Some concordance invariants from knot Floer homology

DANIELE CELORIA Topology seminars Mathematical Institute University of Oxford

Oxford Mathematics

Mathematical Institute There is really a overabundance of concordance invariants one can extract from $CFK^{\infty}(K)$:

- τ -invariant (O-Sz/Rasmussen)
- *d*-invariant of surgeries (O-Sz/Rasmussen/Peters)
- δ -invariant of branched cover (Manolescu-Owens)
- ν^+ -invariant (Hom-Wu)
- ε-invariant (Hom)
- $\Upsilon(t)$ invariants (O-Stipsicz-Sz)
- $\Upsilon^2(t)$ secondary Upsilon invariants (Kim-Livingston)
- Twisted correction terms (Rubermann-Levine/Behrens-Golla)
- Involutive correction terms (Hendricks-Manolescu)
- ...

There is really a plethora of concordance invariants one can extract from $CFK^{\infty}(K)$:

- τ -invariant (O-Sz/Rasmussen)
- *d*-invariant of surgeries (O-Sz/Rasmussen/Peters)
- δ -invariant of branched cover (Manolescu-Owens)
- ν^+ -invariant (Hom-Wu)
- ε-invariant (Hom)
- $\Upsilon(t)$ invariants (O-Stipsicz-Sz)
- $\Upsilon^2(t)$ secondary Upsilon invariants (Kim-Livingston)
- Twisted correction terms (Rubermann-Levine/Behrens-Golla)
- Involutive correction terms (Hendricks-Manolescu)
- ...

Denote by \mathcal{K} the set of knots in S^3 ; there are two integers we can associate to $K \in \mathcal{K}$:

• Seifert genus g(K) (3-dimensional),

Minimal genus among orientable surfaces bounding K in S^3 .

• Smooth slice genus $g_*(K)$ (4-dimensional).

Minimal genus of smooth, orientable surfaces bounding K, properly embedded in (\mathbb{D}^4, S^3) .

Clearly $g_*(K) \leq g(K)$, and g(K) is additive under connected sum. Instead g_* induces an equivalence relation on \mathcal{K} :

$$K_0 \sim K_1 \iff g_*(K_0 \# \overline{K}_1) = 0$$

Denote by \mathcal{K} the set of knots in S^3 ; there are two integers we can associate to $K \in \mathcal{K}$:

• Seifert genus g(K) (3-dimensional),

Minimal genus among orientable surfaces bounding K in S^3 .

• Smooth slice genus $g_*(K)$ (4-dimensional).

Minimal genus of smooth, orientable surfaces bounding K, properly embedded in (\mathbb{D}^4, S^3) .

Clearly $g_*(K) \leq g(K)$, and g(K) is additive under connected sum. Instead g_* induces an equivalence relation on \mathcal{K} :

$$K_0 \sim K_1 \iff g_*(K_0 \# \overline{K}_1) = 0$$

Denote by \mathcal{K} the set of knots in S^3 ; there are two integers we can associate to $K \in \mathcal{K}$:

• Seifert genus g(K) (3-dimensional),

Minimal genus among orientable surfaces bounding K in S^3 .

• Smooth slice genus $g_*(K)$ (4-dimensional).

Minimal genus of smooth, orientable surfaces bounding K, properly embedded in $(\mathbb{D}^4,S^3).$

Clearly $g_*(K) \leq g(K)$, and g(K) is additive under connected sum. Instead g_* induces an equivalence relation on \mathcal{K} :

$$K_0 \sim K_1 \iff g_*(K_0 \# \overline{K}_1) = 0$$

Denote by \mathcal{K} the set of knots in S^3 ; there are two integers we can associate to $K \in \mathcal{K}$:

• Seifert genus g(K) (3-dimensional),

Minimal genus among orientable surfaces bounding K in S^3 .

• Smooth slice genus $g_*(K)$ (4-dimensional).

Minimal genus of smooth, orientable surfaces bounding K, properly embedded in (\mathbb{D}^4, S^3) .

Clearly $g_*(K) \leq g(K)$, and g(K) is additive under connected sum. Instead g_* induces an equivalence relation on \mathcal{K} :

$$K_0 \sim K_1 \iff g_*(K_0 \# \overline{K}_1) = 0$$

Denote by \mathcal{K} the set of knots in S^3 ; there are two integers we can associate to $K \in \mathcal{K}$:

• Seifert genus g(K) (3-dimensional),

Minimal genus among orientable surfaces bounding K in S^3 .

• Smooth slice genus $g_*(K)$ (4-dimensional).

Minimal genus of smooth, orientable surfaces bounding K, properly embedded in (\mathbb{D}^4, S^3) .

Clearly $g_*(K) \leq g(K)$, and g(K) is additive under connected sum. Instead g_* induces an equivalence relation on \mathcal{K} :

$$K_0 \sim K_1 \iff g_*(K_0 \# \overline{K}_1) = 0$$

Connected sum endows $C = \mathcal{K} /$ with a group operation, and (C, #) is known as the (smooth) concordance group.

Connected sum endows $C = \mathcal{K}_{\nearrow}$ with a group operation, and (C, #) is known as the (smooth) concordance group.

 \mathcal{C} is **big** (contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$), and its structure is still misterious.

Knot Floer homology

In 2001 Ozsváth-Szabó introduce **Heegaard Floer homology** for closed 3-manifolds. They associate to a Spin^c 3-manifold (Y, \mathfrak{s}) a collection of complexes:

 $(CF^{\circ}(Y, \mathfrak{s}), \partial^{\circ})$ where $\circ = \wedge, +, -, \infty$.

The homologies $HF^\circ(Y,\mathfrak{s})$ are invariants of the pairs, and contain many useful information on the manifold.

We will focus on the **minus** and **infinity** flavours. These are a finitely generated $\mathbb{F}[U]$ and $\mathbb{F}[U^{\pm 1}]$ complexes respectively. Shortly after the definition of HF, O-Sz and Rasmussen realised that a (nullhomologous) knot K in Y induces a **filtration** on the complexes computing the Heegaard Floer homology of Y. The resulting filtered quasi-isomorphism type is a knot invariant, the **knot Floer homology** $HFK^{\circ}(Y, K, \mathfrak{s})$.

Knot Floer homology

In 2001 Ozsváth-Szabó introduce **Heegaard Floer homology** for closed 3-manifolds. They associate to a Spin^c 3-manifold (Y, \mathfrak{s}) a collection of complexes:

 $(CF^{\circ}(Y, \mathfrak{s}), \partial^{\circ})$ where $\circ = \land, +, -, \infty$.

The homologies $HF^\circ(Y,\mathfrak{s})$ are invariants of the pairs, and contain many useful information on the manifold.

We will focus on the **minus** and **infinity** flavours. These are a finitely generated $\mathbb{F}[U]$ and $\mathbb{F}[U^{\pm 1}]$ complexes respectively. Shortly after the definition of HF, O-Sz and Rasmussen realised that a (nullhomologous) knot K in Y induces a **filtration** on the complexes computing the Heegaard Floer homology of Y. The resulting filtered quasi-isomorphism type is a knot invariant, the **knot Floer homology** $HFK^{\circ}(Y, K, \mathfrak{s})$.

Knot Floer homology

In 2001 Ozsváth-Szabó introduce **Heegaard Floer homology** for closed 3-manifolds. They associate to a Spin^c 3-manifold (Y, \mathfrak{s}) a collection of complexes:

 $(CF^{\circ}(Y, \mathfrak{s}), \partial^{\circ})$ where $\circ = \land, +, -, \infty$.

The homologies $HF^{\circ}(Y, \mathfrak{s})$ are invariants of the pairs, and contain many useful information on the manifold.

We will focus on the **minus** and **infinity** flavours. These are a finitely generated $\mathbb{F}[U]$ and $\mathbb{F}[U^{\pm 1}]$ complexes respectively. Shortly after the definition of HF, O-Sz and Rasmussen realised that a (nullhomologous) knot K in Y induces a **filtration** on the complexes computing the Heegaard Floer homology of Y. The resulting filtered quasi-isomorphism type is a knot invariant, the **knot Floer homology** $HFK^{\circ}(Y, K, \mathfrak{s})$. Properties:

We are going to work with knots in S^3 (and $\mathbb{F} = \mathbb{Z}_{2\mathbb{Z}}$).

$$HFK^{-}(K) = \bigoplus_{a,m \in \mathbb{Z}} HFK_{m}^{-}(K,a)$$

where each $HFK_m^-(K, a)$ is a finite \mathbb{F} module.

 $HFK^{-}(K)$ is **graded** (Maslov degree), and **bi-filtered** (Alexander and algebraic filtrations) $\mathbb{F}[U]$ complex.

U is an endomorphism commuting with $\partial^-,$ decreases the degree by 2 and filtration levels by 1.

In each flavour there is a spectral sequence

$$HFK^{\circ}(K) \Longrightarrow HF^{\circ}(S^3) \cong \begin{cases} \mathbb{F}[U, U^{-1}] & \text{if } \circ = \infty \\ \mathbb{F}[U] & \text{if } \circ = - \end{cases}$$

where $1 \in \mathbb{F}[U]$ or $\mathbb{F}[U^{\pm 1}]$ has degree 0.

Properties:

We are going to work with knots in S^3 (and $\mathbb{F} = \mathbb{Z}_{2\mathbb{Z}}$).

$$HFK^{-}(K) = \bigoplus_{a,m \in \mathbb{Z}} HFK_{m}^{-}(K,a)$$

where each $HFK_m^-(K, a)$ is a finite \mathbb{F} module. $HFK^-(K)$ is **graded** (Maslov degree), and **bi-filtered** (Alexander and algebraic filtrations) $\mathbb{F}[U]$ complex. U is an endomorphism commuting with ∂^- decreases the degree

U is an endomorphism commuting with $\partial^-,$ decreases the degree by 2 and filtration levels by 1.

In each flavour there is a spectral sequence

$$HFK^{\circ}(K) \Longrightarrow HF^{\circ}(S^3) \cong \begin{cases} \mathbb{F}[U, U^{-1}] & \text{if } \circ = \infty \\ \mathbb{F}[U] & \text{if } \circ = - \end{cases}$$

where $1 \in \mathbb{F}[U]$ or $\mathbb{F}[U^{\pm 1}]$ has degree 0.

Properties:

We are going to work with knots in S^3 (and $\mathbb{F} = \mathbb{Z}_{2\mathbb{Z}}$).

$$HFK^{-}(K) = \bigoplus_{a,m \in \mathbb{Z}} HFK_{m}^{-}(K,a)$$

where each $HFK_m^-(K, a)$ is a finite \mathbb{F} module. $HFK^-(K)$ is **graded** (Maslov degree), and **bi-filtered** (Alexander and algebraic filtrations) $\mathbb{F}[U]$ complex. U is an endomorphism commuting with ∂^- , decreases the degree

by 2 and filtration levels by 1.

In each flavour there is a spectral sequence

$$HFK^{\circ}(K) \Longrightarrow HF^{\circ}(S^3) \cong \begin{cases} \mathbb{F}[U, U^{-1}] & \text{if } \circ = \infty \\ \mathbb{F}[U] & \text{if } \circ = - \end{cases}$$

where $1 \in \mathbb{F}[U]$ or $\mathbb{F}[U^{\pm 1}]$ has degree 0.

• Behaviour under connected sum

$HFK^{\circ}(K_0 \# K_1) = HFK^{\circ}(K_0) \otimes HFK^{\circ}(K_1)$

Categorification of the Alexander polynomial:

$$\chi_t(HFK^{-}(k)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(HFK_m^{-}(K,a)) \cdot t^a = \frac{\triangle_K(t)}{1 - t^{-1}}$$

 Detects the Seifert genus and fiberdeness → distinguishes the unknot, 3₁ and 4₁. Behaviour under connected sum

$$HFK^{\circ}(K_0 \# K_1) = HFK^{\circ}(K_0) \otimes HFK^{\circ}(K_1)$$

• Categorification of the Alexander polynomial:

$$\chi_t(HFK^{-}(k)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(HFK_m^{-}(K,a)) \cdot t^a = \frac{\triangle_K(t)}{1 - t^{-1}}$$

 Detects the Seifert genus and fiberdeness ~> distinguishes the unknot, 3₁ and 4₁. • Behaviour under connected sum

$$HFK^{\circ}(K_0 \# K_1) = HFK^{\circ}(K_0) \otimes HFK^{\circ}(K_1)$$

• Categorification of the Alexander polynomial:

$$\chi_t(HFK^{-}(k)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(HFK_m^{-}(K,a)) \cdot t^a = \frac{\Delta_K(t)}{1 - t^{-1}}$$

• **Detects** the Seifert genus and fiberdeness →→ distinguishes the unknot, 3₁ and 4₁.

• Behaviour under connected sum

 $HFK^{\circ}(K_0 \# K_1) = HFK^{\circ}(K_0) \otimes HFK^{\circ}(K_1)$

• Categorification of the Alexander polynomial:

$$\chi_t(HFK^{-}(k)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(HFK_m^{-}(K,a)) \cdot t^a = \frac{\triangle_K(t)}{1 - t^{-1}}$$

• **Detects** the Seifert genus and fiberdeness →→ distinguishes the unknot, 3₁ and 4₁.

• Skein exact triangles:
$$\sum_{L_+}$$
 \sum_{L_-} \sum_{L_0}

$$HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]$$

```
HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]
```


$$HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]$$

$$HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]$$

$$HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]$$

$$HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]$$


```
HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]
```

(but the complex contains a huge amount of information).

For the (graded) minus flavour:

 $HFK^{-}(K) \cong \mathbb{F}[U]_{(-2\tau(K), -\tau(K))} \oplus U$ -torsion part.

```
HFK^{\infty}(K) \cong \mathbb{F}[U, U^{-1}]
```

(but the complex contains a huge amount of information).

For the (graded) minus flavour:

 $HFK^{-}(K) \cong \mathbb{F}[U]_{(-2\tau(K), -\tau(K))} \oplus U$ -torsion part.

τ -invariant

The first invariant one can extract from HFK^- is the τ -invariant:

 $\tau(K) = -\max\{A(x) \mid x \in HFK^-(K) \text{ is not } U\text{-torsion}\}$

Theorem (O-Sz/Rasmussen/Sarkar)

au is a concordance invariant, and induces an homomorphism $au : \mathcal{C} \longrightarrow \mathbb{Z}$. Moreover if $K_0, K_1 \in \mathcal{K}$ are related by a cobordism $\Sigma \subset S^3 \times [0, 1]$:

$$|\tau(K_0) - \tau(K_1)| \le g(\Sigma).$$

In particular $|\tau(K)| \leq g_*(K)$.

- Combinatorial proof of the Milnor conjecture.
- Bennequin inequality: $tb(K) + |rot(K)| \le 2\tau(K) 1$.
- Results above hold in more general contexts.

τ -invariant

The first invariant one can extract from HFK^- is the τ -invariant:

 $\tau(K) = -\max\{A(x) \mid x \in HFK^-(K) \text{ is not } U\text{-torsion}\}$

Theorem (O-Sz/Rasmussen/Sarkar)

au is a concordance invariant, and induces an homomorphism $au : \mathcal{C} \longrightarrow \mathbb{Z}$. Moreover if $K_0, K_1 \in \mathcal{K}$ are related by a cobordism $\Sigma \subset S^3 \times [0, 1]$: $|\tau(K_0) - \tau(K_1)| < q(\Sigma).$

In particular $|\tau(K)| \leq g_*(K)$.

- Combinatorial proof of the Milnor conjecture.
- Bennequin inequality: $tb(K) + |rot(K)| \le 2\tau(K) 1$.
- Results above hold in more general contexts.

τ -invariant

The first invariant one can extract from HFK^- is the τ -invariant:

 $\tau(K) = -\max\{A(x) \mid x \in HFK^{-}(K) \text{ is not } U\text{-torsion}\}$

Theorem (O-Sz/Rasmussen/Sarkar)

au is a concordance invariant, and induces an homomorphism $au : \mathcal{C} \longrightarrow \mathbb{Z}$. Moreover if $K_0, K_1 \in \mathcal{K}$ are related by a cobordism $\Sigma \subset S^3 \times [0, 1]$: $|\tau(K_0) - \tau(K_1)| < q(\Sigma).$

In particular $|\tau(K)| \leq g_*(K)$.

- Combinatorial proof of the Milnor conjecture.
- Bennequin inequality: $tb(K) + |rot(K)| \le 2\tau(K) 1$.
- Results above hold in more general contexts.

More recently, O-Sz-Stipsicz defined a concordance invariant $\Upsilon_K(t) \in PL([0,2])$:

 $|\Upsilon_K(t)| \le t \cdot g_*(K)$

and $\Upsilon : \mathcal{C} \to PL([0,2])$ is an homomorphism.

Idea: collapse the bi-filtration to obtain a family of singly filtered complexes: $t \in [0, 2] \rightsquigarrow \mathcal{F}_t(x) = \frac{t}{2}Alex(x) + (1 - \frac{t}{2})Alg(x)$.

 $\Upsilon_K(t) = -2\min\{s \mid Im(H(C(K, \mathcal{F}_t)_s)) \to H(C(K)) \text{ is surj.}\}.$

 Υ is well suited to prove independence of families in $\mathcal{C}.$

More recently, O-Sz-Stipsicz defined a concordance invariant $\Upsilon_K(t) \in PL([0,2])$:

 $|\Upsilon_K(t)| \le t \cdot g_*(K)$

and $\Upsilon : \mathcal{C} \to PL([0,2])$ is an homomorphism.

Idea: collapse the bi-filtration to obtain a family of singly filtered complexes: $t \in [0, 2] \rightsquigarrow \mathcal{F}_t(x) = \frac{t}{2}Alex(x) + (1 - \frac{t}{2})Alg(x)$.

 $\Upsilon_K(t) = -2\min\{s \mid Im(H(C(K,\mathcal{F}_t)_s)) \to H(C(K)) \text{ is surj.}\}.$

 Υ is well suited to prove independence of families in $\mathcal{C}.$

More recently, O-Sz-Stipsicz defined a concordance invariant $\Upsilon_K(t) \in PL([0,2])$:

 $|\Upsilon_K(t)| \le t \cdot g_*(K)$

and $\Upsilon : \mathcal{C} \to PL([0,2])$ is an homomorphism.

Idea: collapse the bi-filtration to obtain a family of singly filtered complexes: $t \in [0, 2] \rightsquigarrow \mathcal{F}_t(x) = \frac{t}{2}Alex(x) + (1 - \frac{t}{2})Alg(x)$.

 $\Upsilon_K(t) = -2\min\{s \mid Im(H(C(K, \mathcal{F}_t)_s)) \to H(C(K)) \text{ is surj.}\}.$

 Υ is well suited to prove independence of families in $\mathcal{C}.$

If Y is a $\mathbb{Q}HS^3$, then the groups $HF^-(Y, \mathfrak{s})$ admit a \mathbb{Q} -grading, and the correction term $d(Y, \mathfrak{s}) \in \mathbb{Q}$ is the grading of $1 \in \mathbb{F}[U]$. The homology

can be extracted from the complex $CFK^-(K)$ through a mapping cone construction.

The maps involved provide a sequence $\{V_i(K)\}_{i\in\mathbb{Z}}$ such that: $V_i(K) \ge V_{i+1}(K) \ge 0$ and $V_i(K)$ is eventually 0.

$$d(S_p^3(K), i) = d(L(p, 1), i) - 2\max\{V_i, V_{p-i}\}$$

The minimal *i* such that $V_i(K) = 0$ is called $\nu^+(K)$. ν^+ is a concordance invariant, and $\nu^+(K) \leq g_*(K)$ (Hom-Wu). If Y is a $\mathbb{Q}HS^3$, then the groups $HF^-(Y, \mathfrak{s})$ admit a \mathbb{Q} -grading, and the correction term $d(Y, \mathfrak{s}) \in \mathbb{Q}$ is the grading of $1 \in \mathbb{F}[U]$. The homology

$$HF^{-}(S^{3}_{p}(K)) = \bigoplus_{\mathfrak{s} \in Spin^{c}(Y)} HF^{-}(S^{3}_{p}(K), \mathfrak{s})$$

can be extracted from the complex $CFK^-(K)$ through a mapping cone construction.

The maps involved provide a sequence $\{V_i(K)\}_{i\in\mathbb{Z}}$ such that: $V_i(K) \ge V_{i+1}(K) \ge 0$ and $V_i(K)$ is eventually 0.

$$d(S_p^3(K), i) = d(L(p, 1), i) - 2\max\{V_i, V_{p-i}\}$$

The minimal *i* such that $V_i(K) = 0$ is called $\nu^+(K)$. ν^+ is a concordance invariant, and $\nu^+(K) \leq g_*(K)$ (Hom-Wu). If Y is a $\mathbb{Q}HS^3$, then the groups $HF^-(Y, \mathfrak{s})$ admit a \mathbb{Q} -grading, and the correction term $d(Y, \mathfrak{s}) \in \mathbb{Q}$ is the grading of $1 \in \mathbb{F}[U]$. The homology

$$HF^{-}(S^{3}_{p}(K)) = \bigoplus_{\mathfrak{s} \in Spin^{c}(Y)} HF^{-}(S^{3}_{p}(K), \mathfrak{s})$$

can be extracted from the complex $CFK^-(K)$ through a mapping cone construction.

The maps involved provide a sequence $\{V_i(K)\}_{i\in\mathbb{Z}}$ such that: $V_i(K) \ge V_{i+1}(K) \ge 0$ and $V_i(K)$ is eventually 0.

$$d(S_p^3(K), i) = d(L(p, 1), i) - 2\max\{V_i, V_{p-i}\}\$$

The minimal *i* such that $V_i(K) = 0$ is called $\nu^+(K)$. ν^+ is a concordance invariant, and $\nu^+(K) \leq g_*(K)$ (Hom-Wu).

Algebraic knots and ν^+

Consider an irreducible polynomial $F \in \mathbb{C}[x, y]$ with a singularity in the origin. (locally $t \mapsto (t^p, t^{q_1} + ... + t^{q_m})$). Then $K_F = \{F(x, y) = 0\} \cap \partial B_{\varepsilon}$ is an **algebraic knot** in S^3 . Associated to an algebraic knot there is a *semigroup* $\Gamma(K)$. For torus knots (p, q) = 1 and p > q we have

$$\Gamma_{T_{p,q}} = \langle p, q \rangle = \{0, q, 2q, \dots, p, p+q, \dots\},\$$

and $|\mathbb{N} \setminus \Gamma_{T_{p,q}}| = \frac{1}{2}(p-1)(q-1)$. Call $\Gamma_K(\cdot)$ the associated counting function, so $\Gamma_K(n)$ is the *n*-th element in Γ_K .

Algebraic knots and ν^+

Consider an irreducible polynomial $F \in \mathbb{C}[x, y]$ with a singularity in the origin. (locally $t \mapsto (t^p, t^{q_1} + ... + t^{q_m})$). Then $K_F = \{F(x, y) = 0\} \cap \partial B_{\varepsilon}$ is an **algebraic knot** in S^3 . Associated to an algebraic knot there is a *semigroup* $\Gamma(K)$. For torus knots (p, q) = 1 and p > q we have

$$\Gamma_{T_{p,q}} = \langle p, q \rangle = \{0, q, 2q, \dots, p, p+q, \dots\},\$$

and $|\mathbb{N} \setminus \Gamma_{T_{p,q}}| = \frac{1}{2}(p-1)(q-1)$. Call $\Gamma_K(\cdot)$ the associated counting function, so $\Gamma_K(n)$ is the *n*-th element in Γ_K .

Theorem (Bodnár-C.-Golla)

If K and L are algebraic knots with enumerating functions $\Gamma_K(\cdot)$ and $\Gamma_L(\cdot)$ respectively, then:

$$\nu^{+}(K \# \overline{L}) = \max \left\{ g(K) - g(L) + \max_{n \ge 0} \{ \Gamma_{L}(n) - \Gamma_{K}(n) \}, 0 \right\}.$$

Remark

The same result holds for *L*-space knots (with a suitable definition of the "semigroup" Γ_K).

Idea of the proof: both knots are *L*-space knots, hence their HFK^{∞} has a rather simple form (staircase complex). Use the **reduced knot Floer complex** of Krcatovich to compute the V_i s.

Theorem (Bodnár-C.-Golla)

If K and L are algebraic knots with enumerating functions $\Gamma_K(\cdot)$ and $\Gamma_L(\cdot)$ respectively, then:

$$\nu^{+}(K \# \overline{L}) = \max \left\{ g(K) - g(L) + \max_{n \ge 0} \{ \Gamma_{L}(n) - \Gamma_{K}(n) \}, 0 \right\}.$$

Remark

The same result holds for *L*-space knots (with a suitable definition of the "semigroup" Γ_K).

Idea of the proof: both knots are *L*-space knots, hence their HFK^{∞} has a rather simple form (staircase complex). Use the **reduced knot Floer complex** of Krcatovich to compute the V_i s.

<u>Theorem</u> (Bodnár-C.-Golla)

• If K_+ is obtained from K_- by changing a negative crossing into a positive one, then:

$$\nu^+(K_-) \le \nu^+(K_+) \le \nu^+(K_-) + 1.$$

• The unknotting number, concordance unknotting number, and slicing number of K are bounded from below by

$$\nu^+(K) + \nu^+(\overline{K}).$$

• The invariant is sub-additive:

 $\nu^+(K_0 \# K_1) \le \nu^+(K_0) + \nu^+(K_1)$

<u>Theorem</u> (Bodnár-C.-Golla)

• If K_+ is obtained from K_- by changing a negative crossing into a positive one, then:

$$\nu^+(K_-) \le \nu^+(K_+) \le \nu^+(K_-) + 1.$$

• The unknotting number, concordance unknotting number, and slicing number of K are bounded from below by

$$\nu^+(K) + \nu^+(\overline{K}).$$

• The invariant is sub-additive:

 $\nu^+(K_0 \# K_1) \le \nu^+(K_0) + \nu^+(K_1)$

<u>Theorem</u> (Bodnár-C.-Golla)

• If K_+ is obtained from K_- by changing a negative crossing into a positive one, then:

$$\nu^+(K_-) \le \nu^+(K_+) \le \nu^+(K_-) + 1.$$

• The unknotting number, concordance unknotting number, and slicing number of K are bounded from below by

$$\nu^+(K) + \nu^+(\overline{K}).$$

The invariant is sub-additive:

$$\nu^+(K_0 \# K_1) \le \nu^+(K_0) + \nu^+(K_1)$$

Since $\nu^+(K) \leq g_*(K)$, the quantities $\nu^+(K \# \overline{L})$ and $\nu^+(L \# \overline{K})$ provide (often different) lower bounds for the genus of cobordisms between K and L.

It is possible to construct infinite families where the bounds on cobordisms provided by ν^+ is sharp, while the ones given by τ, Υ, s and Tristram-Levine signatures are arbitrarily "bad":

Since $\nu^+(K) \leq g_*(K)$, the quantities $\nu^+(K \# \overline{L})$ and $\nu^+(L \# \overline{K})$ provide (often different) lower bounds for the genus of cobordisms between K and L.

It is possible to construct infinite families where the bounds on cobordisms provided by ν^+ is sharp, while the ones given by τ,Υ,s and Tristram-Levine signatures are arbitrarily "bad":

Since $\nu^+(K) \leq g_*(K)$, the quantities $\nu^+(K \# \overline{L})$ and $\nu^+(L \# \overline{K})$ provide (often different) lower bounds for the genus of cobordisms between K and L.

It is possible to construct infinite families where the bounds on cobordisms provided by ν^+ is sharp, while the ones given by τ,Υ,s and Tristram-Levine signatures are arbitrarily "bad":

Since $\nu^+(K) \leq g_*(K)$, the quantities $\nu^+(K \# \overline{L})$ and $\nu^+(L \# \overline{K})$ provide (often different) lower bounds for the genus of cobordisms between K and L.

It is possible to construct infinite families where the bounds on cobordisms provided by ν^+ is sharp, while the ones given by τ, Υ, s and Tristram-Levine signatures are arbitrarily "bad":

Since $\nu^+(K) \leq g_*(K)$, the quantities $\nu^+(K \# \overline{L})$ and $\nu^+(L \# \overline{K})$ provide (often different) lower bounds for the genus of cobordisms between K and L.

It is possible to construct infinite families where the bounds on cobordisms provided by ν^+ is sharp, while the ones given by τ, Υ, s and Tristram-Levine signatures are arbitrarily "bad":

Now consider a = b = 12, and (p, a) = 1: it is possible to connect by a genus 4 cobordism $K_{(12,p)}$ with $T_{2p+4,3p}$, and $K'_{(12,p)}$ to $T_{2p,3p+6}$ with a genus 3 cobordism.

A computation yields:

$$\nu^+(T_{2p+4,3p}\#\overline{T}_{2p,3p+6}) = \nu^+(T_{2p,3p+6}\#\overline{T}_{2p+4,3p}) = 7,$$

so the cobordism has minimal genus (and $d(T_{2p+4,3p},T_{2p,3p+6})=14$). However the bounds given by Υ , s, τ and Tristram-Levine signatures are at most 5.

Now consider a = b = 12, and (p, a) = 1: it is possible to connect by a genus 4 cobordism $K_{(12,p)}$ with $T_{2p+4,3p}$, and $K'_{(12,p)}$ to $T_{2p,3p+6}$ with a genus 3 cobordism.

A computation yields:

$$\nu^+(T_{2p+4,3p}\#\overline{T}_{2p,3p+6}) = \nu^+(T_{2p,3p+6}\#\overline{T}_{2p+4,3p}) = 7,$$

so the cobordism has minimal genus (and $d(T_{2p+4,3p},T_{2p,3p+6})=14$). However the bounds given by Υ , s, τ and Tristram-Levine signatures are at most 5.

