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Introduction

In Riemannian geometry the most interesting geometry of constant sectional
curvature is the hyperbolic one; the analogous in Lorentzian geometry (as
in with constant negative curvature) is Anti-de Sitter geometry. The thesis
presents Anti-de Sitter (AdS) geometry in dimension 3 and its relationship
with the theory of earthquakes on hyperbolic surfaces.
After a brief introduction to Lorentzian geometry, we will introduce the most
common models of AdS spaces in any dimension following [2]. The focus will
rapidly shift to dimension 3 (2+1) where the model space AdS2,1 (known as the
Klein model in the literature) can be identified with the Lie group PSLp2,Rq

which moreover is isomorphic to Isom0pH2q.
Following the pioneering work of Geoffrey Mess in 1990 [11], we will develop
the classification of maximal globally hyperbolic (MGH) AdS spacetimes of
genus r ą 2, 3-manifolds locally isometric to AdS2,1 characterized by the ex-
istance of a Cauchy surface of genus r, namely a surface Σ of genus r that
intersects every inextensible timelike curve exactly once and a property of
maximal inclusion that we will investigate in the thesis.
A first result due to Geroch [7] states that such spacetimes have to be diffeo-
morphic to ΣˆR. Even when the topological data of the surface Σ is fixed the
geometry of the resulting spacetime can vary significantly. If Σr is a closed
surface of genus r, we denote the deformation space of MGH spacetimes of
genus r by:

MGHpΣrq “ tg MGH AdS metric on Σr ˆ Ru{Diff0pΣr ˆ Rq

and with T pΣrq the Teichmüller space of the surface Σr. The main result of
the classification (in Chapter 4) will be the following:

Theorem 0.1 (Mess [11]). The holonomy map ρ : MGHpΣrq Ñ T pΣrq ˆ

T pΣrq is a homeomorphism.

To obtain such a result we will develop the theory of achronal surfaces,
surfaces whose points are not connected via timelike curves, and the related
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theory of achronal meridians. The observation that the graph Λφ of any
orientation-preserving homeomorphism φ of the circle can be identified with
an achronal meridian in the universal cover of AdS2,1 will help us relating AdS
geometry to the theory of earthquakes on hyperbolic surfaces developed by
Thurston in [15].

Following again Mess, we will explain the example of pleated surfaces in
AdS2,1, relating bending laminations to geodesic laminations and the earth-
quake map to projections from the boundary of the convex hull of Λφ. With
the assist of the Gauss map we will be able to recover Thurston’s earthquakes
theorem:

Theorem 0.2 (“Geology is transitive”, Thurston [15]). Given any orientation-
preserving homeomorphism φ : BH2 Ñ BH2, there exists a left earthquake map
of H2, and a right earthquake map, that extends continuously to φ on BH2.

As a corollary of the main theorem we will recover the classical Kerchoff’s
formulation of the earthquakes theorem for hyperbolic surfaces:

Corollary 0.3. Let S be a closed oriented surface and let ρ, ϱ : π1pSq Ñ

PSLp2,Rq be two Fuchsian representations. Then there exists a pρ, ϱq´equivariant
left earthquake map of H2, and a pρ, ϱq´equivariant right earthquake map.



CHAPTER 1
Lorentzian geometry

In this first chapter we introduce Lorentzian manifolds of constant curvature
and observe that, as in the Riemannian case, two manifolds of constant sec-
tional curvature K are locally isometric. We start by recalling some basic
definitions of Lorentzian geometry to set notation. We will then define what
we mean by a manifold with maximal isometry group as spaces with such
property provide models of manifolds with constant curvature: if we have M
a Lorentzian manifold with constant sectional curvature K and maximal isom-
etry group, then any Lorentzian manifold with constant sectional curvature
K carries a natural (Isom(M), M)-atlas made of local isometries.
Simply connected spaces have maximal isometry group, but in general the
converse is false. In particular, in the course of the dissertation, we will focus
on K “ ´1 and in that case it will be convenient to use non-simply connected
models.

Basic Definitions

By a Lorentzian metric on a n ` 1 manifold we mean a non degenerate 2-
tensor g of signature pn, 1q. A Lorentzian manifold is a connected manifold
M equipped with a Lorentzian metric g.
In a Lorentzian manifold M we say that a non-zero vector v P TpM is time-like
if gpv, vq ă 0, space-like if gpv, vq ą 0 and light-like if gpv, vq “ 0. More gen-
erally, we say that a linear subspace V Ă TxM is spacelike, lightlike, timelike
if the restriction of g to V is positive definite, degenerate or negative definite
respectively.

7



8 CHAPTER 1. LORENTZIAN GEOMETRY

The set of lightlike vectors, together with the null vector, disconnects TxM
into 3 regions: two convex open cones formed by timelike vectors, one opposite
to the other, and the region of spacelike vectors. As a consequence the set of
timelike vectors in the total space TM is either connected or is made by two
connected components. In the latter case M is said to be time-orientable, and
a time orientation is the choice of one of those components. Vectors in the
chosen component are said to be future-directed, vectors in the other compo-
nent are said to be past-directed. A spacetime is a Lorentzian manifold pM, gq

with the choice of a time orientation.
A differentiable curve is said to be timelike, spacelike, lightlike if its tangent
vector at every point is timelike, spacelike, lightlike respectively. The curve is
called causal if the tangent vector is either timelike or lightlike.
Given a subset S in a time-oriented Lorentzian manifold M , the future of S is
the set I`pSq of points which are connected to points of S by a future-directed
causal curve. The past of S, I´pSq, is defined in an analogous way for past-
directed causal curves.
As in the Riemannian setting, on a Lorentzian manifold M there is a unique
linear connection ∇ which is symmetric and compatible with the Lorentzian
metric g. We refer to it as the Levi-Civita connection of pM, gq.
Following the analogy with Riemannian geometry, the Levi-Civita connection
determines the Riemann curvature tensor defined by:

Rpu, vqw “ ∇u∇vw ´ ∇v∇uw ´ ∇ru,vsw.

We then say that a Lorentzian manifold has constant sectional curvature K
if:

gpRpu, vqv, uq “ Kpgpu, uqgpv, vq ´ gpu, vq2q (1.1)

for every pair of vectors u, v P TxM and every x P M . Even though the
definition is analogous to the one given in the Riemannian realm, we recall
that in the Lorentzian setting the sectional curvature can be defined only for
planes in TxM where g is non-degenerate. The manifold M is said to be
geodesically complete if every geodesic is defined for all times, equivalently the
exponential map is defined everywhere.

Maximal isometry group and geodesic completeness

Two Riemannian manifolds M and N of constant curvature K are locally
isometric, the same statement holds for Lorentzian manifolds. The proof is
analogous to the one in the Riemannian setting, and it is based on the use of
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the Cartan-Ambrose-Hicks theorem (the pseudo-Riemannian case is treated
in [13]). More precisely we have the following:

Lemma 1.1. Let M and N be Lorentzian manifolds of constant curvature
K. Then every linear isometry L : TxM Ñ TyN extends to an isometry
f : U Ñ V where U, V are open neighbourhoods of x, y respectively. Any two
extensions f : U Ñ V and f 1 : U 1 Ñ V 1 of L coincide on U X U 1. Moreover L
extends to a local isometry f : M Ñ N provided that M is simply connected
and N is geodesically complete.

As a direct consequence of the aforementioned lemma we have:

Corollary 1.2. Let M and N be simply connected, geodesically complete
Lorentzian manifolds of constant curvature K. Then any linear isometry
L : TxM Ñ TyN extends to a global isometry f : M Ñ N.

In particular, there is a unique simply connected geodesically complete
Lorentzian manifold of constant curvature K up to isometries. For instance
for K “ 0 a model is the Minkowski space Rn,1, that is Rn`1 provided with
the standard metric

g “ dx21 ` ¨ ¨ ¨ ` dx2n ´ dx2n`1.

Another consequence of Lemma 1.1 is that, fixing a point x0 P M , the set of
isometries of M , which we will denote by Isom(M), can be realized as a subset
of ISO(Tx0M,TM) namely the fiber bundle over M whose fiber over x P M
is the space of linear isometries of Tx0M into TxM . Now Isom(M) considered
with the operation of composition is a Lie group and the inclusion IsompMq Ñ

ISOpTx0M,TMq is a differentiable proper embedding ([12], Theorem 4.1). It
follows that the maximal dimension of IsompMq is dimpOpn, 1qq ` n ` 1 “

pn ` 1qpn ` 2q{2.

Definition 1.3. A Lorentzian manifold M has maximal isometry group if
the action of Isom(M) is transitive and, for every point x P M , every linear
isometry L : TxM Ñ TxM extends to an isometry of M .

Equivalently M has maximal isometry group if the above inclusion of
Isom(M) into ISO(Tx0M,TM) is a bijection. Hence,if M has maximal isom-
etry group, its isometry group has maximal dimension, as a justification for
the name used. From Corollary 1.2, every simply connected Lorentzian man-
ifold M has maximal isometry group if it has constant sectional curvature
and is geodesically complete. The converse holds even without the simple
connectedness assumption. Namely:
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Lemma 1.4. If M is a Lorentzian manifold with maximal isometry group,
then M has constant sectional curvature and is geodesically complete.

Proof. Fix a point x P M . As the identity component of OpTxMq » Opn, 1q

acts transitively on spacelike planes, there exists a constant K such that Equa-
tion 1.1 holds for every pair pu, vq of vectors tangent at x which generate a
spacelike plane. Now, for every point x P M both sides of Equation 1.1 are
polynomial in u, v P TxM . Since the set of pairs pu, vq which generate space-
like planes is open in TxM ˆ TxM , Equation 1.1 must hold for every pair of
vectors u, v P TxM .
Since Isom(M) acts transitively on M , it follows that M has constant sec-
tional curvature K.
Let us now show that the manifold is geodesically complete. Suppose γ is a
parametrized geodesic with γp0q “ x and γ1p0q “ v P TxM, which is defined
for a finite maximal time T ą 0. Let T0 “ T ´ ϵ ą 0. By assumption one can
find an isometry f : M Ñ M such that fpxq “ γpT0q and dfxpvq “ γ1pT0q.
Then t Ñ f˝γpt´T0q is a parametrized geodesic which provides a continuation
of γ beyond T , leading us to a contradiction.

We conclude these preliminaries on Lorentzian geometry with a result of
classification which will be useful in the following, explaining our interest in
spaces with maximal isometry group.

Proposition 1.5. Let MK be a simply connected Lorentzian manifold of con-
stant sectional curvature K with maximal isometry group, and let M be a
Lorentzian manifold of constant sectional curvature K. Then:

• M is geodesically complete if and only if there is a local isometry p :
MK Ñ M which is a universal covering.

• M has maximal isometry group if and only if Autpp : MK Ñ Mq is
normal in Isom(MK).

Proof. Suppose M is geodesically complete, then by lifting the metric to
the universal cover ĂM one gets a simply connected geodesically complete
Lorentzian manifold of constant sectional curvature K which by Corollary
1.2 is isometric to MK . The covering map p : MK Ñ M is then a local isom-
etry by construction. The converse is straightforward.
Now let Γ be Autpp : MK Ñ Mq, which is a discrete subgroup of Isom(MK).
Thus M is obtained as the quotient M “ MK{Γ, where Γ acts freely and
properly discontinuously on MK . The isometry group of M is isomorphic to
NpΓq{Γ, where by NpΓq we denote the normalizer of Γ in Isom(MK). The
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isomorphism is based on the observation that any isometry of ĂM which nor-
malizes Γ descends to an isometry of M , and conversely the lifting of any
isometry of M must be in NpΓq.
Hence the condition that M has maximal isometry group is equivalent to the
condition that every element f of IsompMKq descends to the quotient to an
isometry of M . This is in turn equivalent to the condition that fΓf´1 “ Γ
for every f P IsompMKq, which is the same as saying that Γ is normal in
IsompMKq.

Finally, any isometry between connected open subsets of a Lorentzian man-
ifold M with maximal isometry group extends to a global isometry. In par-
ticular if MK is a Lorentzian manifold of constant sectional curvature K with
maximal isometry group, then any Lorentzian manifold M of constant sec-
tional curvature K admits a natural pIsompMKq,MKq-structure whose charts
are isometries between open subsets of M and open subsets of MK . We will
refer to Lorentzian manifolds of constant sectional curvature K with maximal
isometry group as models of constant sectional curvature K (following Klein’s
terminology).





CHAPTER 2
Models of Anti-de Sitter

(n+1)-space

The aim of this chapter is to construct models of Lorentzian manifolds with
constant sectional curvature -1 and maximal isometry group in any dimension.
We are also interested in stressing the analogies between these manifolds with
the models of hyperbolic space in the Riemannian setting. We will show that
hyperbolic space is naturally embedded in Anti-de Sitter space, and we will
later develop this topic in our study of earthquakes theory. After introducing
the models, we are interested in studying the geometry of such manifolds:
we will give a conformal (visual) boundary to Anti-de Sitter space and we
will characterize geodesics and totally geodesic subspaces. We will also intro-
duce the notion of polarity in Anti-de Sitter space (in some sense the correct
Lorentzian correspondence between points and hyperplane, analogous to Eu-
clidean orthogonality) and study its properties.

2.1 The quadric model

We want to introduce the analogue of the hyperboloid model of hyperbolic
space. Denote by Rn,2 the real vector space Rn`2 equipped with the quadratic
form

qn,2pxq “ x21 ` ¨ ¨ ¨ ` x2n ´ x2n`1 ´ x2n`2.

13
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and by xv, wyn,2 the associated symmetric form. Finally, let Opn, 2q be the
group of linear transformations of Rn`2 that preserve qn,2. Then we define:

Hn,1 “ tx P Rn,2 | qn,2pxq “ ´1u.

It is immediate to check that Hn,1, as the pre-image of a regular value
of qn,2, is a smooth connected submanifold of Rn,2 of dimension n ` 1. The
tangent space TxHn,1, regarded as a subspace of Rn`2, coincides with the or-
thogonal space xK “ ty P Rn`2 | xx, yyn,2 “ 0u. A simple signature argument
(along with the fact that qn,2pxq “ ´1 for every x P Hn,1) shows that the
restriction of the symmetric form x., .yn,2 to TxHn,1 has Lorentzian signature,
hence it makes Hn,1 a Lorentzian manifold. We remark that this model is the
analogue of the hyperboloid model of hyperbolic space, in fact Hn is isomet-
rically embedded in Hn,1 as the submanifold defined by xn`2 “ 0, xn`1 ą 0.
The natural action of Opn, 2q on Rn,2 preserves Hn,1, and in facts Opn, 2q

acts by isometries on Hn,1. We remark that Opn, 2q acts transitively on
Hn,1 and that the stabilizer of a point x acts transitively on the space of
orthonormal bases of TxHn,1. Hence Hn,1 has maximal isometry group and
Isom(Hn,1q » Opn, 2q.
By Lemma 1.4, Hn,1 has constant sectional curvature. Let us now check that
the sectional curvature is negative (in particular we will find K “ ´1). For
this purpose, observe that the normal line in Rn,2 to Hn,1 at x is identified
with the line generated by x itself. It follows that, if v, w are tangent vector
fields along Hn,1, we have the orthogonal decomposition:

pDvwqpxq “ p∇vwqpxq ` xv, wyx,

where D is the flat connection of Rn`2 and ∇ is the Levi-Civita connection
of Hn,1. Using the flatness of D we get:

Rpu, vqw “ xu,wyv ´ xv, wyu,

so that
xRpu, vqv, uy “ ´pxu, uyxv, vy ´ xv, uy2q,

and this shows that Hn,1 has constant sectional curvature ´1. We also
remark that Hn,1 is not simply connected, being homeomorphic to Rn ˆ S1.

2.2 The “Klein model” and its boundary

Let us introduce a projective model, also known as the “Klein model”, for
Anti-de Sitter geometry. Let us define:

AdSn,1 “ Hn,1{t˘Idu.
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Since t˘Idu is the center of Opn, 2q (hence normal), AdSn,1 (when endowed
with the Lorentzian metric induced by the quotient) has maximal isometry
group by Proposition 1.5 and is therefore a model of constant sectional cur-
vature ´1. It can also be shown that the center of the isometry group of the
Klein model is trivial, hence AdSn,1 is the minimal model of AdS geometry,
in the sense that any other model is a covering of AdSn,1.
By definition, AdSn,1 is naturally identified with a subspace of real projective
space RPn`1, more explicitly with the subset of timelike directions of Rn,2:

AdSn,1 “ trxs P RPn`1 | qn,2pxq ă 0u.

Like in hyperbolic geometry, the boundary of AdSn,1 in projective space is a
quadric, that is the projectivization of lightlike vectors in Rn,2. We denote
this quadric by BAdSn,1 “ trxs P RPn`1 | qn,2pxq “ 0u.
We observe that isometries of AdSn,1 induce projective transformations which
preserve BAdSn,1.

The conformal Lorentzian structure of the boundary

We want to continue to develop the analogy with hyperbolic geometry and
equip BAdSn,1 with a conformal Lorentzian structure that extends the one on
AdSn,1, similar to the conformal visual boundary in hyperbolic geometry.
A point ℓ P RPn`1 is identified with Spanpxq for some x P Rn,2, and the
tangent space of real projective space has the canonical identification

TℓRPn`1 » Hompℓ,Rn`2{ℓq.

Now, if ℓ is timelike, we can identify Rn`2{ℓ with ℓK. For any given local
section σ : AdSn,1 Ñ Rn,2 of the projection Rn,2 Ñ AdSn,1, we can define a
Lorentzian metric on TAdSn,1 setting:

xxf, gyyσ “ xfpσrxsq, gpσrxsqyn,2

for f, g P TxAdSn,1 » Hompℓ, ℓK). If the section σ has image in Hn,1, then
the aforementioned metric coincides with the pull-back of the metric over Rn,2,
since the differential of σ identifies TrxsAdSn,1 “ TxHn,1 “ xK. For a general
section the identification does not hold, but we can recover a conformal metric
via the formula:

xxf, gyyλσ “ λ2xxf, gyyσ (2.1)

for any function λ.
We consider now the case where ℓ “ Spanpxq is lightlike, i.e. qn,2pxq “ 0.
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In this case we can not induce any natural metric on Rn,2{ℓ. However, if we
let

L “ tx P Rn,2 | qn,2pxq “ 0u

be the space of lightlike vectors, then TxL is precisely ℓK and contains ℓ itself.
We have recovered a canonical identification: TℓBAdSn,1 » Hompℓ, ℓK{ℓq. The
bilinear form of Rn,2, when restricted to ℓK, induces a non degenerate bilinear
form (of signature pn ´ 1, 1q) on ℓK{ℓ. We will denote such a restriction as
xv, wyℓK{ℓ.

We can now define a metric on BAdSn,1 for any section σ : BAdSn,1 Ñ L of
the canonical projection by the formula:

ppf, gqqσ “ xfpσrxsq, gpσrxsqyℓK{ℓ, (2.2)

for all f, g P Hompℓ, ℓK{ℓq. This metric can be viewed as the pull-back of the
metric:

ppf, gqqσ “ xσ˚pfq, σ˚pgqyn,2, (2.3)

since the degenerate metric on TxL “ ℓK is, by construction, the pull-back of
the metric of ℓK{ℓ by the projection along the degenerate direction ℓ.
The relation valid for the metric on AdSn,1 also holds for the metric on
BAdSn,1, that is:

ppf, gqqλσ “ λ2ppf, gqqσ, (2.4)

and therefore the induced conformal class over TBAdSn,1 is well defined and
independent of the choice of σ and equips the tangent space of the boundary
with a conformal Lorentzian metric. Let σ be a section of the projection
π : Rn,2 Ñ RPn`1 defined in a neighborhood U of a point x P BAdSn,1. By
construction the metric pp¨, ¨qqσ over BAdSn,1 X U is the limit, as y Ñ x for
y P AdSn,1XU, of the conformal metric associated to σ defined over AdSn,1XU .

Remark 2.1. Let us make some observations about the light cone in the case
of BAdSn,1. If rys P BAdSn,1 Equation 2.3 implies that the lightlike vectors in
TrysBAdSn,1 are exactly the projection of vectors x P Rn,2 such that xx, yyn,2 “

0 and qn,2pxq “ 0. These vectors are such that Spanpx, yq are totally degenerate
planes in Rn,2, equivalently they are projective lines contained in BAdSn,1.
Therefore the light cone in BAdSn,1 through rys is the union of all the projective
lines through rys that are contained in BAdSn,1.

The “Poincaré model” for the universal cover

We have already observed that Hn,1, and its quotient AdSn,1, are not simply
connected. We want to construct a simply connected model for AdS geometry.
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For this purpose we introduce the universal cover of Hn,1 and AdSn,1.
Let Hn be the hyperboloid model of hyperbolic space. Then:

πpy, tq “ py1, . . . , yn, yn`1 cos t, yn`2 sin tq (2.5)

defines a map π : Hn ˆ R Ñ Hn,1 which is a covering with deck transfor-
mations of the form py, tq ÞÑ py, t ` 2kπq for k P Z. We denote the covering

space by ĄAdSn,1 and we observe that it is also the universal cover of AdSn,1,
where the covering map is the composition of π and the quotient by t˘Idu.

Pulling back the Lorentzian metric over ĄAdSn,1, we get a simply connected
Lorentzian manifold of constant curvature -1. The metric on ĄAdSn,1 is a
warped product of the form:

π˚gHn,1 “ gHn ´ y2n`1dt
2. (2.6)

Moreover ĄAdSn,1 has maximal isometry group, hence we have obtained a
simply connected model for AdS geometry. More precisely we have a central
extension, that is a (non split) short exact sequence:

0 Ñ Z Ñ Isomp ĄAdSn,1q Ñ Opn, 2q Ñ 1.

It is sometimes convenient to express the metric (2.6) using the Poincaré
model of hyperbolic space. Recall that the disk model of the hyperbolic space
is the unit disk Dn endowed with the conformal metric: 4

p1´r2q2

ř

dx2i , where

r2 “ |x|2. In our setting the isometry between the disk and the hyperboloid
model is given by:

px1, . . . , xnq ÞÑ

´

y1 “
2x1

1 ´ r2
, . . . , yn “

2xn
1 ´ r2

, yn`1 “
1 ` r2

1 ´ r2

¯

. (2.7)

The Poincaré model of AdS geometry is then the cylinder Dn ˆ R endowed
with the metric

4

p1 ´ r2q2
pdx21 ` ¨ ¨ ¨ ` dx2nq ´

´1 ` r2

1 ´ r2

¯2
dt2. (2.8)

It follows from the definition that each slice tt “ cu is a totally geodesic
copy of Hn. The metric defined in (2.8) also shows that the vector field B{Bt

is a timelike non-vanishing vector field on ĄAdSn,1, giving it the structure of a
time-orientable manifold. Any choice of time orientation is preserved by the
action of the deck transformations of the covering from the Poincaré to the
Klein model, hence both Hn,1 and AdSn,1 are time-orientable.
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2.3 Geodesics

We have presented our various models as manifolds and now we would like to
improve our knowledge of their geometry. As always we start by studying and
characterizing geodesics.

In the quadric model

Let us start with the exponential map in the hyperboloid model. Given a
point x P Hn,1 and a vector v P TxHn,1, we want to determine the geodesic
through x with speed v. We will distinguish several cases according to the
sign of qn,2pvq. If v is lightlike, then:

γptq “ x ` tv

is a geodesic of Rn,2 and is contained in Hn,1, hence γ is a geodesic of Hn,1.
If v is either timelike or spacelike, we claim that the geodesic γptq “ expxptvq

is contained in the linear plane W “ Spanpx, vq. In fact, the linear transfor-
mation T that fixes pointwise W and whose restriction to WK is ´IdWK is in
Opn, 2q. By the uniqueness of the geodesic, T ˝ γ “ γ hence γ is contained in
Hn,1 X W . We can easily derive the expressions

γptq “ coshptqx ` sinhptqv (2.9)

if qn,2pvq “ 1 and

γptq “ cosptqx ` sinptqv (2.10)

if qn,2pvq “ ´1.

In the Klein model

In analogy with the Riemannian case, in the Klein model AdSn,1 geodesics are
intersections of projective lines with the domain of AdSn,1 Ă RPn`1. From
what we have already said:

• Timelike geodesics correspond to projective lines that are entirely con-
tained in AdSn,1, are closed non-trivial loops and have length π.

• Spacelike geodesics correspond to lines that meet BAdSn,1 transversally
in two points. They have infinite length.

• Lightlike geodesics correspond to lines tangent to BAdSn,1.



2.3. GEODESICS 19

Figure 2.1: Geodesics in AdS2,1

In particular the light cone through a point rxs P AdSn,1 coincides with
the cone of lines through rxs tangent to BAdSn,1.
For instance in the affine chart An`2 “ txn`2 ‰ 0u, where in coordinates
py1, . . . , yn`1q “ px1{xn`2, . . . , xn`1{xn`2q, the intersection AdSn,1 X An`2 is
the interior of a one sheeted hyperboloid, that is:

AdSn,1 X An`2 “ ty21 ` ¨ ¨ ¨ ` y2n ´ y2n`1 ă 1u,

while the boundary is the one-sheeted hyperboloid itself:

BAdSn,1 X An`2 “ ty21 ` ¨ ¨ ¨ ` y2n ´ y2n`1 “ 1u.

In an affine chart, timelike geodesics correspond to affine lines which are en-
tirely contained in the Anti-de Sitter space, and which are not asymptotic to
its boundary; lightlike geodesics are tangent to the one sheeted hyperboloid,
or are asymptotic to it (tangent at infinity). Spacelike geodesics are the last
case, they are the intersection of two spacelike planes and meet the boundary
transversally in two points.
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Totally geodesic subspaces

Totally geodesic subspaces of AdSn,1 of dimension k are obtained as the in-
tersection of AdSn,1 with the projectivisation PpW q of a linear subspace W of
Rn,2 of dimension k ` 1. The negative index of W can be 1, 2, for otherwise
the intersection AdSn,1 X PpW q would be empty. We have several cases:

• If W has signature (k ´ 1, 2), then PpW q X AdSn,1 is isometric to
AdSk´1,1.

• If W has signature pk´2, 1q, then it is a copy of Minkowski space Rk´2,1,
hence PpW q X AdSn,1 is a copy of the Klein model of hyperbolic space.

• If W is degenerate, then PpW q X AdSn,1, is a lightlike subspace foliated
by lightlike geodesics tangent to the same point of BAdSn,1.

A particular case of the last point is when W is degenerate and dimpW q “

n ` 1. Then PpW q X AdSn,1 is a projective hyperplane tangent to BAdSn,1 at
a point rxs and PpW q X BAdSn,1 is the lightlike cone of BAdSn,1 through rxs.

In the universal cover. In the universal cover ĄAdSn,1, geodesics are just the
lifts of geodesics in AdSn,1 or Hn,1. Hence, every spacelike or lightlike geodesic
in AdSn,1 and Hn,1, which is topologically a line, has a countable number of
lifts to ĄAdSn,1. Timelike geodesics in AdSn,1 and Hn,1 are topologically circles
and are in bijections with timelike geodesics in ĄAdSn,1, as the covering map
restricted to a timelike geodesic induces a covering map onto the circle. Using
the Poincaré model we can give an explicit description of lightlike geodesics.
In fact, in Lorentzian geometry not only the nature of a vector is conformally
invariant but also unparametrized lightlike geodesics are a conformal property
([14], Proposition 2.131):

Theorem 2.2. If two Lorentzian metrics g, g1 on a manifold M are conformal,
then they have the same unparametrized lightlike geodesics.

Because of Theorem 2.2 we can replace the Poincaré metric by the confor-
mally equivalent -and often more easy to manage in calculation- metric given
by:

4

p1 ` r2q2
pdx21 ` ¨ ¨ ¨ ` dx2nq ´ dt2 (2.11)

Now we observe that the first term in Equation 2.11 is exactly the form of
the spherical metric on a hemisphere, pulled-back to the unit disk by the
stereographic projection. We will call such a metric hemispherical and will
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denote it by gSn . Notice that the boundary of Dn is an equator for the hemi-
spherical metric, and in fact it is the only equator completely contained in
pDn Y BDn, gSnq, a justification to the fact that we will refer to it as the equa-
tor.
As a consequence, unparametrized lightlike geodesics of ĄAdSn,1, going through
a point pp0, t0q are characterized by the condition that they are mapped to
spherical geodesic under the vertical projection pp, tq Ñ p and moreover:

t ´ t0 “ dSnpp, p0q

on the geodesic. In particular, these lightlike geodesics meet the boundary of
ĄAdSn,1 at the point that satisfies the above conditions such that p is on the
equator of the hemisphere: as an example, if p0 is the center of the hemisphere,
then the points at infinity of the lightcone over pp0, t0q are the horizontal slice
t “ t0 `π{2. This sphere is also the boundary of a hyperplane dual to pp0, t0q,
in a sense that we will explain in the following section.
By an analogous reasoning we can give an explicit description of a lightlike
hyperplane in the Poincaré model: the lightlike plane having pp0, t0q as a
past endpoint, (where now p0 is on the equator) is precisely tpp, tq | t ´ t0 “

dSnpp, p0qu and its future endpoint is p´p0, t ` π.q

2.4 Polarity in AdS

The quadratic form qn,2 induces a polarity on the projective space RPn`1, ex-
plicitly the correspondence associates to a projective subspace PpW q the sub-
space PpWKq. In particular, we have an induced duality between spacelike to-
tally geodesic subspaces of AdSn,1 where the dual of a spacelike k´dimensional
subspace is an n ´ k ` 1 subspace.
For instance, if we consider the dual of a point rxs P AdSn,1 it will be an
n´dimensional spacelike hyperplane Prxs “ PpxKq. Projectively, Prxs is char-
acterized as the hyperplane spanned by the intersection of BAdSn´1,1 with
the lightcone from rxs. More geometrically, it can be checked that Prxs is the
set of antipodal points to rxs along timelike geodesics through rxs. Also, every
timelike geodesic through rxs meets Prxs orthogonally at time π{2. Conversely,
given a totally geodesic spacelike hyperplane H, all the timelike geodesics that
meet H orthogonally intersect in a single point, which is the dual point of H.
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In the quadric model

We would like to lift the idea of duality to coverings of AdSn,1. Observe that
in Hn,1 there are two dual planes associated to any point x, namely the sets:

P˘
x “ texpxp˘pπ{2qvq | qn,2pvq “ ´1, v future-directedu.

Now the points P`
x and P´

x are antipodal and P˘
´x “ P¯

x . The planes
P˘
x disconnect Hn,1 in two regions Ux and U´x, where Ux is the connected

component containing x. They can be characterized as:

Ux “ ty P Hn,1 | xx, yyn,1 ă 0u.

Spacelike and lightlike geodesics through x do not exit Ux, while all the
timelike geodesics through x meet orthogonally P˘

x and they all pass through
the point ´x. More precisely a point y ‰ x is connected to x:

• by a spacelike geodesic if and only if xx, yyn,1 ă ´1,

• by a lightlike geodesic if and only if xx, yyn,1 “ ´1,

• by a timelike geodesic if and only if |xx, yyn,1| ă 1.

An immediate consequence is that if y is connected to x by a spacelike
geodesic, there is no geodesic joining y to ´x. Hence the exponential map of
Hn,1 is not surjective. But as any point y P Hn,1 can be connected through
a geodesic either to x or ´x it follows that the exponential over AdSn,1 is
surjective.



CHAPTER 3
Anti-de Sitter space in

dimension (2+1)

We will now restrict our attention to dimension three Anti-de Sitter geometry,
as it will be the specific model geometry of the manifolds of our next interest.
In this chapter we will highlight the structure of Lie group that AdS2,1 has in
this specific dimension and we will study its geometry using tools of Lie group
theory. Most of the results are just a particular case of the theory developed
in the previous chapter, but the Lie structure permits to give a more explicit
description of the geometry of the phenomena we are interested in.

3.1 The PSLp2,Rq model

The fundamental observation is the existence of a special model in dimen-
sion three which endows Anti-de Sitter space with a Lie group structure. To
construct such a model we observe that q “ ´det is a quadratic form with
signature (2,2) over the real vector space Mp2,Rq (the signature is evident
when we consider the basis consisting of elementary matrices). The associated
bilinear form is expressed by the formula:

xA,By “ ´
1

2
trpA ¨ adjpBqq (3.1)

23
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for A,B P Mp2,Rq, where adj denotes the adjugate matrix, namely:

adj
´

„

a b
c d

ȷ

¯

“

„

d ´b
´c a

ȷ

hence, via Sylvester’s theorem, there is an identification between pMp2,Rq, qq

and pR2,2, q2,2q, unique up to composition by elements in Op2, 2q. Under this
isomorphism H2,1 is identified with the Lie group SLp2,Rq.
Let us observe that SLp2,Rq ˆ SLp2,Rq acts linearly on Mp2,Rq by left and
right multiplication:

pA,Bq ¨ X “ AXB´1.

As a direct consequence of the Binet formula, the action preserves the
quadratic form q and thus induces a representation:

ρ : SLp2,Rq ˆ SLp2,Rq Ñ OpMp2,Rq, qq.

Since the center of SLp2,Rq is t˘Idu, the kernel of ρ isK “ tpId, Idq, p´Id,´Idqu,
and by a dimensional argument (and connectedness of SLp2,Rq) it turns out
that the image of the representation is the connected component of the iden-
tity:

Isom0pH2,1q “ SO0pMp2,Rq, qq » pSLp2,Rq ˆ SLp2,Rqq{K

Using this model, one has a natural identification between AdS2,1 and the
Lie group PSLp2,Rq, in such a way that:

Isom0pAdS2,1q » PSLp2,Rq ˆ PSLp2,Rq (3.2)

acting by left and right multiplication on PSLp2,Rq.
We are mostly interested in orientation-preserving and time-preserving notions
that do not depend on a chosen orientation, nevertheless we will fix here an
orientation and a time-orientation of AdS2,1 » PSLp2,Rq. As we are dealing
with a Lie group it is sufficient to define an orientation of the Lie algebra,
namely the tangent at the identity Id. We declare as (positive) oriented basis
of slp2,Rq :

V “

ˆ

0 1
1 0

˙

W “

ˆ

1 0
0 ´1

˙

U “

ˆ

0 ´1
1 0

˙

(3.3)

The first two vectors V,W are spacelike, while U is timelike. U is the
tangent vector to the one-parameter group of elliptic isometries of H2 fixing
i P H2, parametrized by the angle of clockwise rotations; V and W are vec-
tors tangent to the one-parameter groups of loxodromic isometries fixing the
geodesic with endpoints p´1, 1q and p0,8q respectively. Time-orientation can
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also be inherited by the Lie algebra, we declare that U is a future-pointing
timelike vector.

The stabilizer of the identity in Isom0pAdS2,1q is the diagonal subgroup
∆ ă PSLp2,Rq ˆ PSLp2,Rq. Under the obvious identification of PSLp2,Rq

and ∆, the action of the identity stabilizer on the Lie algebra slp2,Rq “

TIdPSLp2,Rq is the adjoint action of PSLp2,Rq. A direct consequence of this
construction is the bi-invariance of the quadratic form q. Indeed, denoting
by qId the restriction of q to TIdSLp2,Rq, a direct computation shows that qId
equals p1{8qκ where κpX,Y q “ 4trpXY q is the Killing form of slp2,Rq.

Remark 3.1. The Lie algebra slp2,Rq equipped with the quadratic form qId
is then a copy of the 3-dimensional Minkowski space, hence the adjoint action
yields a representation

PSLp2,Rq Ñ Opslp2,Rq, qIdq

which in turn induces the well-known isomorphism:

SO0p2, 1q » SO0pslp2,Rq, qIdq » PSLp2,Rq,

which is nothing but the restriction of the isomorphism of Equation 3.2 to
the stabilizer of the identity in the left-hand side pIsompAdS2,1qq, and to the
diagonal subgroup ∆ in the right-hand side pPSLp2,Rq ˆ PSLp2,Rqq.

3.2 The boundary of PSLp2,Rq

From the aforementioned identification we obtain a new one between BAdS2,1
with the boundary of PSLp2,Rq, inside PpMp2,Rqq as the projectivization of
the cone of rank 1 matrices. Therefore from now on we shall consider

BAdS2,1 “ trXs P PpMp2,Rqq| rankpXq “ 1u.

We endow AdS2,1 :“ AdS2,1 Y BAdS2,1 with the topology induced by seeing
both as subsets of the real projective space PpMp2,Rqq. We want to observe
that we have the following homeomorphism:

δ : BAdS2,1 Ñ RP1 ˆ RP1

rXs ÞÑ pImpXq,KerpXqq

where we are considering RP1 as the space of one-dimensional subspaces
of R2. Since we have that ImpAXB´1q “ A ¨ ImpXq and KerpAXB´1q “
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B ¨KerpXq, the map δ is equivariant with respect to the action of PSLp2,Rq ˆ

PSLp2,Rq, acting on BAdS2,1 as the natural extension of the group of isome-
tries of AdS2,1 and on RP1 ˆ RP1 by the obvious product action.
In this setting our choice of a time-orientation can be modified according to
the following Lemma:

Lemma 3.2. The inversion map ιrXs “ rXs´1 is a time-reversing isometry
of AdS2,1 which induces the homeomorphism px, yq Ñ py, xq on the boundary
BAdS2,1.

Proof. It follows from definition that ι is equivariant with respect to the iso-
morphism of PSLp2,Rq ˆ PSLp2,Rq which switches left and right factors,
more explicitly we have that for every A,B P PSLp2,Rq the following holds:
ιrpA,BqXs “ pB,Aq ¨ rιXs “ BX´1A´1. As dIdι “ ´Id is a linear isometry,
ι is an isometry, the differential being minus the identity also shows that it
revers time-orientation.
The second part of the statement can be checked via the following. For a
2ˆ2 matrix the Cayley-Hamilton theorem implies the equality pdetXqX´1 “

ptrXqId ´ X, so that projectively we have rX´1s “ rtrXId ´ Xs. Hence ι
extends to the transformation rXs Ñ rtrXId ´ Xs on BAdS2,1. Now if X is a
rank 1 matrix, it is traceless if and only if X2 “ 0, hence KerpXq “ ImpXq. If
trpXq ‰ 0, then X is diagonalizable with eigenvalues 0 and trpXq. Moreover
KerpXq and ImpXq are the corresponding eigenspaces. It follows then that
KerptrXId ´ Xq “ ImpXq and ImptrXId ´ Xq “ KerX

Consider the hyperbolic model of the upper half-plane H2. RP1 corre-
sponds to the boundary at infinity BH2 via the identification mapping the line
spanned by pa, bq to a

b and PSLp2,Rq is identified to Isom0pH2). From this
perspective we can consider BAdS2,1 as BH2 ˆ BH2. We can then interpret the
convergence to BAdS2,1 in this setting:

Lemma 3.3. A sequence rXns P AdS2,1 converges to px, yq P BAdS2,1 »

RP1 ˆ RP1 if and only if for every p P H2, Xnppq Ñ x and X´1
n ppq Ñ y.

Proof. Since PSLp2,Rq acts on H2 via isometries, if the conditions holds for
some p then it holds for all q P H2, as the distance from p to any other point
q is bounded. Without loss of generality we can assume p “ i in the upper

half-plane. Assuming rXns “

„

an bn
cn dn

ȷ

converges projectively to a rank 1

matrix means that there exists a sequence of real numbers λn Ñ 0 such that
λnXn Ñ X. As the limit matrix has rank one at least one of the successions of
coefficient (when multiplied by λn) does not converge to zero. We can assume
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that λnan Ñ a does not converge to 0, the other cases are all analogous.
The assumption of a ‰ 0 and and rankpXq “ 1, leave us with the following
possibilities for X:

• Assume λncn Ñ 0 and λndn Ñ 0, then we have that rXns converges to
a rXs of the form:

„

a b
0 0

ȷ

, Xpiq “ lim
nÑ8

λn
ani ` bn
cni ` dn

“
a

0

• If b “ 0 and d “ 0, then rXns converges to rXs with

X “

„

a 0
c 0

ȷ

, Xpiq “ lim
nÑ8

λn
ani ` bn
cni ` dn

“
a

c

• If b, c ‰ 0 it follows from the rank one condition that d “ bc, then rXns

converges to rXs with

X “

„

a b

c bc
a

ȷ

, Xpiq “ lim
nÑ8

λn
ani ` bn
cni ` dn

“
a2i ` ab

aci ` bc
“

apai ` bq

cpai ` bq
“

a

c
.

In dimension three, BAdS2,1 is a double ruled quadric. We shall describe
such rulings in a more geometric way. Given any px0, y0q P BAdS2,1, the set

λy0 :“ tpx, y0q|x P RP1u (3.4)

describes a projective line in RP3 which is contained in BAdS2,1, hence
lightlike for the conformal Lorentzian structure of BAdS2,1, as seen in Remark
2.1. In fact λy0 is the orbit of px0, y0q by the action of PSLp2,Rq ˆ tIdu, or
by the (now free) action of PSOp2,Rq ˆ tIdu. Here PSOp2,Rq corresponds to
a 1-parameter elliptic subgroup in PSLp2,Rq. In short:

λy0 “ PSLp2,Rq ¨ px0, y0q “ PSOp2,Rq ¨ px0, y0q.

We refer to λy0 as the left ruling through px0, y0q, and similarly the right
ruling is the set:

µx0
:“ tpx0, yq|y P RP1u.

We can express the conformal Lorentzian structure of BAdS2,1 with the rulings
as shown in Figure 3.1. The action of PSOp2,RqˆtIdu on AdS2,1 yields a flow
on AdS2,1 generated by a right-invariant vector field, which at Id is the positive
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Figure 3.1: Left and right projection from a point p P BAdS2,1 to the plane
P “ tx3 “ 0u. The rulings induce a time-orientation on the boundary.
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tangent vector of PSOp2,Rq. So orbits are all timelike and future directed. In
similar fashion the action of tIduˆPSOp2,Rq yields a flow generated by a left-
invariant vector field, which at Id is the negative tangent vector at PSOp2,Rq,
and its orbits are all timelike and past directed.

Proposition 3.4. Let πl, πr : RP1 ˆ RP1 Ñ RP1 be the canonical projection
and dθ be the angular form on RP1 » BH2. Then the symmetric product
π˚
l pdθqπ˚

r pdθq is in the conformal class of BAdS2,1.

Proof. Since we already know that the left and right rulings are lightlike for
the conformal class of BAdS2,1, it only remains to check the sign of time
orientation. We observe that λy0 is the orbit of the action of PSOp2,RqˆtIdu,
while µx0 is the orbit of the action of tIduˆPSOp2,Rq, the induced orientation
agrees with the one given by the pullback of the metrics.

It follows, from the conformal structure that BAdS2,1 inherits from the rulings,
that a C1 curve in BAdS2,1 is spacelike when it is locally the graph of an
orientation-preserving function (the product of the pullbacks is different from
zero and we can use the implicit function theorem), and timelike when it is
locally the graph of an orientation-reversing function. Given two intervals
I1, I2 in BH2 and assuming that θ1, θ2 are angle determination over the two
intervals, the future I`

I1ˆI2
pp0, q0q of a point pp0, q0q in I1 ˆ I2 is the region

made up of points pp, qq where θ1ppq ´ θ2pp0q ą 0 and θ2pqq ´ θ2pq0q ă 0. The
past is determined by reversing both inequalities. In conclusion:

I`
I1ˆI2

pp0, q0qYI´
I1ˆI2

pp0, q0q “ tpp, qq P I1ˆI2 | pθ1ppq´θ1pp0qqpθ2pqq´θ2pq0qq ă 0u.
(3.5)

We want to stress that our interest in BAdS2,1 is mainly justified by the fol-
lowing: when we will deal with earthquake theory we will often consider
φ : RP1 Ñ RP1 an orientation-preserving homeomorphism of the circle.
The associated graph Λφ via the identification given by δ is a subset of
BAdS2,1. We observe that from equivariance of δ the following holds for every
pα, βq P PSLp2,Rq ˆ PSLp2,Rq:

pα, βq ¨ Λφ “ Λβ˝φ˝α´1 . (3.6)

We remark one last time that we will consider BAdS2,1 as always implicitly
identified with RP1 ˆ RP1 via δ.

3.3 Geodesics in PSLp2,Rq

We have already seen geodesics in the general Anti-de Sitter space, we would
like to specialize here using the model of PSLp2,Rq and tools from general Lie
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groups theory. In particular we recall the following (the necessary tools in Lie
groups theory are introduced in [2]):

Lemma 3.5. Given left-invariant vector fields V and W on a Lie group G,
the Levi-Civita connection of a bi-invariant metric has the expression:

∇V W “
1

2
rV,W s.

In particular, the Lie group exponential coincides with the pseudo-Riemannian
exponential map.

We would like to start by considering geodesics through the identity. The
Lie algebra of PSLp2,Rq is isometrically identified with Minkowski space, as
seen in Remark 3.1, where under such an isometry the stabilizer of a point
corresponds to the group of linear isometries of Minkowski space. Moreover,
by Lemma 3.5 it suffices to understand the one-parameter group for the Lie
group structure of PSLp2,Rq. We immediately get the following:

• Timelike geodesics are, up to conjugacy, of the form:

„

cosptq ´ sinptq
sinptq cosptq

ȷ

namely, under the identification of PSLp2,Rq with IsompH2q, they are
elliptic one-parameter groups fixing a point in H2. In this example, the
tangent vector is the matrix

„

0 ´1
1 0

ȷ

.

These are closed geodesics, parametrized by arclenght, of total length π.

• Spacelike geodesics are, again up to conjugacy, of the form:

„

coshptq sinhptq
sinhptq coshptq

ȷ

with initial velocity:
„

0 1
1 0

ȷ

.

In the hyperbolic settings, these are loxodromic one-parameter groups,
fixing two points in the boundary of H2 (in this particular case, ˘1).
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• Finally, lightlike geodesics are the parabolic one-parameter groups con-
jugate to:

„

1 t
0 1

ȷ

,

whose initial vector has indeed zero length.

Timelike geodesics

When looking for a complete description of timelike geodesics it suffices to let
(the identity component of) the isometry group of AdS2,1 (namely PSLp2,Rqˆ

PSLp2,Rqq act on PSLp2,Rq via left and right multiplication. In particular,
we can describe the whole space of timelike geodesics of AdS2,1 as follows:

Proposition 3.6. There is a homeomorphism between the space of (unparametrized)
timelike geodesics of AdS2,1 and H2 ˆH2. The homeomorphism is equivariant
for the action of Isom0pAdS2,1q » PSLp2,Rq ˆ PSLp2,Rq.

Proof. The homeomorphism is defined as follows. Given a point pp, qq P H2 ˆ

H2, we associate to it the subset:

Lp,q “ tX P PSLp2,Rq | X ¨ q “ pu

By the previous discussion, timelike geodesics through the identity are pre-
cisely of the form Lp,p for some p P H2. The map pp, qq ÞÑ Lp,q is equivariant for
the natural actions of PSLp2,Rq ˆ PSLp2,Rq, namely pA,Bq ¨ Lp,q “ LA¨p,B¨q,
which also implies that Lp,q is an unparameterized timelike geodesic and that
all the unparameterized timelike geodesics are of this form, namely the map
we defined is surjective. It remains to show injectivity; if Lp,q “ Lp1,q1 for
pp, qq ‰ pp1, q1q then in particular there exists an isometry X1 of H2 sending
p to q and p1 to q1, but such an isometry is necessarily unique. Suppose the
existence of an X2 ‰ X1 isometry of H2 with the same property, then X´1

2 ˝X1

fixes p, p1, an absurd since the identity is the only isometry of H2 fixing two
different points.

Spacelike geodesics

Let us consider ℓ an oriented geodesics of the hyperbolic plane H2. From
what we have already discussed the one-parameter group of loxodromic trans-
formations fixing ℓ as an oriented geodesic constitutes a spacelike geodesic
through the origin. By an argument analogous to the one given in Propo-
sition 3.6, relying on the equivariance of the construction by the action of
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PSLp2,RqˆPSLp2,Rq, one proves that every spacelike geodesic is of the form:

Lℓ,ȷ “ tX P PSLp2,Rq | X ¨ ȷ “ ℓ as oriented geodesicsu,

where ℓ and ȷ denote oriented geodesics of H2. We want to emphasize that
every (unparameterized, unoriented) spacelike geodesic can be expressed in
the above form in two ways, as we could change the orientation of both ℓ and
ȷ. Rephrasing we can state:

Proposition 3.7. There is a homeomorphism between the space of (unparametrized)
oriented spacelike geodesics of AdS2,1 and the product of two copies of BH2 ˆ

BH2z∆, the space of oriented geodesics of H2. The homeomorphism is equiv-
ariant for the action of Isom0pAdS2,1q » PSLp2,Rq ˆ PSLp2,Rq.

However we will not be really interested in oriented geodesics, hence we
will have identification Lℓ,ȷ “ Lℓ1,ȷ1 where with ℓ1 we denote ℓ endowed with
the opposite orientation.
Given a spacelike geodesic, there is a natural notion of dual spacelike geodesic
(3.2), which we define using the projectivity duality between points and planes
discussed in section 2.4:

Definition 3.8. Given a spacelike geodesic Lℓ,ȷ in AdS2,1, the dual spacelike
geodesic is the intersection of all the spacelike planes dual to points of Lℓ,ȷ.

Let us see it with an explicit. Consider the geodesic Lℓ,ℓ through the
origin, which consists of the one-parameter loxodromic group of PSLp2,Rq

translating along ℓ. It can be checked that the dual geodesic consists of all
elliptic order-two elements whose fixed point lies in ℓ. To see this we can
suppose (as a consequence of the transitivity of the action of PSLp2,Rq on
geodesics of H2 ) that ℓ is the imaginary axis. In this case Lℓ,ℓ “ tMk|k P Ru

where

Mk “

„

e´k{2 0

0 ek{2

ȷ

.

We observe now, and will develop more thoroughly the theory of totally
geodesic planes in Section 3.4, that given an element M P PSLp2,Rq the
set:

PrMs “ trXs P PSLp2,Rq | xX,My “ 0u (3.7)

defines the intersection of a projective subspace of PMp2,Rq with AdS2,1,
hence a totally geodesic subspace. Given a generic matrix X:

X “

„

a b
c d

ȷ
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Figure 3.2: Top and bottom edges are spacelike lines, dual to one another.
The tetrahedron is obtained connecting the vertexes of the spacelike geodesics
via lightlike segments.

the property of being a point in the plane can be restated as the condition

ae
k
2 ` de´ k

2 “ 0. (3.8)

As we are asking that Equation 3.8 holds for every k it must be a “ d “ 0,
hence X (seen as a Möbius transformation) is of the form Xpzq “ ´ b2

z an
elliptic transformation of order two with fixed point ib P H2.
In other words, the dual spacelike geodesic of Lℓ,ℓ is Lℓ,ℓ1 .
We can explicitly describe the points at infinity in BAdS2,1 of these geodesics.
Using Lemma 3.3, if x and y are the endpoints at infinity of ℓ in BH2, then
any sequence diverging towards an end of Lℓ,ℓ1 Ă PSLp2,Rq maps an interior
point towards x, and the sequence of inverses towards y (up to switching
the two points). In other words, under the identification given by δ between
BAdS2,1 » RP1 ˆ RP1, the endpoints of Lℓ,ℓ are px, yq and py, xq. A similar
argument applied to the geodesic Lℓ,ℓ1 , which consists of order-two elliptic
isometries with fixed point in ℓ shows that its endpoints are px, xq and py, yq.
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Recalling the description of the left and right rulings of BAdS2,1 given in (3.4),
we can conclude that the endpoints of a spacelike geodesic and its dual are
mutually connected by lightlike segments in BAdS2,1.
The transitivity of the action of PSLp2,Rq ˆ PSLp2,Rq let us state:

Proposition 3.9. Given a spacelike geodesic Lℓ,ȷ of AdS2,1, its endpoints in
BAdS2.1 are px1, y2q and py1, x2q, where x1 and y1 are the final and initial
endpoints of ℓ in BH2, and x2 and y2 are the final and initial endpoints of ȷ.
The dual geodesic is Lℓ,ȷ1 and has endpoints px1, x2q and py1, y2q.

3.4 Spacelike planes

Now we want to study totally geodesic spacelike planes in AdS2,1. They are
all obtained as the intersection of AdS2,1 with a projective subspace in the
projective space PMp2,Rq. Hence they are all of the the following form:

PrAs “ trXs P PSLp2,Rq | xX,Ay “ 0u (3.9)

for some non-zero matrix A. The notation is justified by the observation that
the plane defined by PA depends only on the projective class of A. The totally
geodesic plane is spacelike if and only if qpAq “ ´detA is negative. We will
call such a plane dual plane of A, in particular the dual plane Pγ of an element
γ P PSLp2,Rq is a spacelike totally geodesic plane.

Example 3.10: Before the general treatment we want to focus on a con-
crete example. Consider γ “ Id P PSLp2,Rq. Now because of Equation
3.1, PId is the subset of PSLp2,Rq consisting of projective classes of X with
trpXq “ 0. By the Cayley-Hamilton theorem, X2 “ ´Id, hence the elements
of PId are order-two isometries of H2, that is, elliptic elements with rota-
tion angle π. We can also observe that PId is invariant under the action of
PSLp2,Rq by conjugation, which corresponds to the diagonal in the isometry
group PSLp2,Rq ˆ PSLp2,Rq of AdS2,1. Using Lemma 3.3, we can see that
the boundary of PId in BAdS2,1 » RP1 ˆ RP1 is the diagonal; more precisely:

BPId “ graph(Id) Ă RP1 ˆ RP1. (3.10)

Now consider a point z P H2, and let us denote by Rz the order-two elliptic
isometry with fixed point z. We claim that the map

ι : H2 Ñ PId, ιpzq “ Rz
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is an isometry with respect to the hyperbolic metric of H2 and the induced
metric on PId. First, the inverse of ι is simply the fixed-point map Fix : PId Ñ

H2 sending an elliptic isometry to its fixed point, which also shows that ι is
equivariant with respect to the action of PSLp2,Rq on H2 by homographies
and on PId by conjugation, since Fixpαγα´1q “ αFixpγq. That is, the following
holds:

ιpα ¨ pq “ α ˝ ιppq ˝ α´1. (3.11)

A direct consequence is that ι is isometric, since the pull-back of the metric
of PId is necessarily PSLp2,Rq-invariant and has constant curvature -1, hence
it coincides with the standard hyperbolic metric on the upper half-plane.

This simple example is actually the key case to understand general space-
like totally geodesic planes as every spacelike totally geodesic plane is of the
form Pγ for some γ P PSLp2,Rq. To see this, observe that the action of the
isometry group of AdS2,1 on spacelike totally geodetic planes is transitive, and
that Pγ “ pγ, Idq ¨ PId as the isometry pγ, Idq maps Id Ñ γ, and therefore the
dual plane of Id to the dual plane of γ. In view of the observations given in
(3.6) and (3.10), we can conclude the following:

Lemma 3.11. Every spacelike totally geodesic plane of AdS2,1 is of the form
Pγ for some orientation-preserving isometry γ P PSLp2,Rq, and

BPγ “ graphpγ´1q Ă RP1 ˆ RP1.

3.5 Timelike planes

Let us now consider a matrix A P Mp2,Rq such that detpAq “ ´1. The
corresponding plane PA defined by Equation 3.9 is a timelike totally geodesic
plane. Associated with rAs is an orientation-reversing isometry η of H2. We
will thus denote PrAs by Pη.
The totally geodesic timelike plane Pη can now be parametrized as follows.
We have a map:

I Ñ I ˝ η (3.12)

from the spaces of reflections I along geodesic ofH2, with values in PSLp2,Rq »

AdS2,1. As seen in the proof of Lemma 3.2 we have that an X with deter-
minant ´1 is an inversion if and only if traceless. As detpAq “ ´1 we have
adjpAq “ ´A´1, therefore xXA,Ay “ 0 if and only if trpXq “ 0, that is X is
traceless hence an involution. This shows that the image of the map defined
in Equation 3.12 is the entire plane Pη.
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In similar fashion to the spacelike case, using the transitivity of the group of
isometries on timelike planes, every timelike plane is of the form above. We
can show the following:

Lemma 3.12. Every timelike totally geodesic plane of AdS2,1 is of the form
Pη for some orientation-reversing isometry η P PSLp2,Rq, and

BPη “ graphpη´1q Ă RP1 ˆ RP1.

Proof. We want to use Lemma 3.3 and the parametrization given in Equation
3.12. Suppose we have a sequence In such that Inηpzq Ñ x P BH2, for any
z P H2. Then, using that In is an involution and the continuity of the action

of η on H2
, pInηq´1pzq “ η´1I´1

n pzq “ η´1Inpzq “ η´1pxq.

3.6 Lightlike planes

We are only left with case of lightlike totally geodesic planes. Those are the
form PrAs for a nonzero matrix A with detpAq “ 0. Before giving an explicit
description of such planes, we want to observe that their boundary will not
be a graph in RP1 ˆ RP1, unlike the case of spacelike and timelike planes.

Lemma 3.13. Every lightlike totally geodesic plane of AdS2,1 is of the form
PrAs for some rank one matrix A, and:

BPrAs “ pImpAq ˆ RP1q Y pRP1 ˆ KerpAqq.

Proof. The point in BPrAs are projective class of rank one matrices satisfying
xX,Ay “ 0, that is, such that trpXadjpAqq “ 0. Given that XadjpAq has
vanishing determinant, by the Cayley-Hamilton theorem XadjpAq is traceless
if and only if it is nilpotent, that is, if and only if XadjpAqXadjpAq “ 0. Now,
given that image and kernel of both X and adjpAq have dimension 1, this
happens if and only if:

ImpXq “ KerpadjpAqq or ImpadjpAqq “ KerpXq. (3.13)

Now, since detpAq “ 0 implies adjpAqA “ AadjpAq “ 0, the relations KerpadjpAqq “

ImpAq and ImpadjpAqq “ KerpAq hold. Hence X P PrAs if and only if
ImpXq “ ImpAq or KerpXq “ KerpAq, which concludes the proof because
of the definition of the homeomorphism δ.

Geometrically BPrAs is the union of two circles in RP1 ˆ RP1, one hori-

zontal and one vertical, which intersect exactly at the point in RP1 ˆ RP1

corresponding to rAs P BAdS2,1 via δ.



CHAPTER 4
Mess’ Work

In his 1990 paper “Lorentz Spacetimes of Constant Curvature” [11], Geoffrey
Mess offered a completely new approach to the study of spacetimes in 2+1-
dimension by employing tools and techniques from low-dimensional geometry
and topology. The aim of this chapter is to give a brief introduction to Mess’
ideas, with a special attention to AdS geometry. Our treatment will follow the
setting introduced by Bonsante and Seppi in [2]. We will give definitions of
general Lorentzian sets such as achronal subsets, invisible domains, domains
of dependence and how they relate to the graphs of circle homeomorphisms
(and their convex hull) in our specialized Anti-de Sitter setting. We will show
that those graphs are proper achronal sets in the projective model and always
lift to achronal sets in the Poincaré model.

4.1 Causality and Convexity properties

We begin by giving some definitions:

Definition 4.1. A subset X of ĄAdS2,1 Y B ĄAdS2,1 is achronal (respectively
acausal) if no pair of points in X is connected by timelike (resp. causal) lines

in ĄAdS2,1.

Since acausality and achronality are conformally invariant notions, it will
be often convenient to consider the metric gS2 ´ dt2 on D ˆ R introduced in
2.11 which is conformal to the Poincaré model. We give now a first useful
characterization of achronal and acausal sets.

37



38 CHAPTER 4. MESS’ WORK

Lemma 4.2. A subsetX of ĄAdS2,1YB ĄAdS2,1 is achronal (respectively acausal)
if and only if it is the graph of a function f : D Ñ R which is 1-Lipschitz, (resp.
strictly 1-Lipschitz) with respect to the distance induced by the hemispherical
metric gS2 , where we have denoted D “ πDpXq.

Proof. Let us assume X is achronal. Now, since vertical lines in the Poincaré
model are of timelike type, the restriction of the projection πD : D ˆ R Ñ D
to X is injective. But then, X can be interpreted as the graph of a function
f : D Ñ R. By imposing that px, fpxqq and py, fpyqq are not connected by a
timelike curve we deduce that:

|fpxq ´ fpyq| ď dS2px, yq (4.1)

where dS2 is the distance induced by the hemispherical metric. By the same
reasoning we show that a 1-Lipschitz graph over D is achronal. Moreover
two points px, tq and py, sq are on the same lightlike geodesic if and only if
dS2px, yq “ |t´s|. Hence X is acausal if and only if the inequality of Equation
4.1 is strict.

Now a 1-Lipschitz function on a region D Ă D extends uniquely to the
boundary of D. As a simple consequence of the previous lemma, we thus
have:

Lemma 4.3. An achronal subset X in ĄAdS2,1 is properly embedded if and
only if it is a global graph over D, and in this case it extends uniquely to the
global graph of a 1-Lipschitz function over D Y BD.

Because of Lemma 4.3 we will often refer to an achronal surface as an
achronal subset X Ă ĄAdS2,1 which is the graph of a 1-Lipschitz function
defined on a domain in D. Before moving over to the study of properties
of achronal sets we shall remark how achronality and acausality are global
conditions.

Definition 4.4. Given a surface S and a Lorentzian manifold pM, gq, a C1

immersion σ : S Ñ M is spacelike if the pull-back metric σ˚g is Riemannian.
If σ is an embedding, we refer to its image as a spacelike surface.

A spacelike surface S is locally acausal, but there are examples of spacelike
surfaces which are not achronal (hence a fortiori not acausal), a fact that
highlights the global character of the achronality condition. On the other
hand the following is true:

Lemma 4.5. Any properly embedded spacelike surface in ĄAdS2,1 is acausal.
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Proof. By Lemma 4.3, any properly embedded spacelike surface S in ĄAdS2,1
disconnects the spaces in two regions U, V whose common boundary is S, and
we can assume that the outward pointing normal from U (resp. V ) is past-
directed (resp. future directed). It turns out that any future oriented causal
path that meets S passes from V towards U . This implies that any causal
path meets S at most once.

We have remarked in Theorem 2.2 that unparametrized lightlike geodesics
only depend on the conformal class of the Lorentzian metric, hence we will
just refer to lightlike geodesics in ĄAdS2,1, even when we are considering it
endowed with the hemispherical metric of 2.11.

Lemma 4.6. Let S be a properly embedded achronal surface of ĄAdS2,1 Y

B ĄAdS2,1 and assume that a lightlike geodesic segment γ joins two points of S.
Then γ is entirely contained in S.

Proof. We want to exploit Lemma 4.3, let fS : D Ñ R be the function that
defines S, which is 1-Lipschitz with respect to the hemispherical metric. Now
if our segment γ joins px, fSpxqq to py, fSpyqq, then (up to switching the role
of x and y) it holds: fSpyq “ fSpxq ` dS2px, yq. Now, γ is lightlike and hence
consists of points of the form pz, fSpxq ` dS2px, zqq, for the points z on the
gS2´geodesic segment joining x to y. By achronality of S we deduce:

fSpzq´fSpxq ď dS2px, zq and fSpyq´fSpzq ď dS2pz, yq “ dS2px, yq´dS2px, zq.

The second inequality implies that fSpzq ě fSpxq ` dS2px, zq, it follows that
fSpzq “ fpxq ` dS2px, zq and hence γ is entirely contained in S.

Invisible domains

Invisible domains were not treated in the original work of Mess but were later
introduced in the literature by Barbot in [1]. We give the general definition

and properties for a generic X subset of ĄAdS2,1 Y B ĄAdS2,1, later we will focus
on X entirely contained in the boundary.

Definition 4.7. Given an achronal domain X in ĄAdS2,1 YB ĄAdS2,1, the invisi-
ble domain ofX is the subset, that we will denote by ΩpXq, of ĄAdS2,1YB ĄAdS2,1
defined as the set of points which are connected to X by no causal path.

Roughly speaking, ΩpXq is the union of all acausal subset containing X
(hence the maximal for such a property). We recall that any 1-Lipschitz
function on a subset of a metric space admits a 1-Lipschitz extension every-
where (Mc Shane’s theorem [10]). In our setting this allows us show that any
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achronal set X is a subset of a properly embedded achronal surface.
We consider two particular extensions fX

˘ : D Y BD, which we will refer to as
extremal extensions:

fX
´ pyq “ suptfXpxq ´ dS2px, yq | x P πDpXqu

fX
` pyq “ inftfXpxq ` dS2px, yq | x P πDpXqu.

Lemma 4.8. Let X be any closed achronal subset of ĄAdS2,1 Y B ĄAdS2,1, and
let S˘pXq be the graphs of the extremal extensions fX

˘ .

• The properly embedded surfaces S´pXq and S`pXq are achronal with
S´pXq Ă I´pS`pXqq, and ΩpXq “ I`pS´pXqq X I´pS`pXqq.

• Every achronal subset containing X is contained in S´pXq Y ΩpXq Y

S`pXq.

• Every point of S˘pXq is connected to X by at least one lightlike geodesic
segment, which is contained in S˘pXq. Finally S`pXq X S´pXq is the
union of X and all lightlike geodesic segments joining points of X.

Proof. We begin by showing that S´pXq Ă I´pS`pXqq. Given a point py, tq, t ď

fX
` pyq if and only if t ď fXpxq ` dS2px, yq for every x P πDpXq, that is, if and
only if py, tq lies outside I`pXq. Similary py, tq lies outside I´pXq if and only if
t ě fX

´ pyq. By achronality, S`pXq does not meet the past of X, so we deduce

that fX
` pyq ě fX

´ pyq for all y P D. Hence S´pXq Ă I´pS`pXqq.
As a similar observation, given a point py, tq we have that tpy, tqu Y X is
achronal if and only if fX

´ ptq ď t ď fX
` pyq. Moreover py, tq is connected to X

by no causal curve if and only if fX
´ pyq ă t ă fX

` pyq. This shows that

ΩpXq “ tpy, tq | fX
´ pyq ă t ă fX

` pyqu.

and also the second item, by applying the previous observation to any point
of an achronal set containing X which is not in X itself.
To prove the third item, fix a point py, tq P S`pXq. As we are assuming that

X is closed in ĄAdS2,1 Y B ĄAdS2,1, the fact that fX is 1-Lipschitz implies that
πDpXq is closed in D Y BD, so it is also compact. In particular, there exists
x P BD such that t “ fX

` pyq “ fXpxq ` dS2px, yq. Thus py, tq is connected
to px, fXpxqq by a lightlike geodesic segment. By Lemma 4.6 this geodesic is
entirely contained in S`pXq. Clearly the same proof works for S´pXq.
We are left with the computation of S´pXq XS`pXq. For this purpose, notice
that if two points of X are connected by a lightlike goedesic segment, again
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via Lemma 4.6, we deduce that γ Ă S´pXq X S`pXq. Conversely let py, tq P

S´pXq X S`pXq so that fX
´ pyq “ fX

` pyq. There exist x and x1 in πDpXq such
that

fX
` pyq “ fXpxq ` dS2px, yq and fX

´ pyq “ fXpx1q ´ dS2px1, yq.

Using the equality fX
´ pyq “ fX

` pyq, the triangle inequality and the fact that
fX is 1-Lipschitz we deduce that

fXpxq ´ fXpx1q “ dS2px, x1q “ dS2px, yq ` dS2py, x1q. (4.2)

Hence the points px, fXpxqq and px1, fXpx1qq are joined by a lightlike segment.
If x, x1 are not antipodal points on BD, there is a unique hemispherical geodesic
η in D joining x to x1, which must pass through y by Equation 4.2, and which
we may assume parametrized by arc length. In this case the geodesic segment
joining px, fXpxqq to px1, fXpx1qq takes the form t ÞÑ pηptq, fXpx1q ` tq, so it
passes through py, fX

` pyqq “ py, fX
´ pyqq.

If x and x1 are antipodal, then there are infinitely many geodesics joining x to
x1, and we can pick one going through y. Then the same argument as above
applies.

Remark 4.9. Given a point py, tq the set of points px, sq satisfying |s ´ t| ă

dS2px, yq coincides with the region of ĄAdS2,1 which is connected to py, tq by
a spacelike geodesic for the Anti-de Sitter metric. It coincides also with the
region of points connected to py, tq by a spacelike geodesic for the conformal
emispherical metric (although in general spacelike geodesics for the two metrics
do not coincide). Now, since fX

´ pyq ď t ď fX
` pyq is equivalent to the condition

that |s ´ t| ă dS2px, yq for all px, tq P X, the region

S`pXq Y ΩpXq Y S´pXq “ tpy, tq | fX
´ pyq ď t ď fX

` pyqu

consist of all the points that are connected to any point of X by spacelike or
lightlike geodesics. Moreover ΩpXq consist of points connected to any point of
X by a spacelike geodesic. We observe that ΩpXq could be empty, for instance
when X is a global graph then S´pXq “ S`pXq “ X and ΩpXq is empty.

Remark 4.10. Since any point of S˘pXq is connected to X by a lightlike
geodesic, it follows from Lemma 4.6 that the intersection of any properly
embedded achronal surface containing X with S˘pXq is a union of lightlike
geodesic segments with an endpoint in X. In particular any properly embed-
ded acausal surface containing X is contained in ΩpXq.

We will need the following technical definition:
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Definition 4.11. Given a function f : D Ñ R, we define its oscillation as:

oscpfq :“ max
yPD

fpyq ´ min
yPD

fpyq.

We observe that such a quantity is not invariant under the action of the
isometry group of ĄAdS2,1.

With this definition we can state the following lemma that we will soon
use:

Lemma 4.12. Let S be a properly embedded achronal surface, defined as the
graph of fS : D Ñ R. Then oscpfSq ď π moreover oscpfSq “ π if and only if
S is a lightlike plane.

Proof. We observe that fS is 1´Lipschitz for the hemispherical metric, and
the diameter of D for gS2 is π, hence we easily obtain that oscpfSq is bounded
by π. Moreover if the value is attained it follows that there are two antipodal
points y, y1 P BD such that: fSpy1q “ fSpyq ` π. We recall from the remark
following Equation 2.11 that the lightlike plane with past and future points
py, fSpyqq and py1, fSpyq ` πq is:

P “ tpx, tq | t “ fSpxq ` dS2px, yqu

which moreover is foliated by lightlike geodesic joining py, fSpyqq to py1, fSpyq`

πq. By Lemma 4.6, P is included in S. Since both are global graphs over D
we have S “ P .

Achronal meridian in B ĄAdS2,1

We will be interested in the study of invisible domains of achronal meridians Λ
in the boundary of ĄAdS2,1, that are graphs of 1-Lipschitz functions f : BD Ñ R.

Lemma 4.13. Let Λ be an achronal meridian in B ĄAdS2,1. Then either Λ is
the boundary of a lightlike plane, or S`pΛq X S´pΛq “ Λ. In the latter case
there is an achronal properly embedded surface in ΩpΛq whose boundary in

B ĄAdS2,1 is Λ.

Proof. Let f : BD Ñ R be the function whose graph is Λ. We recall from
Lemma 4.12 that oscpfq ď π. If there are points x0, x

1
0 such that fpx1

0q “

fpx0q ` π then combining both Lemma 4.12 and Lemma 4.8 we deduce that
Λ is the boundary of a lightlike plane, and this lightlike plane coincides with
S`pΛq X S´pΛq.
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Assume now that the maximal oscillation of f is smaller than π, and let us
show that S`pΛq XS´pΛq “ Λ. By the assumption, if a lightlike geodesic con-
nects px0, fpx0qq to px1

0, fpx1
0qq then x0 and x1

0 are not antipodal. But then
x0, x

1
0 are connected by a unique length-minimizing geodesic in D for the hemi-

spherical metric, which lies in BD. So the lightlike line connecting px0, fpx0qq

to px1
0, fpx1

0qq is contained in B ĄAdS2,1. By Lemma 4.8 we conclude that S´pΛq

and S`pΛq do not meet in ĄAdS2,1 and therefore S`pΛq X S´pΛq “ Λ.
Finally, in this latter case the function F “ pfΛ

´ `fΛ
`q{2 is 1´Lipschitz and de-

fines an achronal properly embedded surface contained in ΩpΛq, whose bound-
ary is Λ.

We remark that in fact for any achronal meridian there is a spacelike
surface whose boundary at infinity is Λ; we will expand on this in Remark
4.23. Now, given a point x P ĄAdS2,1, we recall that the Dirichlet domain of x
is the region Rx containing x and bounded by two spacelike plane “dual” to x.
Namely the planes that we denote (with a slight abuse of notation) P`

x and
P´
x , consisting of points at timelike distance π{2 in the future (resp. past)

along timelike geodesic with initial point x.

Proposition 4.14. Let Λ be an achronal meridian in B ĄAdS2,1 different from
the boundary of a lightlike plane. Then:

• A point x P ĄAdS2,1 lies in ΩpΛq if and only if Λ is contained in the
interior of the Dirichlet region Rx.

• For any z P Λ, let L´pzq and L`pzq be the two lightlike planes such that
z is the past vertex of L`pzq and the future vertex of L´pzq. Then

ΩpΛq “
č

zPΛ

I`pL´pzqq X I´pL`pzqq.

• The length of the intersection of ΩpΛq with any timelike geodesic of
ĄAdS2,1 is at most π. Moreover, there exist a timelike geodesic whose
intersection with ΩpΛq has length π if and only if Λ is the boundary at
infinity of a spacelike plane.

Proof. By Remark 4.9 a point x lies in ΩpΛq if and only if it is connected to
any point of Λ by a spacelike geodesic. The region of points connected to x
by a spacelike geodesic has boundary the lightcone from x, whose intersection
with B ĄAdS2,1 coincides with P˘

x X B ĄAdS2,1.
Moving on the second item we observe that the region bounded by L`pzq and
L´pzq contains exactly points connected to z by a spacelike geodesic. Using
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the characterization of ΩpΛq as above, we have the second statement.
Lastly, if a timelike geodesic γ meets ΩpΛq at a point x, then ΩpΛq Ă Rx, so
that the length of γ X ΩpΛq is smaller than the length of γ X Rx. But the
latter is π. Now assume the existence of a geodesic γ such that the length of
γ X Rx equals π. Up to applying an isometry of ĄAdS2,1 we may assume that
γ is vertical in the Poincaré model of ĄAdS2,1 and the mid-point of γ XΩpΛq is
p0, 0q. Thus p0,´π{2q and p0, π{2q lie on S´pΛq and S`pΛq respectively.
Now, again by 4.9 points of Λ are connected to p0,´π{2q by a spacelike or
lightlike geodesic, hence s ď 0 for all pξ, sq P Λ. Analogously using the point
p0, π{2q we deduce that s ě 0 for all pξ, sq P Λ, so that Λ “ BD ˆ t0u.

Arguing in similar fashion, we obtain that the invisible domain of an
achronal meridian which is not the boundary of a lightlike plane is always
contained in a Dirichlet region.

Proposition 4.15. Given an achronal meridian Λ in B ĄAdS2,1 different from
the boundary of a lightlike plane, the invisible domain ΩpΛq is contained in a
Dirichlet region unless Λ is the boundary of a spacelike plane.

Proof. We start by defining a` “ sup fΛ
` and a´ “ inf fΛ

´ , and we consider
the planes:

Pa`
“ tpx, tq | t “ a`u and Pa´

“ tpx, tq | t “ a´u

in the Poincaré model. Since ΩpΛq lies in the open region bounded by those
planes, it is sufficient to show that a` ´ a´ ď π. Assume by contradiction the
converse. Notice tht Pa`

meets S`pΛq at some point p` “ px`, a`q and Pa´

meets S´pΛq at some point p´ “ px´, a´q where x` and x´ are points on D.
For ϵ “ pa``a´´πq{2 we can find x1

` and x1
´ in D such that p1

` “ px1
`, a`´ϵq

and p1
´ “ px1

´, a´ `ϵq lie in ΩpΛq (clearly if x˘ lies in D we can take x1
˘ “ x˘q.

As pa` ´ ϵq ´ pa´ ´ ϵq “ π, the geodesic segment γ joining p1
` and p1

´ is
timelike of length π. Its end-points are in I`pS´pΛqq X I´pS`pΛqq, so γ is
entirely contained in ΩpΛq. As end-points of γ are contained in ΩpΛq, γ can
be extended within ΩpΛq but this contradicts the third point of Proposition
4.14. The third point of Proposition 4.14 then shows that if a` ´a´ “ π then
Λ is the boundary of a spacelike plane. Hence, apart from this case, one has
a` ´ a´ ă π, so the closure of ΩpΛq is contained in a Dirichlet region.

Remark 4.16. When Λ is the boundary of a spacelike plane P , then there
are two points x´ and x` such that P “ P`

x´
“ P´

x`
. The previous argument

shows that ΩpΛq is the union of all timelike geodesics joining x´ to x` In this
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case S´pΛ) is the union of the future directed lightlike geodesic rays emanating
from x´, whereas S`pΛq is the union of future directed lightlike rays ending
at x`.

Domain of dependence

We want to define and study properties of Cauchy surfaces and domains of
dependence, due to a theorem of Geroch [7] the study of this particular surfaces
will impose strict conditions on the topology of the spacetimes.

Definition 4.17. Given an achronal subsetX in a Lorentzian manifold pM, gq

the domain of dependence of X is the set:

DpXq “ tp P M | every inextensible causal curve through p meets Xu.

We say that X is a Cauchy surface of M if DpXq “ M . A spacetime M is
called globally hyperbolic if it admits a Cauchy surface.

The theory of globally hyperbolic spacetimes is a well-developed topic in
Lorentzian geometry, we will just state the facts that we will need in the thesis.
The following result is due to Geroch [7].

Theorem 4.18. Let M be a globally hyperbolic spacetime. Then:

1. Any two Cauchy surfaces in M are diffeomorphic.

2. There exists a submersion τ : M Ñ R whose fibers are Cauchy surfaces.

3. M is diffeomorphic to Σ ˆ R where Σ is any Cauchy surface in M.

Remark 4.19. The spacetime ĄAdS2,1 is not globally hyperbolic. In fact if X
is achronal, it is contained in the graph of a 1-Lipschitz function f : pD Y

BD, gS2q Ñ R. If t0 ą supf and ξ P BD, then any lightlike ray with past
end-point pξ, t0q does not intersect X.

Remark 4.20. As causality notions are invariant under conformal change of
metrics, we observe that causal paths in ĄAdS2,1 are the graphs of 1-Lipschitz
functions from (intervals in) R to D with respect to the hemispherical metric

in the image. Hence an inextesible causal curve in ĄAdS2,1 is either the graph
of a global 1-Lipschitz function from R, or it is defined on a proper interval
and has endpoint(s) in B ĄAdS2,1.

Lemma 4.21. Given an achronal meridian Λ in B ĄAdS2,1 any Cauchy surface
in ΩpΛq is properly embedded with boundary at infinity Λ.
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Proof. Let S be a Cauchy surface in ΩpΛq. For every x P D, the vertical line
through x in the Poincaré model meets ΩpΛq, and its intersection with ΩpΛq

must meet S by definition of Cauchy surface. This shows that S is a graph
over D, hence properly embedded, and clearly BS “ Λ.

Proposition 4.22. Let Λ be an achronal meridian in B ĄAdS2,1 different from
the boundary of a lightlike plane. Let S be a properly embedded achronal surface
in ΩpΛq. Then DpSq “ ΩpΛq. In particular ΩpΛq is a globally hyperbolic
spacetime.

Proof. Let x be any point in ΩpΛq and take any inextensible causal path
through x. A priori its future endpoint might be either in S`pΛq or in Λ, but
by definition of ΩpΛ), x cannot be connected by any causal path to Λ, hence
the latter case is excluded. The same argument shows that the past endpoint
is in S´pΛ). Since the inextensible causal path meets both S`pΛq and S´pΛq,
it must meet S by Lemma 4.21, hence x P DpSq.
Conversely, consider a x that is not in ΩpΛq, then one can find a causal path
joining x to Λ, which is necessarily inextensible. Hence x is not in DpSq.

Remark 4.23. As a direct consequence of Theorem 4.18 and Proposition 4.22
we have that Λ is the boundary of a spacelike surface in ΩpΛq, namely a Cauchy
surface in ΩpΛq. By Lemma 4.21, the surface is properly embedded, hence the
graph of a global 1-Lipschitz function. This shows that any proper achronal
meridian Λ is the boundary at infinity of a properly embedded spacelike surface,
we remark that we have improved the statement of Lemma 4.13.

The most remarkable property of the domain of dependence of a properly
embedded surface in ĄAdS2,1, which is a direct consequence of Proposition 4.22,
is that it only depends on the boundary at infinity. In detail:

Corollary 4.24. If S and S1 are properly embedded spacelike surfaces in
ĄAdS2,1, then DpSq “ DpS1q if and only if BS “ BS1.

Properly achronal sets in AdS2,1

For our interest will be important to consider the model AdS2,1. As AdS2,1
contains closed timelike lines, it does not contain any achronal subset. How-
ever if P is a spacelike plane in AdS2,1 then AdS2,1zP does not contain closed
causal curves as we have discussed in Section 2.4. Indeed it is simply con-
nected, so it admits an isometric embedding into ĄAdS2,1, given by a section
of the covering map ĄAdS2,1 Ñ AdS2,1, and whose image is a Dirichlet region.
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Definition 4.25. A subsetX of AdS2,1YBAdS2,1 is a proper achronal subset if
there exists a spacelike plane P such thatX is contained in AdS2,1YBAdS2,1zP
and is achronal as a subset of AdS2,1 Y BAdS2,1zP .

It follows from the definition that if X is a proper achronal subset of
AdS2,1, then it admits a section to ĄAdS2,1 Y B ĄAdS2,1, and the image remains
achronal after the lifting. Conversely, let rX be an achronal subset of ĄAdS2,1
different from a lightlike plane, then it is contained in a Dirichlet region as a
consequence of Lemma 4.12, and the fact that any achronal subset of ĄAdS2,1
is contained in properly embedded one. As Dirichlet regions are projected in
ĄAdS2,1 to the complement of a spacelike plane, the image of rX in AdS2.1 is a
proper achronal subset. The following lemma will be key in our path to prove
the earthquake theorem:

Lemma 4.26. Let φ : RP1 Ñ RP1 be an orientation preserving homeo-
morphism. Then the graph of φ, say Λφ Ă RP1 ˆ RP1 » BAdS2,1 is a proper

achronal subset and any lift, denoted as ĂΛφ, is an achronal meridian in B ĄAdS2,1.

Proof. We start by proving that Λφ is locally achronal. Consider U and V
intervals around x and φpxq and let θ1 and θ2 be positive coordinates on U
and V respectively. Then the timelike curves γptq “ pγ1ptq, γ2ptqq in U ˆ V
are characterized by the property that θ1

1ptqθ1
2ptq ă 0, where θiptq “ θipγiptqq

as we saw in Equation 3.5.
In particular points on ΛφXUˆV are not related by a timelike curve contained
in U ˆ V , by the assumption that φ is orientation-preserving.
Let us prove the existence of a spacelike plane P such that P X Λφ “ H.
Let us consider the identification RP1 “ R Y t8u, and take φ0 P PSLp2,Rq

so that φ´1
0 φp0q “ 1, φ´1

0 φp1q “ 8 and φ´1
0 φp8q “ 0. It follows that φ´1

0 φ
sends the intervals p8, 0q, p0, 1q and p1,8) respectively to p0, 1q, p1,8q, p8, 0q.
Thus φ´1

0 φ has no fixed points, that is, the graph of φ does not intersect the
graph of φ0, which is the asymptotic boundary of the spacelike plane Pφ0 .

Let us consider now the lift rΛφ to the boundary of ĄAdS2,1. As Λφ is contained

in a simply connected region of AdS2,1, its lift is a closed locally achronal
curve contained in B ĄAdS2,1. In particular the projection rΛφ Ñ BD is locally

injective. As rΛφ is compact, the map is a covering. On the other hand, since

Λφ is homotopic to the boundary of a plane in BAdS2.1, it turns out that rΛφ

is homotopic to BD in B ĄAdS2,1, so that the projections rΛφ Ñ BD is bijective.

It follows that rΛφ is achronal.
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What we have shown until now for achronal sets in ĄAdS2,1 can be rephrased
for proper achronal sets of AdS2,1. For example, any proper achronal set X
can be extended to a properly embedded proper achronal surface and there
are two extremal extensions, just as in Lemma 4.8
Now we would like to focus on proper achronal meridians in BAdS2,1. They
lift to achronal meridians in B ĄAdS2,1 different from the boundary of lightlike
planes. Indeed the boundary of a lightlike plane is not contained in a Dirich-
let region. Conversely, any achronal meridian on B ĄAdS2,1 different from the
boundary of a lightlike plane projects to an achronal meridian of AdS2,1.

Proposition 4.27. Let Λ be a proper achronal meridian in BAdS2,1 and de-
note by rΛ any lift to the universal covering. Then the universal covering map
of AdS2,1 maps ΩprΛq injectively to the domain:

ΩpΛq :“ tx P AdS2,1 | Px X Λ “ Hu.

Proof. Consider the covering p : ĄAdS2,1 Ñ AdS2,1, by Proposition 4.15 the
invisible domain ΩprΛq is contained in a Dirichlet region R

rx, hence the restric-
tion of p to ΩprΛq is injective and its image is contained in ppR

rxq, namely the
complement in AdS2,1 of the spacelike plane Px dual to x “ pprxq. Moreover,
by the first item of Proposition 4.14, one can actually pick for rx any point in
ΩprΛq, which shows that the image ppΩprΛqq is contained in ΩpΛq defined as in
the proposition.
For the converse inclusion, let x P AdS2.1 be a point whose dual plane Px does
not meet Λ. The preimage p´1pPxq is a countable disjoint union of planes

which disconnect ĄAdS2,1 Y B ĄAdS2,1 in a disjoint union of Dirichlet regions
centered at preimages of x. The lift rΛ is then contained in exactly one such
region, say R

rx. By the first item of Proposition 4.14, rx P ΩprΛq which implies
that x “ pprxq lies in ppΩprΛqq.

When Λφ is the graph of an orientation-preserving homomorphism φ :
RP1 Ñ RP1, there is a fairly simple characterization of ΩpΛφq exploiting the
identification AdS2,1 » PSLp2,Rq.

Corollary 4.28. Let φ : RP1 Ñ RP1 be an orientation-preserving homeo-
morphism. Then x P AdS2,1 lies in ΩpΛφq if and only if x ˝ φ has no fixed
point as a homeomorphism of RP1.

Proof. The dual plane of x P PSLp2,Rq, meets BAdS2,1 along the graph of
x´1, namely Λx´1 .
With this remark in hand, we have that x P ΩpΛφq if and only if Λx´1 XΛφ “

H, that is, if and only if x´1 ˝ φ has no fixed point on RP1.
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Proposition 4.29. Let σ : S Ñ AdS2,1 be a proper spacelike immersion.
Then

• σ is a proper embedding.

• σ lifts to a proper embedding rσ : S Ñ ĄAdS2,1.

• The boundary at infinity of σpSq is a proper achronal meridian Λ in
BAdS2,1.

• DpσpSqq “ ΩpΛq.

Proof. Denote by pS the covering of S admitting a lift pσ : pS Ñ H2,1. In general
either pS “ S or it is a 2 : 1 covering. Since the covering is finite, pσ is a proper
immersion. Let us consider the identification H2 ˆ S1 that follows from the
map given in Equation (2.5). The induced projection: pr : H2,1 Ñ H2 is
a proper fibration with timelike fibers. In particular pσ is transverse to the
fibers of pr. It follows that the composition pr ˝ σ : pS Ñ H2 is a proper
local diffeomorphism, hence a covering map. Since H2 is simply connected,
we deduce that the covering is actually a homeomorphism, pσ is an embedding,
and pS is homeomorphic to the hyperbolic plane.
More is true; we can lift pσ to the universal covering, say pσ : pS Ñ ĄAdS2,1, which
is still a proper spacelike embedding pS Ñ ĄAdS2,1. By Lemma 4.3 and Lemma
4.5 we know that the image is an achronal meridian, and it is contained in
a Dirichlet domain by Lemma 4.12. It follows that pσp pSq is contained in a
Dirichlet domain of the covering map H2,1 Ñ AdS2,1, on which we know that
the covering map is injective. In particular σ is injective, hence S “ pS as
desired.

We therefore have an analogous version of Lemma 4.24 in AdS2,1.

Corollary 4.30. If S and S1 are properly embedded spacelike surfaces in
AdS2,1, then DpSq “ DpS1q if and only if BS “ BS1.

Convexity properties

Let Λ be a proper achronal meridian in BAdS2,1. We would like to investigate
convexity properties of ΩpΛq. We briefly recall that X Ă RPn is convex if it
is contained in an affine chart, and it is convex in the affine chart. The notion
does not depend on the affine chart containing X. We would say that it is a
proper convex set if it compactly contained in an affine chart.
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Proposition 4.31. Given a proper achronal meridian Λ in BAdS2,1, the invis-
ible domain ΩpΛq is convex. If Λ is different from the boundary of a spacelike
plane then ΩpΛq is a proper convex set.

Proof. By Proposition 4.15, there exists a spacelike plane P such that ΩpΛq

is contained in the affine chart V of RP3 obtained by removing the projective
plane containing P . The domain AdS2,1 X V “ AdS2,1zP is isometric to a

Dirichlet region R of ĄAdS2,1, by an isometry that sends Λ to a lifting rΛ and
ΩpΛq to ΩprΛq. By the second point of Proposition 4.14 we have

ΩprΛq “
č

rzPrΛ

I`pL´przqq X I´pL`przqq.

Now if rz projects to z, then the images of L´przq and L`przq in V are the
two components of Lpzq X AdS2,1, where Lpzq is the affine tangent plane of
BAdS2,1 X V at z. It turns out that the image of the region I`pL´przqq X

I´pL`przqq is the intersection of AdS2,1 with the half-space Upzq bounded by
Lpzq and whose closure contains Λ. This shows:

ΩpΛq “ AdS2,1
č

zPΛ

Upzq.

Actually we claim that:

ΩpΛq “
č

zPΛ

Upzq Ă AdS2,1,

and this will conclude. As
Ş

zPΛ Upzq is connected and meets AdS2,1, to show
that is contained in AdS2,1 it suffices to show that it does not meet the bound-
ary. For any w P BAdS2,1 let us consider the leaf of the left ruling through w,
which intersects Λ at a point z. It turns out that Lpzq contains the leaf of the
left ruling through z, hence w R Upzq.
Now assume that Λ is not the boundary of a spacelike plane. Then by Propo-
sition 4.15 on the universal covering the compact set ΩprΛq Y S`prΛq Y S´prΛq

is contained in a Dirichlet domain, so its image is a compact set contained in
an affine chart.

As a consequence, we have that Λ is contained in an affine chart whose
complement in RP3 is a projective plane containing a spacelike plane of AdS2,1
Hence it makes sense to give the following definition:

Definition 4.32. Given a proper achronal meridian Λ in BAdS2,1, we de-
fine CpΛq to be the convex hull of Λ, which can be taken in an affine chart
containing Λ
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What we have implicitly proved is that given Λ an achronal meridian in
BAdS2,1, then CpΛq is contained in AdS2,1, which is not immediately obvious
as AdS2,1 is not convex in RP3.

Example 4.33: Consider σ P PSLp2,Rq, the convex hull of the graph Λσ is
the closure of the totally geodesic spacelike plane Pσ´1 in AdS2.1. In particular,
following Lemma 3.11, we have that the boundary at infinity of Pσ´1 equals
Λσ, and moreover Pσ´1 is convex, since spacelike geodesics of AdS2,1 are lines
in an affine chart, and any two points in BH2 are connected by a geodesic.
Hence Pσ´1 is clearly the smallest convex set containing Λσ.

Remark 4.34. Since ΩpΛq is convex, CpΛq is contained in ΩpΛq. Moreover,
if K is any convex set contained in AdS2,1 and containing Λ, then CpΛq Ă

K Ă ΩpΛq.
To see this, let V be an affine chart such that Λ Ă V is obtained removing
a spacelike projective plane. Now, if z P Λ then for any x P AdS2,1 X V the
segment connecting z and x in V is contained in AdS2,1 if and only if x P Upzq,
the half-space containing Λ and bounded by the tangent space of Λ at z, as in
the proof of Proposition 4.31.
It follows, from the characterization of ΩpΛq as the intersection of the Upzq

given in Proposition 4.31, that if x is not in ΩpΛq it cannot be in K. Hence
ΩpΛq is the biggest convex set of AdS2,1 containing Λ.

4.2 Support planes

We still need to borrow some notions and notation from convex analysis. Given
a convex body K in an affine space of dimension three, a support plane of K
is an affine plane Q such that K is contained in a closed half-space bounded
by Q, and BK X Q ‰ H. If p is in the intersection of BK with Q we will say
that Q is a support plane at p. As a consequence of the Hahn-Banach theorem
there exist a support plane at every point p P BK.
We will adapt the terminology to the Anti-de Sitter setting. Given a convex
hull CpΛφq in AdS2,1, we say that a totally geodesic plane P is a support plane

of CpΛφq (at p P BCpΛφqq is p P CpΛφq X P Ă AdS2,1 and, in an affine chart
containing Λφ, CpΛφq lies in a closed half-space bounded by the affine plane
that contains P . Even this definition does not depend on the choice of the
affine chart as long this one contains Λφ.
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Remark 4.35. We could rephrase the condition of being a support plane as the
following: a totally geodesic plane P is support plane for CpΛφq if there exists
a continuous family tPtutPr0,ϵq of totally geodesic planes, pairwise disjoint in

AdS2,1, such that P0 “ P and Pt X CpΛφq “ H for t ą 0.

We observe that if X is a set, CpXq its convex hull and Q an affine support
plane for CpXq, then Q X CpXq “ CpQ X Xq. Applying this identity in our
setting, we get that for any totally geodesic support plane P :

P X CpΛφq “ CpBP X Λφq. (4.3)

With this new borrowed tool of support planes we can make study more
carefully the structure of the convex body of our interest. Suppose that Λ is
not the boundary of a spacelike plane. Now the topological frontiers in RP3

of ΩpΛq and of CpΛq are Lipschitz surfaces homeomorphic to a sphere. This
sphere is disconnected by Λ in two regions, homeomorphic to disks, which form
the boundary of ΩpΛq and of CpΛq in AdS2,1. For ΩpΛq those components are
the image of S˘prΛq and will be denoted by S˘pΛ).
For CpΛq, let CprΛq be a lifting, which is necessarily contained in a Dirichlet
region, say R. Let P be a support plane for CpΛq, which is necessarily either
spacelike or lightlike, and let rP be its lift which touches CprΛq. Hence either rΛ
is in I`p rP q Y rP or in I´p rP q Y rP . This permits to distinguish the components
of BCpΛqzΛ : the past boundary component BC´pΛq has the property that rΛ
is contained in I`p rP q Y rP for all support planes which touch B´CpΛq, and
analogously for the future boundary component B`CpΛq.
We want to show a kind of duality between boundary components B˘CpΛq and
S˘pΛq.

Proposition 4.36. Let Λ be a proper achronal meridian in AdS2,1, x P AdS2,1
and let us denote by Px the dual plane to x. Then:

• x P ΩpΛq if and only if Px X CpΛq “ H.

• x P CpΛq if and only if Px X ΩpΛq “ H.

In particular if Λ is not the boundary of a spacelike plane, then:

• x P B˘ΩpΛq if and only if Px is a support plane for B¯CpΛq.

• x P B˘CpΛφq if and only if Px is a support plane for S¯pΛq.

Proof. From Proposition 4.27, points in ΩpΛq are dual to planes disjoint from
Λ, which are precisely those which do not intersect CpΛq, by the definition of
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convex hull. For the second statement, fix x and observe that z P Px if and
only if x P Pz. Hence there exists a point z in the intersection Px X ΩpΛq if
and only if x is in a plane Pz which is disjoint from Λ, namely when x is not
in CpΛq.
As a consequence BCpΛq consists of points dual to support planes of ΩpΛq.
Take a support plane Px of S`pΛq (hence dual to a point x) which meets
S`pΛq at z. If rz denotes the corresponding point of S`prΛq, then rΛ Ă I`pP´

rz q,

and P´
rz X rΛ “ H. Thus Pz, which is the projection of P´

rz , is a support plane
of CpΛq touching the past boundary. As x P Pz we conclude that x lies in the
past boundary. Similarly points of the future boundary of CpΛq correspond to
support planes for S´pΛq.

Proposition 4.37. The past and future boundary components of CpΛq are
achronal surfaces.

Proof. We will show it for B`CpΛq. Take x, y P B`CpΛq and consider the
segment joining x to y in an affine chart containing Λ. If this segment was
timelike then the dual planes Px and Py would be disjoint. Then (up to
switching the roles of x and y) we may assume that, in the universal cover
P 1

rx Ă I`pP 1
ry q, where rx and ry are the lifting of x and y in the same Dirichlet

region mapping to the fixed affine chart. But then S`prΛq would be contained
in I´pP 1

ry q and could not meet P 1
rx thus a contradiction to Proposition 4.36

We can also characterize what kind of support planes of CpΛφq are allowed
by considering how such planes touch CpΛφq at a boundary point.

Proposition 4.38. Let φ : RP1 Ñ RP1 be an orientation-preserving home-
omorphism, and let P be a support plane of CpΛφq at a point p P BCpΛφq.
Then:

• If p P AdS2,1, then P is a spacelike plane.

• If p P BAdS2,1 then P is either spacelike or lightlike.

Proof. The key observation is that if P is a spacelike plane, then BP and
Λφ “ CpΛφq X BAdS2,1 do not intersect transversely. From Lemma 3.12 if P is
timelike then BP is the graph of an orientating-reversing homeomorphism of
RP1, hence it intersects Λφ transversally. From Lemma 3.13, if P is lightlike,
then its boundary is the union of the two circles: txu ˆ RP1 and RP1 ˆ y. So
if p P BP X Λφ and p is not the point p0 “ px, yq, then BP and Λφ intersect
transversally. Hence the only case where P can be a lightlike support plane
is when it intersects Λφ only at the point p0. We are left with the task to
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show that P X CpΛφq “ tp0u and it does not contain any point of AdS2,1. By
contradiction suppose the existence of a q P P X CpΛφq with q different from
p0, then by Equation (4.3), BP XΛφ would also contain another point different
from p0, a contradiction.

Now, given a spacelike support plane P of CpΛφq at a point p, we say
that P is a future (resp. past) support plane if in a small simply connected
neighbourhood of p P AdS2,1, CpΛφq is contained in the closure of the con-
nected components of UzP which is the past (resp. future) of P . This means
that there exists a future-oriented (resp. past-oriented) timelike curve leaving
CpΛφq X U and reaching P X U .
We observe that CpΛφq cannot have both a future and past support plane at
p unless CpΛφq has empty interior, a situation that happens exactly when φ
is an element of PSLp2,Rq, see Example 4.33.
We can now state the following lemma related to convergence of support
planes:

Lemma 4.39. Let φ : RP1 Ñ RP1 be an orientation-preserving homeomor-
phism which is not in PSLp2,Rq, pn a sequence of points in BCpΛφq, and
Pγn a sequence of future (resp. past) spacelike supports planes at pn, for
γn P PSLp2,Rq. Up to extracting a subsequence, we can assume pn Ñ p and
Pγn Ñ P. Then:

• If p P AdS2,1, then P “ Pγ is a future (resp. past) support plane of
CpΛφq, for γn Ñ γ P PSLp2,Rq.

• If p P BAdS2,1, then either P is a lightlike plane whose boundary is the
union of two circle meeting at p, or it is a future (resp. past) support
plane as in the previous point.

Proof. We can extract a converging subsequence from pn and Pγn , by com-
pactness of CpΛφq and of the space of planes in projective space. Also, the
limit of the sequence of support planes Pγn at pn is a support plane of P at
p, since both conditions that pn P CpΛφq and that CpΛφq is contained in a
closed half-space bounded by Pγn are closed conditions. Now, by Proposition
4.38, if the limit p is in AdS2,1, then P is a spacelike support plane, which is
future (resp. past) if all the Pγn are future (resp. past). The situation could
also occur analogously if p P BAdS2,1; the other possibility being that P is
lightlike, and in this case the proof of Proposition 4.38 shows P “ PrAs if p is
represented by the projective class of the one-rank matrix A.
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Corollary 4.40. Let φ : RP1 Ñ RP1 be an orientation-preserving homeo-
morphism which is not in PSLp2,Rq. Then BCpΛφq is the disjoint union of
graphpfq “ CpΛφq X BAdS2,1 and of two topological discs, of which one admits
future support planes, and the other only admits past support planes.

Proof. We have already hinted at this after Remark 4.34, we will now give
a more detailed proof. It is a basic result in convex analysis that BCpΛφq is
homeomorphic to S2; by Proposition 4.31 its intersection with BAdS2,1 equals
Λφ and is therefore a simple closed curve. By the Jordan curve theorem, the
complement of Λφ is the disjoint union of two topological discs, each of which
is contained in AdS2,1.
Now by Lemma 4.39, the set of point p P BCpΛφq admitting a future support
plane is close. But is also open because its complement is the set of points
admitting a past support plane, for which the same argument applies. Hence
each connected component of the complement of Λφ admits only future sup-
port planes, or only past support planes. Finally, BCpΛφq necessarily admits
both a past and a future support plane, otherwise it would not be compact in
an affine chart.

According to Corollary 4.40 we will call the connected component of BCpΛφqzΛφ

that only admits future support planes the future boundary component, and
denote it by B`CpΛφq. Similarly, we will call the connected component of
BCpΛφqzΛφ that only admits past support planes the past boundary compo-
nent, and denote it by B´CpΛφq.

4.3 Globally Hyperbolic three-manifolds

We want now to focus our attention on maximal globally hyperbolic (MGH)
Anti-de Sitter spacetimes containing a compact Cauchy surfaces of genus r
(we will, with a slight abuse of notation, say that the spacetime has genus r.)
We will show that there are no such manifolds when r “ 0. We will then focus
on the most interesting case, r ě 2, that will lead to a complete classification.

General facts

We will now state some general facts that will be useful in our classification.

Lemma 4.41. Let σ : S Ñ AdS2,1 be a spacelike immersion. If σ˚pgAdS2,1q

is a complete Riemannian metric, then σ is a proper embedding and S is
diffeomorphic to R2
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Proof. Thanks to Proposition 4.29 it suffices to prove that σ is a proper im-
mersion. We keep the notation of the proof of Proposition 4.29, consider a lift
pσ : pS Ñ H2,1 We need to show that the map pσ is proper. We will show that
if γ : r0, 1q Ñ pS is a path such taht the limit limtÑ1 pσpγptqq exists, then also
limtÑ1 γptq exists.
Using the expression for the metric on H2,1 given by Equation 2.8 (under the
identification of H2,1 with H2 ˆ S1 given by the composition of the projection
from the universal cover with the map π given in Equation 2.5), we see that
the lenght of γ for the pull-back metric is smaller than the lenght of the pro-
jection of γ to the H2 factor, with respect to the hyperbolic metric on H2.
The latter hyperbolic lenght is finite by the assumption, hence the lenght of
γ is also finite for the pull-back metric. Now the assumption of completeness
on the pull-back metric implies the existence of the limit point for γptq.

As an immediate consequence there cannot be any globally hyperbolic
spacetime with genus 0. In fact, suppose such a spacetime exists and denote
by Σ a Cauchy surface diffeomorphic to S2, the developing map restricted to Σ
would be a spacelike immersion, and the pull-back metric would be complete
by compactness. But this contradicts Lemma 4.41. Hence:

Corollary 4.42. There exists no globally hyperbolic Anti-de Sitter spacetimes
of genus 0.

The following is a fundamental result on the structure of globally hyper-
bolic AdS spacetimes.

Proposition 4.43. Let M be a globally hyperbolic Anti-de Sitter spacetime of
genus r ě 1. Then:

1. The developing map dev : ĂM Ñ AdS2,1 is injective.

2. If Σ is a Cauchy surface of M, then the image of dev is contained in
ΩpΛq, where Λ is boundary at infinity of devprΣq.

3. If ρ : π1pMq Ñ IsompAdS2,1,q is the holonomy representation, ρpπ1pMqq

acts freely and properly discontinuously on ΩpΛq, and ΩpΛq is a globally
hyperbolic spacetime containing M .

Proof. Let Ądev : ĂM Ñ ĄAdS2,1 be a lift of dev to the universal cover. By The-
orem 4.18, the spacetime M admits a foliation by smooth spacelike surfaces
pΣtqtPR of genus r ě 1, such that Σt Ă I`pΣt1q for t ą t1. Let rΣt be the lift of

the foliation on ĂM . Since Σt is closed, the induced metric on Σt is complete,
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and so is the induced metric on rΣt. As Ądev is a local isometry, we deduce by
Lemma 4.41 that the restriction of Ądev is a proper embedding. Assume now
by contradiction that ĄdevprΣtq X ĄdevprΣt1q ‰ H for some t ě t1. Then there is a

point x P rΣt such that Ądevpxq P devprΣ1
tq. By assumption, x is connected to rΣt1

by a timelike arc η in ĂM. Then Ądevpηq is a timelike arc in ĄAdS2,1 with end-

points in ĄdevprΣt1q and this contradicts the achronality of ĄdevprΣt1q. This shows

that Ądev is injective, and moreover we conclude that ĄdevprΣtq is a Cauchy sur-

face of ĄdevpĂMq.

It follows from Proposition 4.29 that ĄdevpMq Ă DpĄdevprΣtqq “ ΩprΛq, where rΛ

is the boundary at infinity of ĄdevprΣtq, and this proves the second point. Now,

the map Ądev is rρ´equivariant, for a representation rρ : π1pMq Ñ Isomp ĄAdS2,1q

which is a lift of the holonomy of M . As ĄdevprΣtq is rρ-invariant, the so are
rΛ and ΩprΛq. We shall prove that the action of π1pMq on ΩprΛq given by rρ is
proper. This will also show that the action is free since π1pMq is isomorphic
to π1pΣrq and therefore has no torsion.
For this purpose, let us notice that if K is relatively compact in ΩprΛq then

XK :“ pI`pKq Y I´pKqq X ĄdevprΣtq

is relatively compact as well. As the action of π1pMq on rΣt, and thus on
ĄdevprΣtq, is proper and XγK “ γpXKq, we deduce that the set of γ such
that XγK X XK ‰ H is finite. On the other hand if K X γK ‰ H then
XK XXγK ‰ H. We thus conclude that the action is proper. By applying the

path lifting property, one sees that the quotient ĄdevprΣtq{π1pMq is a Cauchy
surface of ΩprΛq{π1pMq, which is therefore globally hyperbolic. This proves
the third point as by Proposition 4.27 the restriction of the covering map
ĄAdS2,1 Ñ AdS2,1 to ΩprΛq Y rΛ is injective.

A remarkable difference between Lorentzian and Riemannian geometry is
that in Lorentzian geometry completeness is a very strong assumption, and
there is not any counterpart to the Hopf-Rinow theorem. In fact, interest-
ing classification results are obtained removing such condition. However, it
is necessary to impose some maximality condition to compensate for non-
completeness. Following [2] we restrict to a less general setting, but one could
give similar definitions in the larger class of Einstein spacetimes.

Definition 4.44. A globally hyperbolic Anti-de Sitter manifold pM, gq ismax-
imal if any isometric embedding of pM, gq into a globally hyperbolic Anti-de
Sitter manifold pM 1, g1q which sends a Cauchy surface of M to a Cauchy sur-
face of M 1 is surjective.
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As a product of this definition and as a direct consequence of Proposition
4.43 we have:

Corollary 4.45. An Anti-de Sitter globally hyperbolic spacetime M is maxi-
mal if and only if ĂM is isometric to the invisible domain of a proper achronal
meridian in AdS2,1.

Examples of genus r ě 2

Let Σr be an oriented surface of genus r ě 2. We recall the definition of
Fuchsian representation.

Definition 4.46. A representation ρ : π1pSq Ñ PSLp2,Rq is called positive
Fuchsian if there is a ρ-equivariant orientation preserving homeomorphism
δ : rΣr Ñ H2.

The definition is invariant under conjugation in PSLp2,Rq » Isom0pH2q,
but not under conjugation in IsompH2q.

Another useful tool for the classification of genus r ě 2 is the following
fact in Teichmüller theory [5]:

Lemma 4.47. Given two positive Fuchsian representations ρ, ϱ : π1pΣrq Ñ

PSLp2,Rq, any pρ, ϱq´equivariant orientation-preserving homeomorphism of
H2, extends continuously to an orientation-preserving homeomorphism of H2Y

RP1 (we can consider δ´1
ϱ ˝δρ given by Definition 4.46). Moreover, its extension

φ : RP1 Ñ RP1 is the unique pρ, ϱq´equivariant orientation homeomorphism
of RP1.

Here by (ρ, ϱ)-equivariant, we mean that for every γ P π1pSq:

φ ˝ ρpγq “ ϱpγq ˝ φ.

Now let ρ, ϱ be two positive Fuchsian representations of Σr. We will be inter-
ested in the representation:

ω “ pρ, ϱq : π1pΣrq Ñ Isom0pAdS2,1q » PSLp2,Rq ˆ PSLp2,Rq.

Definition 4.48. Given a pair of positive Fuchsian representations ρ, ϱ :
π1pΣrq Ñ PSLp2,Rq we define Λω to be the graph in RP1 ˆ RP1 of the
unique pρ, ϱq´equivariant orientation-preserving homeomorphism of RP1, and
Ωω :“ ΩpΛωq its invisible domain in AdS2,1
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Using the above construction, we can build examples of MGH spacetimes
having holonomy any ω “ pρ, ϱq of this form.

Proposition 4.49. The domain Ωω is invariant under the isometric action
of π1pΣrq on AdS2,1 induced by ω. Moreover π1pΣrq acts freely and properly
discontinuosly on Ωω and the quotient is a MGH spacetime of genus r and
holonomy ω.

Proof. By the definition of φ and the action of PSLp2,Rq ˆPSLp2,Rq we have
that Λω is invariant under the action of pρpγq, ϱpγqq, for every γ P π1pΣrq.
We recall from Corollary 4.28 that Ωω is the set of elements x P PSLp2,Rq,
such that x ˝ φ has no fixed point on RP1. The invariance of Ωω also follows
immediately, indeed:

pρpγq ˝ x ˝ ϱpγq´1q ˝ φ “ ρpγq ˝ px ˝ φq ˝ ρ2pγq

acts freely on RP1 if x ˝ φ does.
Let us show that for a compact set K in Ωω, ρpγq ¨ K stays in a compact
region of Ωρ only for finitely many γ P π1pΣrq. This will also show that the
action is free, since π1pΣrq has no torsion. For this purpose, take a sequence
xn P K and a sequence γn P π1pΣrq not definitely constant. We claim that up
to a subsequence, pρpγnq ¨ xnq converges to some pξ`, φpξ`qq in Λpρq. We will
apply the criterion of convergence in BAdS2,1 seen in Lemma 3.3.
Since Fuchsian representations act cocompactly on H2, the sequence ρpγnq

has no converging subsequence in PSLp2,Rq. By a known dynamical property
of PSLp2,Rq (for more information view [BZ06]), up to taking a subsequence,
there exist ξ´, ξ` P RP1 such that ρpγnq˘1pξq Ñ ξ˘ for all ξ ‰ ξ¯ and that the
convergence is uniform on compact sets of pH2 YRP1qztξ¯u. By the equivari-
ance condition, the same holds for ϱpγnq where now ξ˘ are replaced by φpξ˘q.
To apply the criterion of Lemma 3.3, pick any p P H2, and recall that
ρpγnq ¨ xn “ ρpγnq ˝ xn ˝ ϱpγnq´1. By the dynamical property above, for any
δ ą 0 one can find n0 such that ϱpγnq´1ppq is in the δ-neighborhood of φpξ´q

(for the Euclidean metric on the closed disc), say Uδ. Since xn lies in a com-
pact region of Ωω, we can assume that is converges to x8 P Ωω, hence x8 ˝ φ
has no fixed point, and in particular x8 ˝ φpξ´q ‰ ξ´.
Up to taking δ sufficiently small and n0 large, xnpUδq lies in a neighborhood Vϵ

of x8 ˝ φpξ´q such that the closure of Vϵ is disjoint from ξ´. By construction
xn ˝ ϱpγnq´1ppq converges to ξ` for n large. The very same argument then
shows that pρpγnq ¨ xnq´1ppq “ ϱpγnq ˝ x´1

n ˝ ρpγnq´1ppq converges to φpξ`q.
And this concludes the claim.
Finally, past and future boundary components B˘CpΛpρqq are contained in Ωρ,
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since Λpρq is the graph of an orientation-preserving homeomorphism. Hence
they are ρ´ invariant properly embedded Cauchy surfaces in Ωω and project
to Cauchy surfaces of the quotient of the action of ρpπ1pΣrqq, which are homeo-
morphic to Σr. This shows that the quotient is a globally hyperbolic spacetime
of genus r, which is maximal by Proposition 4.43.

Classification of genus r ě 2

We will now show that the examples of Proposition 4.49 are all the MGH
spacetimes of genus r.

Lemma 4.50. Let ω “ pρ, ϱq be a pair of positive Fuchsian representations,
and φ : RP1 Ñ RP1 be the unique pρ, ϱq´equivariant orientation-preserving
homeomorphism of RP1. Then Λpρq is the unique proper achronal meridian
in BAdS2,1 invariant under the action of π1pΣrq induced by ρ.

Proof. Let Λ be a proper achronal meridian invariant under the action of
π1pΣrq. We claim that the intersection Λ X Λφ is not empty. Once the claim
will be showed, the proof is concluded in the following way. If pξ0, φpξ0qq P Λ,
then:

pρpγq ¨ ξ0, φpρpγq ¨ ξ0qq “ pρpγq ¨ ξ0, ϱpγq ¨ φpξ0qq P Λ.

However the ρpπ1pΣrqq-orbit of ξ0 is dense in RP1, hence we deduce that Λ
contains Λφ. But both Λ and Λφ are homeomorphic to S1, which necessarily
implies Λ “ Λφ.
Let us then show the claim. Let γ be a non-trivial element in π1pΣrq. It is
known that ρpγq and ϱpγq are necessarily loxodromic elements in PSLp2,Rq,
hence we denote by ξ`

l pγq, and ξ`
r pγq their attractive fixed points respectively.

Notice that ξ`
r pγq “ φpξ`

l pγqq, hence:

pξ`
l pγq, ξ`

r pγqq P Λφ.

By homological reasoning the curve Λ must meet the leaf of the left ruling of
BAdS2,1:

λξ`
r pγq

“ tpη, ξ`
r pγqq | η P RP1u.

That is, there exists η0 P S such that pη0, ξ
`
r pγqq lies in Λ. But then we have

that the point pρpγqkη0, ξ
`
r pγqq lies in Λ for k ą 0. If η0 ‰ ξ´

l pγq we can pass
to the limit on k and deduce that pξ`

l pγq, ξ`
r pγqq lies in Λ.

So far, the choice of γ was arbitrary. To conclude, assume now by contradiction
that for every γ P π1pΣrq the point pξ´

l pγq, ξ`
r pγqq lies in Λ. Take α, β P π1pSq
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so that the axes of ρpαq and ρpβq do not intersect. We may assume that the
cyclic order of end-points of those axes is

ξ`
l pαq ă ξ`

l pβq ă ξ´
l pβq ă ξ´

l pαq. (4.4)

Now given that ξ˘
r pαq “ φpξ˘

l pαqq and the same holds for β (because φ is an
orientation-preserving homeomorphism) we have:

ξ`
r pαq ă ξ`

r pβq ă ξ´
r pβq ă ξ´

r pαq. (4.5)

On the other hand, by assumption (applied to α, β and their inverses) the
curve Λ contains pξ`

l pαq, ξ´
r pαqq, pξ`

l pβq, ξ´
r pβqq, pξ´

l pβq, ξ`
r pβqq and pξ´

l pαq, ξ`
r pαqq.

By achronality of Λ, the cyclic order to the second components must be the
same as that of the first components, hence from Equation 4.4 we obtain:

ξ´
r pαq ă ξ´

r pβq ă ξ`
r pβq ă ξ`

r pαq,

which contradicts Equation 4.5.

Given a pair ρ “ pρ, ϱq of positive Fuchsian representations of π1pΣrq, we
denote by Mρ the MGH spacetime Ωω{ρpπ1pΣrqq constructed in Proposition
4.49.

Corollary 4.51. For any pair ρ “ pρ, ϱq of positive Fuchsian representations
of π1pΣrq, Mρ is the unique MGH spacetime with holonomy ρ.

We are only left with one last step for the classification result, we want to
show that the left and right holonomies are necessarily positive Fuchsian.

Proposition 4.52. Let M be an oriented, time-oriented, globally hyperbolic
spacetime of genus r ě 2 and let us endow a Cauchy surface Σ with the orien-
tation induced by the future normal vector. Then the left and right components
of the holonomy ρ “ pρ, ϱq : π1pΣq Ñ PSLp2,RqˆPSLp2,Rq are positive Fuch-
sian representations.

Remark 4.53. We refer to the holonomy ρ with respect to an orientation-
preserving developing map. Therefore ρ is well-defined up to conjugacy in
PSLp2,Rq ˆ PSLp2,Rq

Proof. We will prove that the RP1-flat bundles with holonomy ρ and ϱ are
isomorphic to the unit tangent bundle of Σ. The condition is equivalent to the
representation being positive Fuchsian due to a result of Goldman [6]. For the
sake of definiteness, let us focus on ρ. We will construct an isomorphism:

Φl : T
1

rΣ Ñ rΣ ˆ RP1
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equivariant with the respect to the action on T 1
rΣ by the actions by deck

transformation and the diagonal action given by ρ on rΣ ˆ RP1.
We define Φl as follows: for an element px, vq P T 1

rΣ, let

ξpx, vq “ pξlpx, vq, ξrpx, vqq P RP1 ˆ RP1

be the end-point of the spacelike geodesic ray expxptvq in AdS2,1 for positive t,
Then we define Φlpx, vq “ px, ξlpx, vqq. This map is clearly continuous, proper,
equivariant and fiber preserving.
In order to prove that it is a bijection it suffices to notice that for any x P rΣ
the map ξx : T 1

x prΣq Ñ RP1 ˆ RP1 is an embedding with image the boundary
of the totally geodesic plane tangent to rΣ at x. This boundary is the graph
of an orientation-preserving map of RP1, so the projection v Ñ ξlpx, vq is
bijective. Moreover, by our choice of the orientation on Σ, the orientation
on T 1

x
rΣ corresponds to the orientation induced on ξxpT 1

x
rΣq as graph of an

orientation-preserving homeomorphism. The proof for ϱ is analogous.

We can now state the classification result. We denote the deformation
space of MGH spacetimes of genus r by:

MGHpΣrq “ tg MGH AdS metric on Σr ˆ Ru{Diff0pΣr ˆ Rq

where the group of diffeomorphisms isotopic to the identity is acting by pull-
back. The holonomy map takes value in the space of representation of π1pΣrq

into PSLp2,Rq ˆ PSLp2,Rq and is well-defined on the quotient MGHpΣrq.
As a consequence of Proposition 4.52, the left and right components of the
holonomy of elements of MGHpΣrq are positive Fuchsian representations.
The space of these representations up to conjugacy is identified with the Te-
ichmüller space of Σr by the aforementioned work of Goldman:

T pΣrq » tρ : π1pΣrq Ñ PSLp2,Rq positive Fuchsian representationu{PSLp2,Rq

Therefore the holonomy map can be considered as a map from MGHpΣrq

with values in T pΣrq ˆ T pΣrq. Restating the classification in the original set
of Mess [11]:

Theorem 4.54. The holonomy map ρ : MGHpΣrq Ñ T pΣrq ˆ T pΣrq is a
homeomorphism.
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4.4 Gauss map of spacelike surfaces

We will now introduce the Gauss map associated to a spacelike surface in
AdS2,1. This tool will be useful in the study of the relation between Anti-
de Sitter geometry and the Teichmüller theory of hyperbolic surfaces. We
will start by fixing notation and recalling some general facts about immersed
spacelike surfaces in Anti-de Sitter space. The theory is a pseudo-Riemannian
equivalent to surfaces embedded in R3 hence we will use the adapted standard
notation. For the moment we will assume that all our immersed surfaces are
of class C1.
Given a regular immersion σ : S Ñ AdS2,1 we recall that we refer to it as
spacelike if the pull-back of the ambient metric gAdS2,1 , namely I :“ σ˚gAdS2,1
is Riemannian. We call I the first fundamental form of σ.

The tangent bundle TS is naturally identified with a subbundle of TAdS2,1
by means of dσ. The normal bundle Nσ is then defined as the gAdS-orthogonal
complement of TS in TAdS2,1, and the restriction of gAdS to Nσ is negative
definite. Using the gAdS´orthogonal decomposition:

σ˚TAdS2,1 “ TS ‘ Nσ,

the pull-back of the ambient Levi-Civita connection ∇, restricted to sec-
tions tangent to S, splits as the sum of the Levi-Civita connection ∇I of the
first fundamental form I and a symmetric 2-form with value in Nσ. We recall
that AdS2,1 is a time-orientable manifold therefore the normal bundle admits
a natural trivialization, which is the same as a choice of a continuous unit
normal vector field for σ. We will denote by ν : S Ñ Nσ the future-directed
unit normal section, and consider the decomposition for all vector field V,W
tangent to S:

∇V W “ ∇I
V W ` IIpV,W qν,

where the symmetric p2, 0q tensor II is called second fundamental form. To
conclude we introduce the I´symmetric p1, 1q-tensor B P pTSq˚ bTS defined
by IIpV,W q “ IpBpV q,W q which is called the shape operator of σ. As in the
Riemannian case, it turns out that σ˚pBpvqq “ ∇vν.
The first and second fundamental form of an immersion σ satisfy constraint
equations, known as Gauss-Codazzi equations. More precisely the Gauss equa-
tion consists of the identity:

KI “ ´1 ´ detIII (4.6)

where KI is the curvature of I and detI II is detB by definition. On the other
hand the Codazzi equation states that ∇III is a totally symmetric 3´form:

p∇I
V IIqpW,Uq “ p∇I

W IIqpV,Uq. (4.7)
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What can be shown is that the Gauss-Codazzi equations relating first and
second fundamental forms are necessary but also sufficient, more explicitly we
have:

Theorem 4.55. Let S be a simply connected surface, let I be a Riemannian
metric on S and II be a symmetric p2, 0q´tensor on S. If I and II satisfy
the Gauss-Codazzi equations 4.6 and 4.7, then there exists a spacelike immer-
sion σ : S Ñ AdS2,1 having I and II as first and second fundamental form.
Moreover if σ, σ1 are two such immersions, then there exists a time-preserving
isometry f such that σ1 “ f ˝ σ.

Germs of spacelike immersions in AdS manifolds

Let us now consider the case of an oriented surface Σ, not necessarily simply
connected. Given a spacelike immersion σ : Σ Ñ pM, gq where pM, gq is an
oriented Anti-de Sitter manifold, we can associate to σ the pair pI, IIq as done
in the previous section, where II is computed with respect to the future unit
normal vector ν of σ. We will always assume that the orientation of Σ and ν
are compatible with the orientation on M.
The pair pI, IIq is made up of local operators and only depends on the germ
of the immersion σ.
Given a pair pI, IIq on a surface Σ, we can perform the following construction:
let π : rΣ Ñ Σ be a universal cover, it follows that the pair pπ˚I, π˚IIq satisfies
the Gauss-Codazzi equations on rΣ, hence by the existence part of Theorem
4.55, there exists a spacelike immersion rσ : rΣ Ñ AdS2,1 having immersion data
pπ˚I, π˚IIq. The uniqueness part of Theorem 4.55 has two main consequences:

• Any two such immersions differ by post-composition by a global isometry
of AdS2,1.

• Given any such rσ, there exists a map ρ : π1pΣq Ñ Isom0pAdS2,1q such
that, for every γ P π1pΣq, f ˝ γ “ ρpγq ˝ f .

More can be proved: ρ is a group representation and changing rσ by post-
composition with an isometry f has the effect of conjugating ρ by f . The
immersion σ can then be extended to an immersion of U , an open neighbor-
hood of Σ ˆ t0u in Σ ˆ R, into AdS2,1, by mapping px, tq to the point γptq on
the timelike geodesic γ such that γp0q “ σppq and γ1p0q is the future normal
vector of σ at x. We want to explicit the expressions of the Anti-de Sitter
metric in such a tubular neighborhood of σ as it will be useful in the following:
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Lemma 4.56. Given a spacelike immersion σ : Σ Ñ AdS2,1, the pull-back
of the ambient metric by means of the map pp, tq Ñ expσppqptνpxqq has the
expression:

´dt2 ` cos2ptqI ` 2 cosptq sinptqII ` sin2ptqIII, (4.8)

where I, II, III are the first, second and third fundamental form of σ
respectively. We recall that the third fundamental form can be expressed as
IIIp¨, ¨q “ IpBp¨q, Bp¨qq where B is the shape operator.

Proof. For ease, we will use the quadric model introduced in Section 2.1. We
fix px, tq P Σ ˆ R, and a vector pv, B

Btq P Tpx,tqΣ ˆ R. By Equation (2.10),
we have expσpxqptνpxqq “ cosptqσpxq ` sinptqνpxq. The differential in t gives
the vector u “ ´ sinptqσpxq ` cosptqνpxq, while the differential in the space
direction gives the vector w “ cosptqdσxpvq ` sinptqdνxpvq. The two vectors
are orthogonal, it follows from the observation TxHn,1 “ xK in the quadric
model.
Recall that Ip¨, ¨q “ xdσp¨q, dσp¨qy by definition and that the differential of σ
identifies Bpvq and ∇vν, namely the tangential component of dνpvq. Consider
now z “ u ` w, we have the following expression:

xz, zygAdS2,1
“ sin2ptqxσpxq, σpxqy ` cos2ptqxνpxq, νpxqy ´ 2 cosptq sinptqxσpxq, νpxqy`

` cos2ptqxdσxpvq, dσxpvqy ` 2 cosptq sinptqxdσxpvq, dνxpvqy`

` sin2ptqxdνxpvq, dνxpvqy

“ ´ 12 ` cos2ptqI ` 2 cosptq sinptqII ` sin2ptqIII.

Where in the last equality we have use the aforementioned properties of
I, II, III and the orthogonality of σ and νpxq.

In short, given a pair pI, IIq, Expression 4.8 provides a Lorentzian metric
of constant curvature ´1 on an open set U in ΣˆR containing the slice Σˆt0u,
and thus a germ of immersion of Σ into an Anti-de Sitter three-manifold with
immersion data pI, IIq. We summarize what we have accomplished so far:

Proposition 4.57. Given a surface Σ, there are natural identifications be-
tween the following spaces:

• The space of pairs pI, IIq on Σ which are the solution of the Gauss-
Codazzi equations.

• The space of germs of spacelike immersion of Σ into Anti-de Sitter man-
ifolds.
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• The space of spacelike immersion of rΣ into AdS2,1, equivariant with
respect to a representation ρ : π1Σ Ñ Isom0pAdS2,1q, up to the action of
Isom0pAdS2,1q via post-composition.

All the identifications are equivariant to the actions of DiffpΣq, by pull-back
in the first item and by pre-composition in the second and third item.

Now we want to focus on the case where Σ is a closed surface. In such
instance, the equivariant immersion rσ via the representation as in Proposition
4.57 is necessarily an embedding, which can be extended to an embedding
of rΣ ˆ R onto a domain of dependence in AdS2,1. The representation ρ :
π1pΣq Ñ PSLp2,Rq ˆ PSLp2,Rq coincides with the holonomy of a maximal
globally hyperbolic Anti-de Sitter manifold pM, gq (after the identification
between π1pΣq with π1pMq via embedding of Σ Ñ M » Σ ˆ Rq, therefore ρ
consists of a pair of positive Fuchsian representations by Proposition 4.52.
What is really remarkable is that the embedding data, namely the pair pI, IIq,
permits to recover explicitly the pair of elements in the space T pSq ˆ T pSq

which parametrizes maximal globally hyperbolic Anti-de Sitter manifolds with
compact Cauchy surfaces.

Gauss map and projections

We can finally define our map for spacelike surfaces in AdS2,1. We have seen in
Proposition 3.6 that the space of timelike geodesics of PSLp2,Rq is naturally
identified with H2 ˆ H2, where the identification maps a geodesic of the form

Lp,q “ tX P PSLp2,Rq | X ¨ q “ pu

to the pair pp, qq P H2 ˆ H2. We still suppose that the spacelike immersion is
C1 for the moment, we will deal later with the case of weaker regularity.

Definition 4.58. Let σ : S Ñ AdS2,1 be a spacelike immersion. The Gauss
map of σ is the map Gσ : S Ñ H2 ˆ H2 defined by Gσpxq “ pp, qq such that
Lp,q is the timelike geodesic orthogonal to Impdxσq at σpxq.

It follows from the equivariance shown in Proposition 3.6, that the Gauss
map Gσ is natural with respect to the action of the isometry group, namely:

Gf˝σ “ f ¨ Gσ

for every f P Isom0pAdS2,1q “ PSLp2,Rq ˆ PSLp2,Rq.
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Example 4.59: In Example 3.10 we gave an isometric embedding of H2 in
AdS2,1 with image the plane PId dual to the identity. This isometric embedding
was defined by sending p P H2 to the unique order-two element in PSLp2,Rq

fixing p, which by definition lies on the geodesic Lp,p. Moreover the geodesic
Lp,p is orthogonal to PId. Hence the Gauss map associated to this isometric
embedding of H2 is just p ÞÑ pp, pq.

By construction, the Gauss map of a spacelike immersion σ is invariant
by reparametrization, in the sense that Gσ˝ϕ “ Gσ ˝ ϕ for a diffeomorphism
ϕ : S1 Ñ S. Hence it makes sense to talk about the Gauss map of a spacelike
surface in AdS2,1. For example, as we have just remarked, for the plane dual
to the identity, the Gauss map sends order-two element of PSLp2,Rq to the
pair pp, pq where p is the fixed point of the isometry.

Lemma 4.60. Given a spacelike immersion σ : S Ñ AdS2,1, with future unit
normal vector field ν, if σppq “ Id, then

Gσppq “ GPId
pexpp

π

2
νppqqq. (4.9)

Proof. It is a consequence of Example 4.59. We need to observe that the
geodesic leaving from Id with velocity νppq meets orthogonally PId at expppπ{2qνppqq.

Now we denote with T 1,`
Id AdS2,1 the hyperboloid of future unit timelike

vectors in TIdAdS2,1 and consider the following map:

Fix : T 1,`
Id AdS2.1 Ñ H2

defined so that Fixpνq is the fixed point of the one-parameter elliptic group
texpptνq | t P Ru. This map is equivariant for the action of PSLp2,Rq, which
acts on the hyperboloid T 1,`

Id AdS2.1 by the adjoint representation and on H2

by the obvious action. Since both T 1,`
Id AdS2.1 and H2 have constant curvature

´1, it follows from equivariance that Fix is an isometry.
In terms of the map Fix, Equation 4.9 reads as:

Gσppq “ pFixpνppqq,Fixpνppqqq, (4.10)

provided that σppq “ Id.
Via Lemma 4.60 and the naturality, we can recover a different description of
the Gauss map. Recalling the structure of Lie group of AdS2,1 » PSLp2,Rq

we will denote by Rγ and Lγ the right and left multiplication by γ P PSLp2,Rq

respectively.
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Lemma 4.61. Given a spacelike immersion σ : S Ñ AdS2.1 with future unit
normal vector field ν,

Gσppq “ pFixppRσppq´1q˚pνppqq,FixppLσppq´1q˚pνppqqqq.

Proof. If σppq “ Id, then the equality holds true by Equation 4.10. For the
general case, the immersion σ1 “ pId, σppqq ˝ σ has the property that σ1ppq “

Id, and the future normal vector at σ1ppq equals ν 1ppq “ pRσppq´1qq˚pνppqq.
Therefore:

Gσ1ppq “ pFixppRσppq´1q˚pνppqq,FixppRσppq´1q˚pνppqqqqq.

Now by the naturality of the Gauss map it follows,

Gσppq “ pId, σppq´1q ¨ Gσ1ppq

“ pFixppRσppq´1q˚pνppqq, σppq´1 ˝ FixppRσppq´1q˚pνppqqqqq

“ pFixppRσppq´1q˚pνppqq,FixppLσppq´1q˚pνppqqqqq.

here in the last line we used that Fix is equivariant with respect to the
adjoint action on the hyperboloid T 1,`

Id AdS2.1.

We will refer to the components of the Gauss map as the left and right
projections, and will denote them accordingly: Πl,Πr : S Ñ H2.

Remark 4.62. In the work of Mess, we can find yet a different interpretation
of the Gauss map. Given p P S, one can find a unique left isometry flppq and
a unique right isometry frppq, sending the tangent plane P to the image of σ at
σppq to PId. Indeed the isometries flppq and frppq are simply obtained by left
and right multiplication by the inverse of dual point of the tangent plane P ,
namely ζppq “ expσppqppπ{2qνppqq. Using the identification of the dual plane

PId with H2, provided by Example 3.10, Πlppq and Πrppq are the image of σppq

under the right and left isometries, respectively:

Πlppq “ frppq˝σppq “ pId, ζppqq¨σppq and Πrppq “ fl˝σppq “ pζppq´1, Idq¨σppq.

Non-smooth surfaces. The construction of the Gauss map can be extended
(as we will see in more detail in Section 5.2) in the non-smooth setting, for
instance for convex spacelike surfaces S Ă AdS2,1. Then one defines the set-
valued Gauss map as the map sending each x P S to the set of future unit
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vectors in T 1,`
x AdS2,1 orthogonal to support planes of S at x. Hence the image

of x is a convex subset of TxAdS2,1, and it reduces to a single point if and only
if S is differentiable at x. The image of G in T 1,`

x AdS2,1 is a C1,1 surface.





CHAPTER 5
Thurston’s earthquake

theorem

We pause for the moment with our exploration of the Anti-de Sitter realm. We
want to recall basic definitions of geodesic laminations and earthquakes, with
the introduction of a first basic example. We will then give an outline of the
deep underlying relation between pleated surfaces and earthquakes discovered
by Mess and then finally move on the proof of the earthquake theorem.

5.1 Earthquake theory

The theory of earthquakes was introduced by Thurston as a tool to study the
Teichmüller space of closed surfaces and is treated in detail in [8]. We will
just summarize the main results and definitions that we need to set up our
proof.

Definition 5.1. A geodesic lamination λ of H2 is a collection of disjoint
geodesics that foliate a closed subset X of H2. The set X is called the support
of λ. The geodesics in λ are called leaves (as in classic foliation terminology).
The connected components of H2 z X are called gaps. The strata of λ are the
leaves and the gaps.

Consider γ a loxodromic isometry of H2. The axis of the isometry is the
geodesic ℓ of H2 connecting the two fixed points of γ in BH2. It follows from
the classification of Möbius transformations that the geodesic is preserved

71
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by the isometry, and when restricted to such a curve γ|ℓ : ℓ Ñ ℓ acts as a
translation with respect to any constant speed parametrization of ℓ.
Given A,B subsets of H2, we say that a geodesic ℓ weakly separates A and B
if A and B are contained in the closure of different connected components of
H2 z ℓ.

Definition 5.2. A left (resp. right) earthquake of H2 is a bijective map
E : H2 Ñ H2 such that there exists a geodesic lamination λ for which the
restriction E|S to any stratum S of λ is equal to the restriction of an isometry
of H2, and for any two strata S and S1 of λ the comparison isometry

ComppS, S1q :“ pE|Sq´1 ˝ E|S1

is the restriction of an isometry γ of H2 such that:

• γ is different from the identity, unless possibly where one of the two
strata S and S1 is contained in the closure of the other;

• when it is not the identity, γ is a loxodromic transformation whose axis
ℓ weakly separates S and S1;

• moreover, γ translates to the left (resp right), seen from S to S1.

Let us explain more carefully what we mean by the last condition. Suppose
f : r0, 1s Ñ H2 is a smooth path such that fp0q P S, fp1q P S1 and the image
of f intersects ℓ transversally and exactly at one point z0 “ fpt0q P ℓ. Let
v “ f 1pt0q P Tz0H2 be the tangent vector at the intersection point. Let
w P Tz0H2 be a vector tangent to the geodesic ℓ pointing towards γpz0q. Then
we say that γ translates to the left seen from S to S1 if v, w is a positive basis
of Tz0H2, for the standard orientation of H2.
We observe that such a condition is independent of the order in which we
choose S and S1. If ComppS, S1q translates to the left seen from S to S1, then
ComppS1, Sq translates to the left seen from S1 to S.

Let us consider a first basic example:

Example 5.3: The map

E : H2 Ñ H2

defined by:

Epzq “

$

’

&

’

%

z if Repzq ă 0

az if Repzq “ 0

bz if Repzq ą 0
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is a left earthquake if 1 ă a ă b, and a right earthquake if 0 ă b ă a ă 1.
The lamination λ that satisfies the definition consists of a unique geodesic,
namely the geodesic ℓ corresponding to the imaginary axis.
Such a map is clearly not continuous along ℓ. Thurston proved in [15] that
any earthquake map extends continuously to an orientation-preserving home-
omorphism of BH2 meaning that there exists a (unique) orientation-preserving
homeomorphism φ : BH2 Ñ BH2 such that the map:

Epzq “

#

Epzq, if z P H2

φpzq, if z P BH2;

is continuous at any point of BH2.
Then Thurston proved the following (in some sense dual) theorem, that he
called “geology is transitive”:

Theorem 5.4 (“Geology is transitive”). Given any orientation-preserving
homeomorphism φ : BH2 Ñ BH2, there exists a left earthquake map of H2, and
a right earthquake map, that extends continuously to φ on BH2.

Having all the needed definition we would now like to give a different proof
of the statement of Theorem 5.4 using the tools of Anti-de Sitter geometry
developed in the previous chapters. AdS2,1 will be the correct ambient space
to study pleated surfaces. We adapt to the case of AdS2,1 the classic definition
for pleated surfaces in H3 given in [3].

Definition 5.5. A pleated surfaces in AdS2,1 is a complete hyperbolic surface
S together with an isometric map f : S Ñ AdS2,1 such that every point s P S
is in the interior of some geodesic arc which is mapped by f to a geodesic arc
in AdS2,1.

Definition 5.6. If pS, fq is a pleated surface, then we define its pleating locus
to be those points of S contained in the interior of one and only one geodesic
arc which is mapped by f to a geodesics arc.

More in detail, the key observation that we will use is due to Mess’ work
[11], that highlighted the relation between pleated surfaces and earthquake
maps. Recall that given an achronal meridian Λ Ă AdS2,1, the upper and
lower boundary components B˘CpΛφq of the convex hull of Λ are a convex and
a concave pleated surface, see Proposition 4.37.
We give a brief sketch of the idea of the proof and then will fill in the details.
Consider left and right projections from B`CpΛφq to H2, now the composition
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Figure 5.1: A bending surface in AdS2,1, consisting of two half-planes meeting
along a common geodesic. The bending geodesic is the axis of the loxodromic
isometry σ.

Πr ˝Π´1
l is a left earthquake map defined in the complement of the simplicial

leaves of the lamination, and its earthquake lamination is identified to the
bending lamination of B`CpΛφq. A completely analogous statement holds for
B´CpΛφq by reversing the roles of left and right.
Now, when the curve Λ is the graph of an orientation-preserving homeomor-
phism of RP1, one obtains as a result earthquakes maps of H2. When more-
over φ is the homeomorphism which conjugates left and right representations
ρl, ρr : π1pΣq Ñ PSLp2,Rq of the holonomy of a MGH Cauchy compact man-
ifold, the naturality of the construction implies that the earthquake map de-
scends to an earthquake map from the left to the right hyperbolic surfaces,
namely H2{ρlpπ1pΣqq and H2{ρrpπ1pΣqq, and we can recover the earthquake
theorem as in Kerchoff’s (weaker) original formulation [9].
Given the previous discussion, we can now start with the details.
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5.2 Earthquake Theorem

We consider φ : RP1 Ñ RP1 an orientation-preserving homeomorphism of the
circle, and by Λφ we denote its graph as a subset of RP1 ˆ RP1 identified as
BAdS2,1. We recall that with the notation of the previous chapter, Λφ is a
properly achronal meridian. By means of the Gauss map we had defined left
and right projections for C1 embeddings. Now we would like to extend the
Gauss map even when we have weaker regularity condition. Consider a point
p P B˘CpΛφq and let P be a support plane of CpΛφq at p. By Proposition 4.38
the support plane is necessarily spacelike, hence of the form P “ Pγ for some
γ P PSLp2,Rq. What happens when B˘CpΛφq is not C1 at p is that we do
not have a unique support plane. Hence we choose a support plane Pγ at p,
requiring that the choice of support planes is made so that the support plane
is constant on any connected component of the subset of B˘CpΛφq consisting
of those points that admit more than one support plane. The definition of
the Gauss map then depends on the choice of Pγ (see Corollary 5.13 for more
details on how the choice influences the map). Once we have chosen the
support planes we can just follow verbatim the construction of the Gauss map
given in the smooth case.

Example 5.7: Let us consider a toy case where φ P PSLp2,Rq so that
CpΛφq “ Pφ´1 as in the previous Example 4.33. This is in some sense a
degenerate case, as CpΛφq has empty interior, hence Corollary 4.40 does not
apply and it does not really make sense to talk about the future and the past
component boundary. However, we can still define a left and right projec-
tions. Since Pφ´1 itself is the unique support plane at any of its points, from
the definition of the Gauss map we have the following expressions for the left
and right projection Πl,Πr : Pφ´1 Ñ H2 :

Πlppq “ Fixpp ˝ φq Πrppq “ Fixpφ ˝ pq. (5.1)

We can also extend the two maps to the boundary of Pφ´1 : recalling that its
boundary coincides with the graph of φ (Lemma 3.11) we have:

Πlpx, φpxqq “ x Πrpx, φpxqq “ φpxq. (5.2)

Equation 5.2 is immediately checked when φ “ Id, because in that case we
have that Πl,Πr simply coincide with the fixed point map Fix : PId Ñ H2, and
we observed previously that Fix extends to the map px, xq Ñ x from BPId to
BH2. The general case of Equation 5.2 is then consequence of the equivariance
of the Gauss map, with the additional observation that the isometry pId, φq
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maps graphpIdq to graphpφq and PId to Pφ´1 .
We can now compute the map of H2 obtained by composing the inverse of
the left projection with the right projection. Indeed, this is induced by the
map PId Ñ PId sending an order-two elliptic element R “ p ˝ φ P PId to
φ ˝ p “ φ ˝ R ˝ φ´1. Hence we have

Πr ˝ Π´1
l “ φ : H2 Ñ H2. (5.3)

In conclusion, we have that the composition of the maps Πr˝Π´1
l is an isometry

and its extension to the boundary of H2 is precisely the map f “ φ of which
BPφ´1 is the graph. In what follows we will observe that this is what happens
in the general case, that is, given an orientation-preserving homeomorphism
of the circle φ, the composition Π˘

r ˝ pΠ˘
l q´1 associated with B˘CpΛφq will be

the left and right earthquake extending φ.

5.3 The fundamental example

We want to move one more intermediate step towards the final theorem. After
the simple case, this time we will describe what we can consider the funda-
mental example. Consider piecewise totally geodesic surfaces in AdS2,1, which
are obtained as the union of two connected subsets, each contained in a totally
geodesic spacelike plane, meeting along a common geodesic.
Let us formalize this idea in a more precise way. Consider the union of two
half-planes, each contained in a totally geodesic spacelike plane Pγ1 , Pγ2 . The
first key fact is the following:

Lemma 5.8. Let γ1 ‰ γ2 P PSLp2,Rq. Then Pγ1 and Pγ2 intersect in AdS2,1
if and only if γ2 ˝ γ´1

1 is a loxodromic isometry.

Proof. As in Example 4.33, Pγi is the convex hull of BPγi “ graphpγ´1
i q, the

closures P γi intersect in AdS2,1 if and only if graphpγ1q X graphpγ2q ‰ H.
Moreover, by Equation 4.3, Pγ1 and Pγ2 intersect in AdS2,1 if and only if
graphpγ1q X graphpγ2q contains at least two different points.
We know that px, yq P RP1 ˆ RP1 is in graphpγ1q X graphpγ2q if and only if
y “ γ´1

1 pxq “ γ´1
2 pxq, which is equivalent to asking that x P Fixpγ2 ˝ γ´1

1 q.
But the composition γ2 ˝ γ´1

1 is an element of PSLp2,Rq, hence it has two
fixed points in BH2 » RP1 if and only if it is a loxodromic isometry.

Now consider RP1 “ I1 Y I2 where I1, I2 are two closed intervals such
that I1 X I2 consists exactly of the two fixed points of γ2 ˝ γ´1

1 . There are two
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possibilities to produce a homeomorphism of RP1 by composing the restriction
of γ´1

1 and γ´1
2 to the intervals Ij ’s, namely:

φ`
γ1,γ2pxq “

#

γ´1
1 , if x P I1

γ´1
2 , if x P I2

and φ´
γ1,γ2pxq “

#

γ´1
2 , if x P I1

γ´1
1 , if x P I2

. (5.4)

Both φ˘
γ1,γ2 are orientation-preserving homeomorphism, since γ´1

1 and γ´1
2

map homeomorphically the intervals I1 and I2 to the same intervals J1 :“
γ´1
1 pI1q “ γ´1

2 pI1q and J2 :“ γ´1
1 pI2q “ γ´1

2 pI2q which intersects only at their
endpoints.
We denote by Di the convex hull of Ii in H2, and by ℓ “ D1 X D2 the axis of
γ2 ˝ γ´1

1 .

Proposition 5.9. Suppose that γ2 ˝ γ´1
1 is a loxodromic isometry that trans-

lates along ℓ to the left, as seen from D1 to D2. Then:

• The future boundary component B`Cpφ`

γ`,γ2
q coincides with the union of

the convex envelope of graphpγ´1
1

ˇ

ˇ

I1
q and the convex envelope of graphpγ´1

2

ˇ

ˇ

I2
q.

• The past boundary component B´Cpφ´
γ1,γ2q coincides with the union of the

convex envelope of graphpγ´1
1

ˇ

ˇ

I2
q and of the convex envelope of graphpγ´1

2

ˇ

ˇ

I1
q.

If instead γ2 ˝ γ´1
1 translates along ℓ to the right as seen from D1 to D2, then:

• The past boundary component of B´Cpφ`
γ1,γ2q coincides with the union

of the convex envelope of graphpγ´1
1

ˇ

ˇ

I1
q and of the convex envelope of

graphpγ´1
2

ˇ

ˇ

I2
q.

• The future boundary component B`Cpφ´
γ1,γ2q is the union of the convex

envelope of graphpγ´1
1

ˇ

ˇ

I2
q and of the convex envelope of graphpγ´1

2

ˇ

ˇ

I1
q.

Proof. Let us consider the case where γ2 ˝ γ´1
1 translates to the left along ℓ,

and let us prove the first item. Let x, x1 be the fixed points of γ2 ˝ γ´1
1 , let

y “ γ´1
1 pxq “ γ´1

2 pxq and y1 “ γ´1
1 px1q “ γ´1

2 px1q. Then the convex envelope
of graph(γ´1

i

ˇ

ˇ

Ii
) is a half-plane Ai in Pγi bounded by the geodesic Pγ1 X Pγ2 ,

which has endpoints px, yq and px1, y1q, Clearly both the convex envelope of
graph(γ´1

i

ˇ

ˇ

Ii
) are contained in Cpφ`

γ1,γ2q.
We could be even more precise. We claim that Pγ1 and Pγ2 are future support
planes for Cpφ`

γ1,γ2q. The claim will imply that the union of A1 and A2 is
contained in the future boundary component B`Cpφ`

γ1,γ2q, because every point
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p P A1 Y A2 admits a future support plane through p which is either Pγ1 or
Pγ2 . However A1 YA2 is a topological disc in B`Cpφ`

γ1,γ2q, whose boundary is
precisely the curve graphpφ`

γ1,γ2q by construction. Hence the claim will imply
that A1 Y A2 “ B`pφ`

γ1,γ2q.
We prove the claim for Pγ1 , proof for Pγ2 is analogous. For convenience we set
γ1 “ Id and γ2 “ γ is a loxodromic isometry with fixed points x, x1, translating
to the left as seen from D1 to D2. Indeed, we can reach such a configuration
by applying pId, γ1q, which sends Pγ1 to P1, Pγ2 to Pγ2γ

´1
1
, and graph(φ`

γ1,γ2)

to graph(φ`

Id,γ2γ
´1
1

).

We can now consider a path σt, for t P r0, ϵs of elliptic elements fixing a given
point z0 P H2, that rotate clockwise by an angle t. As in the proof of Lemma
5.8 the planes Pσt are pairwise disjoint in AdS2,1, because σt2 ˝ σ´1

t1
is still

an elliptic element fixing z0 for t1 ‰ t2, hence it has no fixed points in RP1.
Moreover recall that γ´1 has a fixed axis ℓ and translates along ℓ to the right as
seen from D1 to D2. Now φ`

Id,γ equals the identity on I1 and γ2 on I2, it fixes
I1 pointwise and moves points on I2 clockwise. It follows that the equation
φ`
Id,γpxq “ γ´1

t pxq has no solution for t ą 0, because σ´1
t “ σ´t moves all the

points counterclockwise if t is positive. This shows that Pσt X Cpφ`
Id,γq “ H

for t ą 0, and thus PId is a support plane for Cpφ`
Id,γq by Remark 4.35.

Moreover if it is a future support plane: indeed one can check that σt`π{2 “

Rz0 ˝ σt P Pσt , and the path t ÞÑ σt is future-directed because, from the
discussion after 3.3, its tangent vector is future-directed, hence Cpφ`

Id,γq is
locally in the past of PId.
We have shown the first item of the proposition, all the others follow with
completely analogous arguments.

We want to put more focus on some elements of the proof that will be
exploited in the following:

Corollary 5.10. Suppose that γ2˝γ´1
1 is a loxodromic isometry that translates

along ℓ to the left (resp. right), as seen from D1 to D2, and write γ2 ˝ γ´1
1 “

exppaq for some a P slp2,Rq. Let p be a point in the future (resp. past)
boundary components of Cpφ`

γ1,γ2q. Then:

• If p P intpA1q, then Pγ1 is the unique support plane of Cpφ`
γ1,γ2q at p.

• If p P intpA2q, then Pγ2 is the unique support plane of Cpφ`
γ1,γ2q at p.

• If p P A1 XA2 “ Pγ1 XPγ2, then the support planes of Cpφ`
γ1,γ2q at p are

precisely those of the form Pσγ1 where σ “ expptaq for t P r0, 1s.
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We are still using the notation introduced in the fundamental example:
Ai Ă Pγi is the convex envelope of graphpγ´1

i

ˇ

ˇ

Ii
), an half-plane bounded by

the geodesic Pγ1 X Pγ2 . As expected a completely analogous statement could
be formulated for Cpφ´

γ1,γ2q but we restrict to the study of φ`
γ1,γ2 for simplicity.

Proof. The pleated surface that we obtained as the union of A1 Ă Pγ1 and
A2 Ă Pγ2 coincides with B`Cpφ`

γ1,γ2q if γ2 ˝ γ´1
1 is a loxodromic isometry that

translates along ℓ to the left, and with B´Cpφ`
γ1,γ2q if it translates to the right,

as we saw in the previous example.
The first two items are then clear, since Pγi are smooth surfaces, hence Ai is
smooth at any interior point, and therefore has a unique support plane at the
point. For the last item we can assume γ1 “ Id and γ2 “ γ is a loxodromic
isometry translating on the left (resp. right) along ℓ. By Equation 4.3, if Pσ is
a support plane at p, then p is in the convex hull of the pairs py, σ´1pyqq where
y satisfies the relation σ´1pyq “ φ˘

Id,γpyq. The only possibility is then for p

to lie in the geodesic connecting the points px, xq and px1, x1q in RP1 ˆ RP1,
where x, x1 are the fixed points of γ. Hence σ must have the same fixed point
as γ. It follows that σ is then a loxodromic isometry with axis ℓ (or the
identity). Moreover, Pσ is in the future (resp. past) of Cpφ`

γ1,γ2q if and only
if σ translates on the left (resp. right), and its translation length is less than
that of γ. Hence γ is of the form expptaq for t P r0, 1s.

We are finally arrived to the case of considering orientation-preserving
homeomorphism obtained by combining two elements of PSLp2,Rq. We want
to show that in a similar setting the composition of the projections Π˘

l and Π˘
r

provide the earthquake map as in Example 5.3. At first glance this does not
seem like a huge achievement as we are just recovering a simple earthquake
map that we were already able to define explicitly. Nevertheless, the following
proposition will be a key step to complete the proof of the earthquake theorem.

Proposition 5.11. Let γ1, γ2 P PSLp2,Rq be such that γ2˝γ´1
1 is a loxodromic

isometry, and let Π˘
l ,Π

˘
r be the projections associated with the convex envelope

of φ`
γ1,γ2 . Then:

1. Π˘
l ,Π

˘
r : B˘Cpφ`

γ1,γ2q Ñ H2 are bijections.

2. Assume that γ2 ˝ γ´1
1 translates along ℓ to the right (resp. left), as seen

from D1 to D2. Then the composition Π´
r ˝ pΠ´

l q´1 : H2 Ñ H2 (resp.
Π`

r ˝pΠ`
l q´1 : H2 Ñ H2q is a left (resp. right) earthquake map extending

φ`
γ1,γ2 .
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We remark that we are limiting to the case of φ`
γ1,γ2 for simplicity and

completely analogous results could be formulated in terms of φ´
γ1,γ2 . Before

proving it we remark that proposition 5.11 holds for any choice of support
planes that is needed to define the projections.

Proof. For the first point, recall that Ai Ă Pγi , and that the union A1 YA2 is
the past (resp. future) boundary component for φ`

γ1,γ2 if γ2 ˝ γ´1
1 translates

along ℓ to the right (resp. left).
Hence pΠ˘

l q
ˇ

ˇ

intpAiq
and pΠ˘

r q|intpAiq
are the restrictions of the projections as-

sociated with the totally geodesic plane Pγi just as seen in Example 5.7. In
particular, pΠ˘

l q
ˇ

ˇ

intpAiq
and pΠ˘

r q|intpAiq
are the restriction to int(Ai) of global

isometries of AdS2,1 (those defined by multiplication on the left or on the
right by γ´1

i ) sending Pγi to PId, post-composed with the usual isometry
Fix : PId Ñ H2. It follows that the restrictions of projections map geodesic of
Pγi to geodesic of H2. More is true, due to Equation 5.2, pΠ˘

l q
ˇ

ˇ

intpAiq
maps

int(BpAiqq “ graph(γ´1
i

ˇ

ˇ

intpIiq
) to intpIiq. Hence Π˘

l pintpAiqq “ intpDiq. In

similar fashion, Π˘
r pintpAiqq “ γ´1

1 pintpD1qq “ γ´1
2 pintpD2qq.

We want to show that the projections are bijective. To do so we will show
that the image of the geodesic A1 X A2 “ Pγ1 X Pγ2 , via Π˘

l is the geodesic
ℓ “ D1XD2, while the image via Π˘

r is the geodesic γ´1
1 pℓq “ γ´1

2 pℓq. The def-
inition of Π˘

l and Π˘
r on A1XA2 depends on the choice of a support plane. We

recall that we must choose the same support plane at any point p P A1 X A2.
Now, because of Corollary 5.10, the possible choices of support planes at p are
all of the form Pσγ1 , for some σ that has the same fixed points as γ2 ˝ γ´1

1 ,
which are precisely the common endpoint of I1 and I2.
We stay consistent with the notation of Lemma 5.8, thus the endpoints at in-
finity of A1XA2 are the points px, yq and px1, y1q where x, x1 are the fixed point
of γ2 ˝ γ´1

1 (and of σq. Again from Equation 5.2 we have (for any choice of σ
as in the third item of Corollary 5.10) Π˘

l px, yq “ x and Π˘
l px1, y1q “ x1. Since

Π˘
l is, as before, the restriction of an isometry between Pσγ1 and H2, it maps

geodesics to geodesics, hence Π˘
l pA1 XA2q “ ℓ. Analogously Π˘

r px, yq “ y and
Π˘

r px1, y1q “ y1, from which it follows that Π˘
l pA1 X A2q “ γ´1

1 pℓq “ γ´1
2 pℓq.

We move now on item number two. Define E :“ Π´
r ˝ pΠ´

l q´1, which is a
bijection of H2. Consider the geodesic lamination of H2 composed by the
sole geodesic ℓ. Hence the strata of ℓ are intD1, intpD2q and ℓ. We will show
that the comparison isometries ComppS, S1q :“ pE|Sq´1˝ E|S1 translate to the
right or to the left seen from one stratum to another, according to as γ2 ˝ γ´1

1

translates to the left or to the right seen from D1 to D2.
Let us consider S “ intpD1q and S1 “ intpD2q. Then, by Example 5.7, E
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equals γ´1
i on int(Diq, because pΠ˘

l q´1pintpDiqq “ intpAiq Ă Pγ´1
i
.

Hence the comparison isometry ComppintpD1q, intpD2qq equals γ1˝γ´1
2 , and it

translates to the left (resp. right) seen from intpD1q to intpD2q exactly when
γ2 ˝ γ´1

1 , which is its inverse, translates to the right (resp. left). The proof
when one of the two strata S or S1 is ℓ is completely analogous, by using the
third item of Corollary 5.10. Indeed (via Remark 4.11), by any choice of σ of
the form σ “ expptaq with t P p0, 1q, Comp(ℓ, intpD2qq “ σ ˝ γ´1

2 translates to
the left (resp. right) seen from ℓ to intpD2q, and Comp(int(D1),ℓq “ γ1 ˝ σ´1

translates to the left (resp. right) seen from int(D1) to ℓ. If instead σ “ expptaq

with t P t0, 1u, then σ coincides with γ1 or with γ2, hence on of the compari-
son isometries Comp(int(D1q, ℓ) and Comp(int(D, 2q, ℓ) translates to the left,
while the other it the identity, which is still allowed in the definition of earth-
quake because ℓ is in the boundary on intpDiq.

5.4 The example is prototypical

We have just treated what seems to be a very special and convenient simple
earthquake. What we want to show now is that it is actually the prototypical
example, that will serve to treat the general case of the earthquake theorem.
The following lemma explains how the situation of two intersecting planes is
actually pretty common.

Lemma 5.12. Let φ : RP1 Ñ RP1 be an orientation-preserving homeomor-
phism which is not in PSLp2,Rq. Then:

• Any two support planes of CpΛφq at points of B`CpΛφq intersect in
AdS2,1. Analogously, any two support planes of CpΛφq at points of
B´CpΛφq intersect in AdS2,1.

• Given a point p P B˘CpΛφq, if there exist two support planes at p, then
their intersection (which is a spacelike geodesic) is contained in B˘CpΛφq.
As a consequence, any other support plane at p contains this spacelike
geodesic.

Proof. Let us consider future support planes, the other case being analo-
gous. For the first item, let P and Q be support planes intersecting B`CpΛφq,
which are spacelike by Proposition 4.38, and suppose by contradiction that
P and Q are disjoint. Then we can slightly move them in the future to get
spacelike planes, P 1, Q1 such that P,Q, P 1 and Q1 are mutually disjoint and
P 1 X B`CpΛφq “ Q1 X B`CpΛφq “ H.
Now notice that the complement of P 1 Y Q1 in AdS2,1 is the disjoint union of
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two cylinders and P and Q lie in different connected components of this com-
plement. However, B`CpΛφq is connected, and has empty intersection with P
and Q, leading to a contradiction.
Let us move on to the second item. Let P “ Pγ1 and Q “ Pγ2 be support
planes such that p P B`CpΛφq XP XQ. By Lemma 5.8, γ2 ˝γ´1

1 is loxodromic.
Up to switching the roles of γ1 and γ2 we can assume that γ2 ˝ γ´1

1 translates
to the left seen from D1 to D2, where as usual Di is the convex hull of the
interval Ii, and the common endpoints x, x1 of I1 and I2 are the fixed points
of γ2 ˝ γ´1

1 . Hence BPγ1 X BPγ2 “ tpx, yq, px1, y1qu where y “ γ´1
1 pxq “ γ´1

2 pxq

and y1 “ γ´1
1 px1q “ γ´1

2 px1q.
Now, via Equation 4.3, Pγi X graphpfq consists of at least two points for
i “ 1, 2. We claim that the aforementioned intersections contains at least
px, yq and px1, y1q. Indeed, since Pγ2 is a support plane, CpΛφq X Pγ1 is con-
tained in the half-plane A1 Ă Pγ1 . If graphpfq X Pγ1 had not contained px, yq

and px1, y1q, then CpΛφqXPγ1 would not contain the boundary geodesic A1XA2,
and thus would not contain p. A verbatim argument holds also for Pγ2 . This
shows that both px, yq and px1, y1q are in CpΛφq, and therefore the spacelike
geodesic Pγ1 X Pγ2 is in B˘CpΛφq.

Recall that we have defined the left and right projections Π˘
l ,Π

˘
r , and

they depended on the choice of a support plane at all points p that admit
more than one support plane. Moreover, we require that this support plane is
chosen to be constant on any connected component of the subset of B˘CpΛφq

consisting of points that admit more than one support plane. We want to
show how the projections are related to this choice:

Corollary 5.13. Let φ : RP1 Ñ RP1 be an orientation-preserving homeomor-
phism which is not in PSLp2,Rq, and suppose p P B˘CpΛφq has at least two
support planes. Then there exist γ1, γ2 P PSLp2,Rq such that γ2˝γ´1

1 “ exppaq

is a loxodromic element, such that all support planes at p are precisely those
of the form Pσγ1 where σ “ expptaq for t P r0, 1s. The same conclusion holds
for all other point p1 P Pγ1 X Pγ2.
In particular, the image of the spacelike geodesic Pγ1 X Pγ2 under the projec-
tions Π˘

l and Π˘
r is a geodesic in H2 that does not depend on the choice of

the support plane as in the definition of the projections.

Proof. Suppose P
rγ1 and P

rγ2 are (say, future) distinct support planes at p.
Write rγ2 ˝ rγ1

´1
“ exppraq, which is a loxodromic element by Lemma 5.8 and

the first item of Lemma 5.12. By the second item of Lemma 5.12, any other
support plane at p must be of the form Pσrγ1 for σ an element having the same
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fixed points as rγ2 ˝ rγ1
´1. That is, σ is the form exppsraq for some s P R.

We claim now that the set:

I “ ts P R | exppsraq is a support plane of CpΛφq at pu

is a compact interval. This would conclude the proof, up to applying an affine
change of variable mapping the interval I “ rs1, s2s to r0, 1s, and defining
γi “ exppsiraq.
Let us prove the compactness of I, suppose s, s1 P I. Now CpΛφq is contained
in the past of a pleated surface obtained as the union of two half-spaces, one
contained in Pexppsraqrγ1 and the other in Pexpps1

raqrγ1 , meeting along the spacelike
geodesic P

rγ1 X P
rγ2 . Then every support plane for this pleated surface is a

support plane for CpΛφq as well. That is, by the last item of Corollary 5.10,
rs, s1s Ă I. This shows that I is an interval. It is compact by Lemma 4.39,
applied to the constant sequence pn “ p and to γn “ exppsnraq, showing that sn
must by converging (up to subsequences) and its limit is in I. This concludes
the proof.

5.5 Proof of the earthquake theorem

We state now two lemmas about the actions on H2 Y BH2 of sequences of el-
ements in PSLp2,Rq. We are in particular interested in the case of sequences
of order-two elliptic isometries. We denote by Rw the order-two elliptic isom-
etry of H2 that fixes w P H2. The proofs of the lemmas are straightforward
computations and can be found in the appendix of [4].

Lemma 5.14. Let wn be a sequence in H2 converging to w P H2. Then Rwn

converges to Rw uniformly on H2 Y BH2.

Lemma 5.15. Let wn be a sequence in H2 converging to w P BH2. Then, for
every neighbourhood U of w, there exists n0 such thatRwnppH2YBH2qzUq Ă U
for n ě n0.

We have now all the tools that are required for the proof of the earthquake
theorem. We outline the strategy that we will follow: given an orientation-
preserving homeomorphism φ : RP1 Ñ RP1 (we can assume that it is not
in PSLp2,Rq), we consider the projections Π˘

l ,Π
¯
r : B˘CpΛφq Ñ H2, and we

want to show that the composition Π˘
r ˝pΠ˘

l q´1 is well-defined and is a (left or
right) earthquake map extending φ. We are going to divide the proof in the
following steps: Proposition 5.17, Corollary 5.18 and then Proposition 5.19
below.
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5.6 Extension to the boundary

We study the extension of the projections Π˘
l ,Π

˘
r to the boundary.

Proposition 5.16. The projections Π˘
l ,Π

˘
r extend to Λφ. More precisely, if

pn P B˘CpΛφq Ñ px, yq P Λφ, then Π˘
l ppnq Ñ x and Π˘

r ppnq Ñ y.

Proof. Let pn P B˘CpΛφq be a sequence converging to px, yq P Λφ, and let Pγn

be a sequence of support planes of CpΛφq at pn, which are necessarily spacelike
because of the results of Proposition 4.38. By Lemma 4.39, up to extracting a
subsequence, there are two possibilities: either γn Ñ γ and Pγn converges to
the spacelike support plane Pγ , or γn diverges in PSLp2,Rq and Pγn converges
to the lightlike plane whose boundary is ptxuˆRP1qYpRP1ˆtyuq. We treat the
two cases separately, and we remand to Lemma 3.3 for our characterization of
convergence to the boundary. We start by supposing the convergence γn Ñ γ.
By hypothesis:

pnpz0q Ñ x p´1
n pz0q Ñ y (5.5)

for any z0 P H2. It also follows from the definition of the projections:

Π˘
l ppnq “ Fixppnγ

´1
n q and Π˘

r ppnq “ Fixpγ´1
n pnq. (5.6)

We consider the identification of BPId with RP1 via px, xq Ñ x. We thus
have shown (choosing for instance the point z0 “ i) that: pnγ

´1
n piq Ñ x and

γ´1
n pnpiq Ñ y.

However, since γn Ñ γ, pnγ
´1
n piq is at bounded distance from pnγ

´1piq. Apply-
ing the hypothesis, namely Equation 5.5, to z0 “ γ´1piq, we have pnγ

´1piq Ñ x
and therefore pnγ

´1
n piq Ñ x as well.

The argument is analogous to show that γ´1
n pnpiq Ñ y, except that it is use-

ful to observe that γ´1
n pn “ p´1

n γn since pn is an order-two isometry. Now
p´1
n γnpiq is at bounded distance from p´1

n γpiq, which converges to y by hy-
pothesis. Hence p´1

n γnpiq Ñ y as well.
Let us move to the latter case, namely γn diverges in PSLp2,Rq. Here we will
use not only the assumption of Equation 5.5, but also:

γnpz0q Ñ x and γ´1
n pz0q Ñ y, (5.7)

for any z0 P H2. The condition (5.7) holds because γn converges to the projec-
tive class of a rank one matrix A, such that PrAs is a lightlike support plane.
We have already observed that the boundary at infinity of PrAs must be equal

to ptxu ˆ RP1q Y pRP1 ˆ tyuq. Combining Lemma 3.3 and Lemma 3.13, we
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deduce that γnpz0q Ñ x and γ´1
n pz0q Ñ y as claimed.

With this observation, we can rewrite Equation 5.6 as the identities:

pn “ RΠ˘
l ppnq

˝ γn and p´1
n “ RΠ˘

r ppnq
˝ γ´1

n , (5.8)

where we recall that for us Rw denotes the order two elliptic isometry with
fixed point w P H2.
Up to extracting a subsequence, we can assume that Π˘

l ppnq Ñ px˘ and
Π˘

r ppnq Ñ py˘, for some points px˘, py˘ P H2 Y BH2. We need to show that
px˘ “ x and py˘ “ y.
In this direction, suppose by contradiction px˘ ‰ x. Suppose first that px˘ P H2.
We will use the statement of Lemma 5.14 that if wn Ñ w P H2, then Rwn

converges to Rwn uniformly on H2 Y BH2. From Equation 5.8, and the fact
that, from Equations 5.5 and 5.7, both pnpz0q and γnpz0q converge to x, we
would then have:

x “ lim
n

pnpz0q “ lim
n

RΠ˘
l ppnq

pγnpz0qq “ R
px˘

pxq ‰ x

since R
px˘

does not have fixed points on BH2, thus giving a contradiction. If
py˘ P H2, the same argument works flawlessly.
Lastly suppose px˘ P BH2, in this case, because of Lemma 5.15, we can find a
neighbourhood U of px˘ not containing x, such that for n large RΠ˘

l ppnq
maps

the complement of U inside U . This gives rise to a contradiction with the
condition (5.8) because pnpz0q and γnpz0q are in the complement of U for n
large, but at the same time RΠ˘

l ppnq
pγnpz0qq should be in U for n large. The

argument for py is the same verbatim.

We want to remark that the conclusion of Proposition 5.16 holds for any
choice of the projections, regardless of the chosen support planes where several
choices are available.

Proposition 5.17. The projections Π˘
l ,Π

˘
r : B˘CpΛφq Ñ H2 are bijections.

Proof. We will prove the statement for Π˘
l , the proof for Π

˘
r being analogous.

We start by showing that Π˘
l is injective. Given p1, p2 P B˘CpΛφq, let Pγ1

and Pγ2 be support planes at p1 and p2 respectively. Now by Lemma 5.8 and
Lemma 5.12, γ2 ˝ γ´1

1 is loxodromic; let D1, D2 be the convex envelopes in H2

of the two intervals I1 and I2 with endpoints the fixed points of γ2 ˝ γ´1
1 . Up

to switching γ1 and γ2, we can assume that γ2 ˝γ´1
1 translates to the left seen

from D1 to D2.
Now, we will refer to the fundamental example of the previous section. Let
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φ`
γ1,γ2 be defined as in (5.4). By Corollary 5.10, Pγi is the support plane of

Cpφ`
γ1,γ2q at the point pi P B˘Cpφ`

γ1,γ2q for i “ 1, 2.

It follows that Π˘
l ppiq “ Π̂˘

l ppiq, where we denote by Π̂˘
l the left projection

associated with Cpφ`
γ1,γ2q. Now both Π̂˘

l ppiq are bijective by Proposition 5.11,

Π˘
l pp1q ‰ Π˘pp2q. This shows injectivity.

We move on now on surjectivity, we will first show that the image is closed.
Suppose zn “ Π˘

l ppnq Ñ z P H2. Up to extracting a subsequence, we can
assume pn Ñ p P B˘CpΛφq Y Λφ. From Proposition 5.16, we have that p P

B˘CpΛφq, because if p “ px, yq P Λφ, then Πlppnq Ñ x P BH2, which is a
contradiction with the convergence of zn Ñ z P H2. Now, let Pγn be a support
plane at the point pn, which is spacelike by Proposition 4.38. By Lemma 4.39,
up to extracting a subsequence, γn Ñ γ P PSLp2,Rq and Pγ is a spacelike
support plane at p. We remark that the convergent plane might not be the
one decided in the definition of the projections, but this does not change the
image by Corollary 5.13. Hence we can assume that Pγ is the support plane
chosen at p. It means that from Equation 5.1, Π˘

l ppq “ Fixpp ˝ γ´1q. We
can now conclude that z is in the image of Π˘

l : on one hand zn “ Π˘
l ppnq “

Fixppn˝γ´1
n q converges to z by hypothesism and on the other hand it converges

to Π˘
l ppq “ Fixpp ˝ γ´1q because pn Ñ p and γn Ñ γ and Fix is continuous.

This shows that z P Π˘
l pB˘CpΛφqq, and thus the image is closed.

We are ready for the surjectivity. Suppose by contradiction that there is a
point w P H2 which is not in the image of the projections Π˘

l . Let r0 “

inftr | Bpw, rq XΠ˘
l pB˘Cpφqq ‰ Hu, where Bpw, rq is an open ball centered at

w of radius r with respect to the hyperbolic metric on H2. Since the image of
Π˘

l is closed, we have that r0 ą 0, Bpw, r0q is disjoint from the image of Π˘
l ,

and there exists a point z P BBpw, r0q which is in the image of Π˘
l . Say that

z “ Π˘
l ppq. We will obtain a contradiction by finding points close to p which

are mapped by Π˘
l inside Bpw, r0q.

Let Pγ be a support plane of CpΛφq at p. By (4.3), Pγ X CpΛφq is the
convex hull of B8Pγ X Λφ, which contains at least two points. If p is in the
interior of Pγ X CpΛφq (which is non-empty if and only if B8Pγ X Λφ contains
at least three points), then the restriction of Π˘

l to the interior of Pγ X CpΛφq

is an isometry onto its image in H2, because Pγ is the unique support plane
at interior points p1, and Π˘

l pp1q “ Fixpp1 ˝ γ´1q. Hence Π˘
l maps a small

neighbourhood of p to a neighbourhood of z, which intersects Bpw, r0q, giving
a contradiction. We are only left with the case where p is not in the interior
of Pγ X CpΛφq. In this case, there is a geodesic L contained in Pγ X CpΛφq

such that p P L. (The geodesic L might be equal to Pγ X CpΛφq or not.) As
before, the image of L is a geodesic ℓ in H2 because pΠ˘

l q|L is an isometry
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onto its image, and z P ℓ. We claim that in the image of Π˘
l there are two

sequences of geodesics ℓn Ă ImpΠ˘
l q converging to ℓ (in other words, such

that the endpoints of ℓn converge to the endpoint of ℓ); moreover the two
sequences are contained in different connected components of H2zℓ. This will
give a contradiction, because for one of these two sequences, ℓn must intersect
Bpw, r0q for n large.

To show the claim, and thus conclude the proof, observe that L disconnects
B˘CpΛφq in two connected components, and let pn be a sequence converging
to p contained in one connected component of B˘CpΛφqzL. Let Pγn be the
support plane for CpΛφq at pn which has been chosen to define Π˘

l . By Lemma
4.39, Pγn converges to a support plane Pγ at p, which as before we can assume
is the support plane that defined Π˘

l at p, since the image does not depend on
this choice by Corollary 5.13. Also, we can assume that each pn is contained
in a geodesic Ln in Pγn X B˘CpΛφq: indeed, it suffices to replace pn by the
point in Pγn X B˘CpΛφq which is closest to p (where closest is with respect to
the induced metric on B˘CpΛφq, or to any auxiliary Riemannian metric). If
Pγn X B˘CpΛφq is not already a geodesic, with this assumption pn now belongs
to a boundary component which is the geodesic Ln. As observed before,
Π˘

l maps the geodesic Ln to a geodesic ℓn “ Π˘
l pLnq in H2, and (as in the

argument that showed that ImpΠ˘
l q is closed), the limit of Π˘

l ppnq is a point
in ℓ “ Π˘

l pLq.

Moreover ℓn X ℓ “ H, and the ℓn are all contained in the same connected
component of H2zℓ: this follows from observing again (compare with the injec-
tivity at the beginning of this proof) that pΠ˘

l q|LnYL equals the left projection
associated with the surface B˘Cpφ`

γn,γq studied in Section 5.3, where φ`
γ1,γ2 is

defined as in (5.4), and thus maps B˘CpΛφqXPγn (which in particular contains
Ln) to a subset (containing ℓn) disjoint from ℓ and included in a connected
component of H2zℓ which does not depend on n.

This implies that ℓn converges to ℓ as n Ñ `8. Clearly if we had chosen
pn in the other connected component of B˘CpΛφqzL, then the ℓn would be
contained in the other connected component of H2zℓ. This concludes the
claim and thus the proof.

As a direct consequence of Proposition 5.17, the composition Π˘
r ˝ pΠ˘

l q´1

is well-defined and is a bijection of H2 to itself. This and Proposition 5.16 let
us show the following:

Corollary 5.18. The composition Π˘
r ˝ pΠ˘

l q´1 extends to a bijection from
H2 Y BH2 to itself, which equals φ on BH2 and is continuous at any point of
BH2.
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Proof. Since Π˘
l and Π˘

r are bijective and extend to the bijections from Λφ

to BH2 sending px, yq Ñ x and px, yq Ñ φpxq respectively, the composition
Π˘

r ˝ pΠ˘
l q´1 extends to a bijection of H2 Y BH2 to itself sending x Ñ φpxq.

We need to check continuity. Proposition 5.16 shows that the extensions Π˘
l

and Π˘
r to B˘CpΛφq YΛφ are continuous at any point of Λφ. Hence it remains

to check that pΠ˘
l q´1 is continuous at any point of BH2.

This is pretty straightforward: let zn be a sequence in H2 Y BH2 converging to
x P BH2, and let pn “ pΠ˘

l q´1pznq. Up to extracting a subsequence, pn Ñ p.
The limit p must be in Λφ because if p P B˘CpΛφq, although Π˘

l might not
be continuous there, we have already seen in Proposition 5.17 (in the passage
about closeness of the image of Π˘

l ) that limnΠ
˘
l ppnq “ limn zn is a point of

H2, thus giving a contradiction with limn zn “ x P BH2.
If p P Λφ, then we can use the continuity and injectivity of Π˘

l on Λφ to infer
that p “ pΠ˘

l q´1pxq.

We are only left with verification that Π˘
r ˝ pΠ˘

l q´1 satisfies the defining
properties of an earthquake map.

Proposition 5.19. The composition Π´
r ˝ pΠ´

l q´1 : H2 Ñ H2 is a left earth-
quake map. Analogously, Π`

r ˝ pΠ`
l q´1 : H2 Ñ H2 is a right earthquake map.

Proof. Let us start by defining a geodesic lamination λ. Let us consider all
the support planes Pγ of CpΛφq at points of B˘CpΛφq (which we recall must
be spacelike by Proposition 4.38). Define L to be the collection of all the con-
nected components of pPγ X B˘CpΛφqqzintpPγ X B˘CpΛφqq, as Pγ varies over
all support planes. As observed before, by Equation 4.3, Pγ X B˘CpΛφq is the
convex hull in Pγ of BPγ X Λφ, which consists of at least two points. If it
consists of exactly two points, then Pγ X B˘CpΛφq is a spacelike geodesic L;
otherwise Pγ XB˘CpΛφq has nonempty interior and each connected component
of its boundary is a spacelike geodesic. Now, Π˘

l is an isometry onto its image
when restricted to any L P L. Hence we define λ to be the collection of all the
Π˘

l pLq as L varies over L.
To show that λ is a geodesic lamination, we first observe that the geodesic
ℓ P λ are pairwise disjoint, because the spacelike geodesics L in L are pairwise
disjoint and Π˘

l is injective. It remains to show that their union is a closed
subset of H2. But this follows immediately from the proof of Proposition
5.17. Indeed, suppose that ℓn “ Π˘

l pLnq converges to ℓ “ Π˘
l pLq, and let

zn “ Π˘
l ppnq P ℓn be a sequence converging to z P ℓ. Since ImpΠ˘

l q is closed,
z P ImpΠ˘

l q, and given the injectivity of Π˘
l , z “ Π˘

l ppq for some p P L. In the
last part of the proof of Proposition 5.17 we have shown that in this situation
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ℓn converges to ℓ.
Having shown that λ is a geodesic lamination, we are ready to check that
Π´

r ˝ pΠ´
l q´1 is an earthquake map. Observe that the gaps of λ are precisely

the images under Π˘
l of the interior of the sets Pγ X B˘CpΛφq (when this in-

tersection is not reduced to a geodesic), as Pγ varies among all the support
planes.
Let S1 and S2 be two strata of λ, and let Σi “ pΠ˘

l q´1pSiq. Hence Σi Ă

Pγi X B˘CpΛφq, where Pγi is a support plane. As usual, there could be several
support planes at points of Σi, and this can occur only if Σi is reduced to a
geodesic by Lemma 5.12. Recalling that the chosen support plane is assumed
to be constant along Σi, we can suppose that Pγi is the support plane chosen
in the definition of Π˘

l and Π˘
r .

Now we proceed as in the proof of injectivity in Proposition 5.17. Consider
first the case that γ1 ‰ γ2. By Lemma 5.8, γ2 ˝ γ´1

1 is a loxodromic isom-
etry; let D1 and D2 be the convex envelopes in H2 of the two intervals I1
and I2 with endpoints the fixed points of γ2 ˝ γ´1

1 . Up to switching γ1 with
γ2, we assume that γ2 ˝ γ´1

1 translates to the left seen from D1 to D2. Then

Π˘
l

ˇ

ˇ

Σi
“ ppΠq

˘
l

ˇ

ˇ

ˇ

Σi

and Π˘
r |Σi

“ ppΠq˘
r

ˇ

ˇ

ˇ

Σi

, where pΠ˘
l and pΠ˘

r are the left and

right projections associated with CpΛφ`
γ1,γ2

q and moreover Si Ă Di.

Just as the case we treated in Section 5.3, the comparison isometry {ComppD1, D2q

of the map pΠ˘
r ˝ ppΠ˘

l q´1 translates to the left (for Π´
r and Π´

l ) or right (for
Π`

r and Π`
l ) seen from D1 to D2. Then ComppS1, S2q, which is indeed equal

to {ComppD1, D2q, translates to the left (or right) seen from S1 to S2.
Finally, we consider the case γ1 “ γ2, which can only happen either if Σ1 “ Σ2

(hence S1 “ S2q or if Σ1 has nonempty interior and Σ2 is one of its boundary
components (or vice versa exchanging Σ1 with Σ2). In this case we already
have that ComppS1, S2q “ Id. But the comparison isometry is allowed to be
the identity, when one of the two strata is contained in the closure of the other.
This concludes the proof.

Recovering earthquakes of closed surfaces

We have proved Thurston’s theorem. We would like to recover the original
earthquake theorem due to Nielsen and recover the existence of earthquake
maps between two homeomorphic closed hyperbolic surfaces.
We recall briefly the definition of equivariance given in Section 4.3.

Corollary 5.20. Let S be a closed oriented surface and let ρ, ϱ : π1pSq Ñ
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PSLp2,Rq be two Fuchsian representations. Then there exists a pρ, ϱq´equivariant
left earthquake map of H2, and a pρ, ϱq´equivariant right earthquake map.

Proof. Let φ : BH2 Ñ BH2 be the unique pρ, ϱq-equivariant orientation-preserving
homeomorphism. We claim that there exists a left (resp. right) earthquake
which extends φ and is itself pρ, ϱq-equivariant.
Observe that for any g P π1pSq, the pair pρpgq, ϱpgqq P PSLp2,Rq ˆ PSLp2,Rq

acts on BAdS2,1 preserving Λφ, in fact the definition of pρ, ϱq´equivariancy
and Equation 3.6:

pρpgq, ϱpgqq ¨ Λφ “ Λϱpgq˝f˝ρ´1pgq “ Λφ.

Hence, the convex hull of Λφ is preserved by the action of pρpgq, ϱpgqq for every
loop g P π1pSq. In order to conclude the proof we need that we can choose
support planes at every point of both boundary components of CpΛφqzΛφ in
such a way that the choice of support planes is preserved by the action of
pρpgq, ϱpgqq (we need to verify the condition only for those points that admits
more than one support plane, because if p P B˘CpΛφq has a unique support
plane P , then pρpgq, ϱpgqq ¨ P is the unique support plane at pρpgq, ϱpgqq ¨ p.
After having proven the last statement we will just consider left and right pro-
jection Πl,Πr defined via this invariant choice of support planes. By equiv-
ariance of the Gauss map, we will then deduce that the left projection is
equivariant with respect to the action of pρpgq, ϱpgqq on B˘CpΛφq and the ac-
tion of ρpgq on H2. An analogous statement holds for the right projection
where ϱpgq is acting on H2. Following the proof of the earthquake theorem,
left and right earthquake will be obtained considering the composition of left
and right projection (choosing to invert the respective projection), and such a
composition will be pρ, ϱq-equivariant, holding the statement of the corollary.
Suppose p P CpΛφq admits several support planes. By Lemma 5.12, there
is a spacelike geodesic L Ă B˘CpΛφq containing p. Let g P π1pSq be such
that pρpgq, ϱpgqq ¨ L “ L. Then we claim that pρpgq, ϱpgqq maps every sup-
port plane at p to itself. To prove this claim, we use Corollary 5.13 and
suppose up to an isometry (so that, following notation of Corollary 5.13 we
have γ1 “ Id) that all the support planes at p are of the form Pexpptaq for
t P r0, 1s and γ :“ exppaq is a loxodromic element of PSLp2,Rq. Now the
action of pρpgq, ϱpgqq must preserve the pair of extreme support planes PId

and Pγ . Therefore there are only two possibilities: either pρpgq, ϱpgqq maps Id
to Id and γ to γ or the two points get switched. However the latter scenario
is not possible, since the identities ρpgqϱIdpgq´1 “ γ and ρpgqϱpgq´1 “ Id
would imply that γ has order two, a contradiction for a loxodormic element
of PSLp2,Rq. We thus have pρpgq, ϱpgqq ¨ Id “ Id and pρpgq, ϱpgqq ¨ γ “ γ. This
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implies ρpgq “ ϱpgq and ρpgqγρpgq´1, hence ρpgq “ ϱpgq “ exppsaq for some
s P R. It follows that ρpgq expptaqρpgq´1 “ expptaq for all t, that is the action
of pρpgq, ϱpgqq “ pρpgq, ρpgqq maps every support plane Pexpptaq to itself.
Having shown the claim, we can conclude as follows. Observe that the set of
points p P B˘CpΛφq that admit several support planes form a disjoint union
of spacelike geodesics in B˘CpΛφq, and that this set (say X) is invariant un-
der the action of pρpgq, ϱpgqq for all g P π1pSq. Pick a subset tLiuiPI of this
family of geodesics such that its π1pSq-orbit is X, and that the orbits of Li

and Lj are disjoint if i ‰ j. Pick a support plane Pi at p P Li, and then we
declare that pρpg0q, ϱpg0qq ¨ Pi is the chosen support plane at every point of
pρpg0q, ϱpg0qq¨Li. This choice is well-defined by the above claim, which showed
that if pρpgq, ϱpgqq leaves Li invariant, then it also leaves every support plane
at Li invariant. Moreover, this choice of support planes is invariant by the
action of π1pSq by construction. This concludes the proof.
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