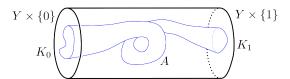


Introduction

Y denotes a closed, connected and oriented 3-manifold, and $\mathcal{K}(Y)$ is the set of oriented knots in Y.

 $K_0, K_1 \in \mathcal{K}(Y)$ are **concordant** $(K_0 \sim K_1)$ if there exists an annulus $A \cong S^1 \times [0,1]$ in $Y \times [0,1]$ such that $A \cap Y \times \{i\} = K_i$ for i=0,1. Concordance is an equivalence relation on $\mathcal{K}(Y)$.



THER STAGE TOPOL

Introduction

Y denotes a closed, connected and oriented 3-manifold, and $\mathcal{K}(Y)$ is the set of oriented knots in Y.

 $K_0, K_1 \in \mathcal{K}(Y)$ are **concordant** $(K_0 \sim K_1)$ if there exists an annulus $A \cong S^1 \times [0,1]$ in $Y \times [0,1]$ such that $A \cap Y \times \{i\} = K_i$ for i=0,1. Concordance is an equivalence relation on $\mathcal{K}(Y)$.

Denote by \mathcal{C}^Y the set of equivalence classes. If $K_0 \sim K_1$, then $[K_0] = [K_1]$, so we have the splitting:

$$\mathcal{C}^Y = \bigoplus_{m \in H_1(Y; \mathbb{Z})} \mathcal{C}_m^Y$$

CUREER STAGE TOPOLOGIS

Introduction

Y denotes a closed, connected and oriented 3-manifold, and $\mathcal{K}(Y)$ is the set of oriented knots in Y.

 $K_0, K_1 \in \mathcal{K}(Y)$ are **concordant** $(K_0 \sim K_1)$ if there exists an annulus $A \cong S^1 \times [0,1]$ in $Y \times [0,1]$ such that $A \cap Y \times \{i\} = K_i$ for i=0,1. Concordance is an equivalence relation on $\mathcal{K}(Y)$.

Denote by \mathcal{C}^Y the set of equivalence classes. If $K_0\sim K_1$, then $[K_0]=[K_1]$, so we have the splitting:

$$\mathcal{C}^Y = \bigoplus_{m \in H_1(Y; \mathbb{Z})} \mathcal{C}_m^Y$$

If $Y=S^3$, the connected sum endows $\mathcal{C}=\mathcal{C}^{S^3}$ with a **group** structure. Otherwise there is no fancy algebra in \mathcal{C}^Y .

MPERIAL EDILETE

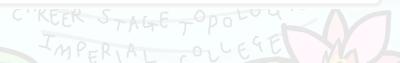
However there is a natural action $\mathcal{K}(S^3) \curvearrowright \mathcal{C}^Y$ given by:

$$(S^3, K) \cdot [(Y, K')] = [(Y, K \# K')]$$

Definition

Two knots $K_0, K_1 \in \mathcal{K}(Y)$ are almost-concordant, $K_0 \sim K_1$, if there exist two knots $K_0', K_1' \in \mathcal{K}(S^3)$ such that

$$K_0 \# K_0' \sim K_1 \# K_1'$$



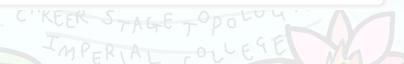
However there is a natural action $\mathcal{C} \curvearrowright \mathcal{C}^Y$ given by:

$$[(S^3,K)]\cdot [(Y,K')] = [(Y,K\#K')]$$

Definition

Two knots $K_0, K_1 \in \mathcal{K}(Y)$ are almost-concordant, $K_0 \sim K_1$, if there exist two knots $K_0', K_1' \in \mathcal{K}(S^3)$ such that

$$K_0 \# K_0' \sim K_1 \# K_1'$$



However there is a natural action $\mathcal{C} \curvearrowright \mathcal{C}^Y$ given by:

$$[(S^3, K)] \cdot [(Y, K')] = [(Y, K \# K')]$$

Definition

Two knots $K_0, K_1 \in \mathcal{K}(Y)$ are almost-concordant, $K_0 \sim K_1$, if there exist two knots $K_0', K_1' \in \mathcal{K}(S^3)$ such that

$$K_0 \# K_0' \sim K_1 \# K_1'$$

However there is a natural action $\mathcal{C} \curvearrowright \mathcal{C}^Y$ given by:

$$[(S^3, K)] \cdot [(Y, K')] = [(Y, K \# K')]$$

Definition

Two knots $K_0, K_1 \in \mathcal{K}(Y)$ are almost-concordant, $K_0 \sim K_1$, if there exist two knots $K_0', K_1' \in \mathcal{K}(S^3)$ such that

$$K_0 \# K_0' \sim K_1 \# K_1'$$

$K \in \mathcal{K}(Y)$ can be:

- **Nullhomologous** if it represents the class $0 \in H_1(Y; \mathbb{Z})$. \Leftrightarrow boundary of embedded surfaces in Y.
- **Local** if it is contained in a 3-disk embedded in Y. $\Leftrightarrow (Y,K) = (S^3,K')\#(Y,\bigcirc)$.
- Prime if $(Y, K) = (Y, K_0) \# (S^3, K_1) \Rightarrow K_1 = \bigcirc$.

Note that the only relation is **local** \Longrightarrow **nullhomologous**

Theorem (Kirby-Lickorish for S^3):

Every knot $K \in \mathcal{K}(Y)$ is concordant to a prime knot.

$K \in \mathcal{K}(Y)$ can be:

- **Nullhomologous** if it represents the class $0 \in H_1(Y; \mathbb{Z})$. \Leftrightarrow boundary of embedded surfaces in Y.
- **Local** if it is contained in a 3-disk embedded in Y. $\Leftrightarrow (Y,K) = (S^3,K')\#(Y,\bigcirc)$.
- **Prime** if $(Y, K) = (Y, K_0) \# (S^3, K_1) \Rightarrow K_1 = \bigcirc$.

Note that the only relation is **local** \Longrightarrow **nullhomologous**.

Theorem (Kirby-Lickorish for S^3):

Every knot $K \in \mathcal{K}(Y)$ is concordant to a prime knot.

$K \in \mathcal{K}(Y)$ can be:

- **Nullhomologous** if it represents the class $0 \in H_1(Y; \mathbb{Z})$. \Leftrightarrow boundary of embedded surfaces in Y.
- **Local** if it is contained in a 3-disk embedded in Y. $\Leftrightarrow (Y,K) = (S^3,K')\#(Y,\bigcirc)$.
- **Prime** if $(Y, K) = (Y, K_0) \# (S^3, K_1) \Rightarrow K_1 = \bigcirc$.

Note that the only relation is **local** \Longrightarrow **nullhomologous**.

Theorem (Kirby-Lickorish for S^3):

Every knot $K \in \mathcal{K}(Y)$ is concordant to a prime knot.

A "concrete" example

Lens spaces

Closed 3–manifolds L(p,q) obtained by $-\frac{p}{q}$ Dehn surgery on $\bigcirc\subset S^3.$

Using a modified version of Ozsváth-Szabó/Rasmussen's τ -invariant, we can obstruct the existence of almost-concordances between knots in I(p,q).

In S^3 it is an homomorphism:

$$\tau:\mathcal{C}\longrightarrow\mathbb{Z}$$

Extracted from the filtered quasi-isomorphism type of the knot Floer complex $\widehat{CFK}(S^3,K)$.

A "concrete" example

Lens spaces

Closed 3–manifolds L(p,q) obtained by $-\frac{p}{q}$ Dehn surgery on $\bigcirc\subset S^3.$

Using a modified version of Ozsváth-Szabó/Rasmussen's au-invariant, we can obstruct the existence of almost-concordances between knots in L(p,q).

In S^3 it is an homomorphism:

$$\tau:\mathcal{C}\longrightarrow\mathbb{Z}$$

Extracted from the filtered quasi-isomorphism type of the knot Floer complex $\widehat{CFK}(S^3,K)$.

A "concrete" example

Lens spaces

Closed 3–manifolds L(p,q) obtained by $-\frac{p}{q}$ Dehn surgery on $\bigcirc \subset S^3.$

Using a modified version of Ozsváth-Szabó/Rasmussen's au-invariant, we can obstruct the existence of almost-concordances between knots in L(p,q).

In S^3 it is an homomorphism:

$$\tau:\mathcal{C}\longrightarrow\mathbb{Z}$$

Extracted from the filtered quasi-isomorphism type of the knot Floer complex $\widehat{CFK}(S^3,K)$.

In L(p,q):

$$\tau = (\tau^0, \dots, \tau^{p-1}) : \mathcal{C}^{L(p,q)} \longrightarrow \mathbb{Z}^p$$

Behaves in a controlled way under the action of \mathcal{C} : if $(L(p,q),K)=(S^3,K_0)\#(L(p,q),K_1)$

$$\tau^i(K) = \tau(K_0) + \tau^i(K_1)$$

Hence we can define the au-shifted invariant

$$\tau_{sh}(K) = (\tau^0(K) + n, \dots, \tau^{p-1}(K) + n)$$

where n is the only integer such that $\min \tau^i(K) = 0$.

 au_{sh} is an almost-concordance invariant for knots in lens spaces

In L(p,q):

$$\tau = (\tau^0, \dots, \tau^{p-1}) : \mathcal{C}^{L(p,q)} \longrightarrow \mathbb{Z}^p$$

Behaves in a controlled way under the action of \mathcal{C} : if $(L(p,q),K)=(S^3,K_0)\#(L(p,q),K_1)$

$$\tau^i(K) = \tau(K_0) + \tau^i(K_1)$$

Hence we can define the τ -shifted invariant

$$\tau_{sh}(K) = (\tau^0(K) + n, \dots, \tau^{p-1}(K) + n)$$

where n is the only integer such that $\min_i \tau^i(K) = 0.$

 au_{sh} is an almost-concordance invariant for knots in lens spaces

In L(p,q):

$$\tau = (\tau^0, \dots, \tau^{p-1}) : \mathcal{C}^{L(p,q)} \longrightarrow \mathbb{Z}^p$$

Behaves in a controlled way under the action of \mathcal{C} : if $(L(p,q),K)=(S^3,K_0)\#(L(p,q),K_1)$

$$\tau^i(K) = \tau(K_0) + \tau^i(K_1)$$

Hence we can define the τ -shifted invariant

$$\tau_{sh}(K) = (\tau^0(K) + n, \dots, \tau^{p-1}(K) + n)$$

where n is the only integer such that $\min_i \tau^i(K) = 0.$

 au_{sh} is an almost-concordance invariant for knots in lens spaces.

Proposition

If $K \in \mathcal{K}(L(p,q))$ is local, then $\tau_{sh}(K) = (0,\ldots,0)$.

Then use Baker-Grigsby-Hedden's combinatorial reformulation of $\widehat{HFK}(L(p,q),K)$, compute a couple examples and find: $\widetilde{K} \in \mathcal{N}(L(3,\mathbb{R}))$ such that $[\widetilde{K}] = 0$ and

$$\tau(K) = \tau_b(K) \cdot \mathbf{5}(\tau^0(K), \tau^1(K), \tau^2(K)) = (1, 0, 0)$$

K is not almost concordant to the unknot in L(3,1)! More generally K is not even almost-concordant to any local knot in L(3,1) (and it is prime).

REER STAGE TOPOLOGISTS

Proposition

If $K \in \mathcal{K}(L(p,q))$ is local, then $\tau_{sh}(K) = (0,\ldots,0)$.

Then use Baker-Grigsby-Hedden's combinatorial reformulation of $\widehat{HFK}(L(p,q),K)$, compute a couple examples and find: $\widetilde{K} \in \mathcal{K}(L(3,1))$ such that $[\widetilde{K}]=0$ and

$$\tau(\widetilde{K}) = \tau_{sh}(\widetilde{K}) = (\tau^0(\widetilde{K}), \tau^1(\widetilde{K}), \tau^2(\widetilde{K})) = (1, 0, 0)$$

K is not almost-concordant to the unknot in L(3,0). More generally K is not even almost-concordant to any local knot in L(3,1) (and it is prime).

Proposition

If
$$K \in \mathcal{K}(L(p,q))$$
 is local, then $\tau_{sh}(K) = (0,\ldots,0)$.

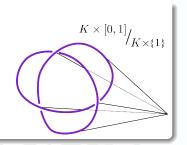
Then use Baker-Grigsby-Hedden's combinatorial reformulation of $\widehat{HFK}(L(p,q),K)$, compute a couple examples and find: $\widetilde{K} \in \mathcal{K}(L(3,1))$ such that $[\widetilde{K}]=0$ and

$$\tau(\widetilde{K}) = \tau_{sh}(\widetilde{K}) = (\tau^0(\widetilde{K}), \tau^1(\widetilde{K}), \tau^2(\widetilde{K})) = (1, 0, 0)$$

 \widetilde{K} is not almost-concordant to the unknot in L(3,1)! More generally \widetilde{K} is not even almost-concordant to any local knot in L(3,1) (and it is prime).

Definition

A PL surface is a properly embedded surface in a 4-manifold, smooth everywhere except a finite number of singular points, which are cones over knots.



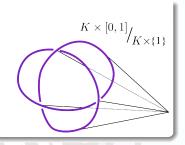
Remark

(A. Levine) Almost-concordance is equivalent to PL-concordance. Hence τ_{sh} obstructs the existence of PL-concordances!

 $g_* \neq g_{TOP} \neq g_{PL} \neq g_{TOPL}$

Definition

A PL surface is a properly embedded surface in a 4-manifold, smooth everywhere except a finite number of singular points, which are cones over knots.



Remark

(A. Levine) Almost-concordance is equivalent to PL-concordance. Hence τ_{sh} obstructs the existence of PL-concordances!

$$g_* \neq g_{TOP} \neq g_{PL} \neq g_{TOPL}$$
?