
How runtime systems can support resource
awareness in HPC: the HPX case

Seminar “Future Trends in High Performance Computing”

Tommaso Bianucci
Fakultät für Informatik

Technische Universität München
Email: bianucci@in.tum.de

Abstract— Resource awareness is the ability of a program to
dynamically read the state of the resources it consumes and to
adapt its execution accordingly. This awareness can be exploited
to achieve a more efficient resource usage, reduce overheads,
improve performance and optimize energy consumption. As HPC
systems grow in size and complexity, resource awareness can also
offer a way to reduce the effort required for tuning and porta-
bility. As applications use runtime systems for parallelization,
there is the need for runtime systems to support and expose
resource awareness in an efficient and integrated way. HPX
is a modern C++ runtime system for high-performance task-
based parallelization which is, to some degree, resource aware
and adaptive by design. It supports load-aware task scheduling
and a powerful performance monitoring framework which can
be used for runtime introspection and for building dynamic
resource management heuristics. Recent research efforts also
show how HPX can support dynamic task grain size control
and how HPX parallel algorithms can be dynamically tuned
by using a mix of compile-time and runtime information for
better performance. This work is a survey of existing literature
providing an introduction to resource awareness and to HPX
architecture and main features, providing also a perspective on
how and to what degree HPX can support resource awareness
and to its limitations.

Index Terms— Resource awareness, HPX, task-based paral-
lelism, HPC

I. INTRODUCTION

Current supercomputers are approaching the long awaited
exascale and are characterized by millions of cores, distributed
not only over nodes but also over several different architectures
as many-core CPUs, GPUs, gpGPUs1 and FPGAs2. The number
of processing units and their heterogeneity makes it extremely
complex to program them using static and manual resource
allocation paradigms.

Furthermore, many important application classes are char-
acterized by highly unbalanced execution trees (e.g. AMR3

strategies): in these cases the resource requirements and the

1General Purpose GPUs.
2Field Programmable Gate Arrays.
3Adaptive Mesh Refinement

load are inherently unbalanced and difficult to mitigate. This
impacts on parallel performance and causes a sub-optimal
resource usage, where most of the processes sit waiting for the
few more expensive ones to finish their respective computations.

Solving this problem and the ability to effectively and
efficiently scale computations up to the current supercom-
puter capabilities requires the possibility to change resource
allocation and requirements dynamically.

This is where resource aware computing comes into play:
as a general concept, we would like applications and systems
to be able to react to different load distributions and resource
availability directly at runtime. Resource awareness can be seen
at all levels of a system: starting from hardware and operating
system, through the runtime environment of choice and the
application. But resource awareness can also be facilitated
and supported by the choice of appropriate algorithms and
programming models.

The current predominant programming model in HPC is
to use a fork-join model for shared memory parallelization
together with a Communicating Sequential Processes (CSP)
[1] model for distributed memory parallelization. This is done
in practice by leveraging respectively OpenMP and MPI. This
hybrid model involves many synchronization barriers at the
boundaries of parallel regions, which are often global or involve
a high number of parallel processes.

Such barriers quickly become bottlenecks when the number
of processes increase and in case of any load unbalance, since
all threads will have to wait for the slowest one to complete its
tasks (Figure 1). As foreseen by the Exascale Study Group in
2008: “Somewhere between Petascale and Exascale computing
[...] the MPI model may find its limit”. [2]

In order to solve this problem, alternative runtime systems
based on the Asynchronous Many Tasks (AMT) model are
being proposed [3]. This approach is based on splitting the
computation in many fine-grained tasks and in defining their
precise dependencies on each other. It is then the job of the
runtime system to make sure each dependency is satisfied by
using the appropriate synchronization. In this way we obtain
an execution graph where each task will only wait for the
completion of the tasks it depends on before starting. We thus
lose the concept of a group of threads executing in parallel
between global barriers and, most importantly, we lose the
global barriers themselves.



Figure 1. Global barriers and thread idle time [8]. This is a representation
of how global barriers cause idling on threads with unbalanced workload. We
can also see how, during a reduction, just one thread actually operates it while
all the others are idle.

Task-based semantic has been integrated in a variety of
runtimes libraries, such as Intel TBB [4], Charm++ [5],
Qthreads [6] and HPX [3]. Also OpenMP has added extensions
for task-based parallelism starting from its 3.0 release [7]. In
order to achieve true scalability, a runtime supporting task-based
parallelism must be able to support it in a massive fashion.
This requires the ability to schedule tasks without allocating a
new OS thread for each of them, which would be infeasible,
but it also requires adaptive resource management and task
scheduling in order to ensure the required performance.

In this work I review the general concepts of resource
awareness (II), then I review the High Performance paralleX
(HPX) runtime system, its design and its features (III). Then
I discuss how HPX can support resource awareness and its
limitations in this (IV). In section V I also present a basic
example of HPX code and I briefly compare its performance
against PThreads and OpenMP parallelizations on a shared
memory machine.

II. RESOURCE AWARENESS

Resource aware computing (RAC), also referred to as
runtime adaptivity or elasticity, comprises a broad spectrum of
techniques aimed at achieving runtime adaptivity in resource
allocation and usage. The definition of resource is very broad
and comprises both (i) hardware entities such as computational
units, memory, bus or network bandwidth, I/O and (ii) software
entities, such as task queues, message buffers, etc.

The key point of resource awareness is to make the
application and the system aware, at runtime, of what resources
are available and in what amount and how much of these
resources is currently in use.

This is opposed to the standard approach in which software
is optimized to a certain degree for specific constraints and
amount of resources before execution, either at compile time or
through passing tuned parameters. Also, in the current standard

approach the program is statically assigned a certain amount of
resources (e.g. processors) at the beginning of its run and this
amount stays assigned to the program also in phases when it
does not need them. This causes the resource to be unavailable
to other processes while it is, in fact, idle.

Resource awareness can be seen at several levels and in
different contexts.

In embedded computing and in the context of Multi-
Processor System on Chip (MPSoC) the aim is to “deal with
increasing imperfections such as process variation, fault rates,
aging effects, and power as well as thermal problems” [9]. In
this field interesting research efforts are going in the direction
of the Invasive Computing [10] paradigm: in this model a
program can dynamically explore and claim resources in its
neighborhood in order to increase its parallelism, in a phase
called invasion; then, when a lower degree of parallelism is
needed, it can autonomously release these resources through an
opposite process called retreat, making the resources available
to other applications; all this without the need for a centralized
mechanism managing the allocation of resources.

In the context of a runtime system or a single parallel
application we can see resource awareness as the ability to
steer the execution in a way to dynamically fit current resource
availability. In this regard, task scheduling takes a major role
within runtime systems, as we will later see for HPX in section
IV. The ability to query the state of the resources at runtime
can also lead to resource awareness in applications: it can
be used for runtime tuning of execution parameters in order
to achieve, e.g. a better time to solution or a higher energy
efficiency. One example for this is automatic tuning of task
grain size [8].

At the supercomputing facility level, resource awareness can
instead be used for more efficient scheduling of jobs, in order to
get a better utilization of resources and more predictable power
requirements. One interesting example in this direction comes
again from invasive computing: here an extension of MPI
supporting invasive operations has been developed in order to
allow varying resource utilization at runtime [11]. The research
effort is currently into developing a process manager capable
of leveraging this elasticity for a better machine utilization and,
ultimately, an improved throughput.

III. HPX
HPX is a C++ library and runtime system for task-based

parallelization. It treats both intra- and inter-node paralleliza-
tion within an homogeneous interface and it adheres to the
C++11/14 standard, which introduced basic support for task-
based parallelism.

It features a global address space, the ability to migrate
work remotely in the proximity of data, and it supports task
dependencies and continuations. Its task scheduler is designed
to introduce minimal overhead and supports very fine-grained
tasks down to ~1µs [12] and work-stealing for automatic load
balancing. It also delivers a powerful performance monitoring
system which allows a program to query various performance
metrics at runtime and to react accordingly.



A. The ParalleX execution model

HPX implements the ParalleX [13] execution model, which
leverages medium- and fine-grained task parallelism and aims
at optimizing both parallel efficiency and programmability of
parallel code.

The key highlights of this model are:
Asynchronous task execution Functions are meant to be

called asynchronously and to yield a proxy for the actual
return value. Such a proxy is called a future (figure 2). The
program will need to synchronize only when the actual
return value is needed, e.g. for a later computation. If
the task was able to complete between the asynchronous
call and the synchronization step, then no waiting time is
needed.

Lightweight synchronization Not only we can use futures
but we can also make an asynchronous call depend on
one or several futures: this enables the runtime system to
keep track of the actual dependencies and removes the
need for expensive synchronization mechanisms, such as
global barriers.

Active Global Address Space (AGAS) ParalleX features a
global address space abstraction service. This address
space spans all the available hardware entities, called
localities. The peculiarity of AGAS is that it is not a
partitioned global address space (PGAS): in PGAS the
global address space is statically partitioned across the
available localities and moving an object to a different
locality requires a change of its address; in AGAS the
address space is dynamically and adaptively mapped to
the underlying localities, allowing transparent migration
of objects across localities while they can still retain their
global identifier (GID).

Message-driven queue-based scheduling When a task exe-
cution is requested, which may be on any remote locality,
an active message, called parcel, is sent to the target
locality. This triggers the creation of a PX-Thread4, which
will be queued and then scheduled for execution on the
OS thread(s) managed by the target locality. This form of
message passing is therefore not limited to data and it does
not require explicit receive operations to be invoked on
the target side. The queuing and scheduling is designed in
a way to allow for idling processors or cores to steal work
from the queues of other ones: this allows for efficient
load balancing and prevents starvation .

B. HPX high-level architecture

HPX is a runtime system implementing the ParalleX model
as a C++ library and this is done by strictly adhering to
C++11/14 standard interfaces for task-based parallelism. It
aims to address the four main factors that prevent scaling in
scaling-impaired applications, which are referred to as SLOW
[14]:

4From now on PX-Threads will be referred to just as threads.

Figure 2. Schematic flow diagram of a future [13]. An asynchronous function
invocation immediately returns a future, while the function is executed on
another thread and potentially on another locality. On the caller thread the
execution can proceed further until the .get() method is called on the future:
this is when the actual synchronization with the remote operation takes place.

Starvation Not all resources are fully utilized because of a
lack of enough concurrent work to execute.

Latencies Intrinsic delays in accessing remote resources.
Overheads The overheads of parallelization, i.e. the work

required for management of the parallel computation
and any extra work which would not be necessary in
a sequential version.

Waiting for contention resolution Any delay caused by
oversubscription of shared resources.

HPX tries to deal with the above problems by embracing
the following design principles [14]:

• focus on latency hiding instead of latency avoidance,
• embrace fine-grained parallelism instead of heavyweight

threads,
• rediscover constraint based synchronization to replace

global barriers,
• use adaptive locality control instead of static data distri-

bution,
• prefer moving work to data over moving data to work and
• favor message driven computation over message passing.

These principles are well-known and some of them are currently
used also by other parallelization-oriented languages and
libraries. However HPX is the first case in which all of them are
coherently embraced and exposed in its programming model
[14].

Based on these principles, HPX was designed with a
modular architecture composed of five high-level subsystems,
each exposing a specific set of functionalities:

a) The Threading Subsystem: When a new thread is
created, HPX queues it at an appropriate locality and it
then schedules it according to configurable policies. The
thread scheduling is cooperative, i.e. non-preemptive, since
preemption and the overhead associated to content switches
would not make sense in the context of a single application.
Threads are scheduled onto a pool of OS threads, which are
usually one per core, without requiring any kernel transition
and thus removing all the overhead associated to the creation
of OS threads.



b) The Parcel Subsystem: Parcels are the HPX
implementation of active messages, i.e. messages which can
not only deliver data but also trigger execution of methods on
remote localities. Parcels carry the GID of the destination, a
remote action, arguments for the action (data) and, if required,
a continuation.

c) Local Control Objects: “Local Control Objects (LCOs)
control parallelization and synchronization of HPX applications.
An LCO is any object that may create, activate, or reactivate
an HPX thread.” [8]

The most prominent LCOs delivered by HPX are futures and
dataflow objects. Futures are proxies for values which might
not have been computed yet and include a synchronization
when the actual value is requested. Dataflow objects are instead
LCOs which depend on a set of futures as input and they return
themselves a future for the result of their continuation.

Futures and dataflow LCOs allow to express the true data
dependencies within an application and to translate them into
the associated execution tree and necessary synchronizations.

d) Active Global Address Space: As already mentioned
in III-A, one of ParalleX main features is the AGAS:
HPX implements an AGAS service which delivers those
functionalities.

e) The Performance Monitoring Framework: HPX im-
plements a performance monitoring framework based on a
variety of performance counters, which are objects providing
metrics and statistics on the performance of (i) hardware,
(ii) application, (iii) HPX runtime and (iv) OS. Performance
counters are first class objects, they are therefore addressable
by their GID from any locality and are available to both the
application and the HPX runtime for performing introspection
at runtime on how well the system is performing. [14]
Performance counters expose a predefined interface and HPX
exposes specific API functions allowing to create, manage and
release counters, as well as to read their data in a structured
way. Performance counters are not only available from within
the application. By passing standard command line flags to an
HPX application we can conveniently have the performance
counters of interest periodically logged to screen or to a file
during execution. Performance counter can also be accessed
in real-time by other utilities by connecting to a running
HPX application through its parcel transport layer [14]. They
are useful tools for performance analysis and for identifying
bottlenecks, and they are even more useful as they provide the
necessary infrastructure for building resource awareness into
an HPX application [12].

IV. RESOURCE AWARENESS IN HPX

HPX supports resource awareness by design and, up to a
certain degree, automatically. Its execution model is based

Figure 3. Overview of the HPX runtime system components [3].

on the assumption that threading, synchronization and data
distribution must not be exposed to the programmer and must
be handled automatically behind the scenes. HPX provides
an abstraction for parallelism which does not require the
programmer to think about localities, send/receive instructions,
threads or barriers, which are referred to by Hartmut Kaiser, the
HPX project lead, as the “GOTOs of parallel computing” [15].
HPX also encourages the programmer to define fine grained
tasks, while the runtime takes care of the actual scheduling and
synchronization. This has the positive side effect of making
the runtime adaptive, by default, in terms of load balancing.

HPX manages hardware resources and exposes them through
an abstraction process according to its execution model. With
the exception of percolation, which is described later in this
section, in HPX we can consider as resources all these abstrac-
tions provided by the runtime system. For example worker
threads, localities and the parcel subsystem are respectively
abstractions of processing units, compute nodes and the network
infrastructure. Task queues are instead a software entity type of
resource which does not correspond to any hardware resource
but represents the load associated with a processing unit.

It is also important to consider that the performance monitor-
ing framework — i.e. the infrastructure allowing an application
to retrieve performance statistics about the underlying resources
and which enables adaptivity on the application side — can
be extended by new, user-defined, performance counters, thus
potentially broadening the set of resources the application can
be aware of.

No comprehensive analysis of resource awareness in HPX
has been published so far. Therefore I below summarize the
capabilities of HPX — as reported in scientific literature —
in support for resource awareness together with the factors
which currently limit the scope of its adaptivity.

A. Capabilities

a) Task scheduling: The HPX thread manager and the
way it schedules queues for each worker thread are configurable



with three main pre-defined policies [3], [16]:
Static The thread manager maintains a work queue for each

worker thread and tasks are distributed to queues in a
round robin fashion. In this policy there is no way for
tasks to change their allocation to queues.

Local This is the default scheduling policy. In this policy the
thread manager maintains a work queue for each worker
thread plus extra special queues for high and low priority
tasks. Work is distributed to queues as in the static policy,
but as soon as a load imbalance is detected on the worker
threads, work is stolen from higher loaded threads and
distributed to lower loaded ones.

Hierarchical In this policy the thread manager maintains a
tree of work queues where the leaves correspond to the
worker threads. New tasks are always enqueued at the
root of the tree and then trickle down the hierarchy. In
this policy work can be stolen at any level of the tree,
from queues belonging to the same level.

From the above policies we can see one very important
behaviour of the task scheduler which allows for resource
awareness when enabled: work stealing.

As mentioned, work stealing occurs as soon as a load
imbalance is detected among different worker threads’ queues.
This is optionally done in a NUMA-aware way, i.e. the work
is redistributed preferentially within the same NUMA domain
in order to preserve memory access performance.

Work stealing therefore operates an automatic load balancing
action at runtime and is therefore a means to get adaptivity
out of the box with HPX.

An important factor that has to be taken into account for
effective task scheduling is data — both temporal and spatial
— locality. Performing task scheduling blind to data locality
can lead to substantial performance degradation [17], while
locality aware scheduling can effectively reduce the number of
data load and transfer operations and their associated overhead.

HPX can include data locality awareness in task scheduling
and its task dependency semantics allows hierarchical grouping
of tasks, therefore naturally exposing different levels of data
locality [16].

b) AGAS: Although AGAS does not a priori imply
resource awareness, it is an important feature within HPX in
support for adaptivity. It “is a dynamic and adaptive address
space which evolves over the lifetime of an application” and
“is the foundation for dynamic locality control as objects
can be moved to other localities without changing their
global address”. [14] This allows implementing mechanisms
to relocate objects to different localities in response to
performance metrics and resource constraints [16] and still
being able to access them from the rest of the application in
a transparent way. The migration decision has to be based
on performance metrics and be aware of resources also
for what concerns the target locality, in order to ensure a
better performance as outcome. This requires a performance
monitoring infrastructure allowing access to metrics for remote
localities, which in HPX is fulfilled by performance counters.

The object relocation logic can be therefore completely
decoupled from the code accessing the objects and this clearly
allows a much cleaner and modular code and it fulfills the
underlying design goal of having parallelization and data
distribution internalities as much hidden from the programmer
as possible.

c) Percolation: Percolation is a special use of parcels
which allows directly targeting hardware resources, instead
of logical data objects, as destination. Percolation provides
therefore a way to address specialized hardware — such as
gpGPUs and FPGAs — directly through the parcel layer,
enabling to provide work to these accelerators as well as
getting back the results in a clean way. The percolation
mechanism in HPX is aware of the characteristics of
specialized hardware resources and can therefore route relevant
tasks to these resources in a efficient way [16].

d) Performance counters: Performance counters are a
central feature of HPX and play a key role in its resource
awareness capabilities.

An efficient performance measurement framework is a
requirement for any runtime system targeting fine grained
parallelism and exascale computing: it needs to be able to
gather and manage a massive amount of information, while
at the same time being as unobtrusive as possible, in order
to minimize its perturbations to the application performance.
Furthermore, such a measurement framework needs to be able
to scale as required by applications and available resources
[16].

Traditionally performance measurements are used for post-
run analysis, for either debugging or optimization of parameters.
However as the degree of parallelism increases — and so do
performance-affecting parameters — it becomes more and
more crucial to have well-integrated dynamic performance
measurement capabilities and to leverage the measured data
for dynamic tuning of application parameters.

HPX performance monitoring framework was designed
having runtime adaptivity in mind [14] and they can indeed
support it in a convenient way.

An example of how an application could consume perfor-
mance counters to enhance its resource awareness is given in
[8]: “[...] an application that transfers data over the network
could consume counter data from a network switch to determine
how much data to transfer without competing for network
bandwidth with other network traffic. The application could
use the counter data to adjust its transfer rate as the bandwidth
usage from other network traffic increases or decreases.”

Furthermore, as shown in a proof of concept by Grubel
[8], the HPX performance monitoring framework can be used,
together with an additional library and additional changes in
the application code, to achieve automatic tuning of task grain
size. This kind of feedback loop allows the application to
react to real-time performance metrics such as task scheduling
overheads to dynamically adapt its behaviour to achieve better
performance.



Another interesting work which involves adaptivity mediated
by performance counters is about smart executors in HPX.
Khatami et al [18] showed how loop parallelization efficiency
can be tuned, at runtime, using machine learning on a
combination of static information gathered at compile time
and dynamic information captured at runtime. Their tests on
HPX parallel algorithms5 showed a speedup improvement
of 12% ~ 35% for the Matrix Multiplication, Stream and
2D Stencil benchmarks with respect to the standard HPX
implementation.

B. Limitations

a) (An)elasticity of HPX: Although we have seen that
an application can be elastic within HPX, HPX itself does
not currently support any variation of the number of worker
threads or localities at runtime. As already mentioned in section
II, this capability, coupled to a process manager capable of
leveraging it, can improve resource usage and throughput of a
supercomputer.

Projects as Elastic MPI — an MPI extension implementing
invasive computing semantics [19] — and Adaptive MPI —
which implements MPI ranks as Charm++ user level threads
[20], [21] — are examples of already ongoing research in this
direction.

b) Power management: Although HPX can lead to a more
efficient power consumption due to its load balancing capa-
bilities, it does not explicitly support any power management
facility.

The current trend in supercomputing is to pay more and more
attention to energy efficiency, as current top tier supercomputers
already have energy requirements in the order of 10MW.
Research efforts are currently going into the development of
more energy efficient hardware, as well as integrating energy
management capabilities into the software [22].

Energy awareness requires the ability to read metrics as
temperature, clock frequency and power consumption from the
underlying hardware and to react with strategies as Dynamic
Voltage and Frequency Scaling (DVFS).

c) Fault tolerance: Increasing the parallelism of a system
implies an increase in the number of hardware devices involved
in a computation. This increases the chances of incurring in
a component failure. Current and future HPC systems must
therefore include means to recover the intermediate state of a
computation prior to the failure and to resume the task from
that point.

HPX does not currently support any facility for checkpointing
or for recovery from partial data losses.

5HPX implements parallel algorithms as defined in C++ Standard.

V. EXAMPLES

A. Mandelbrot set
Drawing the Mandelbrot set is a classical example of an

embarrassingly parallel problem, i.e. a problem which can be
parallelized with little or no dependency between the parallel
components. In this case there is no dependency at all, since
each pixel can be computed independently from the others.

However, pixels belonging to the set and pixels at different
distances from the boundary require different computational
efforts to be drawn6, causing the parallel tasks to be potentially
unbalanced.

Figure 4. An image of the Mandelbrot set generated by the code in this
example.

Usually the image is split into “slices” containing a certain
number of rows or columns of the image and each of these
slices is assigned to a thread. Within a given slice the compu-
tation is performed pixel-by-pixel, sequentially. The traditional
way to ensure load balancing in a PThreads implementation is
to split the image into small slices and to assign one of these
to each thread; as soon as a thread finishes processing its slice,
it gets a new one and proceeds further. This requires additional
code for managing how threads can get new work to do and
it also requires synchronization, to ensure that no two threads
get the same slice to process.

The implementation with HPX is much simpler: for each row
of the image an async call of the compute kernel is performed
and the resulting future is stored into a vector. When all the
asynchronous tasks have been created, hpx::wait_all is
called on the vector of futures, making sure all tasks are
completed before exiting.

I have tested strong scaling7 on the HPX- and PThread-based
versions, with different problem sizes. I have also implemented

6Deciding whether a complex number belongs to the Mandelbrot set is done
by checking if an associated sequence converges: where the sequence diverges
faster, the point is quickly marked as external, while where the divergence is
slower or where the sequence converges, it takes longer before a decision is
reached.

7How runtime improves by increasing the number of threads for a fixed
problem size.



and tested, for comparison purpose, a simple OpenMP-based
version, which just parallelizes the outer loop (the row-loop).
It uses dynamic scheduling for load balancing and a stride of
1 for consistency with the task grain size used with HPX.

The machine where I performed the tests has two sockets
with 10 cores each, with each core exposing 2 hyperthreads.
Unfortunately the machine was shared with other jobs, meaning
that tests performed with a high number of threads have surely
experienced preemption by the OS, artificially increasing their
runtime. However, this test is meant to roughly compare the
three implementations and not to give an accurate measure on
HPX’s scaling capabilities. Keeping this and the aforementioned
caveat in mind, we can see (Figure 5) how the performance of
the HPX-based implementation is on par with the optimized
PThreads-based one. On the other end we can also see how
following the same approach with OpenMP does not yield
the same performance: one possible explanation is that the
relatively small task grain size chosen causes a relevant
overhead in OpenMP.

This is clearly a toy example but it shows how HPX
allows achieving good performance with simple and
clean code and without any explicit optimization effort.
Programmability is an important factor for making parallelism
more accessible and this is surely one of the strengths of HPX.

B. Reading performance counters from the command line

Although it is possible to access performance counter
data from within the application, using the HPX API, it is
also possible to make the HPX runtime print data from any
performance counter to the command line. This can be useful
for debugging or for manual tuning of an HPX application.

This is achieved by passing extra flags to an HPX application
and is completely handled by the runtime system, thus not
requiring any change in the application code.

Available counters can be listed using the
--hpx:list-counters flag and, if HPX was built
with PAPI8 support, available PAPI events can be listed with
--hpx:papi-event-info=all.

A counter can be printed by passing the
--hpx:print-counter=’<counter_name>’
argument and several counters may be specified at the
same time by passing this argument multiple times. This
makes the HPX runtime system print the specified counters at
the end of the execution. It is also possible to have the counters
printed at regular time intervals during execution by adding the
--hpx:print-counter-interval=<interval_ms>
argument, where the interval is expressed in milliseconds.

VI. CONCLUSIONS

As the generalized trend in computing is to move towards
manycore architectures and more etherogeneous machines,
resource awareness is becoming more and more important in
order to efficiently use the extremely high number of resources

8Performance Application Programming Interface, which allows accessing
hardware counters.

Figure 5. Speedup comparison for PThreads, OpenMP and HPX implemen-
tations on a 104x104 image. Both the OpenMP and HPX versions use the
basic features of the respective runtime system, meaning a parallelization on
the row-loop (with dynamic scheduling) and an asynchronous execution for
each row of the image respectively. The PThreads version instead includes
a more complex logic to ensure load balancing between the threads. The
results show how the HPX implementation, using basic syntax and without
any specific tuning, is able to perform on par with a specifically optimized
PThreads implementation. All three implementations use the same task grain
size consisting of one image row.

involved in a computation. Highly parallel environments
are very sensitive to bottlenecks and inefficiencies and a
dynamically adaptive and resource aware execution can help
in avoiding performance degradation.

However, in order to exploit the potential of resource
awareness there is also the need for a flexible and dynamic
programming model: task-based parallelism has proven to
be a powerful approach for increasing the efficiency of
parallel applications and is available in several popular runtime
environments.

HPX is a modern C++ runtime system for high-performance
task-based parallelization. It offers an homogeneous interface
for both shared memory and distributed memory parallelization
and it can outperform both OpenMP and MPI in their respective
fields of application. It has efficient and adaptive thread
scheduling capabilities and it incorporates a performance
monitoring framework which allows building resource-aware
heuristics into applications.

HPX also implements parallel algorithms according to the
C++ standard, making high-performance high-level parallelism
available also to non specialists.

Thanks to its performance, to its solid theoretical foundations
and to its flexibility, HPX has the potential to become one of
the major next generation parallelization paradigms. Its current
limitations, reported in IV-B, indicate a path for possible further
development and resolving these limitations would yield an
even more versatile and powerful tool for the HPC community.

As MPI and OpenMP start showing their architectural limits,
HPX should be considered as a valid alternative, not only
for high performance computing but also for general purpose
parallelism.



REFERENCES

[1] C. A. R. Hoare, “Communicating sequential processes,” Communications
of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[2] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale computing
study: Technology challenges in achieving exascale systems,” Defense
Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[3] T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, and H. Kaiser, “Hpx–an
open source c++ standard library for parallelism and concurrency,” 2017.

[4] G. Contreras and M. Martonosi, “Characterizing and improving the
performance of intel threading building blocks,” in Workload Character-
ization, 2008. IISWC 2008. IEEE International Symposium on. IEEE,
2008, pp. 57–66.

[5] “Charm++ - parallel programming framework.” [Online]. Available:
http://charmplusplus.org/

[6] “The qthread library.” [Online]. Available: http://www.cs.sandia.gov/
qthreads/

[7] OpenMP Architecture Review Board, “OpenMP application program
interface version 3.0,” May 2008. [Online]. Available: http://www.
openmp.org/mp-documents/spec30.pdf

[8] P. A. Grubel, Dynamic adaptation in hpx-a task-based parallel runtime
system. New Mexico State University, 2016.

[9] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau, “Resource-
aware programming and simulation of mpsoc architectures through
extension of x10,” in Proceedings of the 14th International Workshop
on Software and Compilers for Embedded Systems. ACM, 2011, pp.
48–55.

[10] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting, “Invasive computing: An overview,” in
Multiprocessor System-on-Chip. Springer, 2011, pp. 241–268.

[11] I. A. C. Ureña, M. Riepen, M. Konow, and M. Gerndt, “Invasive mpi
on intel’s single-chip cloud computer,” in International Conference on
Architecture of Computing Systems. Springer, 2012, pp. 74–85.

[12] P. Grubel, H. Kaiser, K. Huck, and J. Cook, “Using intrinsic performance
counters to assess efficiency in task-based parallel applications,” in
Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016, pp. 1692–1701.

[13] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced parallel
execution model for scaling-impaired applications,” in Parallel Processing
Workshops, 2009. ICPPW’09. International Conference on. IEEE, 2009,
pp. 394–401.

[14] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx: A
task based programming model in a global address space,” in Proceedings
of the 8th International Conference on Partitioned Global Address Space
Programming Models. ACM, 2014, p. 6.

[15] H. Kaiser. (2014) Plain threads are the GOTO of todays computing.
Meeting C++. [Online]. Available: https://youtu.be/4OCUEgSNIAY

[16] V. C. Amatya, “Parallel processes in hpx: Designing an infrastructure
for adaptive resource management,” 2014.

[17] C. Connelly and C. S. Ellis, “Workload characterization and locality
management for coarse grain multiprocessors,” Technical Report CS-
1994-30, Duke University, Tech. Rep., 1994.

[18] Z. Khatami, L. Troska, H. Kaiser, J. Ramanujam, and A. Serio, “Hpx
smart executors,” in Proceedings of the Third International Workshop
on Extreme Scale Programming Models and Middleware. ACM, 2017,
p. 3.

[19] C. Ureña and I. Alberto, “Resource-elasticity support for distributed
memory hpc applications,” Ph.D. dissertation, Technische Universität
München, 2017.

[20] A. Gupta, B. Acun, O. Sarood, and L. V. Kalé, “Towards realizing the
potential of malleable jobs,” in High Performance Computing (HiPC),
2014 21st International Conference on. IEEE, 2014, pp. 1–10.

[21] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. V. Kale,
“A batch system with efficient adaptive scheduling for malleable and
evolving applications,” in Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. IEEE, 2015, pp. 429–438.

[22] A. Surve, A. Khomane, and S. Cheke, “Energy awareness in hpc:
A survey,” International Journal of Computer Science and Mobile
Computing, vol. 2, no. 3, pp. 46–51, 2013.

http://charmplusplus.org/
http://www.cs.sandia.gov/qthreads/
http://www.cs.sandia.gov/qthreads/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://youtu.be/4OCUEgSNIAY

	Introduction
	Resource Awareness
	HPX
	The ParalleX execution model
	HPX high-level architecture

	Resource awareness in HPX
	Capabilities
	Limitations

	Examples
	Mandelbrot set
	Reading performance counters from the command line

	Conclusions
	References

