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A knot is a smooth embedding of S1 in S3, considered up to
ambient isotopy.

The goal of knot theory is to distinguish non-equivalent knots; this
can be done by computing some invariants.

Invariant : “Knots” −→ “something algebraic”

such that if two knots have different images, then they are distinct.
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Some of the most versatile knot invariants take the form of
polynomials. The two main examples are:

• The Alexander-Conway polynomial: ∆K(t) ∈ Z[t±
1
2 ]

• Discovered by J.W. Alexander in 1923 (and reinterpreted by J.
Conway in 1967).

• Tightly connected to the topology of knot complement and
branched covers.

• The Jones polynomial: VK(t) ∈ Z[t±
1
2 ]

• Discovered by V.Jones (Fields medalist 1990).
• Arises as a trace of representations of the braid group, related

to QFTs (Witten), quantum invariants and statistical
mechanics.
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Skein relations

Both these knot polynomials admit a simple recursive definition, in
terms of skein relations. These are equations relating the
invariants of knot diagrams differing only locally.

Normalization on the trivial knot V©(t) = ∆©(t) = 1

t−1VL+(t)− tVL−(t) =
(
t
1
2 − t−

1
2

)
VL0(t)

∆L+(t)−∆L−(t) =
(
t
1
2 − t−

1
2

)
∆L0(t)

The two polynomials have different properties, but can be defined
as specializations of a 2-variable polynomial.
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Categorification
Term coined by L.Crane in the ’90s; informally it means to replace
problems in set theory with analogues dealing with categories
instead.

Examples:

• (N,+, ·) (V ect,⊕,⊗) The dimension function provides the
decategorification of the category of vector spaces.

• Betti numbers, Euler characteristic  Homology

Categorifications of polynomials

Given a finite bi-graded vector space V =
⊕
i,j∈Z

Vi,j , define its

graded Euler characteristic as:

χt(V ) =
∑
i,j∈Z

(−1)idim(Vi,j) · tj
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Khovanov homology

M. Khovanov (1999), introduced what is now known as Khovanov
homology; it assigns to a knot K ⊂ S3 a bi-graded complex
(CKh∗,∗(K), ∂), such that the homology

Kh∗,∗(K) = H∗(CKh
∗,∗(K), ∂)

is a knot invariant.

Its Euler characteristic coincides with the Jones
polynomial:

χt(Kh
∗,∗(K)) = VK(t)

It can be defined in a purely combinatorial setting (Bar Natan) or
from a Gauge theoretic perspective (Witten), and has been used
e.g. to give a combinatorial proof of the Milnor conjecture
(Kronheimer-Mrowka/Rasmussen).



Khovanov homology

M. Khovanov (1999), introduced what is now known as Khovanov
homology; it assigns to a knot K ⊂ S3 a bi-graded complex
(CKh∗,∗(K), ∂), such that the homology

Kh∗,∗(K) = H∗(CKh
∗,∗(K), ∂)

is a knot invariant. Its Euler characteristic coincides with the Jones
polynomial:

χt(Kh
∗,∗(K)) = VK(t)

It can be defined in a purely combinatorial setting (Bar Natan) or
from a Gauge theoretic perspective (Witten), and has been used
e.g. to give a combinatorial proof of the Milnor conjecture
(Kronheimer-Mrowka/Rasmussen).



Knot Floer homology

In 2001 Ozsváth and Szabó produce an extremely powerful
functorial gauge-theoretic 3-manifold invariant, the
Heegaard-Floer homology.

To a closed 3-manifold Y they associate a collection of graded
groups HF ◦(Y ).
Shortly after, Ozsváth-Szabó/Rasmussen discover that a knot
K ⊂ Y induces a filtration of the complexes computing HF ◦(Y ).
From this filtration one can extract a bi-graded homology theory
for knots, the knot Floer homology HFK◦(Y,K).
These homology groups provide a categorification of the
Alexander-Conway polynomial:

χt(HFK
∗,∗(K)) = ∆K(t)
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A spectral sequence?

Despite the many formal similarities of these two knot polynomials
and their categorified counterparts, there is still no clear
connection between Kh(K) and HFK(K).

Many authors have found spectral sequences of the form:

CKh(K) =⇒ I(K)

where I is a (usually Floer-theoretic) homology invariant of knots.
These sort of spectral sequences are collectively known as
Khovanov-Floer theories.

Conjecture (Rasmussen)

There exists a spectral sequence:

CKh(K) =⇒ ĤFK(K)
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