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Ky, K1 € K(Y) are concordant (K ~ K7) if there exists an
annulus A2 S x [0,1] in Y x [0,1] such that ANY x {i} = K;
for i = 0,1. Concordance is an equivalence relation on IC(Y").

Denote by CY the set of equivalence classes.
If Ko ~ K1, then [Ky] = [K1], so we have the splitting:

= P o

meH, (Y;Z)

If Y = 93, the connected sum endows C = C5° with a group
structure. Otherwise there is no fancy algebra in CY.
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Definition
Two knots Ky, K7 € K(Y) are almost-concordant, Ky~K, if
there exist two knots KJ), K| € K(S?) such that
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Concordant knots are also almost-concordant. The converse is
already false for S3!




K € K(Y') can be:

¢ Nullhomologous if it represents the class 0 € H,(Y;Z).
< boundary of embedded surfaces in Y.
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& (Y, K) = (5%, K)#(Y, ).

e Prime if (Y,K) = (Y,Ko)#(S% K1) = K1 =0.
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K € K(Y') can be:

¢ Nullhomologous if it represents the class 0 € H,(Y;Z).
< boundary of embedded surfaces in Y.

e Local if it is contained in a 3-disk embedded in Y.
& (Y, K) = (8%, K"#(Y,0).
e Primeif (Y,K) = (Y, KO)#(S3,K1) = K =(.

Note that the only relation is local = nullhomologous. J

Theorem (Kirby-Lickorish for S?):
Every knot K € K(Y) is concordant to a prime knot. J
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Lens spaces

Closed 3—manifolds L(p, q) obtained by —%’ Dehn surgery on
O c S3.

Using a modified version of Ozsvdth-Szabé/Rasmussen’s
T-invariant, we can obstruct the existence of almost-concordances
between knots in L(p, q).

In S3 it is an homomorphism:
7:C—7Z

Extracted fromLhe\fiItered quasi-isomorphism type of the knot
Floer complex CFK (S3, K).




In L(p, q):
r=(r%..., 7Y . ctd) 7P

Behaves in a controlled way under the action of C: if
(L(p: ), K) = (8%, Ko)#(L(p,q), K1)

T(K) = 7(Kp) + 7 (K1)
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Tsh, IS an almost-concordance invariant for knots in lens spaces.
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Then use Baker-Grigsby-Hedden's combinatorial reformulation of
HFK(L(p,q), K), compute a couple examples and find:
K € K(L(3,1)) such that [K] =0 and

7—(]?) = TSh(I?> D (TO([?),Tl(I?),T2(I?)) — (17070)

K is not almost-concordant to the unknot in L(3,1)!
More generally K is not even almost-concordant to any local knot
in L(3,1) (and it is prime).



Definition

A PL surface is a properly embedded
surface in a 4-manifold, smooth
everywhere except a finite number of
singular points, which are cones over
knots.
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Remark

(A. Levine) Almost-concordance is equivalent to PL-concordance.
Hence 74, obstructs the existence of PL-concordances!
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