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There is really a overabundance of concordance invariants one can
extract from CFK*(K):

T-invariant (O-Sz/Rasmussen)

d-invariant of surgeries (O-Sz/Rasmussen/Peters)
d-invariant of branched cover (Manolescu-Owens)
vT-invariant (Hom-Wu)

e-invariant (Hom)

Y(t) invariants (O-Stipsicz-Sz)

Y2(t) secondary Upsilon invariants (Kim-Livingston)
Twisted correction terms (Rubermann-Levine/Behrens-Golla)

Involutive correction terms (Hendricks-Manolescu)



There is really a plethora of concordance invariants one can extract
from CFK*>(K):

o 7-invariant (O-Sz/Rasmussen)

e d-invariant of surgeries (O-Sz/Rasmussen/Peters)

e J-invariant of branched cover (Manolescu-Owens)

e v -invariant (Hom-Wu)

e c-invariant (Hom)

e Y (t) invariants (O-Stipsicz-Sz)

e Y2(t) secondary Upsilon invariants (Kim-Livingston)

e Twisted correction terms (Rubermann-Levine/Behrens-Golla)

e Involutive correction terms (Hendricks-Manolescu)
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Slice genus and concordances

Denote by K the set of knots in S3; there are two integers we can
associate to K € K:
¢ Seifert genus g(K) (3-dimensional),
Minimal genus among orientable surfaces bounding K in S3.
e Smooth slice genus g.(K) (4-dimensional).
Minimal genus of smooth, orientable surfaces bounding K,
properly embedded in (D%, S3).

Clearly g.(K) < g(K), and g(K) is additive under connected sum.
Instead g, induces an equivalence relation on K:

Ko~ K| < g.(Ko#K1)=0

i.e. if the connected sum bounds a smooth disk in D?.



Equivalently Ko ~ K (are concordant) iff there exists a smooth
properly embedded annulus A C S? x [0, 1] cobounding Ko U K7:
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Equivalently Ko ~ K (are concordant) iff there exists a smooth
properly embedded annulus A C S? x [0, 1] cobounding Ko U K7:

53

Connected sum endows C = IC/N with a group operation, and
(C, #) is known as the (smooth) concordance group.

C is big (contains Z*> @ Z3°), and its structure is still misterious. J




Knot Floer homology

In 2001 Ozsvath-Szabé introduce Heegaard Floer homology for
closed 3-manifolds. They associate to a Spin® 3-manifold (Y,s) a
collection of complexes:

(CF°(Y,s),0°) where o = A, +, —, c0.

The homologies HF°(Y,s) are invariants of the pairs, and contain
many useful information on the manifold.
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Knot Floer homology

In 2001 Ozsvath-Szabé introduce Heegaard Floer homology for
closed 3-manifolds. They associate to a Spin® 3-manifold (Y,s) a
collection of complexes:

(CF°(Y,s),0°) where o = A, +, —, c0.

The homologies HF°(Y,s) are invariants of the pairs, and contain
many useful information on the manifold.

We will focus on the minus and infinity flavours. These are a
finitely generated F[U] and F[U*!] complexes respectively.
Shortly after the definition of HF', O-Sz and Rasmussen realised
that a (nullhomologous) knot K in Y induces a filtration on the
complexes computing the Heegaard Floer homology of Y.

The resulting filtered quasi-isomorphism type is a knot invariant,
the knot Floer homology HFK°(Y, K, s).
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Properties:

We are going to work with knots in S% (and F = Z/ZZ)-

HFK (K)= @ HFK,(K,a)
a,meZ

where each HF K (K, a) is a finite F module.
HFK™(K) is graded (Maslov degree), and bi-filtered (Alexander
and algebraic filtrations) F[U] complex.
U is an endomorphism commuting with 97, decreases the degree
by 2 and filtration levels by 1.
In each flavour there is a spectral sequence

FU, U ifo=o00

HFK°(K) = HF°(S?%) = {F[U] o

where 1 € F[U] or F[U*!] has degree 0.
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Behaviour under connected sum

HFK°(Ko#K,) = HFK°(Ko) ® HFK°(K})

Categorification of the Alexander polynomial:

Xe(HFK™ (k)= Y (-1)"rk(HFK,, (K, a))t" =

a,meZ

Detects the Seifert genus and fiberdeness ~~ distinguishes the
unknot, 31 and 4.

Skein exact triangles: X X > <
L L. Ly




The homology of HF K for knots is boring:
HFK>®(K) 2 F[U,U Y

(but the complex contains a huge amount of information).



The homology of HF K for knots is boring:
HFK>®(K) 2 F[U,U Y

(but the complex contains a huge amount of information).

Alexander |
filtration

Algebraic
filtration
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(but the complex contains a huge amount of information).
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The homology of HF K for knots is boring:
HFK>®(K) 2 F[U,U Y

(but the complex contains a huge amount of information).

+ Alexander

QCFK_(Sl) @ filtration
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The homology of HF K for knots is boring:
HFK>®(K) 2 F[U,U Y

(but the complex contains a huge amount of information).

+ Alexander
@ filtration
HFK™(31)
Algebraic
filtration
U
U

For the (graded) minus flavour:

HFK™(K) = F[U](—2r(k),—r(k)) © U-torsion part.
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T is a concordance invariant, and induces an homomorphism
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T-Invariant

The first invariant one can extract from HF K~ is the 7-invariant:

7(K) = —max{A(z) | v € HF K~ (K) is not U-torsion}

Theorem (O-Sz/Rasmussen /Sarkar)

T is a concordance invariant, and induces an homomorphism
7 :C — Z. Moreover if Ky, K1 € K are related by a cobordism
¥ C 83 x[0,1]:

|7(Ko) — 7(K1)| < g(%).

In particular |7(K)| < g.(K).

e Combinatorial proof of the Milnor conjecture.
e Bennequin inequality: tb(K) + |rot(K)| < 27(K) — 1.

e Results above hold in more general contexts.



More recently, O-Sz-Stipsicz defined a concordance invariant
YTk (t) € PL([0,2]):

Tr(@)] <t-g.(K)
and T : C — PL([0,2]) is an homomorphism.
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More recently, O-Sz-Stipsicz defined a concordance invariant
YTk (t) € PL([0,2]):
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and T : C — PL([0,2]) is an homomorphism.
Idea: collapse the bi-filtration to obtain a family of singly filtered
complexes: t € [0,2] ~ Fy(z) = SAlex(x) + (1 — §)Alg(z).
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More recently, O-Sz-Stipsicz defined a concordance invariant
YTk (t) € PL([0,2]):

Tr ()] <t-g.(K)

and T : C — PL([0,2]) is an homomorphism.
Idea: collapse the bi-filtration to obtain a family of singly filtered
complexes: t € [0,2] ~ Fy(z) = SAlex(x) + (1 — §)Alg(z).

Alexander |

filtration S

Algebraic
filtration

— 2
slope =1— ¥

.

T (t) = —2min{s | Im(H(C(K,F)s)) = H(C(K)) is surj.}.

T is well suited to prove independence of families in C.
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If Y is a QHS?, then the groups HF~(Y,s) admit a Q-grading,
and the correction term d(Y,s) € Q is the grading of 1 € F[U].
The homology

Fo(S§K)= @ HF (S)(K),s)

s€Spinc(Y)

can be extracted from the complex CF K~ (K) through a mapping
cone construction.

The maps involved provide a sequence {V;(K)};cz such that:
Vi(K) > Vit1(K) > 0 and V;(K) is eventually 0.

d(S3(K),i) = d(L(p,1),4) — 2max{V;, V,—;}

The minimal i such that V;(K) = 0 is called v (K).
vT is a concordance invariant, and v (K) < g.(K) (Hom-Wu).



Algebraic knots and v

Consider an irreducible polynomial F' € C[z,y| with a singularity in
the origin. (locally ¢t — (tP,t9" 4 ... + t%m)).

Then Kp = {F(z,y) = 0} N dB. is an algebraic knot in S3.
Associated to an algebraic knot there is a semigroup I'(K).



Algebraic knots and v

Consider an irreducible polynomial F' € C[z,y| with a singularity in
the origin. (locally ¢t — (tP,t9" 4 ... + t%m)).

Then Kp = {F(z,y) = 0} N dB. is an algebraic knot in S3.
Associated to an algebraic knot there is a semigroup I'(K). For
torus knots (p,q) =1 and p > ¢ we have

I'r,,=<p,q>=10,¢,2q,...,p,p+q,...},

and [N\ Tr,.,| = L(p — 1)(q — 1).
Call T'k(+) the associated counting function, so I'x(n) is the n-th
element in I'gk.



Theorem (Bodnér-C.-Golla)

If K and L are algebraic knots with enumerating functions 'k (+)
and I'z.(-) respectively, then:

H(HT) = max {a(K) ~ g(0) + max(Tu(o) = Do)}, 0}

4




Theorem (Bodnér-C.-Golla)

If K and L are algebraic knots with enumerating functions 'k (+)
and I'z.(-) respectively, then:

HHD) = max { () — o(L) + max(T () ~ Tic(n)}, 0}

v

Remark

The same result holds for L-space knots (with a suitable definition
of the “semigroup” I'y).

Idea of the proof: both knots are L-space knots, hence their
HFK® has a rather simple form (staircase complex).

Use the reduced knot Floer complex of Krcatovich to compute
the V;s.
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Theorem (Bodnar-C.-Golla)

e If K is obtained from K_ by changing a negative crossing
into a positive one, then:

vI(K) < v (Ky) <vh(K_)+1.

e The unknotting number, concordance unknotting number,
and slicing number of K are bounded from below by

vH(K) + vt (K).

e The invariant is sub-additive:

v (Ko#Ky) < v (Ko) + v (Ky)
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Now consider a = b =12, and (p,a) = 1: it is possible to connect
by a genus 4 cobordism K13 ;) with T4 35, and KE to
T5p 3p+6 With a genus 3 cobordism.
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Now consider a = b =12, and (p,a) = 1: it is possible to connect
by a genus 4 cobordism K13 ;) with T4 35, and KEIQ » to
T5p 3p+6 With a genus 3 cobordism.
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A computation yields:

VT (Toprap#Topspr6) = v (Top spr6# T aprasp) = T

so the cobordism has minimal genus (and
d(Top+a,3p, Top3p+6) = 14). However the bounds given by T, s, 7
and Tristram-Levine signatures are at most 5.
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