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Introduction

Noncommutative algebra naturally arises in the study of resolution of singular vari-
eties, as highlighted by the McKay correspondence.

This correspondence establishes a bijection between finite subgroups of SL(2, C) and
Dynkin quivers. It can be obtained by studying the irreducible representations of such
groups.

Definition. Let G ≤ SL(2, C) be a finite subgroup, let ρ be the natural representation of
G and ρ0, . . . ρk be the irreducible G-representations. For i, j ∈ {0, . . . , k} let aij be defined
by the decomposition

ρ⊗ ρi =
⊕

j

ρ
aij
j .

The McKay quiver of G has a vertex for each ρi and aij arrows going from vertex i to vertex
j.

Theorem (see e.g. [Kir16, Theorem 8.13, Theorem 8.15]). The McKay quiver of G is an
extended Dynkin quiver of type ADE. Moreover, this assignment establishes a bijection
between finite subgroups of SL(2, C) and Dynkin diagrams of type ADE.

As a linear group, G has a natural action on the affine plane C2 = Spec(C[x, y]). Let
X be the quotient

X = C/G = Spec(C[x, y]G).

This is a surface with a unique singular point in the origin. It is known, see e.g. [Kir16,
Theorem 12.3], that such a variety admits a minimal resolution of its singularity.

Surprisingly, the McKay quiver of G controls the geometry of the resolution of the
singularity of X.

Definition. Let π : Y → X be the minimal resolution of the singular point of X. The
resolution graph of X is a graph with a vertex for every irreducible component of the
exceptional divisor π−1(0). Two vertices are joined by an edge if the two corresponding
components intersect.

Theorem (see e.g. [Kir16, Theorem 12.3]). The resolution graph of X = C2/G is an
Dynkin diagram of type ADE. Moreover, it is exactly the Dynkin diagram whose associ-
ated extended Dynkin quiver corresponds to G via the McKay correspondence.

From this example, it seems clear that noncommutative algebra (in this case the rep-
resentation theory of G) plays a key role in understanding the geometry behind the res-
olution of singularities, and more in general in birational geometry. In the above case,
the crucial objects in understanding the geometry of the resolution were the irreducible
representations of G, that is the irreducible objects in mod(C[G]).
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Inspired by this example, a typical approach in birational geometry is to try and find
an abelian category (possibly a category of modules over an algebra), which provides
insight into the geometry of the morphism under investigation.

The typical approach is to consider a birational morphism

f : Y → X

between Noetherian schemes over a field k. By assuming suitable hypotheses on f , we
may construct a k-algebra A (usually noncommutative) in such a way that its module
category mod(A) captures information about the geometry of f . In even more generality,
we may try and construct an abelian categoryA encoding geometrical information about
the morphism f .

The work presented in this thesis falls under the aforementioned approach. Starting
from a morphism f : Y → X, we construct two abelian categories, called perverse coherent
sheaves categories, which capture information about the geometry of the morphism. In
the case where the base X is affine, these are equivalent to categories of modules over a
k-algebra.

The main reference that guides the content of this thesis is Van den Bergh’s paper
[Van04]. We now give a brief overview of the situation presented in [Van04], which will
be studied in detail in Chapter 2.

We consider a projective birational morphism

f : Y → X

between Noetherian equidimensional schemes over a field k, assuming the existence of
a point p ∈ X such that the fiber f−1(p) = C is a curve contained in Y, with f being
an isomorphism outside C. Additionally, we assume that R f∗OY = OX. A prototypical
example of this scenario is the resolution of rational singularities of surfaces.

Using direct images of the morphism f , we define two torsion pairs (Tp,Fp), for p =

−1, 0, on the bounded derived category of coherent sheaves Db(coh(Y)). By applying
the process of tilting to these torsion pairs, we obtain two abelian categories

Perp(Y/X) ⊆ Db(coh(Y)),

referred to as categories of perverse coherent sheaves. These categories are “tilts” of the
standard heart of the derived category and encode important information about the mor-
phism f . For example, if f is a resolution of a rational singularity, the perverse coherent
categories provide insights into the type of the singularity.

The main result of this thesis establishes an equivalence between the perverse coher-
ent sheaf categories Perp(Y/X) and a category of coherent sheaves. More formally, we
prove the following theorem.

Theorem A (Theorem 2.4.2). Assume that P is a local projective generator in Perp(Y/X)
and let A := f∗EndY(P). Then the functors

R f∗RHomY(P ,−) : Db(coh(Y)) −→ Db(coh(A)),

f−1(−)
L
⊗ f−1(A) P : Db(coh(A))→ Db(coh(Y))

define inverse equivalences of triangulated categories. These equivalences map the per-
verse t-structure of Db(coh(Y)) to the canonical t-structure of coh(A). Therefore, they
restrict to equivalences between Perp(Y/X) and coh(A).
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This result establishes a deep connection between the derived category of coherent
sheaves on Y and the category of coherent sheaves on a certain sheaf of algebrasA, which
is the pushforward of the endomorphism algebra of a projective generator.

A crucial part of the proof is an analogous statement for the case where the base
scheme X = Spec R is affine. In this situation, the categories of perverse coherent sheaves
are equivalent to categories of modules over a k-algebra. This more algebraic setting
allows us to leverage tools from representation theory and homological algebra, which
simplify the analysis. The corresponding affine version of the main theorem is as follows.

Theorem B (Theorem 2.3.20). Suppose that the base scheme X = Spec R is affine. Let
P be a projective generator in Perp(Y/X) and let A := EndY(P). To distinguish the R-
module structure and the A-module structure on P , we denote the latter by AP . Then
the functors

R HomY(AP ,−) : Db(coh(Y)) −→ Db(A),

−
L
⊗A AP : Db(A)→ Db(coh(Y))

define inverse equivalences of triangulated categories. These equivalences map the per-
verse t-structure of Db(coh(Y)) to the canonical t-structure of Db(A). Therefore, they
restrict to equivalences between Perp(Y/X) and mod(A).

The significance of these theorems relies on the existence of a projective generator, as
established by the following results.

Proposition C (Proposition 2.4.3). Assume that X is quasi-projective over a Noetherian
ring S. Then there exists a local projective generator P for Per−1(Y/X), such that the
dual P∨ is a local projective generator for Per0(Y/X).

Proposition D (Proposition 2.3.15). Suppose X = Spec R is affine. Then, there exists a
vector bundle P which is a projective generator in Per−1(Y/X) and whose dual P∨ is a
projective generator in Per0(Y/X).

Moreover, we are able to give an explicit characterization of the projective generators
in Perp(Y/X), thus allowing a deeper study of the algebra A. This is highlighted in the
last part of the thesis, where we we perform some explicit computations.

By supposing that X = Spec R is the spectrum of a Noetherian complete local k-
algebra with residue field k (the formal case), we are able to make a canonical choice of a
projective generator and find properties of its endomorphisms algebra EndY(P).

Notice that Proposition C and Proposition D establish a form of duality between the
two perverse categories. In the affine case, we obtain

Per−1(Y/X) ≃ mod(EndY(P)) and Per0(Y/X) ≃ mod(EndY(P∨)).

Thanks to Theorem B, it becomes clear that the endomorphism rings of projective
objects in linear categories are of great importance to the study of birational geometry.
The module categories of such rings can be studied through the tools of Morita theory. In
Appendix A we review the basics of Morita theory for finite dimensional k-algebras.
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Outline of the thesis
The thesis is organized as follows.

Chapter 1: Torsion pairs, t-structures and tilting
This chapter provides the foundational background on torsion pairs and t-structures

in abelian and derived categories. Here, we set up the necessary tools and concepts that
are used throughout the thesis to define perverse coherent sheaves.

We introduce tilting theory and discuss its significance in constructing new abelian
categories from derived categories. This discussion is primarily based on the work of
Happel, Reiten, and Smalø, [HRS96], which builds upon the foundational theory intro-
duced by Beilinson, Bernstein, and Deligne, [BBD82].

Chapter 2: Perverse coherent sheaves
This chapter constitutes the core of the thesis, where we closely follow [Van04]. We

first introduce the geometric setting and define the torsion pairs (Tp,Fp). Once the per-
verse categories Perp(Y/X) are defined and their basic properties studied, we move on
to proving Theorem B and Theorem A.

In the last part of the chapter we make some explicit computations. First we study the
formal case, where we are able to express more explicitly the projective generators. Finally,
we apply the proven equivalence to the study of certain birational morphisms.

Appendix A: Morita Theory
Two k-algebras A and B are said to be Morita equivalent if their module categories

mod(A) and mod(B) are equivalent. Therefore, to study a k-algebra A in the context of
Morita theory is to study the properties of its module category. In the appendix, we re-
view the basic results concerning Morita theory of finite-dimensional k-algebras, follow-
ing mainly [AC20]. The combinatorial aspects of Morita theory are particularly evident
through the study of quivers associated with these algebras.
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Chapter 1

Torsion pairs, t-structures, and tilting

In this chapter, we introduce the notions of torsion pairs of an abelian categoryA and
t-structures of the derived category D(A). Furthermore, we show the relation between
torsion pairs and t-structures. We follow [HRS96].

1.1 Torsion pairs, t-structures, and tilting
Let A be an abelian category. We denote by C(A) the category of complexes

in A and by C+,b(A), C−,b(A) the categories of complexes in A, which are respec-
tively bounded below/above and have bounded cohomology. Similarly, denote by
K(A), K+,b(A), K−,b(A) the corresponding homotopy categories.

Let D(A) be the derived category of A and D+(A), D−(A), Db(A) be the subcate-
gories of complexes with cohomology bounded respectively below, above, or both.

Remark 1.1.1. The derived category Db(A) endowed with the natural translation functor
is a triangulated category.

Definition 1.1.2. A torsion pair is a pair (T ,F ) of full subcategories of A, which satisfy
the following properties.

(a) HomA(T, F) = 0 for all T ∈ T and F ∈ F .

(b) Every object X ∈ A fits into a torsion exact sequence

0→ t(X)→ X → X/t(X)→ 0, (1.1)

with t(X) ∈ T and X/t(X) ∈ F .

The category T is called torsion class and its objects are called torsion objects. The category
F is called torsion free class and its objects are called torsion free objects.

Proposition 1.1.3. The following properties are satisfied

(a) If X ∈ A is an object such that HomA(T, X) = 0 for all T ∈ T then X belongs in F .

(b) If X ∈ A is an object such that HomA(X, F) = 0 for all F ∈ F then X belongs in T .

(c) The subcategories T ,F are closed under extensions. Moreover, T is closed under
quotient objects, while F is closed under subobjects.
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Proof. Properties (a) and (b) follow trivially from the torsion exact sequence (1.1).

We prove (c) for the subcategory T , the proof for F is analogous. Let

0→ X′ → X → X′′ → 0

be a short exact sequence in A. For each object F ∈ F , we may act on the sequence via
the functor HomA(−, F) and get the exact sequence

0→ HomA(X′′, F)→ HomA(X, F)→ HomA(X′, F).

If X belongs to T , then HomA(X, F) = 0 for all F ∈ F and therefore HomA(X′′, F) = 0
for all F ∈ F . Using (b) we get that T is closed under quotient objects.

Similarly, if X′ and X′′ belong to T , then HomA(X′, F) = HomA(X′, F) = 0 for all
F ∈ F . Using (b) we get that T is closed under extensions.

Let C be a triangulated category. For X ∈ C denote the translate of X by T(X) = X[1]
and recursively Tn(X) = X[n].

Definition 1.1.4. A t-structure on C is a pair
(
C≤0, C≥0) of full subcategories of C such

that, setting C≥n := C≥0[−n] and C≤n := C≤0[−n] for n ∈N, the following properties are
satisfied.

(a) HomC(X, Y) = 0 for all X ∈ C≤0, Y ∈ C≥1.

(b) C≤0 ⊆ C≤1 and C≥1 ⊆ C≥0.

(c) For all X ∈ C there exists a triangle

X′ → X → X′′ → X[1]

with X′ ∈ C≤0, and X′′ ∈ C≥1.

Definition 1.1.5. Let
(
C≤0, C≥0) be a t-structure on the category C. The heart of the t-

structure is defined as the full subcategoryH := C≤0 ∩ C≥0.

Theorem 1.1.6 ([BBD82]). The heartH is an abelian category.

Example 1.1.7. If C = Db(A) is the bounded derived category of A, we can define a
trivial t-structure on C. Let

C≤0 :=
{

X• ∈ Db(A) | Hi(X•) = 0 for all i > 0
}

,

C≥0 :=
{

X• ∈ Db(A) | Hi(X•) = 0 for all i < 0
}

.

On C(A) there is a truncation functor τ≤0 defined as follows. If

X• = · · ·Xi → Xi+1 → · · · → X−1 → X0 → · · ·

is an object in C(A), its truncation is

τ≤0X• = · · ·Xi → Xi+1 → · · · → X−1 → ker d0
X → 0→ 0 · · · .

Denote by τ≥1X• the quotient X•/τ≤0X•. Then in C(A) there is a short exact sequence

0→ τ≤0X• → X• → τ≥1X• → 0,

6



which yields a triangle in Db(A)

τ≤0X•
µ−→ X• π−→ τ≥1X• → τ≤0X•[1] (1.2)

Since τ≤0X• belongs to C≤0 and τ≥1X• belongs to C≥0, (1.2) proves that
(
C≤0, C≥0) is a

t-structure on Db(A), called the trivial t-structure. Notice that the heart H of
(
C≤0, C≥0)

is formed by the complexes in Db(A) which have vanishing cohomology in all non-zero
degrees. It coincides with the essential image of the inclusion

A ↪→ Db(A).

Therefore, the heart of the trivial t-structure on Db(A) is equivalent to A.

Example 1.1.8. For later reference, we study in more details the properties of the trunca-
tion functor τ≤0 and introduce a second truncation functor σ.

First notice that the inclusion

µ : τ≤0X• → X•

yields isomorphisms in cohomology in all degrees i ≤ 0, while τ≤0X• clearly has vanish-
ing cohomology in degrees i > 0. Therefore, Hi(π) is an isomorphism for all i > 0 and
τ≥1X• has vanishing cohomology in degrees i ≤ 0.

Define σ(τ≤0X•) to be the subcomplex

σ(τ≤0X•) = · · ·Xi → Xi+1 → · · · → X−1 → Im d−1
X → 0→ 0 · · · ,

which yields a triangle in Db(A)

σ(τ≤0X•) i−→ τ≤0X•
ρ−→ H0(X•)→ σ(τ≤0X•)[1].

Then σ(τ≤0X•) has vanishing cohomology in degrees i ≥ 0, and cohomology isomorphic
to Hi(X•) in degrees i < 0.

Proposition 1.1.9. Let (T ,F ) be a torsion pair on an abelian category A. Define

D≤0 :=
{

X• ∈ Db(A) | Hi(X) = 0 for all i > 0 and H0(X) ∈ T
}

,

D≥0 :=
{

X• ∈ Db(A) | Hi(X) = 0 for all i < −1 and H−1(X) ∈ F
}

.

Then, the pair
(
D≤0,D≥0) is a t-structure on Db(A).

Proof. We need to check that the conditions (a), (b) and (c) in Definition 1.1.4 are satisfied.
Let

X ∈ D≤0

and
Y ∈ D≥1 =

{
X• ∈ Db(A) | Hi(X) = 0 for all i < 0 and H0(X) ∈ F

}
Suppose that there exists a nonzero morphism HomDb(A)(X•, Y•). It is represented by a
pair of morphisms ( f , s) in Kb(A)

Z•

X• Y•,

f s
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where s is a quasi isomorphism. Since s is a quasi isomorphism, Z• belongs to D≥1 and
f is a nonzero morphism in HomKb(A)(X•, Z•). Using the truncation functor τ≤0, we find
the following commutative diagram in Db(A), whose lines are triangles in Db(A)

τ≤0X• X• τ≥1X• τ≤0X•[1]

τ≤0Z• Z• τ≥1Z• τ≤0X•[1],

µ

τ≤0 f

π

f h

where the morphism h exists by the axioms of triangulated category. As observed in Ex-
ample 1.1.8, the complex τ≥1X• has vanishing cohomology in degrees i ≤ 0 and coho-
mology isomorphic to that of the complex X• in degrees i > 0. Since X• belongs to D≤0,
this proves that the complex τ≥1X• is acyclic, hence it is zero in the derived category
Db(A). This proves that µ is is an isomorphism in Db(A) and therefore τ≤0 f is a nonzero
morphism in Kb(A).

We now act a further truncation via the functor σ and get the following commutative
diagram

σ(τ≤0X•) τ≤0X• H0(X•) σ(τ≤0X•)[1]

σ(τ≤0Z•) τ≤0Z• H0(Z•) σ(τ≤0Z•)[1].

στ≤0 f τ≤0 f h′

ρ

Again, it follows by the isomorphisms observed in Example 1.1.8 that σ(τ≤0X•) is acyclic,
hence it is zero in Db(A) and therefore ρ is an isomorphism. By hypothesis H0(X•) ∈ T
and H0(Z•) ∈ F , so h′ must be the zero morphism. Then τ≤0 f must be zero, getting a
contradiction. So the axiom (a) of a t-structure is satisfied.

The property (b) is trivial.

We are left to prove property (c). Let X• ∈ Db(A). Since (T ,F ) is a torsion pair, in A
there is a short exact sequence

0→ t(H0(X•))
µ−→ H0(X•) π−→ H0(X•)/t(H0(X•))→ 0,

with t(H0(X•)) ∈ T and H0(X•)/t(H0(X•)) ∈ F . Consider the following diagram of
short exact sequences in A

0

t(H0(X•))

0 Im d−1
X ker d0

X H0(X•) 0

H0(X•)/t(H0(X•))

0.

µ
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By pulling back µ along the horizontal short exact sequence, we get the following com-
mutative diagram of short exact sequences

0 0

0 Im d−1
X E t(H0(X•)) 0

0 Im d−1
X ker d0

X H0(X•) 0

H0(X•)/t(H0(X•)) H0(X•)/t(H0(X•))

0 0

µ′′

µ′ µ

We now use the morphism µ′′ to construct X′• ∈ D≤0. Decompose d−1
X as follows

X−1 Im d−1
X X0.

ρ

d−1
X

i

Let d̃−1
X := µ′′ρ and X′• be the subcomplex of X• defined by

X′i = Xi for i ≤ 1, X′0 = E, X′i = 0 for i > 0

di
X′ = dX for i < −1, d−1

X′ = d̃−1
X , di

X′ = 0 for i ≥ 0.

Notice that Hi(X′•) = Hi(X•) for i ≤ 1. Indeed, the case i < −1 is trivial, and for the

case i = −1 it suffices to use the definition of d̃−1
X . Moreover,

H0(X′•) = E/ Im d̃−1
X = E/ Im µ′′ = t(H0(X•)) ∈ T

and Hi(X′•) = 0 for i > 0. This proves that X′• belongs to D≤0.
Set X′′• := X•/X′•. Then, the following is a triangle in Db(A)

X′• → X• → X′′• → X′•[1]. (1.3)

In order to conclude the proof, we need to show that X′′• belongs to D≥1. It follows from
the definition of X′′• that Hi(X′′•) = 0 for i < 0. Moreover, the long exact cohomology
sequence obtained from (1.3) yields

0 = H−1(X′′•)→ H0(X′•) = t(H0(X•))→ H0(X•)→ H1(X′′•)→ H1(X′•) = 0.

This proves that H1(X′′•) = H0(X•)/t(H0(X•)) belongs to F , thus concluding the proof.

Corollary 1.1.10. Let A be an abelian category and (T ,F ) a torsion pair on A. Then

(a) The full subcategory

B :=
{

X• ∈ Db(A) | Hi(X•) = 0 for all i ̸= 0,−1, H0(X•) ∈ T , H−1(X•) ∈ F
}

is an abelian category.

9



(b) Let X := F [1] and Y := T be full subcategories of B. Then (X ,Y) is a torsion pair
in B.

(c) For all X, Y ∈ B there are natural isomorphisms

HomDb(B)(X, Y[n]) ≃ HomDb(A)(X, Y[n])

for n = 0, 1.

Proof. The statement (a) is just a consequence of Proposition 1.1.9 and Theorem 1.1.6.

We now prove (b). In particular, we need to check that the two axioms defining a
torsion pair a satisfied. Let X ∈ X = F [1] and Y ∈ Y = T . So there exists F ∈ F such
that X = F[1]. Then

HomB(X, Y) = HomDb(A)(F[1], Y) = HomDb(A)(F, Y[−1]) = 0,

so the first condition is satisfied.

For the second part, notice first that every object in B is isomorphic to a two-term
complex. Indeed, let Z• ∈ B. By definition of B we get that Hi(Z•) = 0 for all i >
0. Therefore, Z• is isomorphic to τ≤0Z• in Db(A). Let U• be the subcomplex of τ≤0Z•

defined by

Ui = Zi for i < −1, U−1 = Im d−2
Z , Ui = 0 for i ≥ 0.

Then U• is an acyclic complex, hence it is zero in Db(A). Therefore,

Z• ≃ τ≤0Z• ≃ τ≤0Z•/U• =: Z̃•

and Z̃• is a complex that is nonzero only in degrees −1 and 0.
In conclusion, in order to prove condition (b), we may assume without loss of gener-

ality that Z• is concentrated in degrees −1 and 0, i.e.

Z• = . . . 0→ Z−1 d−1
Z−→ Z0 → 0 . . . ,

with H−1(Z•) = ker d−1
Z ∈ F and H0(Z•) = coker d−1

Z ∈ T . Then, the following diagram
represents the torsion exact sequence of Z• in B

. . . 0 H−1(Z•) 0 0 . . .

. . . 0 Z−1 Z0 0 . . .

. . . 0 0 H0(Z•) 0 . . .

d−1
Z

This concludes the proof of (b).

The statement (c) is [BBD82, Remark 3.1.17].
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1.2 Properties of torsion pairs
Let (T ,F ) be a torsion pair in A. Following the notation of Corollary 1.1.10, we

denote the pair (B; (X ,Y)) as Φ (A; (T ,F )). We say that Φ (A; (T ,F )) is obtained from
A by tilting with respect to the torsion pair (T ,F ).

Definition 1.2.1.

(a) The subcategory T is a tilting torsion class if T is a cogenerator inA. Namely, for all
X ∈ A there exists an object TX ∈ T with a monomorphism µX : X → TX.

(b) The subcategory F is a cotilting torsion free class if F is a generator in A. Namely,
for all X ∈ A there exists an object FX ∈ F with a epimorphism πX : FX → X.

Proposition 1.2.2. The following properties hold.

(a) The torsion class T is tilting inA if and only if the torsion free class Y is cotilting in
B.

(b) The torsion free class F is cotilting in A if and only if the torsion class X is tilting
in B.

Proof. We prove (a), the proof of (b) is dual.

Suppose first that T is a tilting torsion class in A and fix X• in B. We need to find an
object E ∈ Y = T with an epimorphism E → X• in B. As show in the proof Corollary
1.1.10, we may assume without loss of generality that Xi = 0 for i ̸= −1, 0. By the
assumption that T is tilting, in A we find a monomorphism X−1 → T0, with T0 ∈ T ,
which may be completed to a short exact sequence

0→ X−1 → T0 → T1 → 0. (1.4)

Since T is closed under quotients, we have T1 ∈ T . The short exact sequence (1.4) yields
a triangle in Db(A)

X−1 → T0 → T1
f−→ X−1[1].

The composition d−1
X [1] ◦ f is a morphism in HomDb(A)(T1, X0[1]) = Ext1

A(T1, X0), so it
corresponds to an extension in A

0→ X0 → E→ T1 → 0.

In Db(A) we get a commutative diagram of triangles

X0 E T1 X0[1]

X0 X• X−1[1] X0[1],

µ π

g f

u v d−1
X [1]

(1.5)

where g ∈ HomDb(A)(E, X•) exists by definition of triangulated category. We need to
show that E ∈ Y an that g is an epimorphism in B.

In A there is a commutative diagram with exact horizontal arrows

0 X−1 T0 T1 0

0 X0 E T1 0.

d−1
X e
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We have coker d−1
X = H0(X•) ∈ T by hypothesis, Im e ∈ T because T is closed under

quotients. Moreover, by commutativity of the previous diagram, coker e ≃ coker d−1
X ∈

T . Therefore, E is an extension of objects in T , so it belongs to T = Y by Proposition
1.1.3.

We are left to prove that g is an epimorphism in B. Let then Y• ∈ B and h ∈
HomDb(A)(X•, Y•) be such that hg = 0. Consider the torsion exact sequence of Y• in
B

0→ t(Y•) α−→ Y•
β−→ Y•/t(Y•)→ 0,

where t(Y•) ∈ X and Y•/t(Y•) ∈ Y . By the commutativity of (1.5) we get

hu = hgµ = 0.

Therefore, there exists h′ : X−1[1]→ Y• such that h = h′v. Hence

h′ f π = h′vg = hg = 0.

Since π is an epimorphism in B, this proves that h′ f = 0. Moreover, since Y•/t(Y•) ∈
Y = T ⊆ A, we get that

βh′ ∈ HomDb(A)(X−1[1], Y•/t(Y•)) = HomDb(A)(X−1, Y•/t(Y•)[−1]) = 0.

Therefore, there exists h′′ : X−1[1]→ t(Y•) such that h′ = αh′′. Then

0 = h′ f = αh′′ f .

since α is a monomorphism in B, this proves that h′′ f = 0.
Applying the functor HomDb(A)(−, t(Y•)) to the triangle

T0 → T1
f−→ X−1[1]→ T0[1],

we get an exact sequence

HomDb(A)(T0[1], t(Y•))→ HomDb(A)(X−1[1], t(Y•))
−◦ f−−→ Hom(T1, t(Y•)).

But HomDb(A)(T0[1], t(Y•)) = HomDb(A)(T0, t(Y•)[−1]) = 0, since T0 ∈ Y = T and
t(Y•)[−1] ∈ X [−1] = F . Therefore

− ◦ f : HomDb(A)(X−1[1], t(Y•))→ Hom(T1, t(Y•)).

is injective. Since h′ f = 0, this proves that h′ = 0 and hence that h = 0. This proves that
g is an epimorphism.

We now want to understand sufficient conditions for Db(B) and Db(A) to be equiva-
lent. We want to construct a functor

G : Db(B)→ Db(A)

and understand when it is an equivalence. Suppose that T is a tilting torsion class in A,
so that Y is cotilting torsion free in B. We suppose moreover that the abelian category B
has enough projective objects.

Let PB ⊆ B be the subcategory formed by the projective objects is B. Since B has
enough projectives, there is a triangle equivalence

K−,b(PB)
≃−→ Db(B).
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Since Y is cotilting and B has enough projectives, there is an inclusion

PB ⊆ Y = T ⊆ A.

Therefore, we get an inclusion functor

K−,b(PB) ↪→ K−,b(A).

On the other side, the natural functor K(A)→ Db(A) restricts to a functor

Q : K−,b(A)→ Db(A)

Composing, we get the desired functor

G : Db(B) ≃−→ K−,b(PB) ↪→ K−,b(A) Q−→ Db(A).

Notice that G : Db(A) → Db(B) is defined as a composition of exact functors, hence it is
exact.

Dually, if instead of supposing B to have enough projectives we suppose A to have
enough injectives, we can construct a functor

F : Db(A)→ Db(B).

Indeed, let IA ⊆ A be the subcategory form by the injective objects.Then, there is a
triangle equivalence

K+,b(IA)
≃−→ Db(A).

Since T is tilting and A has enough injectives, there is an inclusion

IA ⊆ T = Y ⊆ B.

Therefore, we get an inclusion functor

K+,b(IA) ↪→ K+,b(B).

On the other side, the natural functor K(B)→ Db(B) restricts to a functor

Q : K+,b(B)→ Db(B)

Composing, we get the desired exact functor

F : Db(A) ≃−→ K+,b(IA) ↪→ K+,b(B) Q−→ Db(B).

Theorem 1.2.3. Let (T ,F ) be a torsion pair in the abelian category A and suppose that
T is a tilting torsion class in A.

(a) If B has enough projectives, then the functor

G : Db(A)→ Db(A)

is a triangle equivalence. Moreover, the restriction G|B coincides with the identity
functor idB .
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(b) If A has enough injectives, then the functor

F : Db(B)→ Db(B)

is a triangle equivalence. Moreover, the restriction F|A coincides with the identity
functor idA.

Proof. We prove (a), the proof of (b) is analogous. By [BBD82, Remark 3.1.17] it suffices
to show that for all B, B′ ∈ B the induced morphism

Gn : HomDb(B)(B, B′[n])→ HomDb(A)(B, B′[n])

is bijective for all n ∈ Z. Using [BBD82, Remark 3.1.17], we get that Gn bijective for n ≥ 1
and that the bijectivity of Gn implies the injectivity of Gn+1.

Proceeding by induction, it then suffices to show that Gn is surjective for all n. Let
f ∈ HomDb(A)(B, B′[n]), represented by the diagram

X•

B B′[n],

φ s

where φ, s are morphisms in Kb(A) and s is a quasi-isomorphism. Since T is tilting
torsion, it is a cogenerator in A. Then, by an argument analogous to the one present
in [Huy06, Prop 2.35], we may find a complex Y• ∈ Db(A) with Yi ∈ T and a quasi-
isomorphism t : X• → Y•.

Let f̃ ∈ HomDb(A) be the morphism represented by the the following diagram

Y•

B B′[n],

φ̃ s̃ (1.6)

where φ̃ = tφ and s̃ = ts. Since t is a quasi-isomorphism, f and f̃ are actually the same
morphism in HomDb(A)(B, B′[n]).

But the diagram (1.6) represents also a morphism f̃ ′ ∈ HomDb(A)(B, B′[n]). Clearly,
Gn
(

f̃ ′
)
= f̃ = f . Hence, Gn is surjective and the proof is concluded.

Notice that the triangle equivalence G : Db(B) → Db(A) is defined in such a way
that G(X ) = F [1] and G(Y) = T .

A natural question following the construction of (B; (X ,Y)) is what happens after
tilting again, with respect to the torsion pair (X ,Y). In particular, under the assumptions
that give the triangle equivalence G, it seem natural to expect that tilting B with respect
to (X ,Y) should give once again (A; (T ,F )). The following theorem formalizes this
intuition.

Theorem 1.2.4. Suppose that either B has enough projectives or A has enough injec-
tives, so that the functor G (resp. F) is a triangle equivalence between Db(B) and Db(A),
according to Theorem 1.2.3. Then G (resp. F) induces an equivalence of categories
Φ (B; (X ,Y)) ≃ (A; (T ,F )).

14



Proof. We suppose B to have enough projectives, the other case is analogous. Set

Φ (B; (X ,Y)) =:
(
A′;
(
T ′,F ′

))
,

so that

A′ =
{

X• ∈ Db(B) | Hi(X•) = 0 for all i ̸= 0,−1, H0(X•) ∈ X , H−1(X•) ∈ Y
}

,

T ′ = Y [1], F ′ = X .

We want to show that
G|A′ : A′ → A[1] ⊆ Db(A)

is an equivalence.
Let X′ ∈ A′. Then, in Db(B) there is a triangle

U → X′ → V → U[1],

with U ∈ T ′ and V ∈ F ′. Acting with the functor G, we get a triangle

G(U)→ G(X′)→ G(V)→ G(U)[1]. (1.7)

Notice that G(T ′) = G(Y [1]) = T [1] and G(F ′) = G(X ) = F [1], so

Hi(G(U)) = Hi(G(V)) = 0 for all i ̸= −1.

Then, the long exact cohomology sequence obtained from (1.7) shows that G(X′) belongs
to A[1].

Therefore,
G|A′ : A′ → A[1] ⊆ Db(A)

is a well defined fully faithful functor. It was already observed that G(T ′) = G(Y [1]) =
T [1] and G(F ′) = G(X ) = F [1], so to conclude that G|A′ is the desired equivalence it
suffices to show that it is essentially surjective.

Let X ∈ A and consider its torsion exact sequence

0→ t(X)→ X → X/t(X)→ 0,

with t(X) ∈ T and X/t(X) ∈ F . It gives rise to a triangle in Db(A)

t(X)[1]→ X[1]→ X/t(X)[1] w−→ t(X)[2],

with t(X)[1] ∈ T [1] and X/t(X)[1] ∈ F [1]. Therefore, there exist U ∈ Y [1] = T ′ and
V ∈ X = F ′ such that

G(U) = t(X)[1], G(V) = X/t(X)[1].

By full faithfulness of G, there exists w′ ∈ HomDb(B)(V, U[1]) such that G(w′) = w. The
morphism w′ may be completed to a triangle in Db(B)

U → X′ → V w′−→ U[1]. (1.8)

By looking at the long exact cohomology sequence of (1.8), we see that X′ belongs to A′.
Applying the functor G to (1.8), we get the following commutative diagram

G(U) G(X′) G(V) G(U)[1]

t(X)[1] X[1] X/t(X)[1] t(X)[2].

h
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Therefore, X[1] is isomorphic to G(X′) via the morphism h. This proves that

G|A′ : A′ → A[1] ⊆ Db(A)

is essentially surjective, thus concluding the proof.
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Chapter 2

Perverse coherent sheaves

2.1 Preliminaries
The content of this chapter is based on [Van04].

Let f : Y → X be a morphism between Noetherian equidimensional schemes. Sup-
pose that the following hypotheses are satisfied:

1. The morphism f is projective and birational.

2. There is a point p ∈ X such that f−1(p) =: C is a curve contained in Y. Moreover

f |Y∖C : Y ∖ C → X ∖ {p}

is an isomorphism.

3. R f∗OY = OX.

Lemma 2.1.1. There is a natural isomorphism R f∗L f ∗ ≃ id.

Proof. The projection formula [BBH09, §A.83] shows that if E is a quasi-coherent sheaf of
OX−modules, then there is a natural isomorphism

R f∗OY ⊗OX E ≃ R f∗(OY ⊗OY L f ∗E).

By using the hypothesis R f∗OY = OX, we get

E ≃ OX ⊗OX E ≃ R f∗OY ⊗OX E .

While on the other hand, clearly

R f∗(OY ⊗OY L f ∗E) ≃ R f∗(L f ∗E).

So in conclusion, for a quasi-coherent sheaf E

E ≃ R f∗L f ∗E ,

proving the thesis.

Lemma 2.1.2. For any coherent sheaf E ∈ coh(Y), we have

1. Rk f∗E = 0 for all k ≥ 2;
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2. R1 f∗E is supported at p.

Proof. The first statement is just [Har13, §III, Corollary 11.2], using the fact that the fibers
of f have either dimension 0 or 1.

To prove the second statement, let x ∈ X \ {p} and observe that, by [Har13, §III,
Proposition 8.1], we have

(R1 f∗E)x = lim
V∋x

H1( f−1(V), E| f−1(V)) = lim
U∋ f−1(x)

H1(U, E|U).

To conclude, it is enough to take an affine neighborhood of the point y = f−1(x).

Corollary 2.1.3. For any coherent sheaf F ∈ coh(X), we have R1 f∗ f ∗F = 0.

Proof. Notice that L f ∗F is concentrated in negative degrees. Indeed, the functor L f ∗

maps D−(coh(X)) to D−(coh(Y)). By seeing f ∗F as a complex concentrated in degree
zero, there is a canonical morphism

L f ∗F → f ∗F .

This morphism induces isomorphisms in cohomology in degrees ≥ 0. Therefore, it fits
into an exact triangle

G → L f ∗F → f ∗F ,

with G concentrated in degrees ≤ −1. Applying derived pushforward, we get a triangle

R f∗G → R f∗L f ∗F → R f∗ f ∗F .

By Lemma 2.1.1, the middle term is actually isomorphic to F , so as a complex it is con-
centrated in degree 0. Passing to the long exact sequence in cohomology, we obtain

0→ R1 f∗ f ∗F → R2 f∗G → 0.

Consider the spectral sequence

Ep,q
2 := Rp f∗Hq(G) =⇒ Rp+q f∗(G).

The left hand side vanishes fo p ≥ 2 or q ≥ 0, so R2 f∗G vanishes as well. Therefore

R1 f∗ f ∗F = 0,

proving the claim.

2.2 Definition of perverse coherent sheaves
In the following, we are going to study two categories of perverse coherent sheaves

induced on Y by the morphism f .
Let C be defined as

C = {E ∈ coh(Y) | R f∗E = 0}.

The following lemma is [Bri02, Lemma 3.1].

Lemma 2.2.1. For F ∈ Db(coh(Y)), one has R f∗F = 0 if and only if Hi(F) ∈ C for all i.
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We now define two torsion pairs on Db(coh(Y))

T−1 = {T ∈ coh(Y) | R1 f∗(T) = 0, Hom(T, C) = 0},

F−1 = {F ∈ coh(Y) | f∗(F) = 0},

T0 = {T ∈ coh(Y) | R1 f∗(T) = 0},

F0 = {F ∈ coh(Y) | f∗(F) = 0, Hom(C, F) = 0}.

In order to show that (T−1,F−1) and (T0,F0) are a torsion pairs, we first observe some
elementary properties.

Lemma 2.2.2. The following properties hold for p = 0, 1.

(a) Tp is closed under quotients and under extensions.

(b) Fp is closed under subobjects.

(c) Tp ∩ Fp = {0}.

(d) f ∗ f∗E belongs to T−1 for all E ∈ coh(Y).

Proof. Let T ∈ Tp and let T′ be a quotient object of T. By looking at the long exact
sequence obtained by derived pushforward from the short exact sequence

0→ K → T → T′ → 0

and using the fact that R2 f∗K = 0, we get that R1 f∗T′ = 0. This concludes the proof
that T0 is closed under quotients. For p = 1, suppose that there is a nonzero morphism
T′ → E for some E ∈ C. Then the composition

T ↠ T′ → E

yields a nonzero morphism in Hom(T, E). This is absurd, proving that T′ ∈ T−1 and
hence that T−1 is closed under quotients.
Let us consider an extension

0→ T0
i−→ T π−→ T1 → 0

with T0, T1 ∈ Tp. We want to show that T ∈ Tp. By looking at the long exact sequence of
derived pushforward, we get that R1 f∗T = 0, immediately concluding the case p = 0.
Suppose then p = 1, consider a sheaf E ∈ C and let φ ∈ Hom(T, E) be a morphism.
Composing with the inclusion i we get a morphism in Hom(T0, E), which must be zero.
Therefore,

φ(Im i) = φ(Ker π) = 0.

Since T1 ≃ T/ Ker π, the induced morphism

φ̃ : T/ Ker π → E

must be zero. This proves that φ is the zero morphism and hence that T−1 is closed under
extensions. This concludes the proof of (a).

Let F ∈ Fp and let F′ be a subsheaf of F. Since f∗ is left exact, f∗F′ is a subsheaf of
f∗F = 0 so it must be zero, concluding the case p = 1. For p = 0, notice that a nonzero
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morphism E → F′ for E ∈ C would yield a nonzero morphism E → F. In conclusion,
both F−1 and F0 are closed under subobjects, proving (b).

Let E ∈ Tp ∩ Fp. Then Ri f∗E = 0 for all i ≥ 0, so E belongs to C. But since E belongs
either to T−1 or to F0 as well, this implies that Hom(E, E) = 0 and hence that E = 0. This
proves (c).

We are left to prove (d). Using Corollary 2.1.3, we get that

R1 f∗( f ∗ f∗E) = 0.

Moreover, for E ∈ C we have

Hom( f ∗ f∗E, E) = Hom( f∗E, f∗E) = Hom( f∗E, 0) = 0.

This proves that f ∗ f∗E belongs to T−1.

Proposition 2.2.3. The pairs (T−1,F−1), (T0,F0) are torsion pairs on coh(Y).

Proof. Let us first prove that Hom(Tp,Fp) is zero. Let φ : T → F be a morphism, with
T ∈ Tp and F ∈ Fp. Then the image of φ is both a subobject of F and a quotient of T. So
Im φ ∈ Tp ∩ Fp is zero and φ is the zero morphism.

Let E be a coherent sheaf on Y. We want to find a short exact sequence

0→ T → E→ F → 0

with T ∈ Tp and F ∈ Fp. Since Tp is closed under extensions (and in particular under
finite direct sums), then E contains a maximal subsheaf T in Tp. Notice that by maximality
of T we have Hom(Tp, E/T) = 0. Indeed, if φ : T′ → E/T is a nonzero morphism,
then the image of φ is a nontrivial subsheaf of E/T that belongs to Tp, contradicting the
maximality of T.
In order to conclude, it is enough to show that F := E/T belongs to Fp. By property (d)
of Lemma 2.2.2, f ∗ f∗F ∈ T−1. Then

Hom( f∗F, f∗F) = Hom( f ∗ f∗F, F) = 0.

This proves that f∗F = 0 and concludes the case p = −1. To conclude the case p = 0, we
need also to prove that Hom(C, F) = 0. But in this case C ⊆ T0 and we already noticed
that Hom(T0, F) = 0.

These torsion pairs induces the following t-structures on Db(coh(Y)).

Db(coh(Y))≤0,p = {E ∈ Db(coh(Y)) | Hi(E) = 0 for i > 0 and H0(E) ∈ Tp},
Db(coh(Y))≥0,p = {E ∈ Db(coh(Y)) | Hi(E) = 0 for i < −1 and H−1(E) ∈ Fp}.

The heart of the t-structure is

Perp(Y/X) = {E ∈ Db(coh(Y)) | Hi(E) = 0 for i ̸= 0, −1 ,

H−1(E) ∈ Fp, H0(E) ∈ Tp},

for p = 0, 1.
Since Perp(Y/X) is the heart of a t-structure on Db(coh(Y)), we know that it is an

abelian category.
Notice that the sheaves in Fp have low-dimensional support.

20



Lemma 2.2.4. If F ∈ coh(Y) belongs Fp, then F is supported on the curve C, so in partic-
ular dim F ≤ 1.

Proof. Since f is an isomorphism outside of C, we have

( f∗F)x = Ff−1(x)

for all x ∈ X \ {p}. By hypothesis ( f∗F)x = 0 for all x ∈ X. So in conclusion

Fy = 0

for all y ∈ Y \ C. Therefore, the support of F is contained in C and has dimension at most
one.

Lemma 2.2.5. The structure sheaf OY belongs to T−1. As a consequence, any coherent
sheaf on Y generated by global sections is in T−1.

Proof. Since R f∗OY = OX,

f∗OY = R0 f∗OY = H0(OX) = OX and Ri f∗OY = Hi(OX) = 0 for i > 0.

This proves that R1 f∗OY = 0 and that f ∗ f∗OY = f ∗OX = OY. Therefore, for E ∈ C we
have

Hom(OY, E) = Hom( f ∗ f∗OY, E) = Hom( f∗OY, f∗E) = Hom( f∗OY, 0) = 0,

proving that OY ∈ T−1.
Since T−1 is closed under extensions, clearly O⊕c

Y ∈ T−1 for all c. If E is a globally gener-
ated sheaf, it is a quotient of O⊕c

Y for some c, therefore E ∈ T−1.

Remark 2.2.6. It follows straightforwardly that the previous statements hold true for T0
as well.

We now aim to understand better the structure of Perp(Y/X), in particular studying
the projective objects. In order to do this, it is necessary to give a different equivalent
condition for a coherent sheaf to lie in T−1 or in F0.

Lemma 2.2.7. Let E ∈ coh(Y) and consider the natural morphism f ∗ f∗E → E , induced
by the adjunction f ∗ ⊣ f∗. Let E0 ⊆ E be image subsheaf. Then R1 f∗E0 = 0.

Proof. Under the above assumptions, let F := f∗E . Then, we have a short exact sequence

0→ K → f ∗F → E0 → 0.

By taking the long exact sequence obtained by derived pushforward, we get the exact
sequence

R1 f∗K → R1 f∗ f ∗F → R1 f∗E0 → 0.

By Corollary 2.1.3 the middle term vanishes, thus proving R1 f∗E0 = 0.

Lemma 2.2.8. Let T ∈ coh(Y) and consider the natural morphism f ∗ f∗T → T, induced
by the adjunction f ∗ ⊣ f∗. Let T0 ⊆ T be image subsheaf. If R1 f∗T = 0, then T/T0
belongs to C.
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Proof. We need to show that Ri f∗(T/T0) = 0 for all i ≥ 0. The only non trivial cases are
i = 0, 1.

For the case i = 1, consider the short exact sequence of sheaves

0→ T0 → T → T/T0 → 0.

The long exact sequence obtained by taking derived pushforward of f gives the exact
sequence

R1 f∗(T)→ R1 f∗(T/T0)→ R2 f∗(T0).

But R1 f∗(T) = 0 by hypothesis and R2 f∗(T0) = 0 , therefore R1 f∗(T/T0) = 0.

For the case i = 0, we have to show that f∗(T/T0) = 0. Suppose then that f∗(T/T0) ̸=
0. Observe that this implies that the morphism f ∗ f∗(T/T0)→ T/T0 is not the zero map.
Indeed, acting via f∗ we get a morphism f∗ f ∗ f∗(T/T0)→ f∗(T/T0). But by Lemma 2.1.1,
we see that

f∗ f ∗ f∗(T/T0) = R0 f∗( f ∗ f∗(T/T0)) = R0 f∗L0 f ∗( f∗(T/T0)) ≃ f∗(T/T0).

Moreover, by naturality, the induced morphism f∗(T/T0) → f∗(T/T0) must be the
identity map. Since we supposed f∗(T/T0) ̸= 0, the identity map is not the zero map. In
conclusion, by acting via f∗ and composing with an isomorphism we obtained a nonzero
morphism, so the considered morphism f ∗ f∗(T/T0)→ T/T0 is not zero.

By the previous Lemma 2.2.7, R1 f∗(T0) = 0. This implies that f∗(T) → f∗(T/T0) is
surjective. So acting via pullback we get that f ∗ f∗(T) → f ∗ f∗(T/T0) is surjective. Take
now the composition

Φ : f ∗ f∗(T)→ f ∗ f∗(T/T0)→ T/T0.

Since the first map is surjective and the second is nonzero, Φ is nonzero. On the other
hand, by naturality of the adjunction f ∗ ⊣ f∗, Φ can be obtained also as

f ∗ f∗(T)→ T → T/T0,

which is zero by construction. This is absurd, proving f∗(T/T0) = 0 and hence the
thesis.

This lemma allows to characterize the objects in T−1.

Proposition 2.2.9. Let T be a coherent sheaf on Y. Then T belongs to T−1 if and only if
the natural morphism f ∗ f∗T → T is surjective.

Proof. Suppose T ∈ T−1 and let T0 ⊆ T be the image of the morphism. Since R1 f∗T = 0,
we can apply the previous lemma and get that T/T0 ∈ C.
But then the projection morphism

T → T/T0

must be zero. So T = T0, i.e. the morphism f ∗ f∗T → T is surjective.

Suppose now that the morphism is surjective. We prove that T satisfies the two con-
ditions required in order for a coherent sheaf to be in T−1.
As in the previous lemma, consider the short exact sequence

0→ K → f ∗ f∗T → T → 0
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and take the associated long exact sequence via derived pushforward. As before,
R1 f∗( f ∗ f∗T) = 0 by Corollary 2.1.3 and R2 f∗K = 0, giving R1 f∗T = 0 as required.
Let now E be in C, we show that Hom(T, E) = 0. Applying the functor Hom(_, E) to the
same short exact sequence considered earlier, we get the exact sequence

0→ Hom(T, E)→ Hom( f ∗ f∗T, E).

Notice that Hom( f ∗ f∗T, E) = Hom( f∗T, f∗E) is zero, since f∗E = 0. So, Hom(T, E) = 0
as required.

Although not needed in what follows, it’s worth mentioning that there is a dual state-
ment to Lemma 2.2.9, characterizing the objects in F0.

If E is a coherent sheaf on Y, the composition

E→ f !R f∗E→ f !((R1 f∗E)[−1])

yields a canonical morphism

ϕE : E→ H−1( f !R1 f∗E).

Lemma 2.2.10 ([Van04, Lemma 3.1.5]). Let F be a coherent sheaf on Y. Then F belongs to
F0 if and only if the canonical morphism ϕF is injective.

2.3 Affine base
We now study the case where the base X = Spec R is affine. Under this additional

hypothesis, we can give an explicit description of the sheaf f ∗ f∗T and of the canonical
morphism f ∗ f∗T → T.

Notice that f∗OY = OX yields

H0(Y,OY) = H0(X, f∗OY) = H0(X,OX) = R.

Lemma 2.3.1. There is an isomorphism f ∗ f∗T ≃ H0(Y, T)⊗ROY, where H0(Y, T) is seen
as a constant sheaf on Y. Under this isomorphism, the natural morphism f ∗ f∗T → T
induces the natural morphism H0(Y, T)⊗R OY → T.

Proof. Since X is affine and f∗T is quasi-coherent on X

f∗T = ˜H0(X, f∗T) = ˜H0(Y, T).

Now, we use [Liu02, §5.1, Proposition 1.14(b)] in order to compute the sections of f ∗ f∗T
on an affine open U ⊆ Y:

f ∗( f∗T)(U) = f∗T(X)⊗R OY(U).

Therefore
f ∗ f∗T(U) = H0(Y, T)⊗R OY(U).

This proves the required isomorphism. The second statement follows by naturality.

Combining Lemma 2.3.1 with Proposition 2.2.9, we get a further characterization of
T−1 in this case.

Lemma 2.3.2. If X = Spec R is affine, then a coherent sheaf T ∈ coh(Y) belongs to T−1 if
and only if it is generated by global sections.
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The following property will prove useful in the following computations.

Lemma 2.3.3. Let f : Y → X be a projective morphism between Noetherian schemes with
fibers of dimension at most n. Suppose that X is affine. If N is a coherent sheaf on Y,
then Hi(Y,N ) = 0 for all i > n. Similarly, ifM, E are coherent sheaves on Y, withM
locally free, then Exti

Y(M, E) = 0 for all i > n.

Proof. It suffices to prove the first statement, since Exti
Y(M, E) = Hi(Y,M∨ ⊗OY E). We

use the Leray spectral sequence

Ep,q
2 = Hp(X, Rq f∗N ) =⇒ Hp+q(Y,N ). (2.1)

Notice that, since X is affine, Hp(X, Rq f∗N ) = 0 for all p > 0. Moreover, Rq f∗N vanishes
for q > n. Hence, Ep,q

2 = 0 for all p > 0 or q > n, proving the claim.

Remark 2.3.4. In the case under study, we get Hi(Y,N ) = 0 for all i > 1. Moreover, if
R1 f∗N = 0, e.g. if N ∈ Tp, using Formula (2.1) we get that H1(Y,N ) vanishes too. In
particular, H1(Y,OY) = 0.

Definition 2.3.5. Let V be the category of vector bundles M on Y (i.e., locally free
sheaves) that are generated by global sections and such that H1(Y,M∨) = 0; and let
V∨ := {M∨ | M ∈ V}.

Remark 2.3.6. The category V is closed under direct sums and direct summands.

Notice that, by the Lemma 2.3.2, the objects of V belong to T−1 as well. So they are (as
complexes concentrated in degree zero) also objects in Per−1(Y/X). Similarly, the Leray
spectral sequence (2.1) shows that the objects in V∨ belong to T0 and hence to Per0(Y/X).

In the next proposition, we will compute Exti
Y(M, E) for M ∈ V and E ∈

Per−1(Y/X). As usually, by Exti
Y(M, E) we mean

Exti
Y(M, E) = Hi(R HomY(M, E)) = HomDb(coh(Y))(M, E[i]).

This does not a priori coincide with Ext computed in the abelian category Per−1(Y/X),
but what we will prove is that the vanishing of the former implies the vanishing of the
latter.

Proposition 2.3.7. If M ∈ V, then for all E ∈ Per−1(Y/X) and for all i > 0 we have
Exti

Y(M, E) = 0. Therefore,M is a projective object in Per−1(Y/X).

Proof. Since Per−1(Y/X) is obtained as the heart of the t-structure induced by the torsion
pair (T−1, F−1), every E ∈ Per−1(Y/X) lies in a triangle

H−1(E)[1]→ E→ H0(E),

with H−1(E) ∈ F−1 and H0(E) ∈ T−1.
Therefore, by taking the long exact Ext sequence, it suffices to show that

Exti
Y(M, F[1]) = 0 and Exti

Y(M, T) = 0

for all i > 0 and for all F ∈ F−1 and T ∈ T−1.
Notice that

Exti
Y(M, F[1]) = Exti+1

Y (M, F).
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Conclude using Lemma 2.3.3 that Exti
Y(M, F[1]) = 0 for i > 0.

By Lemma 2.3.2, T is generated by global sections. So there is a surjective morphism

O⊕l
Y ↠ T.

The long exact Ext sequence obtained by 0 → K → O⊕l
Y → T → 0 gives the exact

sequence
Ext1

Y(M,O⊕l
Y )→ Ext1

Y(M, T)→ Ext2
Y(M, K).

Notice that

Ext1
Y(M,O⊕l

Y ) = H1(Y,M∨ ⊗O⊕l
Y ) = H1(Y, (M∨)⊕l) = H1(Y,M∨)⊕l = 0,

and Ext2
Y(M, K) = 0 by Lemma 2.3.3, proving that Ext1

Y(M, T) = 0. The vanishing of
Exti

Y(M, T) for i > 1 follows again from Lemma 2.3.3, thus proving the first statement.

We now prove that the functor HomPer−1(Y/X)(M,−) is exact, i.e. M is projective in

Per−1(Y/X).
First, notice that by definition of Per−1(Y/X) we have

HomPer−1(Y/X)(M,N ) = HomDb(coh(Y))(M,N ) = Ext0
Y(M,N ) (2.2)

for any object N ∈ Per−1(Y/X).
Now, consider a short exact sequence

0→ E→ F → G → 0

in Per−1(Y/X). It corresponds to a distinguished triangle

E→ F → G → E[1]

in Db(coh(Y)). Therefore, by applying R HomY(M,−) and taking cohomology, we get
the long exact sequence

Exti(M, E)→ Exti(M, F)→ Exti(M, G)→ Exti+1(M, E).

By the first statement of this proposition, Exti
Y(M,N ) = 0 for i > 0 and any N ∈

Per−1(Y/X). So actually the above sequence reduces to the short exact sequence

0→ Ext0
Y(M, E)→ Ext0

Y(M, F)→ Ext0
Y(M, G)→ 0.

Then the observation (2.2) proves that HomPer−1(Y/X)(M,−) is an exact functor, i.e. M
is a projective object in Per−1(Y/X).

An analogous statement holds true for Per0(Y/X).

Proposition 2.3.8. If N ∈ V∨, then for all E ∈ Per0(Y/X) and for all i > 0 we have
Exti

Y(N , E) = 0. Therefore, N is a projective object in Per0(Y/X).

Proof. As in Proposition 2.3.7, it suffices to show that

Exti
Y(N , F[1]) = 0 and Exti

Y(N , T) = 0

for all i > 0 and for all F ∈ F0 and T ∈ T0.
By Lemma 2.3.3,

Exti
Y(N , F[1]) = Exti+1

Y (N , F) = 0
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for all i > 0 and
Exti

Y(N , T) = 0

for all i > 1. It remains to show the vanishing of Ext1
Y(N , T) = H1(Y,N ∨ ⊗OY T). Since

N = M∨ for M ∈ V and M is a vector bundle, there is a canonical isomorphism
N ∨ =M. By definition of V,M is generated by global sections, so there is a surjective
morphism

O⊕l
Y ↠M.

Tensoring with T we get an exact sequence

0→ K → T⊕l →M⊗OY T → 0.

As observed in Remark 2.3.4, both H1(Y, T) and H2(Y, K) vanish, therefore

Ext1
Y(N , T) = H1(Y,M⊗OY T) = 0.

The conclusion that N is a projective object in Per0(Y/X) follows by an analogous argu-
ment as the one used in Proposition 2.3.7.

Remark 2.3.9. The previous argument in Proposition 2.3.7 actually proved a stronger
result. Indeed, we proved that, forM ∈ V and E ∈ Per−1(Y/X),

HomPer−1(Y/X)(M, E) = H0(R HomY(M, E)).

and that
Hi(R HomY(M, E)) = 0 for i ̸= 0.

Therefore, R HomY(M, E) = H0(R HomY(M, E)) as objects in Db(R). In conclusion, we
obtained

HomPer−1(Y/X)(M, E) = R HomY(M, E)

in Db(R). Similarly, we get that for N ∈ V∨ and E ∈ Per0(Y/X),

HomPer0(Y/X)(N , E) = R HomY(N , E)

in Db(R).

Remark 2.3.10. The structure sheaf OY is by definition generated by global sections.
Moreover,O∨Y = OY, therefore the Remark 2.3.4 implies that H1(Y,O∨Y ) = 0. This proves
that OY belongs both to V and to V∨, hence by Propositions 2.3.7 and 2.3.8 it is both a
projective object in Per−1(Y/X) and in Per0(Y/X).

We want to characterize the projective generators in Perp(Y/X). First, we recall some
equivalent definitions of projective generators and their main properties.

Definition 2.3.11. Let C be an abelian category and let P ∈ C be a projective object. We
say that P is a projective generator if it satisfies one of the following equivalent conditions.

(a) If M ∈ C is such that Hom(P , M) = 0, then E = 0.

(b) Every object M ∈ C admits an epimorphism P⊕I ↠ M.

(c) If f ∈ Hom(M, N) is a nonzero morphism, then there exists g ∈ Hom(P, M) such
that f ◦ g ̸= 0.
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Proposition 2.3.12 ([Wil65, Theorem 2.3]). Let C be an abelian category. The following
properties are equivalent for an object P ∈ C.

(i) P is a projective generator.

(ii) For all objects M ∈ C, there is an equality M = ∑
f∈Hom(P ,M)

f (P).

(iii) If Q ∈ C is a projective object, then there exists another object Q′ ∈ C (which must
then be projective) such that

Q⊕Q′ ≃
⊕

I

P .

Remark 2.3.13. The case we are interested in is C = Perp(Y/X). In particular, we are
working in the derived category of coherent sheaves on a Noetherian scheme. In this
setting, the index set I can be taken to be finite, both in Definition 2.3.11(b) and in Propo-
sition 2.3.12(iii).

Lemma 2.3.14. Let f : Y → X be a projective morphism between Noetherian schemes
with fibers of dimension at most n, suppose that X is affine. Fix an ample line bundle L
on Y and a ∈ Z.

If M ∈ Db(coh(Y)) is such that Exti
Y(La+j, M) = 0 for all i and for 0 ≤ j ≤ n, then

M = 0.

Proof. Assume without loss of generality that a = −n. The ample line bundle L defines
a map Y → PN

X . Use the Koszul complex of a polynomial ring in N + 1 variables to
construct the following exact sequence of vector bundles on PN

X

0→ OPN
X
(−N − 1)→ · · · → OPN

X
(−u)(

N+1
u ) → · · · → OPN

X
→ 0.

Taking the inverse image on Y, we get an exact sequence

0→ L−N−1 → · · · → (L−u)⊕(
N+1

u ) → · · · → OY → 0.

Then, by taking the kernel at (L−n−1)⊕(
N+1
n+1), we get the exact sequence

0→ K → (L−n−1)⊕(
N+1
n+1) → · · · → (L−1)⊕N+1 → OY → 0,

which represents an element of Extn+1
Y (OY, K). But Extn+1

Y (OY, K) = 0 by Lemma 2.3.3,
so the extension is trivial.
On the other hand, Extn+1

Y (OY, K) = HomDb(coh(Y))(OY, K[n + 1]) = Ext1
Y(OY, K[n]), so

the above trivial extension can be seen as a direct sum in the derived category. This
proves that OY is a direct summand in Db(coh(Y)) of the complex

(L−n−1)⊕(
N+1
n+1) → · · · → (L−1)⊕N+1.

Dualizing and tensoring with L−n−p−1, we get that L−n−p−1 is a direct summand of

L•−p := (L−n−p)⊕N+1 → · · · → (L−p)⊕(
N+1
n+1).

Therefore, for an object Up ∈ Db(coh(Y)), there is an isomorphism

L•−p ≃ L−n−p−1 ⊕Up. (2.3)

We use this isomorphism to prove by induction on p that the following properties hold
for all p ≥ 0:
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(a) Exti
Y(Lj, M) = 0 for all 0 ≥ j ≥ −n− p,

(b) Exti
Y(L•−p, M) = 0 for all p ≥ 0.

We study first the case p = 0. Property (a) holds by hypothesis. For property (b), we
use the spectral sequence

Ep,q
1 = Exti

Y((L•0)j, M) =⇒ Exti
Y(L•0 , M).

Indeed, Exti
Y((L•0)j, M) = 0 for all i, j by hypothesis, so the second property is proven.

Suppose now p > 0. Using the isomorphism (2.3), we get

Exti
Y(L•−p, M) ≃ Exti

Y(L−n−p−1, M)⊕ Exti
Y(Up, M).

But Exti
Y(L•−p, M) vanishes by inductive hypothesis, thus proving Exti

Y(L−n−p−1, M) =
0. Joined with the inductive hypothesis, this proves property (a).

For property (b), we use once again the spectral sequence

Ep,q
1 = Exti

Y((L•−p−1)
j, M) =⇒ Exti

Y(L•−p−1, M),

where Exti
Y((L•−p−1)

j, M) vanishes by (a).

In conclusion, we proved Exti
Y(Lj, M) = 0 for all i and for all j ≤ 0. Applying this

with i = 0 and using the fact that L is ample, [Har13, §II, Corollary 5.18] implies that
M = 0.

Proposition 2.3.15. There exists a vector bundle P ∈ V which is a projective generator in
Per−1(Y/X) and whose dual P∨ is a projective generator in Per0(Y/X).

Proof. let L be an ample line bundle on Y generated by global sections and let r − 1 be
the rank of H1(Y,L∨) over R. We have the following isomorphisms

H1(Y,L∨)⊕r−1 ≃ Ext1
Y(L,OY)

⊕r−1 ≃ Ext1
Y(L,O⊕r−1

Y ).

Therefore, a set of r− 1 generators of H1(Y,L∨) gives rise to an extension

0→ O⊕r−1
Y → P0 → L → 0. (2.4)

Notice that P0 is a vector bundle, as it is an extension of vector bundles. Observe that P0
belongs to V, as we shall show now.

• By dualizing (2.4) and then taking the long exact sequence in cohomology, we get

H0(Y,OY)
⊕r−1 → H1(Y,L∨)→ H1(Y,P∨0 )→ 0.

In addition, there is an R-modules isomorphism H0(Y,OY)
⊕r−1 ≃ Rr−1. The first

map is then obtained by mapping the canonical generators of Rr−1 to the fixed
generators of H1(Y,L∨). In particular it is surjective, thus implying H1(Y,P∨0 ) = 0.
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• By taking the long exact sequence in cohomology obtained from (2.4) and tensoring
with OY, we get

H0(Y,OY)
⊕r−1 ⊗R OY → H0(Y,P0)⊗R OY → H0(Y,L)⊗R OY → 0.

Consider the following commutative diagram with exact rows

H0(Y,OY)
⊕r−1 ⊗R OY H0(Y,P0)⊗R OY H0(Y,L)⊗R OY 0

0 O⊕r−1
Y P0 L 0

Since OY and L are both globally generated, the first and last columns are actually
surjective. Therefore

H0(Y,P0)⊗R OY → P0

is surjective, i.e. P0 is generated by global sections. This proves that P0 ∈ V.

Put P = P0 ⊕ OY. Then P ∈ V and hence by Lemma 2.3.7 P is a projective object in
Per−1(Y/X).

We are left to show that P is a generator. Let E ∈ Per−1(Y/X) be such that
Exti

Y(P , E) = 0 for all i. Then in particular Exti
Y(OY, E) = 0 and Exti

Y(L, E) = 0 for
all i. Then the conclusion that P is a generator follows from Lemma 2.3.14. The proof for
P∨ is analogous.

Remark 2.3.16. Since determinant is multiplicative along short exact sequences, the vec-
tor bundle P constructed in Proposition 2.3.15 has the property

det(P) = det(P0) = L.

In particular, det(P) is ample.

Proposition 2.3.17. The projective objects in Per−1(Y/X) are exactly the objects in V. The
projective objects in Per0(Y/X) are exactly the objects in V.

Proof. We study the case of Per−1(Y/X). By Proposition 2.3.7, the objects in V are pro-
jective. Moreover, Proposition 2.3.15 shows that V contains a projective generator. But V
is closed under direct sums and direct summands, so Proposition 2.3.12(iii) shows that V
contains every projective object. The proof for Per0(Y/X) is the same.

We are finally ready to characterize the projective generators in Perp(Y/X).

IfM is a vector bundle of rank r on Y, we denote
∧rM by det(M).

Proposition 2.3.18. The projective generators in Per−1(Y/X) are the vector bundlesM ∈
V such that det(M) is an ample line bundle and such that OY is a direct summand of
someM⊕a. The projective generators in Per0(Y/X) are the vector bundles N =M∨ ∈
V∨ such thatM is a projective generator in Per−1(Y/X).

Proof. LetM be a projective generator in Per−1(Y/X). The fact that OY is a direct sum-
mand of M⊕a is clear. Indeed, OY is a projective object in Per−1(Y/X), so this is just
Proposition 2.3.12(iii). We then have to prove that det(M) is ample.

Let P be projective generator constructed in Proposition 2.3.15. Using again Proposi-
tion 2.3.12(iii), we find that

M⊕b = P ⊕P ′,

29



with b ∈N. Then
det(M)⊗b = det(P)⊗ det(P ′).

Notice that det(P) is ample by construction and det(P ′) is generated by global sections
since P ′ ∈ V. Then by [Har13, §II, Exercise 7.5.] det(M)⊗b is ample and hence by [Har13,
§II, Proposition 7.5.] det(M) is also ample.

Suppose now thatM ∈ V is as stated. SinceM ∈ V, we know that it is projective.
We prove that it is a generator. Let E ∈ Per−1(Y/X) be such that HomDb(coh(Y))(M, E) =
HomY(M, E) = 0. Then

Exti
Y(M, E) = 0 for all i ≥ 0,

since the case i > 0 follows from the fact thatM ∈ V and E ∈ Per−1(Y/X).

Using the spectral sequence

Ep,q
2 := Extp

Y(M, Hq(E)) =⇒ Extp+q
Y (M, E)

we get that
Exti

Y(M, Hj(E)) = 0 for all i, j.

On the other hand, if Hj(E) = 0 for all j, then E = 0 in Per−1(Y/X). In conclusion, it
suffices to show that if E ∈ coh(Y) is a coherent sheaf such that Exti

Y(M, E) = 0 for all i,
then E = 0.

Suppose then that E ∈ coh(Y). Considering E as an R-module and using Nakayama’s
Lemma, it suffices to prove that E/ME = 0 for all maximal ideals M ⊆ R. Indeed,

E/ME ≃ E/( f ∗(Ix)⊗OY E) ≃ E⊗OY f ∗Ox

for any closed point x ∈ X associated to M. If the restriction of E to each closed fiber of f
is zero, then E must be zero.

First notice that, since ME ⊆ E, we have HomY(M,ME) = 0. Moreover, by Noethe-
rianity of R, we can find a short exact sequence

0→ K → E⊕c →ME→ 0,

which yields the long exact sequence

0 = Ext1
Y(M, E⊕c)→ Ext1

Y(M,ME)→ Ext2(M, K) = 0

This proves that Ext1
Y(M,ME) = 0. Then, by Lemma 2.3.3, we conclude that

Exti
Y(M,ME) = 0 for all i ≥ 0.

By looking at the long exact Ext sequence obtained from

0→ME→ E→ E/ME→ 0

we can conclude that
Exti

Y(M, E/ME) = 0 for all i ≥ 0.

Let x ∈ X be the point whose defining ideal is M and let C ⊆ Y be fiber over x. Then we
have the cartesian square
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C Y

x X.

i

f |C f
j

Notice that E/ME = i∗(E|C) = i∗i∗E. Then

Exti
Y(M, E/ME) = Exti

Y(M, i∗i∗E) = Exti
C(i
∗M, i∗E) = Exti

C(M/MM, E/ME).

Therefore, it suffices to show that E|C = 0 if Exti
C(M|C, E|C) = 0 for all i. In conclusion,

we are left to prove that if X is the spectrum of a field and E is a coherent sheaf on Y such
that Exti

Y(M, E) = 0 for all i, then E = 0.
By Lemma 2.5.12, we have the short exact sequence

0→ Or−1
Y →M→ L → 0,

where L = det(M) is an ample line bundle generated by global sections. Since OY is a
direct summand ofM⊕a, the hypothesis Exti

Y(M, E) = 0 implies Exti
Y(OY, E) = 0 for all

i and therefore Exti
Y(L, E) = 0 for all i. Then we conclude E = 0 by applying Lemma

2.3.14.
The case of Per0(Y/X) is similar.

We now come to the main result of this section. We establish the existence of a derived
equivalence

Db(coh(Y)) ≃−−→ Db(A), (2.5)

where A is a k-algebra. The equivalence (2.5) is constructed to be t-exact, if Db(coh(Y)) is
endowed with the perverse t-structure and Db(A) with the standard t-structure. There-
fore, it restricts to an equivalence

Perp(Y/X)
≃−−→ mod(A)

between the hearts of the respective t-structures.
In particular, we need to construct two t-exact functors between the derived cate-

gories and to prove that they are equivalences. For the latter, we use the following general
statement, which can be found in [Bas68, §II, Theorem 1.3].

Proposition 2.3.19. Let R be a Noetherian commutative ring and let C be an R-linear
category such that HomC(A, B) is a finitely generated R-module for all A, B ∈ C.

Let P ∈ C be a projective generator and let A be the R-algebra A := EndC(P). Then
the functors

HomC(P ,−) : C −→ mod(A),

−⊗A P : mod(A) −→ C

define inverse equivalences, where mod(A) is the category of right finitely generated
A-modules.

Theorem 2.3.20. Assume that P is a projective generator in Perp(Y/X) and let A :=
EndY(P). In order to distinguish the R-module structure and the A-module structure on
P , we denote the latter by AP . Then the functors

R HomY(AP ,−) : Db(coh(Y)) −→ Db(A),

−
L
⊗A AP : Db(A)→ Db(coh(Y))
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define inverse equivalences of triangulated categories. These equivalences map the per-
verse t-structure of Db(coh(Y)) to the canonical t-structure of Db(A). Therefore, they
restrict to equivalences between Perp(Y/X) and mod(A).

Proof. We prove the second statement and derive the first by induction over triangles, as
in Lemma 2.3.21 below. Thus, we need to prove both that the functors map Perp(Y/X)
to mod(A) and vice versa and that the restrictions to these subcategories are actually the
functors appearing in Proposition 2.3.19, hence they are equivalences.

Notice that the functors R HomY(AP ,−) and R HomY(RP ,−) are both computed by
choosing an injective resolution in Db(coh(Y)). Therefore, R HomY(RP ,−) can be ob-
tained by composing R HomY(AP ,−) with the forgetful functor Db(A) → Db(R). In
conclusion, we can denote both of them simply by R HomY(P ,−).

It was already observed in Remark 2.3.9 that

HomPerp(Y/X)(P ,−) = R HomY(P ,−)|Perp(Y/X).

Actually, we observed this as an equality in Db(R), but as noted above it is also an equal-
ity in Db(A). Therefore, the statement regarding the first functor is proven.

Next we study the restriction of the functor −
L
⊗A AP to mod(A). Let M be a finitely

generated A-module. To compute the derived tensor product, we can use a free resolu-
tion F• of M consisting of finite rank modules. Then

M
L
⊗A AP = F• ⊗A AP . (2.6)

On the other hand, considering P as an object in the perverse category Perp(Y/X), we
can study the functors defined in Proposition 2.3.19. In order to keep in mind this dis-
tinction, denote the tensor product functor on Perp(Y/X) as

−p ⊗A AP : mod(A) −→ Perp(Y/X).

Following this notation, we can compute cohomology in the perverse category and in
particular use the same free resolution to compute perverse Tor as

pTorA
i (M,P) := pH−i(F•p ⊗A AP).

By Proposition 2.3.19, the functor−p⊗A AP is exact, thus implying that pTorA
i (M,P) = 0

for i > 0. But since F• is a complex of free modules, it is clear that

F• ⊗A AP = F•p ⊗A AP . (2.7)

Joining the relations (2.6) and (2.7), we deduce that

M
L
⊗A AP = F•p ⊗A AP .

But since −p ⊗A P is exact and does not need to be derived, actually

M
L
⊗A AP = Mp ⊗A AP .

This proves that −
L
⊗A AP restricted to mod(A) coincides with −p ⊗A AP . Therefore it

defines an equivalence between mod(A) and Perp(Y/X), as required.
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Lemma 2.3.21. Let C,D be triangulated categories endowed with t-structures
(D≥0,D≤0), (C≥0, C≤0). Denote the truncation functors by τC , τD and the hearts by
HC ,HD.
Suppose that for all objects X ∈ C and Y ∈ D there exist a, b ∈ N (depending on the
chosen objects) such that X ∈ D[a,b] and Y ∈ C [a,b].
If F : D → C is an exact functor mapping HD to HC such that F|HD : HD → HC is an
equivalence, then F is an equivalence.

Proof. We prove by induction on n = b− a that F|D[a,b] : D[a,b] → C [a,b] is an equivalence.
Since D[0,0] = HD and C [0,0] = HC , the first step of the induction is trivial.

For the inductive step, let X ∈ D[a,b] and consider the triangle

τD≤b−1X → X → τD≥bX.

Applying τD≤b we get
τD≤bτD≤b−1X → τD≤bX → τD≤bτD≥bX.

Observe that

• τD≤bτD≤b−1X = τD≤b−1X belongs to D[a,b−1]. Therefore, the inductive hypothesis ap-
plies.

• τD≤bτD≥bX belongs to D[b,b] = HD [b].

Since τD≤bX = X, this proves that F|D[a,b] is an equivalence.

We mention a final result that holds in the affine case, which will apply to the case
studied in Section 2.5 and which will prove useful in Section 2.6.

Lemma 2.3.22 ([Van04, Lemma 3.2.9]). Suppose that the ring R is finitely generated over
a field, or that it is a complete local ring containing a copy of its residue field. Suppose
moreover that X and Y are Gorenstein of pure dimension n. IfM is a vector bundle on
Y, then for any maximal ideal M in R we have depthM Γ(Y,M) ≥ n− 1. If in addition
H1(Y,M) = H1(Y,M∨) = 0, then Γ(Y,M) is a Cohen-Macaulay R-module.

2.4 General base
We come to the main result of the chapter, that is a global version of the derived

equivalence proved in Theorem 2.3.20.

We go back to the general hypothesis specified at the beginning of the chapter, so X
will be a Noetherian equidimensional scheme. In this setting, the role of the projective
generators is replaced by a local analogous.

Definition 2.4.1. An object P ∈ Perp(Y/X) is called a local projective generator if X admits
an open covering X = ∪iXi such that

• Xi is affine open;

• P| f−1(Xi)
is a projective generator in Perp( f−1(Xi)/Xi) for all i.

The following theorem is an immediate consequence of Theorem 2.3.20, proven by
restriction to the affine opens Xi.
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Theorem 2.4.2. Assume that P is a local projective generator in Perp(Y/X) and let A :=
f∗EndY(P). Then the functors

R f∗RHomY(P ,−) : Db(coh(Y)) −→ Db(coh(A)),

f−1(−)
L
⊗ f−1(A) P : Db(coh(A))→ Db(coh(Y))

define inverse equivalences of triangulated categories. These equivalences restrict to
equivalences between Perp(Y/X) and coh(A).

The last result needed to apply Theorem 2.4.2 is the existence of a local projective
generator. This can be proven under slightly stronger hypothesis.

Proposition 2.4.3. Assume that X is quasi-projective over a Noetherian ring S. Then
there exists a local projective generator P for Per−1(Y/X), such that the dual P∨ is a
local projective generator for Per0(Y/X).

Proof. Let X̄ be a projective S-scheme containing X as an open subset. The morphism f
factors as Y ↪→ PN

X → X. Define Ȳ as the closure of Y under the embedding Y ↪→ PN
X ↪→

PN
X̄ and the morphism f̄ : Ȳ → X̄ as Ȳ ↪→ PN

X̄ → X̄. We first construct a local projective
generator in Per−1(Ȳ/X̄).

Let L̄ be an f̄ -ample line bundle on Ȳ generated by global sections. Let a, b ∈ N be
big enough such that, setting Ē = OX̄(−a)⊕b, we have that

• there is a surjective morphism φ : Ē → R1 f̄∗(L̄−1),

• Exti
X̄(Ē , f̄∗L̄−1) = 0 for all i > 0.

Observe that

Ext1
Ȳ(L̄, f̄ ∗(Ē∨)) = Ext1

Ȳ( f̄ ∗Ē , L̄−1) = Ext1
X̄(Ē , R f̄∗L̄−1).

Consider the Leray spectral sequence

Ep,q
2 = Extp

X̄(Ē , Rq f̄∗L̄−1) =⇒ Hp+q(R HomX̄(Ē , R f̄∗L̄−1)).

The assumption Exti
X̄(Ē , f̄∗L̄−1) = 0 for i > 0 yields

Ext1
X̄(Ē , R f̄∗L̄−1) = H1(R HomX̄(Ē , R f̄∗L̄−1)) = HomX̄(Ē , R1 f̄∗L̄−1).

Therefore, the morphism φ gives an extension of sheaves on Ȳ

0→ f̄ ∗(Ē)∨ → P̄0 → L̄ → 0.

Restricting to Y ⊆ Ȳ, we get an extension of sheaves

0→ f ∗(E)∨ → P0 → L → 0.

On the inverse images in Y of the affine opens in X, this extension coincides with the
extension constructed in Proposition 2.3.15. Therefore P = P0 ⊕OY is a local projective
generator.
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2.5 The formal case
In this section, we will study a particular case, that is of interest because we are able

to find a more explicit expression for the projective generators.

Suppose that the base scheme X is an affine scheme X = Spec R, such that R a Noethe-
rian complete local ring with maximal ideal M. Suppose moreover that the residue field
k = R/M is an algebraically closed field and that k ⊆ R.

Let x ∈ X be the unique closed point (corresponding to the maximal ideal M) and let
C = f−1(x) ⊆ Y be the fiber over x. Under our general assumptions, C is either a single
point, if f is an isomorphism, or it is a curve contained in Y. Let Cred be the reduced
scheme structure on C.

Remark 2.5.1. Cred is a reduced connected projective curve over k. Therefore,
H0(Cred,OCred) = k.

Lemma 2.5.2. The first cohomology group of Cred vanishes, i.e., H1(Cred,OCred) = 0.

Proof. Let ICred ⊆ OY be the ideal sheaf of Cred. Since Y is Noetherian, this is a coherent
sheaf and therefore, by Lemma 2.1.2, Rq f∗ICred = 0 for all q ≥ 2 and R1 f∗ICred is sup-
ported at x. Moreover, R0 f∗ICred = f∗ICred is also supported at x by the definition of C.
Then, the Leray spectral sequence

Ep,q
2 = Hp(X, Rq f∗ICred) =⇒ Hp+q(X, ICred)

yields H2(Y, ICred) = 0. Since H1(Y,OY) vanishes by Lemma 2.3.4, the long exact coho-
mology sequence obtained from

0→ ICred → OY → i∗OCred → 0

gives H1(Cred,OCred) = H1(Y, i∗OCred) = 0.

Lemma 2.5.3. A reduced connected projective curve X over k of arithmetic genus 0 is a
tree of P1’s with normal crossing.

Proof. Let X = X1 ∪ · · · ∪ Xn be the decomposition of X in irreducible components. By
[Liu02, §7.5, ex. 5.2], pa(Xi) ≤ pa(X) = 0. On the other hand, Xi is an irreducible
projective curve over an algebraically closed field, so it has nonnegative arithmetic genus,
proving that pa(Xi) = 0 for all i. Then the formula in [Har13, §IV, ex 1.8] proves that the
normalization X̃i has arithmetic genus zero and that Xi has no singular points. This
proves in particular that Xi = X̃i is a P1. Let now X̃ be the normalization of X, i.e. X̃ =

X̃1 ⨿ · · ·⨿ X̃n. We use [Liu02, §7.5, Proposition 5.4] and the fact that k is algebraically
closed to get

pa(X) + n− 1 =
n

∑
i=1

pa(X̃i) + ∑
p∈Sing(X)

δp.

Under our assumptions, this becomes

∑
p∈Sing(X)

δp = n− 1.

This proves that the Xi’s form a tree with normal crossings, or equivalently that X is a
tree of P1’s.
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Therefore, the following theorem is proven.

Theorem 2.5.4. The curve Cred is a tree of P1’s with normal crossings.

Lemma 2.5.5. The curve C is Cohen-Macaulay (i.e., C has no embedded components) and
H0(C,OC) = k.

Proof. The ideal of C in Y is MOY, so we have the short exact sequence

0→MOY → OY → OC → 0. (2.8)

Since MOY is generated by global sections, the vanishing of H1(Y,OY) implies the van-
ishing of H1(Y,MOY). Then, the long exact sequence obtained from Formula (2.8) shows
that H0(C,OC) is a quotient of R by a proper ideal containing M, so it must be k. Any em-
bedded component of C would be zero-dimensional and hence would give rise to extra
sections. So such embedded components cannot exist.

Let (Ci)i=1,...,n be the irreducible components of C. By Theorem 2.5.4, each of the Ci’s
is a rational curve, i.e. a curve whose reduction is P1.

We want to use the Ci’s to compute the Picard group of Y. In order to do this, it will
prove useful to reduce to the formal completion of Y along the curve C. To study this
case, we will need the following algebraic result.

Lemma 2.5.6. Let A be a Noetherian ring and I ⊆ A an ideal. Let Â be the I-adic com-
pletion of A. Denote by π natural projection π : Â → A/I, which restricts to a group
homomorphism on the units π′ : (Â)∗ → (A/I)∗. Then ker π′ = 1 + I Â.

Proof. An element a ∈ Â can be represented as

a = ∑
i≥0

ai, a0 ∈ A, ai ∈ Ii for all i ≥ 1.

Notice that such a representation is unique if we require that ai ∈ Ii ∖ Ii+1. The elements
of Î = I Â are the ones with a0 = 0. Under this representation, π(a) is the class of a0 in
A/I.

Let a be an element of ker(π′), i.e. π(a) = 1. This means that a0 = 1 + x for some
x ∈ I. Then

a = 1 + x + ∑
i≥1

ai ∈ 1 + Î.

This proves that ker(π′) ⊆ 1 + Î.

On the other hand, using the above representation, it is clear that if a ∈ 1 + Î, then
π(a) = 1. In order to conclude the thesis, it suffices to show that 1+ Î ⊆ (Â)∗. Therefore,
consider

a = 1 + ∑
i≥1

ai.

We define recursively b = ∑i≥0 bi ∈ Â an inverse of a, as follows. For i = 0, let b0 = 1.
For i > 0, let

bi = −
i

∑
j=1

ajbi−j.
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Notice that it follows from the recursion that bi ∈ Ii, so b is a well defined element of Â.
Moreover, as a consequence of the definition we have

i

∑
j=0

ajbi−j = bi +
i

∑
j=1

ajbi−j = 0 for all i > 0.

Therefore

a · b =

(
∑
i≥0

ai

)
·
(

∑
i≥0

bi

)
= ∑

i≥0

(
i

∑
j=0

ajbi−j

)
= a0b0 = 1.

So b is an inverse of a in Â and the thesis is proven.

Remark 2.5.7. The previous lemma can be restated as the existence of a short exact se-
quence of groups

0→ I Â→ (Â)∗ → (A/I)∗ → 0. (2.9)

This is indeed the statement used in the proof of the following theorem.

Theorem 2.5.8. The map L 7→ (deg(L | C1), . . . , deg(L | Cn)) defines an isomorphism
Pic(Y) ≃ Zn.

Proof. Let Ŷ be the formal completion of Y along C. In particular, OŶ is obtained as the
completion of OY along the sheaf of ideals I = MOY. As observed in Formula (2.9), we
get a short exact sequence of sheaves

0→MOŶ → O
∗
Ŷ → O

∗
C → 0.

As in the proof of Lemma 2.5.5, we get that H1(Ŷ,MOŶ) = 0. This implies that Pic(Ŷ) =
Pic(C). By Theorem 2.5.4, we get that Pic(C) = Zn. On the other hand, Groethendieck’s
existence theorem [Stacks, Tag 089N, Theorem 76.42.11] yields Pic(Y) = Pic(Ŷ). So in
conclusion Pic(Y) = Zn. The fact that the isomorphism has the indicated form follows
easily by explicitly expressing all the indicated isomorphisms.

This result gives a natural choice of line bundles on Y. Indeed, we can find line bun-
dles (Li)i=1,...n such that deg(Li | Cj) = δi,j. More explicitly, these line bundles can be
realized via a choice of divisors. Fix for each i a point yi ∈ Ci not lying on any other Cj
or on any of the embedded components of Y (notice that by Lemma 2.5.5 the embedded
components are finite and zero-dimensional).

Theorem 2.5.9. For all i = 1, . . . n there exists a divisor Di on Y such that

Di ∩ Cj =

{
{yi} if i = j,
∅ otherwise.

Proof. First we observe that, for a closed subscheme D ⊆ Y, the connected components of
D are in one to one correspondence with the connected components of D ∩ C, or equiva-
lently that if D is connected then so is D ∩ C.

Indeed, since f is projective, we can use Grothendieck’s existence theorem, see for
example [Stacks, Tag 0885], to get an exact equivalence of categories

coh(D) −→ coh(D,M)

F 7−→ F̂ = lim←−F/Mn.
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Consider in particular the case F = OD. By definition, ÔD is supported in D ∩ C. So
if D ∩ C is disconnected, then ÔD decomposes non trivially as a direct sum. But then
OD must decompose non trivially as a direct sum as well. This proves that if D ∩ C is
disconnected, then so is D.

The previous observation allows us to define Di locally. Let Ui be an affine neighbor-
hood of yi. Then we can choose a nonzero divisor z ∈ Γ(Ui,OUi) such that V(z) ∩ Ci =
{yi}. Let D′ be closure of V(z) in Y and Di be the component of D′ containing yi. The
previous discussion shows that Di ∩ C = {yi}, so Di has the expected property.

Let Pic+(Y) and Pic++(Y) be the subgroups of Pic(Y), consisting of isomorphism
classes of line bundles that are respectively globally generated and ample.

Lemma 2.5.10. The following equalities hold.

Pic+(Y) = {L ∈ Pic(Y) | deg(L | Ci) ≥ 0 for all i},
Pic++(Y) = {L ∈ Pic(Y) | deg(L | Ci) > 0 for all i}.

Proof. Let L be globally generated. Since L is a line bundle, this is equivalent to L being
basepoint-free. But then the restrictions of L to the curves Ci are basepoint-free as well,
proving by [Har13, §IV.1, Lemma 1.2] that the degree of L is non negative along each of
the Ci’s.

Let L be a line bundle on Y that has nonnegative degree along each of the curves
Ci. By the previous constructions, L can be realized as OY(E), where E is a divisor E =

∑n
i=1 miDi, with mi ≥ 0 for all i. In particular, E is a closed subscheme of Y thus yielding

the short exact sequence

0→ OY → OY(E)→ OE(E)→ 0. (2.10)

Notice that E is finite over X. Indeed, f |E : E → X is the composition of a closed embed-
ding and a projective morphism, so it is proper. Moreover, it has finite fibers, since each
Di intersects C in a single point. Hence f |E is finite, proving that E is affine. This implies
that the support of OE(E) is affine, so OE(E) is generated by global sections. Then, us-
ing the vanishing of H1(Y,OY), the long exact sequence obtained from (2.10) proves that
OY(E) is globally generated, with an analogous argument as the one present in the proof
of Proposition 2.3.15.

Let L be an ample line bundle on Y. Then, since the closed immersion j : Ci ↪→ Y is
affine, we have that L|Ci = j∗(L) is ample on Ci. Therefore, deg(L | Ci) > 0 for all i.

Finally, suppose that L is a line bundle on Y with positive degree along all the Ci’s.
Applying [Kee03, Proposition 2.7] to the morphism f , in order to prove that L is ample
it suffices to show that L| f−1(p) is ample on f−1(p) for all p ∈ X. For p ̸= x this is
trivial, since f−1(p) is a single point. For p = x, we have to show that L|C is ample. But
the hypothesis is that L has positive degree on the irreducible components of C, so the
conclusion follows from [Liu02, §7.5, Proposition 5.5].

We now aim to classify the indecomposable projective objects in Per−1(Y/X) and
Per0(Y/X).

Lemma 2.5.11. Let M be a vector bundle of rank r on Y generated by global sections.
ThenM occurs in short exact sequences

0→ O⊕r−1
Y →M→ L → 0,

0→ L−1 → O⊕r+1
Y →M→ 0

where L is the determinant bundle L = det(M).
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Proof. Let Ji be the ideal sheaf in Y of the curve Ci. Notice that H0(Y,Ji) ⊊ R, since Ji is
a proper subsheaf of OY. So the long exact cohomology sequence obtained from

0→ Ji → OY → OCi → 0 (2.11)

yields H1(Y,Ji) = 0.
We claim that H1(Y,M⊗OY Ji) = 0. SinceM is globally generated, there is a surjec-

tive morphism H0(Y,M)⊗R OY →M. Tensoring with Ji we get a short exact sequence

0→ K → H0(Y,M)⊗OY Ji →M⊗OY Ji → 0.

The vanishing of H1(Y,Ji) implies the vanishing of the first cohomology group of the
central term. Moreover, H2(Y,K) vanishes by Lemma 2.3.3, so the claim is proven.

SinceM is flat over Y, tensoring (2.11) withM and taking cohomology, we get that

H0(Y,M)→ H0(Y,M⊗OY OCi)

is surjective. So generic sections ofM correspond to generic sections ofM⊗OY OCi .
Let φ : O⊕r−1

Y → M and θ : O⊕r+1
Y → M be defined by choosing generic sections of

M. We claim that they have maximal rank everywhere. It suffices to check the rank on
closed points, so it is enough to check it on the curves Ci’s. Notice moreover that, by
upper semi-continuity of the rank, it is enough to check it on the unreduced points of Ci.
In conclusion, we may suppose to be working on P1, where the claim is trivial.

Therefore coker(φ) and ker(θ) are line bundles. Clearly, they must be L and L−1

respectively.

Lemma 2.5.12. A vector bundleM belongs to V if and only if it occurs in a short exact
sequence

0→ O⊕r−1
Y →M→ L → 0, (2.12)

which is determined by a set of r− 1 generators of H1(Y,L−1), where L ∈ Pic+(Y). M
is uniquely determined by L = det(M) up to addition of copies of OY.

Dually, a vector bundle N belongs to V∨ if and only if it it occurs in a short exact
sequence

0→ N → O⊕r+1
Y → L → 0,

which is determined by a set of r + 1 generators of H0(Y,L), where L ∈ Pic+(Y). N is
uniquely determined by L = det(N ) up to addition of copies of OY.

Proof. We prove the first statement. The fact that everyM which occurs in a short exact
sequence (2.12) belongs to V is proven analogously to Proposition 2.3.15.

Suppose thenM ∈ V. By Lemma 2.5.11,M occurs in

0→ O⊕r−1
Y →M→ L → 0,

where L = det(M). First of all notice that L = det(M) is generated by global sections,
sinceM ∈ V. In order to show that such a sequence is determined by the choice of a set
of r− 1 generators of H1(Y,L−1), we proceed as in Proposition 2.3.15. Indeed, dualizing
and taking the long exact sequence in cohomology, we get

H0(Y,OY)
⊕r−1 ≃ Rr−1 → H1(Y,L−1)→ H1(Y,M∨) = 0,

proving the claim. We are left to show that M is determined by L = det(M) up to
addition of copies of OY. Notice that any set of generators of H1(Y,L−1) contains a
minimal set of generators, and that adding extra generators corresponds to adding free
summands toM, thus concluding the proof of the first statement.

The proof of the second statement is analogous.
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Therefore, the following proposition is proven.

Proposition 2.5.13. The map

φ : V→ Z× Pic+(Y)
M 7→ (rk(M), det(M))

is a group homomorphism, that is injective on isomorphism classes.

The injectivity of φ gives a way to find the indecomposable objects in V. Indeed,
defineM0 to be OY, and for i = 1, . . . , n defineMi to be the extension

0→ Ori−1
Y →Mi → Li → 0 (2.13)

associated to a minimal set of ri − 1 generators of H1(Y,L−1
i ).

Proposition 2.5.14. The Mi’s are indecomposable objects in V and every indecompos-
able object is isomorphic to some Mi. Moreover, for i > 1, the rank of Mi equals the
multiplicity of the curve Ci in C.

Proof. The indecomposability of M0 is trivial, so let i > 0. If Mi admits a decompo-
sition, it must be as Mi = O⊕a

Y ⊕M′, with M′ indecomposable such that det(M′) =
det(Mi) = Li. Clearly r′ := rk(M′) ≤ ri. By Lemma 2.5.12,M′ occurs in a short exact
sequence

0→ Or′−1
Y →M′ → Li → 0

determined by r′ − 1 generators of H1(Y,Li). Therefore r′ ≤ ri, proving r′ = ri and
M′ =M.

We now prove that theMi’s are the only indecomposable objects. Using the fact that
det(Mi) = Li and that the Li’s generate Pic(Y), we get that for anyM ∈ V there exists

R =M⊕a1
1 ⊕ · · · ⊕M⊕an

n

such that det(R) = det(M). But then, by Lemma 2.5.12, R andM must differ by a free
summand, proving that anyM ∈ V can be decomposed as a direct sum of theMi’s.

Finally, we prove the assertion on the ranks. By Lemma 2.5.9, L−1
i = OY(−Di). Con-

sider the short exact sequence

0→ OY(−Di)→ OY → ODi → 0.

The vanishing of H1(Y,OY) yields the exact sequence

R→ H0(Y,ODi)→ H1(Y,OY(−Di))→ 0,

where the first morphism is actually a ring homomorphism, so its image is not con-
tained in MH0(Y,ODi). This proves that ri − 1, i.e. the minimal number of generators
of H1(Y,OY(−Di)), is equal to r − 1, where r is the minimal number of generators of
H0(Y,ODi).
So ri = r. By Nakayama’s Lemma r is equal to dimk(H0(Y,ODi /MODi)). But this is the
intersection number C · Di, which is by definition of Di the multiplicity of Ci in C.

In Section 2.3, we introduced V to study Per−1(Y/X), and the dual V∨ to study
Per0(Y/X). It shouldn’t therefore be surprising that, while the Mi’s will come up in
the study of Per−1(Y/X), their duals will instead come up in the study of Per0(Y/X).

With this in mind, define Ni := M∨
i . By Lemma 2.5.12 Ni occurs in a short exact

sequence
0→ Ni → Ori+1

Y → Li → 0. (2.14)
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Theorem 2.5.15. The indecomposable projective objects in Per−1(Y/X) are theMi’s. The
projective generators in Per−1(Y/X) are of the form ⊕iM⊕ai

i with ai > 0 for all i.
Dually, the indecomposable projective objects in Per0(Y/X) are the Ni’s. The projec-

tive generators in Per0(Y/X) are of the form ⊕iN⊕bi
i with bi > 0 for all i.

Proof. By Prop.2.3.17, the objects in V are exactly the projective objects in Per−1(Y/X), so
by Prop.2.5.14 theMi’s are the indecomposable projective objects in Per−1(Y/X). There-
fore, any projective object is decomposed asM = ⊕iM⊕ai

i . By Proposition 2.3.18, such
anM is a projective generator if and only ifOY is a direct summand ofM, giving a0 > 0,
and det(M) is ample, giving via Lemma 2.5.10 that ai > 0 for i > 0.

The proof for Per0(Y/X) is analogous.

This theorem gives a natural choice of projective generators for Per−1(Y/X) and
Per0(Y/X). Indeed, we can take ⊕

i

Mi and
⊕

i

Ni.

Applying Theorem 2.3.20 using these projective generators, we get the following result.

Theorem 2.5.16 ([Van04, Theorem 3.5.6]). There are equivalences Per−1(Y/X) ≃ mod(A)
and Per0(Y/X) ≃ mod(Aop), where A is a finite R-algebra such that A/ rad(A) ≃ kn+1.

Proposition 2.5.17. The n + 1 simple objects in Per−1(Y/X) are S0 = OC and Si =
OCi(−1)[−1] for i = 1, . . . , n.

Proof. Notice that S0 is globally generated, so by Lemma 2.3.2 it belongs to T−1. For i > 0,
notice that f∗OCi(−1) is supported at x, but for any open U ⊆ X containing x we have

Γ(U, f∗OCi(−1)) = Γ( f−1(U) ∩ Ci,OCi)(−1)) = Γ(Ci,OCi(−1)) = 0,

so actually f∗OCi(−1) = 0 and OCi(−1) ∈ F−1. This proves that Si belongs to
Per−1(Y/X) for all i.

To prove thesis, it suffices to show that

HomPer−1(Y/X)(Mi,Sj) = HomDb(coh(Y))(Mi,Sj) = δi,j · k.

Suppose i = 0 and j = 0. Then

HomDb(coh(Y))(OY,OC) = HomY(OY,OC) = HomC(OC,OC) = H0(C,OC) = k.

Suppose i = 0 and j > 0. Then

HomDb(coh(Y))(OY,OCj(−1)[1]) = Ext1
Y(OY,OCj) = Ext1

Cj
(OCj ,OCj(−1))

= H1(Cj,OCj(−1)).

By Serre duality
H1(Cj,OCj(−1)) = H0(Cj,OCj(−1)) = 0.

Suppose i > 0 and j = 0. Notice that by Lemma 2.3.3, H2(Y,M) vanishes for any co-
herent sheafM, and therefore H1(Y,−) is right exact on sequences of coherent sheaves.
This proves that if M is a finitely generated R-module, then

H1(Y,L−1
i ⊗R M) = H1(Y,L−1

i )⊗R M. (2.15)
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Indeed, M is realized as the cokernel of a homomorphism of free R-modules, and it
is clear that the functors H1(Y,L−1

i ⊗R −) and H1(Y,L−1
i ) ⊗R − coincide on free R-

modules, so by right exactness they must yield the same cokernel. Applying (2.15) with
M = R/M, we get that a minimal system of generators for H1(Y,L−1

i ) corresponds to a
base over k of

H1(Y,L−1
i ⊗R R/M) = H1(Y,L−1

i ⊗OY OC) = Ext1
Y(Li,OC).

Applying HomY(−,OC) to the short exact sequence (2.13) obtained by choosing a mini-
mal set of generators H1(Y,L−1

i ), we get

0→ HomY(Li,OC)→ HomY(Mi,OC)→ HomY(Ori−1
Y ,OC)→ Ext1(Li,OC).

By the above observations, the last morphism is actually an isomorphism, so

HomY(Li,OC)→ HomY(Mi,OC)

must be an isomorphism as well. In conclusion,

HomY(Mi,OC) = HomY(Li,OC) = HomC(OC(Di),OC) = H0(C,OC(−Di)).

But H0(C,OC(−Di)) is a proper ideal of H0(C,OC) = k, so it must be zero.
Lastly, suppose i > 0 and j > 0. Then

HomDb(coh(Y))(Mi,OCj(−1)) = Ext1
Y(Mi,OCj(−1)).

In the long exact sequence obtained from (2.13) by applying HomY(−,OCj(−1)), there
are two vanishing terms:

HomY(Ori−1
Y ,OCj(−1)) = HomCj(OCj ,OCj(−1))ri−1 = H0(Cj,OCj(−1))ri−1 = 0,

Ext1
Y(O

ri−1
Y ,OCj(−1)) = Ext1

Cj
(OCj ,OCj(−1))ri−1 =

H1(Cj,OCj(−1))ri−1 = H0(Cj,OCj(−1))ri−1 = 0.

So we get an isomorphism between Ext1
Y(Mi,OCj(−1)) and Ext1

Y(Li,OCj) =

Ext1
Cj
(L, |Cj,OCj(−1)). For i ̸= j, Li|Cj vanishes. For i = j, we get

Ext1
Cj
(L, |Cj,OCj(−1)) = Ext1

Cj
(OCj(1),OCj(−1)) = H1(Cj,OCj(−2)) = H0(Cj,OCj) = k,

concluding the proof.

Symmetrically, we can prove an analogous result for Per0(Y/X).

Proposition 2.5.18. The n + 1 simple objects in Per0(Y/X) are S0 = ωC[1] and Si =
OCi(−1) for i = 1, . . . , n.
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2.6 Birational Geometry
In this section, we apply the equivalence proven in Section 2.4 to the study of certain

birational morphisms.
First, we introduce an affine analogous of the sheaves Mi and Ni defined in (2.13).

Let P be an n-dimensional complete local ring, with n ≥ 3. Let R be a normal integral
Gorenstein P-algebra, which is a free P-module of rank 2. The class group of R is the
group Cl(R), whose elements are isomorphism classes of reflexive rank 1 R-modules,
with product defined by

I · J = (I ⊗R J)∨∨.

Let I be a reflexive R-module of depth ≥ n− 1. Notice that then

Exti
R(I, R) = 0 (2.16)

for all i ≥ 2. Consider the following short exact sequences

0→ R⊕r−1 → M→ I → 0, (2.17)

0→ N → R⊕s+1 → I → 0, (2.18)

where (2.17) is obtained by choosing a set of r − 1 generators of Ext1
R(I, R). Taking the

long exact sequences obtained by applying HomR(−, R), condition (2.16) immediately
implies

Exti
R(M, R) = 0 for all i ≥ 2 and Exti

R(N, R) = 0 for all i ≥ 1.

Actually, it turns out that, due to the construction of (2.17), Ext1
R(M, R) vanishes as well.

Indeed, the long exact sequence in degree one is

HomR(R, R⊕r−1) = R⊕r−1 → Ext1
R(I, R)→ Ext1

R(M, R)→ 0.

By definition, the homomorphism R⊕r−1 → Ext1
R(I, R) is surjective, thus implying the

vanishing of Ext1
R(M, R). In conclusion,

Exti
R(M, R) = Exti

R(N, R) = 0 for all i ≥ 1. (2.19)

Notice that, since R is Gorenstein, R is a canonical R-module, so condition (2.19) im-
plies that M and N are maximal Cohen-Macaulay R-modules (see [EJ00, §9.5.]). Using a
global version of Lemma 2.5.12, we get that M and N are uniquely determined by I up
to addition of free summands. Denote by M(I) and N(I) the modules obtained from M
and N respectively, after deleting the free summands.

Proposition 2.6.1. In the described situation, there is an isomorphism N(I) ≃ M(I−1).

Proof. First of all notice that, since R is free over P, for all R-modules M we have

depthR(M) = depthP(M).

Moreover, M is reflexive over R if and only if it is reflexive over P.
The module I has rank 1 over R, therefore it has rank 2 over P. Now we consider

R⊗P I, which has both a natural P-module and R-module structure. In particular, as a
P-module it is isomorphic to I ⊕ I, so

depthP(R⊗P I) = depthP(I) = depthR(I) ≥ n− 1.
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Moreover, since I is reflexive, it follows that R⊗P I is reflexive over P and hence over R.
Notice that

rkR(R⊗P I) = rkP(I) = 2.

Let K be the kernel of the natural R-modules homomorphism R⊗P I → I, so we have
the short exact sequence

0→ K → R⊗P I → I → 0.

As observed, R ⊗P I and I are both reflexive, so K is as well (see [Stacks, Tag 0AUY]).
By additivity of the rank along short exact sequences, we get that rkR(K) = 1. Denote

by det(M) the class of
(∧rk M M

)∨∨
in Cl(R). Then determinant is multiplicative along

short exact sequences and therefore

K · I = det(R⊗P I).

Since P is regular local, we have projdimP(I) = 1. But R is flat as a P-module and hence
projdimR(R⊗P I) = 1. By taking a free resolution of length one and using multiplicativ-
ity of the determinant, we get

det(R⊗P I) = R.

So K = I−1 in Cl(R).
Consider the short exact sequence (2.18). By possibly adding free summands, we can

construct a commutative diagram

0 N R⊕s+1 I 0

R⊗P I I 0

0

.

Since projdimR(R⊗P I) = 1, we can extend the diagram as follows

0 0

R⊕s−1 R⊕s−1

0 N Rs+1 I 0

0 I−1 R⊗P I I 0.

0 0

Taking the long exact sequence obtained by applying HomR(−, R) to the left-most verti-
cal sequence, we see, using that Ext1

R(N, R) = 0, that such sequence is obtained by choos-
ing a set of generators for Ext1

R(I−1, R). This proves that, after deleting free summands,
N = M(I−1). Therefore N(I) = M(I−1).
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Lemma 2.6.2. Let f : Y → X be a projective birational morphism between normal Noethe-
rian schemes. Suppose that the exceptional locus of f has codimension at least two in Y.
Then f∗ restricts to an equivalence between the category of reflexiveOY-modules and the
category of reflexive OX-modules.

Proof. Without loss of generality we may assume X and Y to be integral. Let E ⊆ Y be the
exceptional locus of f , which by hypothesis has codimension at least 2 in Y. By [Liu02,
§4.4, Corollary 4.3] f (E) has codimension at least 2 in X. Let U, V be respectively Y \ E
and X \ f (E). Since

f |U : U → V

is an isomorphism, f∗ clearly defines an equivalence between the category of reflexive
OU-modules and the category of reflexiveOV-modules. To conclude the proof, it suffices
to show that the immersions

i : U ↪→ Y, j : V ↪→ X

restrict to equivalences on the respective categories of reflexive modules.
We consider i, the conclusion for j is clearly analogous. In particular, we show that

if F is reflexive on Y, then F|U is reflexive and i∗(F|U) is naturally isomorphic to F .
Symmetrically, we show that if G is reflexive on U then i∗G is reflexive on X, while it is
clear that (i∗G)|U = G.

Since U is open in Y, taking the dual commutes with restricting to U. Then it is trivial
that F reflexive implies F|U reflexive. The fact that i∗(F|U) is naturally isomorphic to F
is [Har80, Proposition 1.6].

The last thing left to prove is that if G is reflexive on U, then i∗G is reflexive on Y.
Notice that (i∗G)∨∨ is reflexive, so by the first case there is a natural isomorphism

(i∗G)∨∨ ≃ i∗((i∗G)∨∨|U).

As observed, restricting commutes with taking the dual, so the right-hand side is just

i∗((i∗G)|∨∨U ) = i∗(G∨∨),

which is i∗G since G is reflexive. Therefore (i∗G)∨∨ = i∗G, as claimed.

Let f : Y → X be a projective birational morphism between Noetherian schemes such
that the exceptional locus of f has codimension at least 2 in Y. Suppose moreover that Y is
normal Gorenstein and that X = Spec(R) is affine, where R is a normal complete local k-
algebra with residue field k and with a canonical hypersurface singularity of multiplicity
two. It follows that R f∗OY = OX, so the situation falls under the case studied in Section
2.5.

Under these hypotheses, Y is integral and therefore the group Cl(Y) of classes of
Weil divisors is isomorphic to the group of isomorphism classes of coherent reflexive
OY-modules of rank 1 (see [Stacks, Tag 033H, Tag 0EBK]). Then the previous lemma
shows that

Cl(Y) ≃ Cl(R). (2.20)

On the elements of Pic(Y), this identification maps a line bundle L to its global sections.
Therefore, by Lemma 2.3.22, the elements of Pic(Y) are mapped to reflexive R-modules
of depth at least n− 1.

Consider the OY-modules Li, Mi and Ni defined in Section 2.5. By Lemma 2.3.22,
the R-modules Γ(Y,Mi) and Γ(Y,Ni) are Cohen-Macaulay. Put Ii = Γ(Y,Li). As noticed
above, the Ii’s are reflexive R-modules of rank 1 and depth at least n− 1.
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For i = 1, . . . , n put Mi = M(Ii) and Ni = N(Ii), for i = 0 put M0 = N0 = R. The
following lemma gives a link between Section 2.5 and the construction studied in the first
part of this section.

Lemma 2.6.3. We have Mi = Γ(Y,Mi) and Ni = Γ(Y,Ni) for all i = 0, . . . , n.

Proof. The case i = 0 is trivial, so we suppose i > 0. We study the first equality. Since
H1(Y,OY) vanishes, the long exact sequence obtained from (2.13) is

0→ Rri−1 → Γ(Y,Mi)→ Ii → 0. (2.21)

Applying HomR(−, R) to (2.21) and taking the long exact Ext sequence, we see that
the sequence (2.21) is obtained by choosing ri − 1 generators for Ext1

R(Ii, R). Therefore
Γ(Y,Mi) is obtained from Mi by adding free summands. Since the equivalence (2.20)
is obtained by taking global sections and the Mi’s are indecomposable by Proposition
2.5.14, we get that the modules Γ(Y,Mi) are indecomposable. Therefore, Γ(Y,Mi) = Mi.

We now study the second equality. As before, taking the cohomology sequence of
(2.14) and using that H1(Y,Ni) = 0, as Ni ∈ V∨, we get

0→ Γ(Y,Ni)→ Rri+1 → Ii → 0.

Therefore Γ(Y,Ni) is obtained from Ni by adding a free summand. As before, the inde-
composability ofNi implies that of Γ(Y,Ni). So Γ(Y,Ni) = Ni, concluding the proof.

In the last part of this chapter, we apply the the proven equivalence (Theorem 2.4.2)
to the study of flops.

Definition 2.6.4. Let f : Y → X be a projective birational morphism such that the excep-
tional locus of f has codimension at most two in Y and let D be an f -ample divisor on Y.
We say that a projective birational morphism f+ : Y+ → X is a flop of f if the exceptional
locus of f+ has codimension at most two and the strict transform E of D in Y+ is such
that −E is f+-ample.

We go back to the case under study. The morphism f : Y → X admits a flop f+ : Y+ →
X. We can give an explicit construction of f+. Since R is a complete k-algebra with a
canonical hypersurface singularity of multiplicity two, we have

R = k[[x1, . . . , xn+1]]/(x2
1 + f (x2, . . . , xn)).

Let σ : X → X be defined by (x1, x2 . . . , xn+1) 7→ (−x1, x2, . . . xn+1). Then Y+ = Y and
f+ = σ ◦ f , see [Kol89, Example 2.3]. To distinguish between Y and Y+, we denote the
fiber over x in the latter as C+, the components of C+ as C+

i and the divisors defined in
Theorem 2.5.9 as D+

i .
Applying (2.20) both to f and f+ we get canonical identifications

Cl(Y) = Cl(R) = Cl(Y+).

In particular, Li ∈ Pic(Y) is identified with L−1
i ∈ Pic(Y+). Indeed, as shown in [Kol89,

Example 2.3], σ induces the endomorphism I 7→ I−1 on Cl(R). Therefore, L+
i = L−1

i and
I+i = I−1

i .

Proposition 2.6.5. In the situation under study, M+
i = Ni and N+

i = Mi.
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Proof. It suffices to use Proposition 2.6.1. Indeed,

M+
i = M(I+i ) = M(I−1

i ) = N(Ii) = Ni,

N+
i = N(I+i ) = N(I−1

i ) = M(Ii) = Mi,

proving the thesis.

Finally, we can prove more general results on flops by reduction to the formal case.

Theorem 2.6.6. Let f : Y → X be a projective birational morphism between normal k-
varieties of dimension n ≥ 3, such that the exceptional locus has codimension at least 2
in Y. Suppose that X has hypersurface singularities of multiplicity at most two. Then the
morphism f admits a unique flop f+ : Y+ → X. More explicitly, there exists a unique
morphism f+ : Y+ → X such that the following hold.

1. Y+ is a normal k-variety and f+ : Y+ → X is a birational projective morphism. The
morphisms f and f+ have fibers of the same maximal dimension. The exceptional
locus of f+ has codimension at most 2 in Y+. Moreover, if Y is Gorenstein, then so
is Y+.

2. Using the isomorphism proven in Lemma 2.6.2, we get identifications

Cl(Y) ≃ Cl(X) ≃ Cl(Y+). (2.22)

In particular, (2.22) restricts to an isomorphism between Pic(Y) and Pic(Y+).

3. If E is an f -nef (resp. f -ample) divisor on Y and E+ is its strict transform on Y+,
then −E+ is f+-nef (resp. f+-ample).

Proof. Let D an f -ample Cartier divisor on Y. Via f we can identify it with a Weil di-
visor on X, which we still call D. Notice that, by [Kol89, Def 2.1], if the flop f+ exists
then it is determined uniquely by D, therefore it is unique. So we only have to prove
existence. Moreover, by [KM98, Corollary 6.7], it suffices to prove existence locally, so we
may suppose X to be affine.

By [KM98, Corollary 6.4.(b)], the flop f+ exists if and only if the sheaf S =⊕
nOX(−nD) is a sheaf of finitely generated OX-algebras. In such a case, Y+ = ProjS .

According to [KM98, Proposition 6.6], it suffices to check this condition on the comple-
tion of the closed points of X. Therefore, we can restrict the study to the formal case
X = Spec(R), where R is a complete k-algebra with hypersurface singularities of multi-
plicity 1 or 2.

By the construction given above, in this case the flop Y+ exists and we have an explicit
expression. In particular, it is easy to check that the conditions 1, 2 and 3 are verified.
Since the proprieties hold when passing to the completion of the closed points, they hold
in the general case as well, so the flop exists and has the desired properties.

Theorem 2.6.7. Let f : Y → X be a projective birational morphism between normal,
quasi-projective, Gorenstein k-varieties dimension n ≥ 3. Suppose that the fibers of f
have dimension at most 1 and that the exceptional locus of f has codimension at least 2
in Y. Suppose moreover that X has canonical hypersurface singularities of multiplicity at
most 2. Let f+ : Y+ → X be the flop of f . Then, there is an equivalence of triangulated
categories

Db(coh(Y)) ≃ Db(coh(Y+)),

which restricts to an equivalence

Per−1(Y/X) ≃ Per0(Y+/X).
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Proof. According to Proposition 2.4.3, there exists a vector bundle P on Y which is a local
projective generator for Per−1(Y/X). By Lemma 2.3.22, f∗P is Cohen-Macaulay on X
and hence reflexive, see [BH98, Proposition 1.4.1].

Therefore, applying Lemma 2.6.2 to f+, we get that f∗P corresponds to a reflexive
OY+-module Q+.

We now want to show thatQ+ is a local projective generator for Per0(Y+/X). Clearly,
it suffices to show it by restricting to an affine cover of X, so we may suppose X =
Spec(R). In particular, we may suppose to be in the instance of the formal case discussed
in the first part of the chapter. Then, by Theorem 2.5.15, we have

P =
⊕

i

M⊕ai
i .

Lemma 2.6.3 then yields f∗P =
⊕

i M⊕ai
i . By Lemma 2.6.5, this coincides with

⊕
i(N+

i )⊕ai .
Using now Lemma 2.6.3 with f+, we then get that

Q+ =
⊕

i

(N+
i )⊕ai .

Therefore, Theorem 2.5.15 proves that Q+ is a projective generator for Per0(Y+/X).
Going back to the general case, we want to use the local projective generators P and

Q+ in the equivalences proven in Theorem 2.4.2. The choice of Q+ yields

f∗EndY(P) = f+∗ EndY+(Q+).

We denote this sheaf of OX-algebras by A. Applying Theorem 2.4.2 both to f and f+, we
get a chain of equivalences

Db (coh(Y))
R f∗RHomY(P ,−)−−−−−−−−−→ Db (coh(A))

( f+)−1(−)
L
⊗

( f+)−1(A)Q
+

−−−−−−−−−−−−−→ Db (coh(Y+)
)

,

which restrict to equivalences

Per−1(Y/X)→ coh(A)→ Per0(Y+/X).

This concludes the proof.
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Appendix A

Morita Theory

We recall the basic results concerning Morita Theory of finite dimensional algebras.
Two k-algebras A and B are said to be Morita equivalent if their module categories mod(A)
and mod(B) are equivalent. Therefore, the key idea behind Morita Theory is to study not
the algebras themselves, but rather their module categories.

We follow [AC20]. Let A be a finite dimensional k-algebra. In what follows, by an A-
module we mean a finitely generated (or equivalently finite dimensional) right A-module.

Definition A.0.1. The radical rad(A) of the ring A is the ideal obtained as the intersection
of all the maximal right ideals of A. Similarly, the radical rad(M) of an A-module M is
the submodule obtained as the intersection of all the maximal submodules of M.

The radical of A has several useful properties.

Proposition A.0.2 ([Bar15, §3.6; AC20, §I.1.2; Lam91, §4] ). The following properties hold
for rad(A):

(a) The radical is a two-sided ideal, characterized as follows

rad(a) = {a ∈ A | 1− ax is right invertible for all x ∈ A}
= {a ∈ A | 1− xa is left invertible for all x ∈ A}.

(b) The radical is a nilpotent ideal, that is rad(A)n = 0 for n big enough.

(c) The quotient A/ rad(A) is a semisimple algebra.

(d) An element a ∈ A belongs to rad(A) if and only if it annihilates every simple A-
module.

Lemma A.0.3. If M is an A-module, then rad(M) = M · rad(A).

Proof. We prove the two inclusions. Let N ⊆ M be a maximal submodule. Then
the quotient M/N is a simple A-module, so by Proposition A.0.2(d) it is annihilated
by rad(A). This proves that M rad(A) ⊆ N for all maximal submodules N, hence
M rad(A) ⊆ rad(M).

By Proposition A.0.2(c) the algebra A/ rad(A) is semisimple. Then by [Rot09,
Proposition 4.5] all A/ rad(A)-modules are semisimple. In particular M/M rad(A) is
a semisimple A/ rad(A)-module, and hence it is a semisimple A-module, see [Lam91,
Prop 4.8]. This proves that rad(M) ⊆ M rad(A).
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We now study the indecomposable A-modules. We will focus in particular on the
indecomposable projective A-modules. Clearly, these are the modules which appear in a
decomposition of AA, i.e. the ring A seen as a right A-module.

Proposition A.0.4 ([AC20, Prop I.1.13]). An A-module M is indecomposable if and only
if its endomorphism algebra EndA(M) is local.

Theorem A.0.5 ([AC20, Theorem I.1.14]). An A-module M admits a decomposition

M = M1 ⊕ · · · ⊕Mn,

where the Mi’s are indecomposable. Such a decomposition is unique, up to isomorphism
and reordering.

Lemma A.0.6. Let B1, . . . Bn ⊆ A be right ideals. Then A admits a decomposition A =
B1 ⊕ · · · ⊕ Bn as a right A-module if and only if there exist e1, . . . en ∈ A orthogonal
idempotents such that 1 = e1 + · · ·+ en and Bi = ei A.

Proof. Suppose A decomposes as A = B1 ⊕ · · · ⊕ Bn. Therefore, there exist ei ∈ Bi such
that 1 = e1 + · · ·+ en. Then

ei = 1 · ei =
n

∑
j=1

ej · ei.

Notice that ej · ei ∈ Bj · ei ⊆ Bj. Since the direct sum yields a unique decomposition, we
get

e2
i = ei and ej · ei = 0 for i ̸= j.

We are left to show that Bi = ei A. Since ei ∈ Bi and Bi is a right ideal, the inclusion
ei A ⊆ Bi is trivial. For the other inclusion, consider b ∈ Bi. Then

b = 1 · b =
n

∑
j=1

ej · b.

Once again, by uniqueness of the decomposition we get

ei · b = b and ej · b = 0 if j ̸= i.

This proves B ⊆ ei A.
Suppose now that there exist e1, . . . en ∈ A with the stated properties and set Bi = ei A.

We need to show that A = B1 + · · · + Bn and that Bi ∩ Bj = {0} if i ̸= j. For the first
equality, it suffices to notice that, for all a ∈ A,

a = 1 · a =
n

∑
1=0

ei · a.

For the second equality, let x ∈ Bi ∩ Bj. Then there exist a, b ∈ A such that

x = ei · a = ej · b.

Therefore,
x = ei · a = e2

i · a = ei · x = eiej · b = 0 · b = 0.

This concludes the proof.
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The idempotents ei’s appearing in the previous lemma are orthogonal, meaning eiej =
δi,j, and complete, meaning 1 = e1 + . . . en. The Bi’s are indecomposable if and only if
the ei’s are also primitive, meaning that any decomposition ei = e′i + e′′i with e′i and e′′i
idempotent yields e′i = 0 or e′′i = 0, see [AC20, §I.1.3; Bar15, Corollary 4.18]. Therefore, a
set {e1, . . . en} of complete primitive orthogonal idempotents yields a decomposition

AA = P1 ⊕ · · · ⊕ Pn, (A.1)

where Pi = ei A and the Pi’s are indecomposable projectives. Moreover, any indecompos-
able projective A-module is isomorphic to Pi for some i.

Lemma A.0.7 ([Bar15, Example 4.32]). The quotient Pi/ rad Pi is a simple A-module.

Proposition A.0.8. Let M be an A-module and e ∈ A an idempotent element. Then
HomA(eA, M) = Me.

Proof. A morphism f : eA→ M is uniquely determined by f (e) = m. Notice that

m = f (e) = f (e · e) = f (e) · e = m · e. (A.2)

This proves that m belongs to Me. On the other hand, let m = n · e ∈ Me. Then m satisfies
the property (A.2) and thus defines a homomorphism eA→ M. Indeed,

m = n · e = n · e2 = m · e.

This concludes the proof.

Corollary A.0.9. If ex, ey ∈ A are idempotent elements, then ex Aey = HomR(ey A, ex A).

Definition A.0.10. The ring A is basic if in (A.1) the Pi’s are not isomorphic, i.e. Pi ̸≃ Pj if
i ̸= j.

Remark A.0.11 ([AC20, §I.2.2]). If A is basic, then A/ rad(A) is a product (possibly
noncommutative) of fields. In particular, if the field k is algebraically closed, then
A/ rad(A) ≃ kn, where n is the number of indecomposable modules appearing in the
decomposition of A.

The property highlighted by the previous remark proves to be useful.

Definition A.0.12. A k-algebra A is elementary if A/ rad(A) ≃ kn.

Remark A.0.11 can be then rephrased as follows.

Proposition A.0.13. A basic algebra over an algebraically closed field is elementary.

As we will see later, a class of algebras of great importance is formed by the bounded
quiver algebras. We give the necessary definitions.

Definition A.0.14. A quiver is an oriented graph. Formally, a quiver Q constitutes of a
quadruple Q = (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is the set of arrows, s and t
are functions Q1 → Q0 determining the source and the target of each arrow.
A path on Q is a finite sequence of composable arrows of Q. Formally, a path is a sequence

(y|αn|αn−1| . . . |α1|x),

where x, y ∈ Q0 are vertices and α1, . . . , αn ∈ Q1 are arrows such that s(α1) = x, t(αi) =
s(αi+1) for all i = 1, . . . n− 1 and t(αn) = y.
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Notice that, under the above definition, we also have for each vertex x ∈ Q0 the lazy
path

(x|x).

It is the neutral element with respect to the obvious composition of paths.

Definition A.0.15. The path algebra kQ of the quiver Q is the algebra generated by the
paths on the quiver Q. The product of two paths is defined as their composition if possi-
ble, or it is zero otherwise.

In kQ, let kQ+ be the ideal generated by the arrows.

Definition A.0.16. An ideal I ⊆ kQ is admissible if there exists m ≥ 2 such that

(kQ+)m ⊆ I ⊆ (kQ+)2.

The couple (Q, I) is called a bound quiver and the algebra A = kQ/I is called a bound
quiver algebra.

Proposition A.0.17 ([AC20, Prop I.2.7.]). Let Q be a finite connected quiver and I ⊆ kQ
be an admissible ideal. Then the algebra kQ/I is a basic connected finite dimensional
algebra.

We have thus seen how to construct a finitely dimensional algebra starting from a
finite quiver. Symmetrically, we can construct a quiver associated to a k-algebra A.

Definition A.0.18. Let A be an elementary algebra and let {e1, . . . , en} be a set a of prim-
itive complete orthogonal idempotents in A. The ordinary quiver QA of A is defined as
follows.

• The vertices of QA are {e1, . . . , en}.

• The number of arrows going from ei to ej equals the dimension over k of the ideal

ei

(
rad(A)

rad2(A)

)
ej.

Lemma A.0.19. [AC20, Lemma I.2.10.] The quiver QA does not depend on choice of the
primitive complete orthogonal idempotents {e1, . . . , en}.

The link between bound quiver algebras and their ordinary quivers is given by the
following results.

Lemma A.0.20. [AC20, Lemma I.2.11.] If A = kQ/I is a bound quiver algebra, then
QA = Q.

Theorem A.0.21. [AC20, Theorem I.2.13.] If A is an elementary finite dimensional k-
algebra, then there exists an admissible ideal I ⊆ kQA such that A ≃ kQA/I. Namely,
every elementary finite dimensional algebra is a bound quiver algebra.

A way to encode the structure of the category mod A in a quiver is via the Auslader-
Reiten quiver. Before defining it, we mention the notion of radical morphism and list some
properties.

52



Definition A.0.22. If M and N are A-modules, the radical radA(M, N) is the set of all the
homomorphisms f ∈ HomA(M, N) such that for any section s : M′ → N and retraction
r : N → N′ the composition r f s : M′ → N′ is not an isomorphism.

Remark A.0.23. [AC20, Lemma II.1.6.] The set of all radical morphism form an ideal in the
category mod A, meaning that it is closed under left and right composition with arbitrary
homomorphisms. Therefore, for all n > 0 there is a well defined ideal radn

A(M, N),
generated by morphisms which are compositions of n radical morphisms.

Remark A.0.24. [AC20, Corollary II.1.8] If M and N are indecomposable A-modules,
then radA(M, N) is the set of all the homomorphisms in HomA(M, N) which are not
isomorphisms.

Lemma A.0.25. [AC20, Cor II.1.10.] Let f : M→ N be a homomorphism of A-modules.

(a) If M is indecomposable, then f is radical if and only if it is not a section.

(b) If N is indecomposable, then f is radical if and only if it is not a retraction.

Lemma A.0.26. Let P = eA be an indecomposable projective A-module and M an A-
module. Then radA(M, P) = HomA(M, rad(P)).

Proof. Let S := P/ rad P, which is a simple module by Lemma A.0.7, and let π : P→ S be
the natural projection. By simplicity of S, a morphism g : M → P has the property that
π ◦ g is nonzero if and only if π ◦ g is surjective, hence if and only if the class of e belongs
to the image of π ◦ g. This means that there exist m ∈ M and r ∈ rad P = e rad(A) such
that g(m) = e− r. Then

g(m + mr) = e− r + (e− r)r = e− r2.

Iterating, we get that g(m + mr + · · · + mrn−1) = e − rn. By Proposition A.0.2(b) the
radical rad(A) is a nilpotent ideal, so for n big enough rn ∈ rad(A)n vanishes. This
proves that there exists m′ ∈ M such that

g(m′) = e.

Then g must be surjective. In conclusion, we showed that g is surjective if and only if its
image is not contained in rad P. On the other hand, since P is projective, g is surjective if
and only if it is a retraction. Then Lemma A.0.25 shows that the radical morphisms are
exactly those which factor through rad P.

Definition A.0.27. The space of irreducible morphisms from M to N is

IrrA(M, N) =
radA(M, N)

rad2
A(M, N)

.

Definition A.0.28. The Auslander-Reiten quiver Γ(mod A) associated to the algebra A is
defined as follows.

• The vertices of Γ(mod A) are the isomorphism classes of indecomposable A-
modules.

• If M and N are nonisomorphic indecomposable A-modules, the number of arrows
going from [M] to [N] equals the dimension over k of IrrA(M, N).
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The Auslander-Reiten quiver is relevant, because it encodes in combinatorially much
of the information about the category mod A. It can be constructed in grater generality
form a k-linear category. Many of the results carry out to the more general setting.

Definition A.0.29. An algebra A is representation-finite if the category mod A admits a
finite number of isomorphism classes of indecomposable objects.

Suppose that A is a representation-finite algebra and let M1, . . . Mn be representatives
of the isomorphism classes of indecomposable A-modules. Set

M = M1 ⊕ · · · ⊕Mn.

Then M is an additive generator of mod A. Namely, mod A = add M is the smallest full
subcategory of mod A containing all direct sums of direct summands of M.

Definition A.0.30. The Auslander algebra of A is B := EndA(M).

Theorem A.0.31. [AC20, Theorem VI.3.2.] Suppose that A is a representation-finite alge-
bra and B is the Auslander algebra of A. Then the Auslander-Reiten quiver Γ(mod A) of
A is isomorphic to the ordinary quiver QB of B.
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