98]
1: procedure SolveE(G, h) . h is an even upper for priorities on G
2: repeat
3: Nh = {v ∈ G | π(v) = h} . Nodes with the highest priority
4: H = G \AttrE(G,Nh) . New game: reaching priority h→ win
5: WO = SolveO(H,h− 1) . In WO we lose before reaching priority h
6: G = G \AttrO(G,WO) . Possibily Nh ∩AttrO(G,WO) 6= ∅
7: until WO 6= ∅
8: end procedure

the game graph G can be divided into two parts: WinE(G) and WinO(G) by determinancy
of the game.

In WinE(G) we can distinguish the attractor of nodes with priority h – denoted AE . Note
that Odd either loses inside WinE(G) \ AE or enters AE , which causes him to see a node
with priority h, and then the game continues in some node of WinE(G).

ℎ

ℎ

ℎ

ℎ

ℎ

ℎ

(�)Win�

�
2

�
�

1

�
�

0

�

�2 �1

ℎ

ℎ

ℎ

(�)Win�

��

Figure 3.1: The structure of winning regions in a parity game

On the other hand, the winning region of Odd WinO(G) can be divided into multiple parts:
the part W 0

O, where Odd can win without ever seeing a node of priority h; then we have
nodes of priority h from which Even is forced to enter W 0

O, and their attractor, denoted
A1; then we have a part W 1

O, where Odd can ensure that the play is either winning for
him inside W 1

O or enters A1; in other words, from nodes of W 1
O Odd can win while seeing

h at most once.



42 CHAPTER 3. SOLVING GRAPH GAMES

In the same way we can define W 2
O as those remaining vertices from which Odd can either

win remaining in W 2
O or can force the play to enter A2, from which he knows he can win.

Similarly, in the general case we define W i+1
O as the set of vertices in G \W i

O from which
Odd has a forcing strategy to Ai+1 or can win remaining inside of W i+1

O .

Discovering the regions: While running the Algorithm 3.1.1 the partition of G is not
known and has to be discovered. To this aim the algorithm removes first all nodes of
priority h. The first call to SolveO(H,h− 1) at line 5 returns the set W 0

O of nodes where
Odd wins without seeing a node of priority h. We can then remove them from the game,
toghether with their attractor A1, because they are won by Odd.

In the following step SolveO(H,h− 1) returns the set W 0
O relative to the subgame, which

corresponds to the setW 1
O in the original game. Eventually the algorithm will stop and it is

easy to see that Even wins in the remaining graph. The procedure thus returns WinE(G).

Quasi-polynomial adaptation: A variation of the algorithm, due to Parys [Par19],
archieves a quasi-polynomial running time by a counting procedure. Indeed, by looking at
Figure 3.1, one can see that at most one of the parts W i

O can be of size larger than n
2 .

So the idea of the variation is to search only for winning regions of size at most n
2 when

looking forW i
O: this will usually be enough except for at most oneW i

O. When the algorithm
finds no set of size at most n

2 , we can search once for a W i
O of an arbitrary size, being

sure that subsequent W i
O will be again of size at most n

2 . Of course, due to the recursive
nature of the algorithm, we notice that every W i

O can be further subdivided in a similar
way, splitting on the priority h− 2.

To exploit the observation we can pass two precision parameters in the recursive call, pE
and pO, which denote the fact that we are searching for a winning set of size at most pE
for Even and at most pO for Odd. The algorithm is started with parameters pE = pO = n,
the number of nodes of G, and can be summarized as follows:

• We first look for sets W i
O of size at most

⌊pO
2

⌋
. If the returned set is empty, this means

either that W i
O is empty, or that it is of size greater than

⌊pO
2

⌋
.

• Then we once search for a set W i
O of size at most pO. Note that this can happen at

most once because if we find an empty W i
O here, the procedure has ended.

• Finally we look again for sets W i
O of size at most

⌊pO
2

⌋
, because the algorithm already

found a set of greater size.

Letting h be the maximal priority, we can denote by R(h, l) the number of executions of
the new SolveE and SolveO procedures performed during one call to SolveE(G, h, pE , pO),
where l = blog pEc+ blog pOc. Clearly R(0, l) = R(h, 0) = 0, and for h, l ≥ 1 it holds

R(h, l) ≤ 1 + nR(h− 1, l − 1) +R(h− 1, l)

because after (almost) every call to SolveO at least one node is removed from G, so that
we have at most n calls to SolveO with decreased precision (where l decreases by one), plus
at most one time where we have to call SolveO with full precision.



3.1. ALGORITHMS FOR PARITY GAMES 43

Solving the recursion we obtain that R(h, l) ≤ nl ·
(
h+l
l

)
− 1 ≤ nl(h + l)l which is quasi-

polynomial in n and h since we start the algorithm with l = 2blog nc and an execution of
the SolveO procedure (without counting recursive calls) only costs polynomial time.

3.1.2 Progress Measures

Progress measures are a special kind of value-iteration algorithm of which many variants
are known; in this section we will describe the technique of small progress measures [Jur00],
due to Jurdziński and Lazić. In this section a parity game is assumed to be winning for the
player who owns the least priority which occurs infinitely often, and not the greatest one;
this change is motivated by the simplification which occurs in the notation about ordering
of tuples. To the same end we will also assume that the parity games have priorities written
on vertices, and not on arcs. We will denote the priority function by π : V → N.

The idea of the technique is to characterize the cycles reachable from each vertex using
a measure such that the measure assigned to a vertex contains the maximal number of
times an odd priority can be seen if player Odd moves over the graph, until a vertex with
lower even priority is seen. Note that this is very similar to what was done by the previous
algorithm, as it is evident from Figure 3.1.

To find such a measure µ : V → {1, . . . , n}d we proceed by an approximation algorithm:
we define the notion of progressive edge as those edges which Even can take advantageously
(those which make µ decrease in a specific sense) and we iteratively lift the µ value at each
vertex by choosing the least measure that makes it progressive. If we are forced to lift a
certain vertex for too many times we know that it must be loosing for Even, and this gives
a bound on the algorithm running time.

Definition 3.1.2 (Closed strategy): A positional strategy σ for Even is closed on
a set W ⊆ V if for all v ∈W we have:

• if v ∈ VEven then σ(v) ∈W and

• if v ∈ VOdd then (v, w) ∈ E implies w ∈W .

In other words, this means that Odd cannot escape from W , while Even can decide
to remain in W using σ. We also note that each play consistent with σ and starting
in W always stays within W .

Definition 3.1.3 (Cycles): A cycle is a path v1, . . . , vn with v1 = vn.

We say that a cycle v1, . . . , vn is an i-cycle for i = max {π(vj) | 1 ≤ j ≤ n}, i.e. if i
is the smallest priority occurring on the cycle. We will also call “even” the i-cycles
for even i.

Note, as was remarked in the reduction chapter, that a strategy σ closed on W is winning
for Even from W if and only if all cycles in Wσ are even.



44 CHAPTER 3. SOLVING GRAPH GAMES

Notation 3.1.4: Let α ∈ Nd be a d-tuple of non-negative integers.

• We number its components from 0 to d− 1, i.e. α = (α0, α1, . . . , αd−1)

• <,≤,=, 6=,≥, > on tuples denote lexicographic ordering

• We define trucated comparison between tuples as comparison between their initial
segments:

(n0, n1, . . . , nk) Ri (m0,m1, . . . ,ml) ⇔ (n0, n1, . . . , ni) R (m0,m1, . . . ,mi)

Note that if i > k or i > l, the tuples may be suffixed with zeros.

Note that, for i > j, α ≥i β =⇒ α ≥j β. Moreover inequalities are composi-
tional: α >i β and β ≥i γ implies α >i γ.

Notation 3.1.5: In what follows the parity game will be called G, and d will stand for a
bound on the maximal priority defined as d = max {π(v) | v ∈ V }+1. Now for every
i ∈ N, denote the vertices of priority i as Vi = {v ∈ V | π(v) = i} and their number
by ni = |Vi|.

Definition 3.1.6: Define MG ⊆ Nd such that it is the finite set of d-tuples, with zeros
on even positions, and non-negative integers bounded by ni on odd positions i.

MG = {(0, α1, 0, α3, . . . , αd−1) | 0 ≤ α2k+1 ≤ n2k+1}

We now introduce the notion of a progress measure for a single-player game. We will show
that the play is won by even if and only if there exists a witness parity progress measure.

Definition 3.1.7 (Parity progress measure): Let G be a single-player parity game;
then the function ρ : V → MG is a parity progress measure for G if for all edges
(v, w) ∈ E it holds that:

• ρ(v) ≥π(v) ρ(w) if π(v) is even

• ρ(v) >π(v) ρ(w) if π(v) is odd

If an edge (v, w) ∈ E satisfies the above inequalities we say that it is progressive.

The idea in defining a progressive edge is to characterize vertices that can reach even cycles,
where the ρ is non-increasing, while keeping away from odd cycles, on which ρ is strictly
decreasing, and as it turns out parity progress measures are witnesses for a graph to have
only even cycles.

The interpretation of tuples we gave before also explains why we are comparing tuples
until a certain point: let’s consider the case where π(v) = 1, which requires ρ(v) >1 ρ(w)

or, in other words, (α0, α1) > (β0, β1), where ρ(v)1 = (α0, α1) and ρ(w)1 = (β0, β1). But
recall that α0 = β0 = 0, so we are imposing that the number of odd priorities yet to be
seen are lowered when we step on a vertex with odd priority, which was our initial idea.



3.1. ALGORITHMS FOR PARITY GAMES 45

Lemma 3.1.8: Let ρ be a parity progress measure for G. Then all cycles in G are even.

Proof: Suppose by contradiction that there is an odd cycle v1, . . . , vk = v1 in G, and let
p = mini π(vi) be the smallest priority on the cycle, and suppose that it occurs in
v1. Then we have the chain of inequalities

ρ(v1) >π(v1) ρ(v2) ≥π(v2) ρ(v3) ≥π(v3) . . . ≥π(vk−1) ρ(vk) = ρ(v1)

which is easily seen to imply

ρ(v1) >p ρ(v2) ≥p ρ(v3) ≥p . . . ≥p ρ(vk) = ρ(v1)

which gives the contradiction ρ(v1) >p ρ(v1).

On the other hand we also show that, given a parity game where all cycles are even, there
exists a parity progress measure defined on it. This constitutes the basis for the algorithm:
we will search for a parity progress measure by using an iterative scheme based only on
the structure of the set of measures V →MG. If we find a parity progress measure we will
know how to recover a strategy for Even.

Lemma 3.1.9: LetG be a parity game where all cycles are even. Then there exists a parity
progress measure ρ : V →MG forG such that if π(v) is odd then ρ(v) >π(v) (0, . . . , 0).

Proof: We proceed by induction on the number of vertices in G. We first suppose that
there are at least some vertices of the two lowest priorities: V0 ∪ V1 6= ∅. Otherwise
one can scale down the priority function of G by two. The base of the induction is
with the graph consisting of a single vertex, which is trivial.

We suppose that V0 6= ∅. In this case we obtain by induction a parity progress
measure ρ : V \V0 →MG for the subgraphG |V \V0 , and by the positiveness hypothesis
we can set ρ(v) = (0, . . . , 0) for every v ∈ V0.

On the contrary suppose that V0 = ∅ and V1 6= ∅. We then claim that we can
partition the vertices of the graph in two groups W1 and W2 such that there is no
edge going fromW1 toW2 in G. Having done this, one can obtain two parity progress
measures ρ1 and ρ2 for the subgraphs G1 = G |W1 and G2 = G |W2 respectively. Let
n′i = |Vi ∩W1| and n′′i = |Vi ∩W2|; since there are no edges from W1 to W2, the
conditions of parity progress measure are trivially satisfied if we let ρ = ρ1 ∪ (ρ2 +

(0, n′1, 0, n
′
3, 0, . . .) : V → MG. Indeed, the shift of a progress measure remains a

progress measure and on edges from W2 to W1 we are ensuring that ρ(v) ≥π(v) ρ(w)

by using the inequality ρ1 ≤ (0, n′1, 0, n
′
3, . . .).

To prove that such partition exists take any vertex of the lowest priority u ∈ V1

and let U ⊆ V be the set of vertices from which there is a non-trivial path to u in
G. Then if U = ∅ a partition is given by W1 = {u} and W2 = V \ {u}, which has
no edges from W1 to W2 by the definition of U ; otherwise the partition is given by
W1 = U and W2 = V \ U , which is non-trivial because if u ∈ U then we would have
a cycle where the minimal priority is π(u) = 1, which would be an odd cycle.



46 CHAPTER 3. SOLVING GRAPH GAMES

We now turn to expanding the definition of progress measure to account also for two-player
games. Definition 3.1.7 requires that for each odd priority, we see a lower one at a later
point, therefore it can only possibly exists for even cycles. In an odd cycle the number of
odd priorities to be seen before an higher one could be infinite; we will then introduce a
value >, greater than every other value in MG, to mean that the current vertex isn’t in
the winning region of Even.

Definition 3.1.10: Define M>G = MG ∪ {>} where:

• m < >, m <i > for all m ∈MG and for all i.

• > =i > for all i.

Definition 3.1.11: If ρ : V → M>G and (v, w) ∈ E is an edge, then Prog(ρ, v, w) is the
least m ∈M>G such that m ≥ ρ(v) and

• m ≥π(v) ρ(w) if π(v) is even

• m >π(v) ρ(w) or m = ρ(w) = > if π(v) is odd

Note that in this way we are making the edge (v, w) progressive.

In this way we can set the value of a vertex from which only odd cycles are reachable to >,
while other vertices will have a finite value. Intuitively we are searching for the right value
m to assign to ρ(v) such that it locally satisfies the definition of parity progress measure;
and this will allow us to build an iterative algorithm that locally improves functions from
V to M>G until they become parity progress measures.

We have to slightly modify the definition of parity progress measure to also account for
the moves of the other player.

Definition 3.1.12 (Game parity progress measure): Let G be a parity game. A
function ρ : V → M>G is a game parity progress measure if for all vertices v ∈ V , it
holds that:

• if v ∈ VEven then ∃(v, w) ∈ E such that (v, w) is progressive in the sense of
Definition 3.1.7.

• if v ∈ VOdd, then ∀(v, w) ∈ E we have (v, w) is progressive.

Note that if ρ is a game parity progress measure, then ρ(v) 6= > if and only if Even can force
to reach even cycles and this explains how we can reduce the solution of the qualitative
problem for parity games to searching for a game parity progress measure.

Definition 3.1.13 (Induced strategy from game parity progress measures):
Let G be a parity game, and ρ : V →M>G be a game parity progress measure.



3.1. ALGORITHMS FOR PARITY GAMES 47

Define the induced strategy ρ : VEven → V for player Even by setting

ρ(v) ∈ argmin
w
{ρ(w) | (v, w) ∈ E}

that is ρ(v) is a successor w of v that minimizes ρ(w).

Let ||ρ|| = {v ∈ V | ρ(v) 6= >} the vertices from which the reachable cycles are even.

Lemma 3.1.14 (Induced strategy is winning): If ρ is a game parity progress mea-
sure, then ρ is a winning strategy for player Even from ||ρ||.

Proof: We note that all vertices we will be considering are inside ||ρ||: the starting vertex
obviously is, and for each vertex v one can note that each successor chosen by Odd
satisfies ρ(v) ≥ ρ(w) so that ρ(w) 6= >, and since Even choses the w that minimizes
ρ(w), one also has ρ(w) 6= > for w = ρ(v).

Then one can easily see that strategy ρ is closed on ||ρ|| and that ρ restricted to ||ρ||
is a parity progress measure on Gρ restricted to ||ρ||. By the lemma 3.1.8 we can
then conclude that all cycles in Gρ restricted to ||ρ|| are even, which is the statement
of this lemma.

Lemma 3.1.15 (Existence of a game parity progress measure): Let WE be the
winning set of player Even in a parity game G. Then there exists a game parity
progress measure ρ : V →M>G such that ||ρ|| = WE .

Proof: The existence again follows from the analogue statement for parity progress mea-
sures (Lemma 3.1.9): we know there that all cycles in the parity game G |WE

are
even, hence by the lemma there is a parity progress measure ρ : WE → MG for
the restricted game. Extending ρ |V \WE

= > makes ρ into a game parity progress
measure.

We characterize now game parity progress measures as fixed points of monotone operators
in the finite complete lattice of functions V → M>G ordered pointwise. By the Knaster-
Tarski fixpoint theorem a least game parity progress measure µ exists and is computable
by the fixed point iteration algorithm.

We first recall the Knaster-Tarski fixpoint theorem and the notion of complete lattices.

Definition 3.1.16 (Complete Lattice): A complete lattice is a partially ordered set
(L,v) in which every subset of L has a greatest lower bound and a least upper bound
in L. The least upper bound of the empty set is denoted by ⊥ and the greatest lower
bound of the empty set is >.

Definition 3.1.17 (Monotonic function): A function f : L → L is said to be
monotonic if ∀x, y ∈ L x v y =⇒ f(x) v f(y)

Definition 3.1.18 (Fixed points): Given a monotonic function f : L → L, a point



48 CHAPTER 3. SOLVING GRAPH GAMES

x ∈ L is said to be:

• prefixed point if f(x) v x

• postfixed point if x v f(x)

• fixed point if x = f(x).

Theorem 3.1.19 (Knaster-Tarski fixpoint): For any complete lattice (L,v) and
any monotonic function f : L → L the fixed points form a complete lattice. In
particular the least and greatest fixed points exists.

Remark 3.1.20 (Fixpoint theorem with finite lattices): Since our lattice is
finite and complete, the result of Knaster-Tarski can be easily proven by a simple
inductive arguments. Consider the sequence x0 = ⊥, xk+1 = f(xk): by the definition
of ⊥ we have x0 ≤ x1 and by monotonicity of f we obtain ∀k xk ≤ xk+1. The xi
then form an increasing sequence in the lattice x0 ≤ x1 ≤ . . ..

Let x∗ = supi {xi} be their supremum and we now show that it is a fixpoint: since
the elements in the lattice are finite, the increasing sequence of the xi is definitely
constant, and therefore x∗ = xi so we have that xi = xi+1 = f(xi) which implies
x∗ = f(x∗) and it is a fixpoint.

We also note that it is the least fixpoint: let y be another fixpoint of f , then it is
true that x0 = ⊥ ≤ y. By monotonicity of f we have that xk = fk(x0) ≤ fk(y) = y

and by taking the supremum we obtain x∗ ≤ y.

Therefore we have proven that the least fixpoint exists and we also obtained an
algorithm for computing it: start with x0 = ⊥ and iteratively compute xk+1 = f(xk).
It will happen that xk+1 = xk, and we will have found the desired fixpoint.

Definition 3.1.21 (Functional lattice): We define a complete lattice structure v
on the set of functions V →M>G by comparing them pointwise:

µ v ρ⇔ ∀v ∈ V µ(v) ≤ ρ(v)

We will also write µ @ ρ to mean µ v ρ and µ 6= ρ.

We get back to the progress measure algorithm: we define a lift operator for each vertex
and show that it is equivalent for a function µ : V → M>G to be a game parity progress
measure or to be a prefixed point of all lift operators.

Definition 3.1.22 (Lifting progress measures): We define the lifting operator
Lift(ρ, v)(u) for v ∈ V as follows:

• ρ(u) if u 6= v

• min {Prog(ρ, v, w) | (v, w) ∈ E} if u = v ∈ VEven

• max {Prog(ρ, v, w) | (v, w) ∈ E} if u = v ∈ VOdd



3.1. ALGORITHMS FOR PARITY GAMES 49

Lemma 3.1.23 (Lifting is monotone): The operator Lift(·, v) is v-monotone.

Proof: Suppose that µ v ρ, then we have to show that ∀u, v ∈ V we have that

Lift(µ, v)(u) ≤ Lift(ρ, v)(u)

If u 6= v then we have Lift(µ, v)(u) = µ(u) and Lift(ρ, v)(u) = ρ(u) which is verified.
If u = v ∈ VEven then we obtain the required inequality by proving that if µ v ρ,
then Prog(µ, v, w) ≤ Prog(ρ, v, w), and by reminding that max and min are monotone
operators.

Suppose m ∈ M>G satisfies m ≥π(v) ρ(w) if π(v) is even; then m ≥π(v) ρ(w) ≥ µ(w)

which implies that Prog(ρ, v, w) ≥π(v) µ(w). Moreover if m satisfies m >π(v) ρ(w) or
m = ρ(w) = > if π(v) is odd then m >π(v) ρ(w) ≥ µ(w) or m = > = ρ(w) ≥ µ(w),
so that we also get that either m >π(v) µ(w) or that > = µ(w).

We have thus proven that m satisfied the conditions to be in the minimum for
Prog(µ, v, w): thus m ≥ Prog(µ, v, w) which gives the required inequality.

Lemma 3.1.24 (Game parity progress measures as fixpoints): A function ρ :

V →M>G is a game parity progress measure if and only if ∀v ∈ V Lift(ρ, v) v ρ.

Proof: ⇒ Let ρ be a game parity progress measure: we show that it is a prefixed
point: if u 6= v then Lift(ρ, v)(u) = ρ(u), which proves inequalities on such vertices.
On the other hand if u = v from the definition of game parity progress measure we
know that:

• If v ∈ VEven then ρ(v) ≥π(v) Prog(ρ, v, w) for some w. Since the lift considers the
min of such progs we obtain that ρ(v) ≥π(v) Lift(ρ, v)(u).

• If v ∈ VOdd then ρ(v) >π(v) Prog(ρ, v, w) for all w, and we again obtain its
description as a prefixed point.

⇐ This part of the proof is obtained similarly as it is enough to reverse the steps
of the other direction.

The least game parity progress measure can now be computed using fixed point approxi-
mation from Remark 3.1.20.

Algorithm 2 Small Progress Measures [Jur00]
1: procedure Solve

2: µ(v) = (0, . . . , 0) ∀v ∈ V
3: while µ @ Lift(µ, v) for some v ∈ V do
4: µ→ Lift(µ, v)

5: end while
6: end procedure



50 CHAPTER 3. SOLVING GRAPH GAMES

Remark 3.1.25 (Algorithm running time): Note that the running time of the algo-
rithm is essentially bounded by the size of M>G since, excluding the time to compute
Lifts which is polynomial, the while loop can be executed at most |MG| times for each
vertex because of the monotonicity of Lift operators and the ordering of functions.

Unfortunately the algorithm as stated has exponential runtime in the number of
priorities d since it is trivial to compute that

|MG| =
∏
i odd

(ni + 1) ≤

(
1

bd/2c
∑
i odd

(ni + 1)

)bd/2c
≤
(

n

bd/2c

)bd/2c
by the arithmethic-geometric mean inequality. Moreover, it is not difficult to find a
game which exibits worst-case behaviour.

The variant called “Succinct Progress Measures” by Jurdziński and Lazić [JL17] uses a
generalization on the notion of progress measure to get the running time down to quasi-
polynomial. Namely one can consider progress measures as functions which take values in
an arbitrary partially ordered set T . The iterative algorithm can be carried out in the same
way as the previous one, so one can try to find a more succinct coding of the functions
V → MG to lower the running time; the coding must be chosen carefully to ensure that
the iterative algorithm still converges to the least progress measure. Jurdziński and Lazić
introduced the notion of succinct tree coding to this aim.

Definition 3.1.26 (Ordered tree): An ordered tree is a prefix-closed set of sequences
of elements of a linearly ordered set T .

A node is any such sequence of elements; the maximal nodes w.r.t. prefix ordering are
called leaves; the root of the tree is the empty sequence. A sequence (a0, . . . , an, an+1)

is called child of (a0, . . . , an). We say that the depth of a node (a0, . . . , an) is n+ 1

and the tree inherits an order structure which is defined lexicographically. In the
ordering a father is always less than any of its children.

Definition 3.1.27 (Ordered-tree coding): An ordered tree coding is an order-
preserving relabelling of branching directions, allowing for the relabelling at various
nodes to differ from one another, i.e. to be adaptive.

The aim of coding trees is to provide a succinct (i.e. short) code for each leaf in the tree.
We now want to find an ordered tree as small as possible that can code for all trees of
depth h with at most l leaves. To do so we ask how many bits are required to code the
path to each node in an ordered tree?

A main technical contribution of the paper [JL17] is to provide an adaptive ordered-tree
coding with (dlg he+ 1)dlg le bits for every ordered tree with height h and l leaves. To
introduce it we will need the notion of bounded counters:

Definition 3.1.28 (Bounded adaptive counters): We define the set Bg,h of g-



3.1. ALGORITHMS FOR PARITY GAMES 51

bounded adaptive h-counters to consist of h-tuples of binary strings whose total
length is at most g.

As examples (0, ε, 1, 0) is a 3-bounded 4-counter; (0, 1, ε, ε, 0) is a 3-bounded 5-counter;
(01, ε, 10) is a 4-bounded 3-counter.

Definition 3.1.29 (Order on bounded counters): We define an ordering on binary
strings and extend the ordering to Bg,h lexicographically.

For both binary digits b = 0, 1 and for all binary strings s, s′ the ordering rules are:

0s < ε, ε < 1s, bs < bs′ iff s < s′ (3.1)

Lemma 3.1.30 (Succinct tree coding): For every ordered tree T of height h and
with at most l leaves there is a tree coding in which every navigation path is an
dlg le-bounded adaptive i-counter, where i ≤ h is the length of the path

Idea of the proof: By induction on l and h we consider a child M of the root that
evenly divides the two sets of leaves L< whose first component is strictly smaller
than M and L> whose first component is strictly larger than M . Also denote by LM
the subtree rooted in M .

The code codeT (l) is then obtained in the following way:

• If l ∈ L< and codeL<(l) = (a0, . . . , ak) then codeT (l) = (a00, a1, . . . , ak)

• If l ∈ L> and codeL>(l) = (a0, . . . , ak) then codeT (l) = (a01, a1, . . . , ak)

• If l ∈ LM and codeLM
(l) = (a0, . . . , ak) then codeT (l) = (ε, a0, . . . , ak)

where justapposition is the append operation for binary strings. Observe that the
size of the two subtrees L< and L> is halved at every step of the recurtion, i.e.
|L<|, |L>| ≤ |T |2 .

We observe that the tree coding bears remarkable similarities with Huffman coding used
in compression schemes.

Definition 3.1.31 (Succinct progress measure): Is a mapping µ : V → T where T
is an ordered tree such that every navigation path in T is a dlg ηe-bounded adaptive
i-counter for some 0 ≤ i ≤ d/2 where η is the number of vertices with an odd priority.

Truncations and progressiveness of edges in succinct progress measures are defined analo-
gously to small progress measures.

Definition 3.1.32: Let Sη,d be a linearly ordered set of bounded adaptive multi-counters

Sη,d = ∪d/2i=0Bdlg ηe,i

and let S>η,d denote the same set with an extra top element >.



52 CHAPTER 3. SOLVING GRAPH GAMES

Lemma 3.1.33 (Existence of a succinct progress measure): Let WE be the
winning set of player Even in a parity game G. Then there exists a succinct game
parity progress measure ρ : V → S>η,d such that ||ρ|| = WE .

Proof: Observe that Mt
Gop is a linearly ordered set, and therefore a small progress mea-

sure µ : V →M>G con be encoded succinctly using the tree coding of Lemma 3.1.30.
The existance of a small progress measure is ensured by Lemma 3.1.15, and apply-
ing the succinct tree coding we obtain exactly a succinct progress measure for the
game.

Theorem 3.1.34: There is a succinct progress measure lifting algorithm which solves
parity games in quasi-polynomial time.

Proof: From the previous lemma we have the existence of a succinct progress measure.
We can then use Algorithm 3.1.2 on succinct progress measures to obtain an algorithm
whose running time is essentialy decided by the size of the set Stη,dop.

From a simple estimate one can see that∣∣∣S>η,d∣∣∣ ≤ 2dlog ηe
(
dlog ηe+ d/2 + 1

d/2

)
≤ 2dlog ηe(dlog ηe+ d/2 + 1)dlog ηe

and therefore its size is quasi-polynomial.

3.1.3 Lehtinen Register-Index

In this section we explore the algorithm of Lehtinen [Leh18] which exploits the strong
connection between parity games and modal µ-calculus obtaining a very elegant method
for solving parity games in quasi-polynomial time.

Her proof is based on the definition of auxiliary “register-games” that have the same winner
as the original parity games and which can then be encoded themselves as parity games
with a quasi-polynomial number of vertices but only a logarithmic number of priorities.
Combining such transformation with another algorithm for solving games with a low num-
ber of priorities, the desired runtime is obtained.

We begin by introducing the notion of register-index of a parity game, a measure of com-
plexity which captures how many priorities the winner of a parity game needs to keep in
memory in order to produce a witness of their victory. Note that we will be considering
games which can have coule-de-sac, i.e. vertices with no exits. In case a play ends on one
of these vertices, the player owning it loses.

Definition 3.1.35 (Induced k-register game): Given a parity game arena G with
priorities on the vertices, induce a new game Rk(G) where in addition to winning the
parity game, player Even has to witness her victory using a fixed amount of registers,
i.e. memory.

The new game is played on the same graph G, with added data of k registers, each



3.1. ALGORITHMS FOR PARITY GAMES 53

one holding a number in H = {0, . . . , d} where d is the maximal priority in G,
assumed odd. Register value will be denoted by x1, . . . , xk. Registers may be reset.
The registers are also ranked according to how long it has been since their last reset;
their rankings will be denoted by r1, . . . , rk ∈ {1, . . . , k}.

The initial state of the registers is x1 = . . . = xk = 0 and ri = i. Each register
records the highest priority that has occurred in the parity game since it was last
reset. Player Even is given control of the registers. At each move the registers are
first updated, and after player Even can choose to reset a register, let’s say i. If the
register contains the priority xi, this produces output 2ri if xi is even and 2ri + 1

otherwise. When a register i is reset, its rank is also resetted ri = 1 and the rank of
the other registers increases by one. Even may also choose not to reset any register
at a certain move.

If Even resets registers infinitely often, an infinite output sequence will be produced
in {0, . . . , 2k + 1}ω. To be declared the winner, Even has to produce an infinite
sequence of outputs that satisfies the parity condition, i.e. whose maximal priority
occurring infinitely often is even.

Remark 3.1.36 (The register game is a parity game): Note that this new game
has a parity winning condition on its output sequence and therefore can be explicitly
transformed into another parity game, which will also be denoted by Rk(G), where
vertices also keep the register state V ′ = V ×Hk and where for every edge v → v′

in the game G, edges (v, x̂)→ (v′, x̂′) are placed for every possible move concerning
register update that Even can follow. Those edges emit a priority according to the
register update rules described above.

Register ranking can be encoded by ordering them accordingly to their rank, which
is the reason why the ranking is not explicitly added in the graph vertices.

In a certain sense we are encoding a proof system that allows Even to produce inside the
game a certificate of its win, and we are requiring that he simultaneously wins in the parity
game, and is able to produce a valid certificate of its win.

In order to extract a quasi-polynomial algorithm from such construction, we need to es-
tablish the following facts:

1. If Even can win, then he can also produce the required certificate.

2. The new game can be solved in quasi-polynomial time.

Definition 3.1.37 (Underlying play): Given a play in Rk(G) we define the under-
lying play as the projection onto the first element of each visited position.

Definition 3.1.38 (Interval of a position): The interval of a position v at which
Even resets a register i is the fragment of the play since the previous reset of register i.



54 CHAPTER 3. SOLVING GRAPH GAMES

Remark 3.1.39 (Inducing positional strategies): We note that a positional win-
ning strategy on G for Even coupled with a register resetting strategy induces a
positional strategy in the game Rk(G).

Note that the size of the register game is n · dk with 2k+ 1 priorities so that if we are able
to bound k logarithmically in n we will obtain that Rk(G) is a game with n · dlnn vertices
and 2 lg n + 1 priorities, which can then be solved using any other algorithm to obtain a
pseudo-polinomial running time.

Definition 3.1.40 (Register-index of an arena): The register-index of an arena
G, denoted by RI(G), is the minimal k for which for every vertex vi ∈ V G the register
game Rk(G) is winning for Even from (vi, 0̂) if and only if G is winning for Even
from vertex vi.

The definition is well posed, i.e. there exists a natural k for which G and Rk(G) have the
same winner from positions v and (v, 0̂) respectively. It can be shown that k = n suffices,
but we will show a much more stronger result with the next lemma.

Let σ be a positional winning strategy for Even in the arena G, and let v be any vertex
from the winning region of even in G. Then in each game Rk(Gσ), a play starting from
(v, 0̂) is entirely determined by the underlying strategy of Odd and the resetting strategy
of Even.

Definition 3.1.41 (Defensive register index): A defensive resetting strategy is a
resetting strategy in which the maximally ranked register, i.e. that of ranking k, is
never reset when it contains an odd priority if it contained a priority q or an higher
even priority in the initial configuration.

The defensive register-index of an arena G, denoted by DRI(G), is the minimal k for
which for every vertex vi ∈ V G the register game Rk(G) is winning for Even with a
defensive strategy from (vi, 0̂) if and only if G is winning for Even from vertex vi.

Since it’s obvious that a defensive resetting strategy is also a resetting strategy, it follows
that the register-index is bounded by the defensive register index: RI(G) ≤ DRI(G).

Lemma 3.1.42 (Recurrence on connected components): Let σ be a winning
positional strategy in a parity game arena G. Let q be the maximal even priority
in Gσ. Let C0, . . . , Ck be the strongly connected components of the game arena G′σ
where vertices of priorities q and q − 1 are removed from Gσ, and let ri = DRI(Ci)
be their defensive register-index. If ri < r for every i = 1, . . . , k and r0 = r, then the
defensive register-index of the whole arena is less than or equal to r: DRI(G) ≤ r.

Idea of the proof: Observe that a play on Gσ starting from a vertex v that is winning
for Even on G either stays definitely in one of the Ci or passes infinitely often through



3.1. ALGORITHMS FOR PARITY GAMES 55

an arc of priority q.

The base case with r = 2 is simple because it is enough to notice that single-vertex
arenas have register-index equal to one.

Then the strategy of Even using r registers is to initially reset all registers containing
odd priorities higher than q, which must be in finite number. Thereafter he resets
the highest ranking register whenever q occurs, thus emitting an even priority of 2r,
and plays his winning strategy in each component C1, . . . , Ck using only the lowest
ranking registers from 1 to ri. When in C0 instead Even uses his defensive strategy
there using all of the registers.

In this way, if the play (now entirely controlled by Odd) definitely remains in one of
the Ci for i 6= 0, the resetting winning strategy there is obviously also winning for
the play on G because of prefix independence of game payoff.

On the other hand, if Odd continues exiting from Ci, the play passes infinitely often
through an arc of priority q, and Even emits a priority 2r infinitely often. We must
prove that he never emits an higher odd priority to finish the proof. In components
C1, . . . , Ck the highest ranking register remains untouched; and we enter component
C0 only when the highest register contains q or an higher even priority, thus by the
defensive strategy existing here we never emit an higher odd priority. Infact, if there
are more than two register, after we pass from a vertex of priority q, the registers’
values are xi = q (or maybe higher even priorities coming from external games) and,
after resetting the highest ranking register, the new highest ranking register still
contains q or an higher even priority.

Note that by the lemma it is possible to say that the register-index of any game arena G
is finite, and the above lemma provides an algorithm to compute it recursively.

Remark 3.1.43 (The register-index is logarithmic in game size): As a corollary
to the previous lemma we obtain that the register index of a game is logarithmically
bounded by the size of the game, i.e. RI(G) ≤ 1 + log2 |G|.

It is easy to see this by induction on RI(G) and by secondary induction on |G|: if
|G| = 1 the inequality is satisfied. Let now r + 1 = RI(G); by the previous lemma
we know that the connected components of Gσ must be:

• Either a single strongly connected component C0 of register index r + 1, and we
conclude by secondary induction on |G| by restricting our consideration to C0.

• or G has at least two strongly connected components whose register-index is r.
Those components have disjoint vertex sets.

By induction we thus obtain that |G| ≥ 2RI(G)−1.

Theorem 3.1.44: Parity games are solvable in quasi-polynomial time.



56 CHAPTER 3. SOLVING GRAPH GAMES

Proof: By the previous remark r = RI(G) ≤ 1+log2 n, where n is the number of vertices
of the arena. We already noted that Rk(G) is a parity game of size ndk and with
2k+ 1 priorities, so by setting k = 1 + log2 n we obtain an equivalent parity game of
size n2O(logn·log d) ≤ n2O(log2 n) and with O(log2 n) priorities.

By using now one of the previous algorithms, for example small progress measures, we
can solve such a game in time O(2O(log32 n)p(n)), for a suitable polynomial p(n).

3.2 Lower bounds via universal trees

In the previous section we presented various quasi-polynomial algorithms. It is reasonable
to ask whether such algorithms are sharing a common underlying structure.

Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić and Parys [Cze+19] answer such question:
all these solution strategies are based on automata separating “even” words (plays visiting
even cycles) from “odd” words. They prove that such automata must explore a quasi-
polynomial search space to work correctly in all cases, and thus that they share a quasi-
polynomial lower bound. In other words, this prevents these algorithms from archieving a
polynomial running time.

We briefly show the intuition of their result applied to the case of progress measure lifting
algorithms.

Definition 3.2.1 ((l, h)-universal ordered tree): An (l, h)-universal ordered tree
is an ordered tree such that every ordered tree of height at most h and with at most l
leaves can be isomorphically embedded into it injectively and in an order-preserving
way.

Remark 3.2.2 (Intuition leading to universal trees): A game parity progress
measure on a game with n vertices and at most d distinct edge priorities is a mapping
from the vertices to nodes in an ordered tree of height at most d/2 and with at most n
leaves. Such progress measure can then be seen as a mapping into a (n, d/2)-universal
tree. The progress measure lifting algorithm runtime is moreover bound only by the
size of the universal tree.

Theorem 3.2.3 (Smallest size of universal trees): For all positive integers l
and h, every (l, h)-universal tree has at least

(bln lc+h−1
h−1

)
leaves, which is at least

lln (h/ ln l)−1 provided that 2h ≤ l.

Proof: The proof is by induction on (l, h). Let g(l, h) be a lower bound on the size of
leaves of an (l, h)-universal tree. Then we show that g(l, h) ≥

∑l
δ=1 g

(⌊
l
δ

⌋
, h− 1

)
ob-

taining a recursive definition from which it is easy to prove that g(l, h) ≥
(bln lc+h−1

h−1
)
.

Let T be a (l, h)-universal tree and δ ∈ {1, . . . , l}. We claim that the number of
nodes at depth h− 1 of degree ≥ δ is at least g

(⌊
l
δ

⌋
, h− 1

)
.



3.3. ALGORITHMS FOR MEAN-PAYOFF GAMES 57

Indeed, let Tδ be the subtree of T obtained by removing all leaves and all nodes at
depth h− 1 of degree less than δ: the leaves of the tree Tδ have depth exactly h− 1.

Universality of Tδ: Then Tδ is (
⌊
l
δ

⌋
, h−1)-universal: let t be a tree with

⌊
l
δ

⌋
leaves

all at depth h − 1. To each leaf of t we can append δ children, yielding the tree t+
which has

⌊
l
δ

⌋
· δ ≤ l leaves all at depth h.

Since T is (l, h)-universal, t+ embeds into T and this induces an embedding of t into
Tδ, since the leaves of t have degree δ in t+.

Counting leaves: Let lδ be the number of nodes at depth h−1 with degree exactly
δ. We proved so far that the number of nodes at depth h−1 of degree ≥ δ is at least
g
(⌊

l
δ

⌋
, h− 1

)
, so

∑l
i=δ li ≥ g

(⌊
l
δ

⌋
, h− 1

)
.

Thus the number of leaves of T is:

l∑
i=1

li · i =
l∑

δ=1

l∑
i=δ

li ≥
l∑

δ=1

g

(⌊
l

δ

⌋
, h− 1

)
= g(l, h)

which ends the proof.

Both progress measure lifting algorithms perform an iterative search for a progress measure
and their search spaces are limited by restricting the labels considered in candidate tree
labellings to leaves in a specific (n, d/2)-universal tree.

The algorithms correctness also relies precisely on the universality property of the ordered
trees from which the candidate labels are taken from: the algorithm computes a sequence
of tree labellings that is monotonically increasing while being pointwise lexicographically
smaller than or equal to every progress measure. Moreover, the worst-case run-time bound
for the algorithm is determined by the size of the universal tree used, up to a small poly-
nomial factor.

The quasi-polynomial lower bound on the size of universal trees forms a barrier that needs
to be overcome in order to further improve the complexity of solving parity games.

3.3 Algorithms for mean-payoff games

We now analyze the main algorithms for mean-payoff games. Unfortunately not many are
known and their runtime is pseudo-polynomial, namely is polynomial in the number of
vertices n but linear in the size of the biggest weight W , and therefore is exponential in
the problem description. The most known alogrithm is that of Zwick and Paterson [ZP96]
based on approximating each vertex value by an iterative sum, which will be explained
in this section. In the next section we will then consider an algorithm based on potential
theory for weighted graphs due to Gurvich, Karzanov and Khachivan [GKK88] which allows
to compute an easy to solve canonical form for mean-payoff games.



58 CHAPTER 3. SOLVING GRAPH GAMES

3.3.1 Zwick and Paterson value-iteration

Before introducing the idea of the algorithm, we remark a finiteness construction for a
positionally determined game.

Remark 3.3.1 (Finite game from a positionally determined game): Given a
positionally determined game G we can derive from it a finite game with the same
positional strategies. We let the game start from a vertex vi and the two players
play as usual, but the game ends as soon as a vertex is visited twice, and its payoff
is computed as the play would cycle forever on the ending cycle.

The goal of the algorithm is to find, for each vertex a ∈ V , the value v(a) of the finite and
infinite games that start at a. To reach this goal we consider a third version of the game:
this time the two players play the game for exactly k steps constructing a path of length k,
and the weight of this path is the outcome of the game. The length of the game is known
in advance to both players: we let vk(a) be the value of this game started at vertex a ∈ V ,
where player Max or Min plays forst according to the vertex ownership.

Theorem 3.3.2 (Computing the truncated values of the game): The values
vk(a), for every a ∈ V , can be computed in O(k · |E|) time.

Proof: It is easy to see that for every a ∈ V and every k ≥ 1 we have that

vk(a) = max
a→b
{w(a, b) + vk−1(b)} if a ∈ VMax

vk(a) = min
a→b
{w(a, b) + vk−1(b)} if a ∈ VMin

and clearly v0(a) = 0 for every vertex. The values vk(a) for every vertex can then be
easily computed using these recursive formulas in O(k · |E|) time.

It seems intuitively clear that limk→∞ vk(a)/k = v(a), where v(a) is the value of the infinite
game that starts at a. The next theorem shows that this is indeed the case:

Theorem 3.3.3: For every a ∈ V we have:

k · v(a)− 2nW ≤ vk(a) ≤ k · v(a) + 2nW

Proof: Let σ be a positional optimal strategy for player Max in the finite game starting
at a. We show that if Max plays using the strategy σ then the outcome of a k-step
game is at least (k − n) · v(a)− nW .

We basically used the cycle decomposition technique described in Procedure 1.4.22
and push vertices on a stack when they are visited. Whenever a cycle is formed, it
follows from the fact that σ is an optimal strategy for Max in the finite game, that
the mean weight of the cycle formed is at least v(a). They are all removed and the
process continues.



3.3. ALGORITHMS FOR MEAN-PAYOFF GAMES 59

At each stage the stack contains at most n edges and the weight of each of them is at
least −W . Max can therefore ensure that the total weight of the edges encountered
in a k-step game starting from a is at least (k − n) · v(a) − nW , which is at least
k · v(a)− 2nW as v(a) ≤W .

Applying a similar reasoning for player Min we obtain the other inequality.

We can now describe the algorithm for computing the exact values of the finite and infinite
games:

Theorem 3.3.4 (Computing values in a mean-payoff game): The values v(a) for
every vertex a ∈ V , corresponding to the infinite and finite games that start at all
the vertices of V can be computed in O(|V |3|E|W ) time.

Proof: Compute the values vk(a) for every a ∈ V for k = 4n3W . This can be done,
according to a previous theorem, in O(|V |3|E|W ) time. For each vertex a ∈ V ,
compute an estimate v′(a) = vk(a)/k.

We then get the inequalities:

v′(a)− 1

2n(n− 1)
< v′(a)− 2nW

k
≤ v(a) ≤ v′(a) +

2nW

k
< v′(a) +

1

2n(n− 1)

The value v(a) is a rational number with a denominator whose size is at most n,
therefore the minimum distance between two possible values of v(a) is at least 1

n(n−1) .
The exact value of v(a) is then the unique rational number with denominator of size
at most n that lies in the interval v′(a)± 1

2n(n−1) , which is easily found in polynomial
time by exaustive enumeration.

3.3.2 Canonical form for Mean-payoff games

We will search in this section for a peculiar form for mean-payoff games, where locally opti-
mal strategies are also globally optimal; such form is shown to exist for every mean-payoff
game by using the theory of discounted-payoff games. Later we analyze an algorithm to
transform a given mean-payoff game into its canonical form, obtaining a pseudo-polynomial
algorithm.

Definition 3.3.5 (Potentials): A potential for a game G is a function p : V G → Z.

Definition 3.3.6 (Potential transformations): Given a potential function p, the
transformed game p(G) has the same underlying graph and vertex ownership as G,
but the weights are changed according to the rule wp(G)(a, b) = wG(a, b)−p(a)+p(b)

for a mean-payoff game and to the rule wp(g)(a, b) = wG(a, b) − p(a) + βp(b) for a
discounted-payoff game.

Remark 3.3.7: The value of the mean-payoff game G and of p(G) is the same for ev-



60 CHAPTER 3. SOLVING GRAPH GAMES

ery starting vertex, and the same holds for discounted-payoff games. Moreover, a
positional strategy for one player is optimal in G if and only if it is optimal in p(G).

Proof: Observe that the value of the cycle c in G and in p(G) doesn’t change and use
positional determinancy.

Definition 3.3.8 (Locally Optimal Strategy): A locally optimal strategy is a
strategy where the player, starting from a vertex v owned by him, moves its token on
an outgoing edge that has higher immediate reward (i.e. one with the most positive
weight if the player is Max, and one with the most negative weight if the player is
Min).

Definition 3.3.9 (Canonical Form): We say that a mean-payoff game G is in canon-
ical form if every locally optimal positional strategy is globally optimal.

Definition 3.3.10 (Weak Canonical Form): We say that a mean-payoff game G is
in weak canonical form if every locally optimal positional strategy which remains on
vertices with the same value is also globally optimal.

Theorem 3.3.11 (Every MPG has a Canonical Form): We will now prove that
every mean-payoff game admits a potential transformation p that transforms it into
a game in canonical form.

Obviously games in canonical form are easily solved by choosing the locally optimal strategy
for the player, so we will later be also interested in the complexity of computing such
potential transformations.

Idea of the proof: We will prove the statement via associated discounted-payoff
games in multiple steps:

1. We can a pair of strategies that is optimal for a sequence of βn → 1 so that the
values of the vertices in the β-discounted games become rational functions of β
along the sequence.

2. Expanding (1− β)vi(β) in power series near β = 1, we obtain a potential trans-
formation for discounted games.

3. The same potential transformation with β = 1 transforms the mean-payoff game
in a particularly convenient form, that will be called weak canonical form.

4. We will then transform the weak canonical form into a canonical form.

Proof: Notation: Let W = maxi,j |wij | be the maximum of the arc weights. Note also
that we will write β for convenience, but the formulas are valid only for a sequence
of βn → 1.

We will denote with vi(β) the value of the vertex vi in the β-discounted game, as



3.3. ALGORITHMS FOR MEAN-PAYOFF GAMES 61

defined previously by Equation 1.5.

Step 1: Fix a strategy σ that is optimal for a sequence of βn → 1 (that is known to
exists thank to previous remark 1.4.25). Now Equation 1.5 can be written as

vi(β) = wiσ(i) + βvσ(i)(β) (3.2)

Note that the vi(β) are rational function of β on the sequence βn because they are
the solution to the above system of linear equation (use Cramer rule).

Step 2: We know that |(1− β)vi(β)| =
∣∣(1− β)

∑
k β

kwikσ(ik)
∣∣ ≤W so (1−β)vi(β)

is bounded near β = 1 and can be expanded in power series as (1 − β)vi(β) = ai +

bi(1−β) + o(1−β), so that we obtain vi(β) = 1
1−βai + bi + o(1−β) and substituting

that into Equation 3.2 we get

1

1− β
ai + bi + o(1− β) = wiσ(i) + β

(
1

1− β
aσ(i) + bσ(i) + o(1)

)
that can be easily rewritten as

1

1− β
ai + bi + o(1− β) = wiσ(i) − aσ(i) +

1

1− β
aσ(i) + βbσ(i) + o(1− β)

that is an equality for a sequence βn → 1, so the coefficients must satisfy

ai = aσ(i), bi = wiσ(i) − aσ(i) + βbσ(i) + o(1− β)

Letting β → 1 in the second equation we obtain that a necessary condition for
σ to be an optimal positional strategy near β = 1 is to satisfy: ai = aσ(i) and
aσ(i) = wiσ(i) + bσ(i) − bi.

Step 3: The map i 7→ bi is a potential transformation. The transformed system can
be partitioned into sets of vertices with equal ai, which are known to be the values
of the vertices in the mean-payoff game as we have proven in remark 1.4.25.

Let’s now consider the vertex i and suppose it belongs to player Max. Its game value
is ai, so it has no edges going to a vertex of greater value, otherwise Max could choose
that in a non-positional strategy and get a greater game value from vertex i, which
contradicts the definition of game value.

By the same reasoning it has at least one edge going to a vertex j with the same
value aj = ai, and Max has no reason to choose edges going to a vertex with lower
value.

The modified weights in the arena are w′ij = wij + bj − bi. We will now see that by
choosing the outgoing edge with the highest weight among those with the same a
value, Max can realize an optimal strategy.

Infact, by taking the limit of Equation 1.5 multiplied by (1− β) we have

(1− β)vi(β) = max((1− β)w′ij + (1− β)βvj(β))



62 CHAPTER 3. SOLVING GRAPH GAMES

ai = max(aj)

So we can see also from the equations that there is at least one edge to a vertex with
same game value, and there is no edge to a vertex with higher game value. Now
by substituting ai = aj = a in the equation, restricting Max to consider vertices
with same game value, we get that a = max(wij + βbj − bi) and so in the limit
a = max(w′ij), so there is an edge such that ∃k w′ik = a.

By choosing this edge for each vertex beloging to him, Max will always choose out-
going edges with weight equal to the current vertex value. By a similar reasoning,
player Min will also have a = min(w′ij), so that whatever vertex it chooses, it has
weight ≥ a.

Then, in a play starting from a vertex vi with value ai, Max can choose all weights
w = a and Min can only choose w ≥ a, so that we have that the value of the game
where Max plays its positional strategy σ as now defined, and Min plays whatever
τ is νσ,τ = lim supn

1
n

∑n−1
k=0 wk ≥ a = νσ∗,τ∗ which is the value of the vertex, so we

obtain that σ is also an optimal positional strategy.

Step 4: The game we have obtained is not in canonical form since an edge going
between vertices with different value has no restrictions on the weights it carries. To
put it in canonical form a very simple transformation has to be done: consider the
potential p(vi) = Cai, where C > 0 is a constant to be specified later.

By using such potential transformation, we have w′′ij = w′ij if ai = aj , and w′′ij =

w′ij +C(aj−ai) if ai 6= aj . In this way, weights between vertices with the same game
value are kept unchanged. On the contrary, weights going to a vertex of higher value
aj ≥ ai will increase and weights going to a vertex of lower value will decrease.

By choosing C big enough we can ensure that arcs going to a vertex of lower value
aj ≤ ai will have w′′ij < ai and thus won’t be chosen by a locally optimal strategy.

Computing the canonical potential transformation

In the previous section we solved mean-payoff games via associated discounted-payoff
games. We are now going to explain how to obtain a canonical potential when the optimal
positional strategies are known [ZP96]: this will allow us to develop an algorithm to find
a canonical potential in psudopolynomial time.

Algorithm 3.3.12 (Canonical potential from an optimal positional strat-

egy): Let G be our mean-payoff game arena and suppose that it has value a ≥ 0

for a fixed vertex v0. We remind the reader that such value can be computed in
polynomial time by knowing only one positional strategy.

Consider the graph Gσ∗ obtained from G by removing all outgoing edges from
vertices belonging to Max, except those specified by σ∗ (the vertices of Gσ∗ are{

(v, w) ∈ V 2 | v ∈ VMin or w = σ∗(v)
}
): since the game has positive value from v0,



3.3. ALGORITHMS FOR MEAN-PAYOFF GAMES 63

there are no negative cycles in Gσ∗ that are reachable from v0. The same is obviously
true if we subtract a from each of G weights, since now the new arena G′ has value
0 starting from v0.

Define the length of a path to be the sum of the weights encountered in the path.
Let h(v) be the minimum oriented distance in the weighted graph G′σ∗ from v0 to the
vertex v, that is well defined because of the absence of negative cycles: such function
can be computed (by a breadth first search with priority) in polynomial time and is
a valid potential transformation since for each vertex v in the graph, and for each
edge v →α z in G′σ∗ it holds that h(v) ≥ h(z)+w′(v, z) by the definition of minimum
distance. By convention let h(v) =∞ when the node v is not reachable from v0.

By the fact that we have specified an initial optimal strategy we obtain that ∀v ∈
VMax, ∃v →α z such that h(v) ≥ h(z) + w′(v, z) and for Min it holds the same
but for every outgoing edge: ∀v ∈ VMin, ∀v →α z we have h(v) ≥ h(z) + w′(v, z).
Substituting back the original weights, from h(v) ≥ h(z) +w′(v, z) we obtain h(v) +

a ≥ h(z) + w(v, z), therefore h is the desired potential transformation, and is a
certificate for the game to have value a.

Remark 3.3.13 (Bound on the potential transformation): We observe that,
since in the algorithm h is a sum of at most n edge weights in G′, it holds |h(v)| ≤
n(W + |a|) ≤ 2nW or h(v) =∞.

Algorithm 3.3.14 (Canonical Transformation in pseudopolynomial time):
We already know that every mean-payoff game admits a canonic potential and we
will now build an updating algorithm to compute such potential. For this algorithm
we suppose that the game arena G is ergodic (i.e. all vertices have the same value
a ≥ 0).

First define the map T : (V → Q)→ (V → Q) by:

T (h)(v) = min
v′

(h(v′)− a+ w(v, v′)) if v ∈ VMax

T (h)(v) = max
v′

(h(v′)− a+ w(v, v′)) if v ∈ VMin
(3.3)

Note that the map T is monotone and a valid potential function is a prefixed point
T (h) ≥ h. By Remark 3.1.20 we can compute such a prefixed point by starting with
a function h0(v) = 2nW ∀v ∈ V and define hk = T k(h0).

If hi = hi+1 then hi is a valid potential: suppose infact that h(v) = T (h)(v) for
every vertex v. We have in particular that h(v) = minv′(h(v′) − a + w(v, v′)) for
a vertex v ∈ VMax, which means that exists an edge v → v′ for which we have
h(v) + a ≥ h(v′) + w(v, v′) which is the exact definition of potential function.

Note also that the sum
∑

v h(v) decreases strictly at each updating step.

Moreover, if at a certain point we have h(v) < 0 then is has to be h(v) = −∞ because
of the bound we obtained previously for the potential transformation. This procedure



64 CHAPTER 3. SOLVING GRAPH GAMES

then can be carried out in time O(n2W ) by observing that, even if the numbers are
rational, their denominator is at most n since the only rational number which can
be summed or subtracted is a which is a mean of at most n integral numbers.

Remark 3.3.15: We note the similarity between this potential updating algorithm and
the progress measure lifting algorithm: in both cases a value is assigned to a vertex
and an iterative algorithm updates it until it gets to a prefixed point of a certain func-
tion. The form of the inequalities defining the notion of progressive edge also show
a remarkable similarity with the inequalities of the definition of potential function.

3.4 LP-type problems

It is widely known that the satisfability problem for linear programming is solvable in poly-
nomial time, for example with the ellipsoid method [Kha79], but it is still open whether it
is feasible to solve linear programming in combinatorial polynomial time. The best general
result in this direction is by Matouvšek, Sharir and Welzl [MSW96] and Clarkson [Cla95],
which presented subexponential algorithm for the task.

Their algorithm solves a greater class of problems, known as LP-type problems, which have
been very important to yield linear or close to linear time algorithms for various problems
in computational geometry and location theory. Moreover in 2007 Halman [Hal07] showed
that they also have application in finding solutions to graph games.

In particular, Halman shows that a simple stochastic game can be formulated as an LP-
type problem and hence he obtains a strongly subexponential solution for mean-payoff,
discounted-payoff and simple stochastic games by combining the already cited algorithms
of Matouvšek, Sharir and Welzl [MSW96] and Clarkson [Cla95].

In this section we state what an LP-type problem is and then we discuss how a simple
stochastic game can be seen as an LP-type problem.

Definition 3.4.1 (Abstract problem): An abstract problem is a tuple (H,ω) where
H is a finite set of elements (which we call constraints) and ω is an objective function
from 2H to some totally ordered set Λ which contains a special maximal element ∞
and a minimal element −∞. The goal is to compute ω(H).

Definition 3.4.2 (LP-type problem): An LP-type problem is an abstract problem
(H,ω) that obeys the following conditions (when we write inequality symbols we
mean under the ordered set Λ):

• Monotonicity: For all F ⊆ G ⊆ H it holds ω(F ) ≤ ω(G)

• Locality: For all F ⊆ G ⊆ H such that ω(F ) = ω(G) 6= −∞ and for each h ∈ H,
if ω(G ∪ {h}) > ω(G) then ω(F ∪ {h}) > ω(F ).

Definition 3.4.3 (Basis): A basis B is a set B ⊆ H such that ω(B′) < ω(B) for all



3.4. LP-TYPE PROBLEMS 65

proper subsets B′ ( B.

Definition 3.4.4: Let G ⊆ H be arbitrary:

• G is said to be infeasible if ω(G) =∞

• G is said to be unbounded if ω(G) = −∞

• A basis for G is a basis B such that ω(B) = ω(G).

Definition 3.4.5 (Combinatorial dimension): The combinatorial dimension d of an
LP-type problem is the maximum size of any basis for any feasible subfamily G.

An LP-type problem is said to be fixed dimensional if d is a constant independent of
the size n of the problem.

An LP-type algorithm takes a d-dimensional LP-type problem (H,ω) and returns a basis B
for H. The randomized algorithm of Sharir and Welzl gets as an input the set of contraints
H and a candidate basis C ⊆ H. C is not necessarily a basis for H, but it can be viewed
as some auxiliary information one gets for the computation of the solution which has no
influence on the output of the procedure, but influences its efficiency.

The algorithm uses two kind of primitive operations: a basis computation which takes a
family G of at most d + 1 constraints and finds a basis for G, and a violation test which
takes a basis B and a constraint h and returns false if and only if B is a basis for B ∪{h}.

Let (H,ω) be a d-dimensional LP-type problem and let n = |H|. Let tb the time required
for a basis computation and tv the time required for a violation test. Then the overall
randomized running time of carefully combining the two algorithms [SW92] and [Cla95]
results in a time complexity of O(eO(

√
d ln d)(tvn + tb log n)). By specifying in which way

a simple stochastic game is an LP-type problem and providing polynomial algorithms for
the two primitive operations in such setting, we will obtain the required bound.

The following lemma, already proved by Derman [Der70], reduces a single-player simple
stochastic game (i.e. where only Min and random vertices are allowed) to a linear program-
ming problem, which can then be solved in polynomial time. This lemma is the analogue
of Remark 1.4.4 for simple stochastic mean-payoff games.

Lemma 3.4.6: Let G be a simple stochastic game with no max vertices that halts with
probability one. Label the vertices of G such that V = {1, . . . , n} and label the
0-sink by n− 1 and the 1-sink with n. Then the optimal strategy for player Min can



66 CHAPTER 3. SOLVING GRAPH GAMES

be found by solving the following linear program:

maximize
n∑
i=1

v(i)

subject to v(i) ≤ v(j) if i ∈ VMin ∧ (i, j) ∈ E

v(i) =
∑

(i,j)∈E

pr(i, j)v(j) if i ∈ VR

v(n− 1) = 0

v(n) = 1

(3.4)

where pr(i, j) represent the transition probability from vertex i to vertex j.

Idea of the proof: The various constraints ensure that the v(i) values represent
the values of the vertices in the simple stochastic game: the second equation is the
value equation for random vertices, while the first one roughly means that all Min-
successors of a vertex have greater value. The value of the single vertex is then
maximized in the extremal condition, ensuring that for i ∈ VMin it holds v(i) =

min(i,j)∈E v(j).

Moreover, if we know the solution of the linear program 3.4, we can find an optimal
strategy τ for Min in the following way: for i ∈ VMin we set τ(i) = j where (i, j) ∈ E
and v(i) = v(j), which exists by the maximization objective.

To convert a simple stochastic game to an LP-type problem it will now suffice to define a
set S such that each subset of S give rise to a strategy σ of Max player, and the function
ω : 2S → Λ will be the sum of the values that the strategy archieves on each vertex, which
can be computed by solving the above linear program on the graph Gσ.

Definition 3.4.7 (LP-type problem associated with a simple stochastic

game): Let G be a simple stochastic game and S be the set of edges outgoing from
vertices of Max; for a vertex v define E(v) = {(v, w) ∈ E} as the outgoing edges
from that vertex.

For every S′ ⊆ S we define G(S′) as the game where, between the edges outgoing
from vertices of Max, only those in S′ are kept. By imposing on S′ the condition that
every max vertex has an outgoing edge in S′ we can make sure that every non-sink
vertex in G(S′) has at least one outgoing edge and that if G halts with probability
one then so does G(S′).

Let now Λ = R ∪ {∞,−∞} and let σ(S′), τ(S′) be an arbitrary pair of optimal
strategies in G(S′). We define ω : 2S → Λ as follows:

ω(S′) =

{
−∞ if ∃i : E(i) ∩ S′ = ∅∑

z∈V νσ(S′),τ(S′)(z) otherwise
(3.5)

Note that if σ, τ is a pair of strategies in the game G, and since it is not always true that



3.4. LP-TYPE PROBLEMS 67

Sσ ⊆ S′ then σ, τ is not necessarily a pair of strategies in G(S′). Conversely if σ, τ is a
pair of optimal strategies in G(S′), it is a pair of strategies in G which is not necessarily
optimal since the set of possible strategies for player Max in G is in general strictly bigger
than those in G(S′).

There is fortunately a sufficient condition that ensures the optimality of σ, τ in G, which
allows to effectively recover the solutions of the simple stochastic games from a basis of
the LP-type problem formulation.

Lemma 3.4.8: Let G be a simple stochastic game that halts with probability one. Let
G(S′) be a simple stochastic sub-game of G and σ, τ a pair of optimal strategies in
G(S′). If ω(S) = ω(S′) then σ, τ is a pair of optimal strategies in G as well.

To conclude the reformulation as LP-type problem it is enough to prove monotonicity and
locality: the first one is trivial, while the second one uses a technical lemma on unstability
of vertices. To obtain a subexponential algorithm then Halman proves that the associated
LP-type problem has dimension d = |VMax|, which combined with the initial estimates
provides the complexity bound of O(eO(

√
n lnn)).



68 CHAPTER 3. SOLVING GRAPH GAMES



Chapter 4

A new Game

We are going to define a new graph game and prove that the problem of solving it lies
inbetween parity games and mean-payoff games. This could help in finding an algorithm to
solve mean-payoff games because this graph game helps separate the main algorithmic dif-
ficulties found in solving mean-payoff games. We will then analyze adaptations of existing
algorithms to asses their effectiveness against our new game.

4.1 Stacked unary mean-payoff games

Recall that, in dealing with computational problems, we are always assuming that instances
of a problem are coded, say by binary strings, in a canonical way. Integers are usually coded
in binary positional notation, so that size(n) = dlog2 ne. In order to make hard problems
appear easier one can code integers in unary notation, so that size(n) = n. By artificially
expanding the size of the problem representation, one can thus lower its complexity.

Definition 4.1.1 (Unary mean-payoff game): A unary mean-payoff game is a mean-
payoff game where weights are coded in unary.

Observe that this definition makes a pseudo-polynomial algorithm for mean-payoff games
into a polynomial algorithm for unary mean-payoff game.

Definition 4.1.2 (Stacked unary mean-payoff game): Weights are polynomials
with integer coefficients W = Z[x].

Given a play p0, . . . we consider the space of all accumulation points (which are
polynomials) of the sequence an = 1

n

∑n−1
i=0 wi in the pointwise convergence topology.

We define the value of the play to be the maximum of those limit polynomials in the
lexicographic order (i.e. as if x = ∞), and we will denote such limit operation by
maxlexlimn→∞ an.

Notation 4.1.3: We will denote by P (d,W ) the set of polynomials in Z[x] of degree

69



70 CHAPTER 4. A NEW GAME

at most d and with coefficients bounded in the range [−W,W ]. In what follows we
will also denote by W the minimal bound on the polynomial coefficient of a stacked
unary mean-payoff arena’s weights.

A similar game where the weights are tuples of integer ordered lexicographically is equiv-
alent. Polynomials were chosen because they make proofs more clear and easier to reason
about.

We are now going to prove positional determinancy for Stacked unary mean-payoff in two
ways: the first will be an approximation result via mean-payoff games similar to the proof
of Theorem 1.4.23; the second one will use the result of Gimbert and Zielonka [GZ05]
(Remark 1.4.28)with the observation that the value of a play in necessarily less or equal to
the highest mean of a reachable cycle. We will then prove that the complexity of stacked
unary mean-payoff lies inbetween that of parity games and mean-payoff games, by showing
a chain of reductions.

Remark 4.1.4 (Well-definedness of the play value): We prove that the maxi-
mum in the lexicographic order of the limit polynomials exists. The set of polynomials
with bounded coefficient and fixed degree is a compact set in the pointwise conver-
gence topology, and therefore also the limit points of {an}n∈N, being a closed subset,
are a compact set which will be denoted by S ⊆ P (d,W ).

Now consider the map [xi] : P (d,W ) → R which associates to each polynomial
its coefficient of xi, which is clearly continuous w.r.t. the pointwise convergence in
P (d,W ). We now prove by induction on d that each compact set S ⊆ P (d,W ) in
the pointwise convergence topology has a lexicographic maximum.

For d = 0, we consider B = [x0]S which is compact in the real line, and therefore has a
maximum which coincides with the lexicographic one. Suppose the thesis holds for d,
we show that it also holds for d+1: let B = [xd+1]S which is compact on the real line,
and letm ∈ B be its maximum. This is also the maximum coefficient of degree xd+1 of
a polynomial in S. Consider then the set R =

{
p ∈ S | [xd+1]p = m

}
, which is closed

in P (d+1,W ) and therefore compact. All of the polynomials in R havem as their first
coefficient; therefore we know that maxLex S = maxLexR = mxd+1 + maxLex f(R),
where f(p) = p−mxd+1.

Lemma 4.1.5: The value of a play is less than or equal to the highest mean value of a
simple cycle.

Proof: Let r1, . . . , rs be the sums of the edge values of each simple cycle c1, . . . , cs, and
l1, . . . , ls their lengths. By the cycle decomposition (Procedure 1.4.22) a partial play
value can be written as:

Sn =
1

n

∑
i≤n

wi =

∑
j a

(n)
j rj +B(n)∑

j a
(n)
j lj + k(n)



4.1. STACKED UNARY MEAN-PAYOFF GAMES 71

where a(n)j is the number of times the cycle cj has been stepped over, B(n) is the sum
of edges which remained in the stack, and k(n) is the number of edges on the stack.

Let now R be a polynomial which is lex-greater than every mean value of a simple
cycle, i.e. ∀i R ≥Lex

ri
li
, then it holds

Sn =

∑
j a

(n)
j lj

rj
lj

+B(n)∑
j a

(n)
j lj + k(n)

≤Lex

(∑
j a

(n)
j lj

)
R+B(n)∑

j a
(n)
j lj + k(n)

=
(n− k(n))R+B(n)

n
= Rn

We can now use a similar reasoning to that of the Remark 4.1.4, and start by an-
alyzing this inequality between the top-most coefficients [xd]Sn ≤ [xd]Rn. We have
two cases: if limn[xd]Sn = [xd]S < [xd]R then we are done since this already proves
S <Lex R. Otherwise if [xd]S = [xd]R, it is not too hard to analyze the inequal-
ity between limits to prove that most of the cycles taken are from cycles where
[xd]rj
lj

= [xd]R. More precisely, let bj = limn→∞
a
(n)
j

n then we have
∑

j bj = 0 and if

bj > 0 then [xd]rj
lj

= [xd]R. Now by induction on d one can prove the statement of
the lemma.

Theorem 4.1.6: Stacked unary mean-payoff games are positionally determined.

Idea of the proof: We approximate the given game by a sequence of mean-payoff
games and use their determinancy to get a pair of strategies which are frequently
optimal on the sequence of games. We then show that such strategies are also optimal
on our original game.

Proof: Let G(x) be a stacked unary mean-payoff game, and denote by G(n) for n ∈ N
the resulting mean-payoff obtained by the weight translation Fn(p(x)) = p(n). Since
the mean-payoff game sequence {G(n)}n∈N is made of positionally determined game
and the positional strategies are a finite number, there must exists a couple (σ∗, τ∗)

of strategies of Max and Min respectively, which are frequently optimal on G(n), i.e.
∃{nk}k∈N such that (σ∗, τ∗) is a couple of optimal strategies for G(nk).

We will now prove that the couple of strategies (σ∗, τ∗) is optimal on G(x). Indeed,
consider any counter-strategy τ of Min (even non-positional) to σ∗ and σ of Max to
τ∗. Then by the above Lemma 4.1.5 we know that each play on Gσ∗(x) has a score
which is greater than or equal the minimal cycle value in Gσ∗(x). Let mcv(G(x)) be
the minimal cycle value of G(x). We should prove that, for big enough k ∈ N

mcv(Gσ∗(x))(k) = mcv(Gσ∗(k)) (4.1)

from which it will follow that

VG(x)
σ∗,τ (k) ≥ mcv(Gσ∗(x))(k) = mcv(Gσ∗(k)) = VG(k)

σ∗,τ∗

for large enough k, which implies positional determinancy.

Proving Equation 4.1 is simple: we first notice that, given any two fixed-degree
polynomials p(x), q(x), it holds p(x) ≤Lex q(x) if and only if FINk p(k) ≤ q(k);



72 CHAPTER 4. A NEW GAME

now let S be the set of mean cycle values of all simple cycles in Gσ∗(x), which is a
finite set. By this fact we know that ∃k such that ∀n > k and ∀p, q ∈ S we have
p ≤Lex q ⇔ p(n) ≤ q(n) and therefore Equation 4.1 is proven.

Remark 4.1.7 (Reproving Positional determinancy): Another way to prove po-
sitional determinancy of the game is to refer to Remark 1.4.28 and observe that
single-player games are trivially positionally determined since Max player has only
interest in reaching the cycle with highest mean, and analogously Min player is in-
terested only in reaching the cycle with the most negative mean. We will now prove
this for games where only Max plays.

Consider first the reachable cycle with the highest mean-value and restrict the single-
player game to the reachable part of the graph. By Lemma 4.1.5 the value of the
play is less than this highest mean-value, so the strategy of Max player should be to
cycle on its vertices, and to converge as fast as possible to the relevant cycle from
every other vertex. It is then enough to note that such strategy is positional.

Lemma 4.1.8: Let σ be a memoryless winning strategy for player Max from v0 in the
stacked unary mean-payoff G. Then for every siple cycle c in Gσ reachable from v0

the sum of the weights of the edges of c is non-negative.

Proof: Suppose that there exists a simple cycle c with negative sum of edge weights.
Then player Min can force the play from v0 to c and also to stay in c indefinitely and
thus win, contradicting the assumption about σ.

Theorem 4.1.9: Parity games are reducible to stacked unary mean-payoff.

Idea of the proof: Consider the reduction p 7→ (−1)pxp from a parity game G to
the stacked unary mean-payoff G′. If the highest value in a cycle in G is even then
the mean of the same cycle in G′ is positive. Then we use the tecnique of cycle
decomposition to prove the theorem.

Proof: Consider F (p) = (−1)pxp as the reduction from the parity game G to F (G). It
is easy to prove that if the highest value in a cycle in G is even then the mean of
the same cycle in F (G) is positive: suppose the priorities of the cycle are p1, . . . , pk.
Suppose now that ∀i pk ≥ pi and pk is even: then we have

∑
i F (pi) =

∑
i(−1)pixpi ,

where xpk is the highest grade that appears, with positive coefficient since pk is even.

Now we remind the reader of the cycle decomposition technique (Procedure 1.4.22)
and proceed to completing the proof: suppose player Max wins in G from vi with
positional strategy σ. Then in Gσ the highest value in each cycles is even, and the
sum of the weights of every cycle in F (G)σ is non-negative, which means that player
Max wins in F (G) from vi with the same positional strategy and which proves the
reduction.



4.1. STACKED UNARY MEAN-PAYOFF GAMES 73

Theorem 4.1.10: Stacked unary mean-payoff games are reducible to mean-payoff

Idea of the proof: Consider the reduction p(x) 7→ p(N) where N > nW from a
stacked unary mean-payoff G to the resulting mean-payoff game G′. The mean of a
cycle in G is positive if and only if the mean of the same cycle in G′ is positive. We
then use the technique of cycle decomposition to prove the theorem.

Proof: Consider F (p(x)) = p(N) with N > nW as the reduction from the stacked
unary mean-payoff game G to F (G). It is easy to prove that if the mean-value
of a cycle in G is non-negative, then also the mean of the same cycle in F (G) is
non-negative: suppose the weights of the cycle are w1(x), . . . , wk(x) and suppose
that e(x) =

∑
iwi(x) ≥ 0; we have that e(x) ∈ Z[x] and coeff(e) ∈ [−nW,nW ].

Therefore E =
∑

iwi(N) ≥ 0 by a previous observation on the lexicographic order
and evaluating polynomials at high natural numbers.

Using now the cycle decomposition technique (Procedure 1.4.22), suppose player Max
wins in G from vi with positional strategy σ. Then in Gσ the mean-value of each
cycle is non-negative, so the mean-value of each cycle in F (G)σ is non-negative, which
means that player Max wins in F (G) from vi with the same positonal strategy.

In essence Stacked unary mean-payoff encode “sparse” mean-payoff games, i.e. those where
the payoffs decompose into sums of numbers differing by at least one order of magnitude
(by at least a factor of N = nW ). Suppose for example that all weights of a mean-payoff
games are taken from the set {3, 101, 10002}. Then it is clear that if the mean-payoff
has fewer than 30 vertices, we can inversely use the above reduction: we could transform
weights into 3 → 3, 101 → x + 1, 10002 → x2 + 2 (i.e. as if x = 100) and then solve the
easier stacked unary mean-payoff. Such observation leads to the following question:

Problem 4.1.11: To which mean-payoff games a similar transformation can be applied?

The answer to this question may shed light on possible ways to solve mean-payoff games
and so they should be the subject for further investigations.

Remark 4.1.12 (Mean-payoff games are “strictly” more difficult than stacked

unary mean-payoff): One might suspect that if the weights of a mean-payoff gmae
are exponentially distributed, then in essence, it is a stacked unary mean-payoff game.
This is not the case, infact we note that each mean-payoff game can be reduced to a
mean-payoff with only zeros and powers of two on the edges by replacing each edge
with weight e =

∑
i<dlogW e 2di with dlogW e edges of weights 2di .



74 CHAPTER 4. A NEW GAME

4.2 Resolution methods

We will now address possible resolution methods of stacked unary mean-payoff games,
which are adapted from methods solving parity games. We highlight problems in adapting
the respective quasi-polynomial solution methods, thereby also making strong arguments
that the step from parity games to stacked unary mean-payoff is not trivial too.

4.2.1 Adaptation of Small Progress Measure

Notation 4.2.1: Let α ∈ Nd+1 be a (d+ 1)-tuple of non-negative integers.

• We number its components from 0 to d, i.e. α = (αd, . . . , α1, α0)

• <,≤,=, 6=,≥, > on tuples denote lexicographic ordering

• We define the sum between tuples to be carried componentwise

Definition 4.2.2: Define MG ⊆ Nd such that it is the finite set of (d + 1)-tuples with
all components bounded between 0 and nW :

MG = {(αd, . . . , α0) | 0 ≤ αi ≤ nW}

Definition 4.2.3 (Progress Measure): Let G be a stacked unary mean-payoff game;
then the function ρ : V → MG is a parity progress measure for G if every edge
(v, u) ∈ E is progressive, i.e. if

ρ(v) + w(v, u) ≥ ρ(u)

The idea of a progressive edge is that it should characterize cycles with mean greater than
zero, which is also the statement of the next lemma.

Lemma 4.2.4: Let ρ be a progress measure for G. Then all cycles in G have non-negative
mean.

Proof: Suppose by contradition that there is a negative cycle v1, . . . , vk = v1 in G. Then
we have the chain of inequalities

ρ(v1) = ρ(vk) ≤ ρ(vk−1) + w(vk−1, vk) ≤ . . . ≤ ρ(v1) +
∑
i

w(vi−1, vi)

which gives the contradiction
∑

iw(vi−1, vi) ≥ 0.

Lemma 4.2.5: Let G be a stacked unary mean-payoff game where all cycles have non-
negative mean. Then there exists a progress measure ρ : V →MG for G.

Proof: The proof is by induction on the number of strongly connected components of G.
For the base case suppose that G consists only of a single strongly connected compo-
nent and let v be a point on this component. Then G is a weighted graph with non-
negative cycles and therefore one can define the distance between two vertices as the



4.2. RESOLUTION METHODS 75

length of the shortest path connecting those points, which exists and is non-negative
for every couple of vertices and is also bounded by (n − 1) ·W . We can therefore
define µ(w) = d(v, w) which satisfied the triangular inequality µ(u)+c(u,w) ≥ µ(w).

For the inductive case, let C0, . . . , Ck be the strongly connected components of the
graph G, and let µ0, . . . , µk be their respective progress measures computed with the
outlined procedure. By taking the quotient graph of G collapsing each Ci to a point,
we can see that the resulting graph G′ is acyclic; hence there must exists a strongly
connected component without ingoing edges (from other components), let it be C0.

The inductive hypothesis guarantees the existence of a progress measure µ defined on
G \C0 with values in [0, (|G \ C0| − 1)W ]. To extend it to a progress measure to all
of G it is enough to consider µ′ = (µ0 +K)∪µ for a certain constant K ∈ N. In this
way edges inside of C0 and inside of G \ C0 are progressive for µ′ because they are
progressive for the respective measures µ0 and µ. Moreover if an edge (u, v) goes from
C0 toG\C0 the edge is progressive if and only if µ0(u)+K+w(u, v) ≥ µ(v). Therefore
it is enough to set K = max(u,v)∈E µ(v)− µ0(u) +w(u, v) ≤ (|G \ C0| − 1)W +W =

|G \ C0|W which gives the required bound on µ′: mu′(v) ∈ [0, (|G| − 1)W ].

We can now extend the definiton of progress measure and expose the lifting algorithm.

Definition 4.2.6: Define M>G = MG ∪ {>} by setting

∀m ∈MG m < >

Definition 4.2.7: If ρ : V → M>G and (v, u) ∈ E is an edge, then Prog(ρ, v, u) is the
least m ∈M>G such that m+ w(v, u) ≥ ρ(u) and m ≥ ρ(v).

Definition 4.2.8 (Game progress measure): Let G be a stacked unary mean-payoff
game. A function ρ : V → M>G is a game progress measure if for all vertices v ∈ V
we have:

• If v ∈ VMax then ∃(v, u) ∈ E that is progressive

• If v ∈ VMin then ∀(v, u) ∈ E are progressive

Definition 4.2.9 (Induced strategy from game progress measure): Let G be
a stacked unary mean-payoff game and ρ : V →M>G a game parity progress measure.

Define the induced strategy ρ : VMax → V for player Max by setting

ρ(v) = argmin
w
{ρ(w) | (v, w) ∈ E}

that is ρ(v) is a successor w of v that minimizes ρ(w).

Let moreover ||ρ|| = {v ∈ V | ρ(v) 6= >} the vertices from which the recheable cycles
are non-negative.



76 CHAPTER 4. A NEW GAME

Lemma 4.2.10 (Induced strategy is winning for Max): If ρ is a game progress
measure, then ρ is a winning strategy for player Max from ||ρ||.

Proof: We note that all vertices we will be considering are inside ||ρ||: the starting vertex
obviously is, and for each vertex v one can note that each successor chosen by Min
satisfied ρ(v) + c(v, w) ≥ ρ(w) so that ρ(w) 6= >, and since Max choses the w that
minimizes ρ(w), one also has ρ(w) 6= > for w = ρ(v).

Then it can easily be seen that strategy ρ is closed on ||ρ|| and that ρ restricted
to ||ρ|| is a progress measure on Gρ restricted to ||ρ||. By the lemma 4.2.4 we can
then conclude that all cycles in Gρ restricted to ||ρ|| are non-negative, which is the
statement of this lemma.

Lemma 4.2.11 (Existence of a parity progress measure): Let WMax be the win-
ning set of player Max in a stacked unary mean-payoff G. Then there exists a game
progress measure ρ : V →M>G such that ||ρ|| = WMax.

Proof: The existence again follows from the analogue statement for progress measures
(Lemma 4.2.5): we know that all cycles in the game G |WMax are non-negative, hence
there is a progress measure ρ : WMax → MG for the restricted game. Extending
ρ |V \WMax= > makes ρ into a game progress measure.

Definition 4.2.12 (Lifting of a progress measure): Define the lifting operator
Lift(ρ, v)(u) for v ∈ V as follows:

• ρ(u) if u 6= v

• min {Prog(ρ, v, u) | (v, u) ∈ E} if u = v ∈ VMax

• max {Prog(ρ, v, u) | (v, u) ∈ E} if u = v ∈ VMin

Lemma 4.2.13 (Lifting is monotone): The operator Lift(·, v) is monotone in the
functional lattice.

Proof: This is proven in exactly the same way as Lemma 3.1.23 since the operations
described here have the same monotonicity properties as those in the description of
the Small Progress Measures algorithm.

Lemma 4.2.14 (Game progress measures as fixpoints): A function ρ : V → M>G
is a game progress measure if and only if ∀v ∈ V Lift(ρ, v) v ρ

Proof: ⇒ Let ρ be a game progress measure: we show that it is a prefixed point: if
u 6= v then Lift(ρ, v)(u) = ρ(u), which proves inequalities on such vertices. On the
other hand if u = v from the definition of game progress measure we know that:

• If v ∈ VMax then ρ(v)+c(v, w) ≥ Prog(ρ, v, w) for some w. Since the lift considers
the min of such progs we obtain that ρ(v) + c(v, w) ≥ Lift(ρ, v)(u)



4.3. VALUE-ITERATION ALGORITHMS 77

• If v ∈ VMin then ρ(v) + c(v, w) ≥ Prog(ρ, v, w) for all w, and we again obtain its
description as a prefixed point.

⇐ This part of the proof is obtained similarly as it is enough to reverse the steps
of the other direction.

Again the least game progress measure can be computed using fixed point approximation
from Remark 3.1.20.

Remark 4.2.15 (Algorithm running time): As in the case of Small Progress Measure
for parity games, the running time of the algorithm is essentially bounded by the size
of M>G, which unfortunately is exponential:

∣∣M>G∣∣ = W d+1.

Unfortunately we have not been able to generalize the succinct progress measure algorithm
for stacked unary mean-payoff games. In this variant of progress measures there is also the
need to be able to sum numbers, other than to be able to compare them. The main technical
difficulty we have encountered was indeed in encoding sums into a succinct scheme.

4.3 Value-iteration algorithms

We already observed in Remark 3.3.15 that the algorithm of Zwick and Paterson for the
solution of mean-payoff games and the progress measures algorithms bear a shocking sim-
ilarity. In this section we introduce the concept of value-iteration algorithm [CH08] and
explore more in detail such similarity.

In a value-iteration algorithm each vertex of a graph is assigned a value, and the values
are iteratively improved until a fixpoint is reached. Moreover the improvement function
is local, meaning that the new improved value at a vertex depends on the old values at
neighbouring vertices.

Definition 4.3.1 (Valued Graph): A valued graph (G,D) consists of:

• A finite graph G, where each vertex has at least one successor.

• A complete lattice of values D.

Definition 4.3.2 (Valuation): A valuation is a function ν : V → D from the graph
vertices to the value lattice.

The ordering on values is lifted to valuations in a pointwise fashion: for two valuations
µ, ν we write µ ≤ ν ⇔ ∀v ∈ V µ(v) ≤ ν(v). Note that valuations themselves form
a complete lattice.

We remind the reader that a chain C in a lattice is a set of elements which are all pairwise
comparable.



78 CHAPTER 4. A NEW GAME

Definition 4.3.3 (Value Improvement): An improvement function Imp : DV → DV

is a function on valuations which satisfies the following requirements:

• Monotone: ∀v1, v2 ∈ DV if v1 ≤ v2 then Imp(v1) ≤ Imp(v2).

• Continuous: for every chain C = 〈v0, v1, . . .〉 of valuations, we require Imp(limC) =

lim Imp(C). Note that by monotonicity Imp(C) is a chain itself.

• Directed: it holds either v ≤ Imp(v) for all valuations or v ≥ Imp(v) for all
valuations.

• Local: ∀s ∈ S states and all valuations v1, v2 ∈ DV if v1(s′) = v2(s
′) for all

successors s′ ∈ E(s), then Imp(v1)(s) = Imp(v2)(s).

It it not difficult to prove that given a value improvement function with these properties,
the least fixpoint of it exists and is computable by Knaster-Tarski approximations.

In the algorithm of Zwick and Paterson, such improvement function is the map T in
Equation 3.3 which was defined by:

T (h)(v) = min
v′

(h(v′)− a+ w(v, v′)) if v ∈ VMax

T (h)(v) = max
v′

(h(v′)− a+ w(v, v′)) if v ∈ VMin
(4.2)

Now that we have exposed a variation of small progress measure, the similarity between
the two can be more clearly seen. Note though that each Liftv function is an improvement
function, and we are searching for a fixpoint of all of them at the same time. Lift(ρ, v)(u)

is defined in Definition 4.2.12 as:

ρ(u) if u 6= v

min {Prog(ρ, v, w) | (v, w) ∈ E} if u = v ∈ VMax

max {Prog(ρ, v, w) | (v, w) ∈ E} if u = v ∈ VMin

(4.3)

By unwinding the definition of Prog in Definition 4.2.7 one can see that the definition can
be in fact written as:

Liftv(ρ)(v) = min
v′

(ρ(v′)− w(v, v′)) if v ∈ VMax

Liftv(ρ)(v) = max
v′

(ρ(v′)− w(v, v′)) if v ∈ VMin
(4.4)

which bears remarkable similarity with the previous equations.

4.4 Conclusions

We saw that recently the tractability bound of graph games moved from below parity
games to slightly above parity games. Nevertheless, the solution of mean-payoff games
seems to be yet out of reach of current methods.

To the aim of simplifying the testing of new resolution methods it seems logical to add new
degrees of difficulty in the game hierarchy. We propose to study stacked unary mean-payoff



4.4. CONCLUSIONS 79

games as new node in the hierarchy; a game which shares the same relevant properties of
parity and mean-payoff games (positionally determined, zero sum, perfect information),
and is of intermediate difficulty.

We have seen how the progress measure algorithm can be adapted to stacked unary mean-
payoff games, giving an exponential time algorithm for the solution. We also proved that
solving mean-payoff games is “strictly” more difficult than solving the two intermediate
problems of solving stacked unary mean-payoff games and solving mean-payoff games with
an oracle for stacked unary mean-payoff games.

It is highly probable that neither of those two problems is trivial because quasi-polynomial
algorithms for parity games do not seem to apply nor adapt nicely to stacked unary mean-
payoff games and on the other hand there are some mean-payoff games of polynomial
growth that do not come from the reduction from stacked unary mean-payoff games.

It is then natural to ask:

Problem 4.4.1: What is the complexity of solving stacked unary mean-payoff games?

Problem 4.4.2: What is the complexity of solving mean-payoff games with an oracle
for the solution of unary stacked mean-payoff games?

Our hope is that stacked unary mean-payoff could contribute in separating the algorithmic
difficulties found in solving mean-payoff games in two more manageable steps.



80 CHAPTER 4. A NEW GAME



Acknowledgements

Writing a thesis is a task that spans many months and which consists in understanding a
big amount of literature works related to a topic, and then expose such concepts in a form
that can be better understood by everyone which is interested in knowing more about the
field. Yet such work is seldomly read by others, if at all, and it mainly constitutes a rite
of passage for the author.

I am thus very grateful to my supervisor Marcello Mamino, that not only helped me in
understanding graph games and technical issues in their algoritmic solutions, but also spent
countless hours in suggesting improvements in the topics’ presentations, which required him
to fully read my thesis multiple times. He also gave me an opportunity to grasp what a
research work is like, by challenging me with currently unanswered questions about graph
games and by providing possible pathways to a solution or building counterexamples to a
proposed idea.

Other people also helped me with fruitful discussions about the theorems exposed in the
thesis, and more generally helped me in growing up as a mathematician: they engaged
in stimulating discussions and brought many interesting topics to my attention; we spent
long days (and many nights) studying together, and we also sustained each other to keep
going on despite the pressure of these years. It is for these reasons that they are a signif-
icant part of my formation years, and so I sincerely thank (in no particular order) Dario
Ascari, Andrea Marino, Gianluca Tasinato, Federico Franceschini, Andrea Caberletti, Um-
berto Pappalettera, Andrea Clini, Luca Capizzi, Marco Costa, Federico Belliardo, Piero
Lafiosca, Fabio Zoratti, Enrico Polesel and Manuele Cusumano; I hope they will forever
smile remembering me saying “quale freccia stai facendo?”.

I would also like to thank my family and my friends: even if they didn’t help in writing
this thesis, they have helped me a lot with their support in my personal life. There would
be too many names to add here, and I will surely forget someone anyhow, so that I prefer
not to write them.

Finally, I would like to thank what inspired me to persue the study of mathematics. I
experienced lot of frustration, and it was not easy for me to focus and finish university,
but looking back now I see that I enjoyed it.

Dario Balboni





Bibliography

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”. In:
Annals of mathematics (2004), pp. 781–793.

[All+14] Xavier Allamigeon et al. “Combinatorial simplex algorithms can solve mean
payoff games”. In: SIAM Journal on Optimization 24.4 (2014), pp. 2096–2117.

[AM09] Daniel Andersson and Peter Bro Miltersen. “The complexity of solving stochas-
tic games on graphs”. In: International Symposium on Algorithms and Compu-
tation. Springer. 2009, pp. 112–121.

[Bab16] László Babai. “Graph isomorphism in quasipolynomial time”. In: Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing. ACM.
2016, pp. 684–697.

[Bel58] Richard Bellman. “On a routing problem”. In: Quarterly of applied mathematics
16.1 (1958), pp. 87–90.

[BSV04] Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. “Memoryless determi-
nacy of parity and mean payoff games: a simple proof”. In: Theoretical Computer
Science 310.1-3 (2004), pp. 365–378.

[Cal+17] Cristian S Calude et al. “Deciding parity games in quasipolynomial time”. In:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting. ACM. 2017, pp. 252–263.

[CH08] Krishnendu Chatterjee and Thomas A Henzinger. “Value iteration”. In: 25
Years of Model Checking. Springer, 2008, pp. 107–138.

[Cla95] Kenneth L Clarkson. “Las Vegas algorithms for linear and integer programming
when the dimension is small”. In: Journal of the ACM (JACM) 42.2 (1995),
pp. 488–499.

[Con92] Anne Condon. “The complexity of stochastic games”. In: Information and Com-
putation 96.2 (1992), pp. 203–224.

[Cze+19] Wojciech Czerwiński et al. “Universal trees grow inside separating automata:
Quasi-polynomial lower bounds for parity games”. In: Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for In-
dustrial and Applied Mathematics. 2019, pp. 2333–2349.

[Der70] Cyrus Derman. Finite state Markovian decision processes. Tech. rep. 1970.

83



84 BIBLIOGRAPHY

[Dij18] Tom van Dijk. “Oink: An implementation and evaluation of modern parity
game solvers”. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2018, pp. 291–308.

[DJL18] Laure Daviaud, Martin Jurdziński, and Ranko Lazić. “A pseudo-quasi-polynomial
algorithm for mean-payoff parity games”. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. ACM. 2018, pp. 325–
334.

[EJ91] E Allen Emerson and Charanjit S Jutla. “Tree automata, mu-calculus and
determinacy”. In: [1991] Proceedings 32nd Annual Symposium of Foundations
of Computer Science. IEEE. 1991, pp. 368–377.

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. “Positional strategies for mean payoff
games”. In: International Journal of Game Theory 8.2 (1979), pp. 109–113.

[Eme97] E Allen Emerson. “Model checking and the mu-calculus”. In: DIMACS series
in discrete mathematics 31 (1997), pp. 185–214.

[FF62] LR Ford and DR Fulkerson. “Flows in Networks”. In: (1962).

[GKK88] Vladimir A Gurvich, Alexander V Karzanov, and LG Khachivan. “Cyclic games
and an algorithm to find minimax cycle means in directed graphs”. In: USSR
Computational Mathematics and Mathematical Physics 28.5 (1988), pp. 85–91.

[GZ05] Hugo Gimbert and Wiesław Zielonka. “Games where you can play optimally
without any memory”. In: International Conference on Concurrency Theory.
Springer. 2005, pp. 428–442.

[Hal07] Nir Halman. “Simple stochastic games, parity games, mean payoff games and
discounted payoff games are all LP-type problems”. In: Algorithmica 49.1 (2007),
pp. 37–50.

[JL17] Marcin Jurdziński and Ranko Lazić. “Succinct progress measures for solving
parity games”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). IEEE. 2017, pp. 1–9.

[Jur00] Marcin Jurdziński. “Small progress measures for solving parity games”. In: An-
nual Symposium on Theoretical Aspects of Computer Science. Springer. 2000,
pp. 290–301.

[Jur98] Marcin Jurdziński. “Deciding the winner in parity games is in UP ∩ co-UP”.
In: Information Processing Letters 68.3 (1998), pp. 119–124.

[Kar78] Richard M Karp. “A characterization of the minimum cycle mean in a digraph”.
In: Discrete mathematics 23.3 (1978), pp. 309–311.

[Kha79] Leonid G Khachiyan. “A polynomial algorithm in linear programming”. In:
Doklady Academii Nauk SSSR. Vol. 244. 1979, pp. 1093–1096.

[Koz82] Dexter C Kozen. Results on the Propositional M [mu]-calculus. Århus Univer-
sitet, Matematisk Institut, 1982.



BIBLIOGRAPHY 85

[Leh18] Karoliina Lehtinen. “A modal µ perspective on solving parity games in quasi-
polynomial time”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science. ACM. 2018, pp. 639–648.

[LP07] Yuri M Lifshits and Dmitri S Pavlov. “Potential theory for mean payoff games”.
In: Journal of Mathematical Sciences 145.3 (2007), pp. 4967–4974.

[Lud95] Walter Ludwig. “A subexponential randomized algorithm for the simple stochas-
tic game problem”. In: Information and computation 117.1 (1995), pp. 151–155.

[Mam17] Marcello Mamino. “Strategy recovery for stochastic mean payoff games”. In:
Theoretical Computer Science 675 (2017), pp. 101–104.

[Mar75] Donald A Martin. “Borel determinacy”. In: Annals of Mathematics (1975),
pp. 363–371.

[Mar85] Donald A Martin. “A purely inductive proof of Borel determinacy”. In: Recur-
sion Theory, Proceedings of Symposia in Pure Mathematics. Vol. 42. American
Mathematical Society. 1985, pp. 303–308.

[MSS04] Rolf H Möhring, Martin Skutella, and Frederik Stork. “Scheduling with AND/OR
precedence constraints”. In: SIAM Journal on Computing 33.2 (2004), pp. 393–
415.

[MSW96] Jiří Matoušek, Micha Sharir, and Emo Welzl. “A subexponential bound for
linear programming”. In: Algorithmica 16.4-5 (1996), pp. 498–516.

[Par19] Paweł Parys. “Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time”.
In: arXiv preprint arXiv:1904.12446 (2019).

[PV87] Hans JM Peters and Okko Jan Vrieze. “Surveys in game theory and related
topics”. In: CWI Tracts (1987).

[Sha53] Lloyd S Shapley. “Stochastic games”. In: Proceedings of the national academy
of sciences 39.10 (1953), pp. 1095–1100.

[Sho99] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–
332.

[SW92] Micha Sharir and Emo Welzl. “A combinatorial bound for linear programming
and related problems”. In: Annual Symposium on Theoretical Aspects of Com-
puter Science. Springer. 1992, pp. 567–579.

[Zie98] Wieslaw Zielonka. “Infinite games on finitely coloured graphs with applications
to automata on infinite trees”. In: Theoretical Computer Science 200.1-2 (1998),
pp. 135–183.

[ZP96] Uri Zwick and Mike Paterson. “The complexity of mean payoff games on
graphs”. In: Theoretical Computer Science 158.1-2 (1996), pp. 343–359.


	Introduction and Historical Notes
	History of graph games
	State of the art
	Scope of the thesis

	Infinite duration Graph Games
	Basic Definitions
	Common graph games
	Strategies and Determinancy
	Positional determinancy
	Different types of positional determinancy
	Proving positional determinancy


	Reductions between Games
	Computational Problems for Graph Games
	Brief Introduction to Complexity Theory
	Turing Machines
	Main complexity classes
	Reductions among problems

	Reductions for Graph Games
	A graph game hierarchy
	Stochastic games: introducing chance
	Complexity Status of Graph Games

	Solving Graph Games
	Algorithms for Parity Games
	Zielonka Recursive algorithm
	Progress Measures
	Lehtinen Register-Index

	Lower bounds via universal trees
	Algorithms for mean-payoff games
	Zwick and Paterson value-iteration
	Canonical form for Mean-payoff games

	LP-type problems

	A new Game
	Stacked unary mean-payoff games
	Resolution methods
	Adaptation of Small Progress Measure

	Value-iteration algorithms
	Conclusions

	Acknowledgements
	Bibliography

