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There is really a overabundance of concordance invariants one can
extract from CFK∞(K):

• τ -invariant (O-Sz/Rasmussen)

• d-invariant of surgeries (O-Sz/Rasmussen/Peters)

• δ-invariant of branched cover (Manolescu-Owens)

• ν+-invariant (Hom-Wu)

• ε-invariant (Hom)

• Υ(t) invariants (O-Stipsicz-Sz)

• Υ2(t) secondary Upsilon invariants (Kim-Livingston)

• Twisted correction terms (Rubermann-Levine/Behrens-Golla)

• Involutive correction terms (Hendricks-Manolescu)

• ...
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Slice genus and concordances

Denote by K the set of knots in S3; there are two integers we can
associate to K ∈ K:

• Seifert genus g(K) (3-dimensional),

Minimal genus among orientable surfaces bounding K in S3.

• Smooth slice genus g∗(K) (4-dimensional).

Minimal genus of smooth, orientable surfaces bounding K,
properly embedded in (D4, S3).

Clearly g∗(K) ≤ g(K), and g(K) is additive under connected sum.
Instead g∗ induces an equivalence relation on K:

K0 ∼ K1 ⇐⇒ g∗(K0#K1) = 0

i.e. if the connected sum bounds a smooth disk in D4.
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Equivalently K0 ∼ K1 (are concordant) iff there exists a smooth
properly embedded annulus A ⊂ S3 × [0, 1] cobounding K0 tK1:
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Connected sum endows C = K�∼ with a group operation, and
(C,#) is known as the (smooth) concordance group.
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properly embedded annulus A ⊂ S3 × [0, 1] cobounding K0 tK1:

Connected sum endows C = K�∼ with a group operation, and
(C,#) is known as the (smooth) concordance group.

C is big (contains Z∞ ⊕ Z∞2 ), and its structure is still misterious.



Knot Floer homology

In 2001 Ozsváth-Szabó introduce Heegaard Floer homology for
closed 3-manifolds. They associate to a Spinc 3-manifold (Y, s) a
collection of complexes:

(CF ◦(Y, s), ∂◦) where ◦ = ∧,+,−,∞.

The homologies HF ◦(Y, s) are invariants of the pairs, and contain
many useful information on the manifold.

We will focus on the minus and infinity flavours. These are a
finitely generated F[U ] and F[U±1] complexes respectively.
Shortly after the definition of HF , O-Sz and Rasmussen realised
that a (nullhomologous) knot K in Y induces a filtration on the
complexes computing the Heegaard Floer homology of Y .
The resulting filtered quasi-isomorphism type is a knot invariant,
the knot Floer homology HFK◦(Y,K, s).
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Properties:

We are going to work with knots in S3 (and F = Z�2Z).

HFK−(K) =
⊕
a,m∈Z

HFK−m(K, a)

where each HFK−m(K, a) is a finite F module.
HFK−(K) is graded (Maslov degree), and bi-filtered (Alexander
and algebraic filtrations) F[U ] complex.
U is an endomorphism commuting with ∂−, decreases the degree
by 2 and filtration levels by 1.
In each flavour there is a spectral sequence

HFK◦(K) =⇒ HF ◦(S3) ∼=

{
F[U,U−1] if ◦ =∞
F[U ] if ◦ = −

where 1 ∈ F[U ] or F[U±1] has degree 0.
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• Behaviour under connected sum

HFK◦(K0#K1) = HFK◦(K0)⊗HFK◦(K1)

• Categorification of the Alexander polynomial:

χt(HFK
−(k)) =

∑
a,m∈Z

(−1)mrk(HFK−m(K, a))·ta =
4K(t)

1− t−1

• Detects the Seifert genus and fiberdeness  distinguishes the
unknot, 31 and 41.
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• Skein exact triangles:



The homology of HFK∞ for knots is boring:
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(but the complex contains a huge amount of information).
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τ -invariant

The first invariant one can extract from HFK− is the τ -invariant:

τ(K) = −max{A(x) | x ∈ HFK−(K) is not U -torsion}

Theorem (O-Sz/Rasmussen/Sarkar)

τ is a concordance invariant, and induces an homomorphism
τ : C −→ Z. Moreover if K0,K1 ∈ K are related by a cobordism
Σ ⊂ S3 × [0, 1]:

|τ(K0)− τ(K1)| ≤ g(Σ).

In particular |τ(K)| ≤ g∗(K).

• Combinatorial proof of the Milnor conjecture.

• Bennequin inequality: tb(K) + |rot(K)| ≤ 2τ(K)− 1.

• Results above hold in more general contexts.
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More recently, O-Sz-Stipsicz defined a concordance invariant
ΥK(t) ∈ PL([0, 2]):

|ΥK(t)| ≤ t · g∗(K)

and Υ : C → PL([0, 2]) is an homomorphism.
Idea: collapse the bi-filtration to obtain a family of singly filtered
complexes: t ∈ [0, 2] Ft(x) = t

2Alex(x) + (1− t
2)Alg(x).

ΥK(t) = −2 min{s | Im(H(C(K,Ft)s))→ H(C(K)) is surj.}.

Υ is well suited to prove independence of families in C.
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If Y is a QHS3, then the groups HF−(Y, s) admit a Q-grading,
and the correction term d(Y, s) ∈ Q is the grading of 1 ∈ F[U ].
The homology

HF−(S3
p(K)) =

⊕
s∈Spinc(Y )

HF−(S3
p(K), s)

can be extracted from the complex CFK−(K) through a mapping
cone construction.
The maps involved provide a sequence {Vi(K)}i∈Z such that:
Vi(K) ≥ Vi+1(K) ≥ 0 and Vi(K) is eventually 0.

d(S3
p(K), i) = d(L(p, 1), i)− 2 max{Vi, Vp−i}

The minimal i such that Vi(K) = 0 is called ν+(K).
ν+ is a concordance invariant, and ν+(K) ≤ g∗(K) (Hom-Wu).
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Algebraic knots and ν+

Consider an irreducible polynomial F ∈ C[x, y] with a singularity in
the origin. (locally t 7→ (tp, tq1 + ...+ tqm)).
Then KF = {F (x, y) = 0} ∩ ∂Bε is an algebraic knot in S3.
Associated to an algebraic knot there is a semigroup Γ(K). For
torus knots (p, q) = 1 and p > q we have

ΓTp,q =< p, q >= {0, q, 2q, . . . , p, p+ q, . . .},

and |N \ ΓTp,q | = 1
2(p− 1)(q − 1).

Call ΓK(·) the associated counting function, so ΓK(n) is the n-th
element in ΓK .
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Theorem (Bodnár-C.-Golla)

If K and L are algebraic knots with enumerating functions ΓK(·)
and ΓL(·) respectively, then:

ν+(K#L) = max

{
g(K)− g(L) + max

n≥0
{ΓL(n)− ΓK(n)}, 0

}
.

Remark

The same result holds for L-space knots (with a suitable definition
of the “semigroup” ΓK).

Idea of the proof: both knots are L-space knots, hence their
HFK∞ has a rather simple form (staircase complex).
Use the reduced knot Floer complex of Krcatovich to compute
the Vis.
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Theorem (Bodnár-C.-Golla)

• If K+ is obtained from K− by changing a negative crossing
into a positive one, then:

ν+(K−) ≤ ν+(K+) ≤ ν+(K−) + 1.

• The unknotting number, concordance unknotting number,
and slicing number of K are bounded from below by

ν+(K) + ν+(K).

• The invariant is sub-additive:

ν+(K0#K1) ≤ ν+(K0) + ν+(K1)
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An infinite family of optimal cobordisms

Since ν+(K) ≤ g∗(K), the quantities ν+(K#L) and ν+(L#K)
provide (often different) lower bounds for the genus of cobordisms
between K and L.
It is possible to construct infinite families where the bounds on
cobordisms provided by ν+ is sharp, while the ones given by τ,Υ, s
and Tristram-Levine signatures are arbitrarily “bad”:
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Now consider a = b = 12, and (p, a) = 1: it is possible to connect
by a genus 4 cobordism K(12,p) with T2p+4,3p, and K ′(12,p) to
T2p,3p+6 with a genus 3 cobordism.

A computation yields:

ν+(T2p+4,3p#T 2p,3p+6) = ν+(T2p,3p+6#T 2p+4,3p) = 7,

so the cobordism has minimal genus (and
d(T2p+4,3p, T2p,3p+6) = 14). However the bounds given by Υ, s, τ
and Tristram-Levine signatures are at most 5.
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