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If Y = S3, the connected sum endows C = CS3
with a group

structure. Otherwise there is no fancy algebra in CY .
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K ∈ K(Y ) can be:

• Nullhomologous if it represents the class 0 ∈ H1(Y ;Z).
⇔ boundary of embedded surfaces in Y .

• Local if it is contained in a 3-disk embedded in Y .
⇔ (Y,K) = (S3,K′)#(Y,©).

• Prime if (Y,K) = (Y,K0)#(S3,K1) ⇒ K1 =©.

Note that the only relation is local =⇒ nullhomologous.

Theorem (Kirby-Lickorish for S3):

Every knot K ∈ K(Y ) is concordant to a prime knot.
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A “concrete” example

Lens spaces

Closed 3–manifolds L(p, q) obtained by −p
q Dehn surgery on

© ⊂ S3.

Using a modified version of Ozsváth-Szabó/Rasmussen’s
τ -invariant, we can obstruct the existence of almost-concordances
between knots in L(p, q).

In S3 it is an homomorphism:

τ : C −→ Z

Extracted from the filtered quasi-isomorphism type of the knot
Floer complex ĈFK(S3,K).
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In L(p, q):
τ = (τ0, . . . , τp−1) : CL(p,q) −→ Zp

Behaves in a controlled way under the action of C: if
(L(p, q),K) = (S3,K0)#(L(p, q),K1)

τ i(K) = τ(K0) + τ i(K1)

Hence we can define the τ -shifted invariant

τsh(K) = (τ0(K) + n, . . . , τp−1(K) + n)

where n is the only integer such that min
i
τ i(K) = 0.

τsh is an almost-concordance invariant for knots in lens spaces.
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Proposition

If K ∈ K(L(p, q)) is local, then τsh(K) = (0, . . . , 0).

Then use Baker-Grigsby-Hedden’s combinatorial reformulation of
ĤFK(L(p, q),K), compute a couple examples and find:
K̃ ∈ K(L(3, 1)) such that [K̃] = 0 and

τ(K̃) = τsh(K̃) = (τ0(K̃), τ1(K̃), τ2(K̃)) = (1, 0, 0)

K̃ is not almost-concordant to the unknot in L(3, 1)!
More generally K̃ is not even almost-concordant to any local knot
in L(3, 1) (and it is prime).
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Definition

A PL surface is a properly embedded
surface in a 4-manifold, smooth
everywhere except a finite number of
singular points, which are cones over
knots.

Remark

(A. Levine) Almost-concordance is equivalent to PL-concordance.
Hence τsh obstructs the existence of PL-concordances!

g∗ 6= gTOP 6= gPL 6= gTOPL?
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