
Abstract

References Acknowledgements

MODELLING THE UNKNOTTING FUNCTION OF TOPOISOMERASES 
AND KNOT ADJACENCY

A. Barbensi¹, D. Celoria¹, H. A. Harrington¹, D. Buck²
fffff¹University of Oxford, ²University of Bath  

The action of type II topoisomerases on covalently closed DNA molecules can change their topology, resulting in a range 
of different knot types [1]. Here we model the configuration space of a knotted DNA molecule as a graph. The vertices are 
planar projections (i.e. shadows) of the molecule, which can be thought as a closed polymer in space, and these are 
connected by edges representing inter-segmental passages. This diagram focused approach is applied to investigate knot 
adjacency and the unknotting function of topo II. We complement and synthesise earlier works [2] [3] by looking at 
neighbouring subspaces in the graph of the configurations, modeled as a network of grid diagrams with increasing 
complexity. We suggest a grid-based calculation as a new and computationally convenient method for investigating 
unbiased knotting probability of biopolymers. Furthermore, in this setting we are able to emulate previous simulations [4],
[5] in the lattice model to investigate the role of local juxtaposition geometry [6] for Topoisomerases action. 

Results and Discussion

Our Model
Double stranded, covalently closed DNA molecules are often 
modeled as twisted ribbons [1]. In this setting, the core of the 
ribbon (i.e. the central axes of the double helix) is a closed 
curve in space, that is, a mathematical knot. Projections of a 
closed curve on a plane in which the only intersections allowed 
involve two arcs are called knot diagrams [7].
 
 
 
 
 
Such intersections, together with the information of which arc 
is the over-passing one,are called crossings. A single action of 
   type II topoisomerases corresponds to changing a 
crossing in the diagram (that is, exchanging the over and 
under passing arcs).

Grid Diagrams

The configuration space of a closed DNA molecule 
undergoing the action of type II Topoisomerases can be 
modeled as a network in which the vertices are the 
projections of the configurations, connected through 
edges representing crossing changes.

A diagram can be created from a grid as follows: 
connect any two markings on the same line and 
column, so thath each vertical strand is an over-pass.

Crossing changes are achieved on grids by a process called 
interleaving commutation: it swaps the positions of two 
adjacent and interleaved rows or columns.  

By imposing that the crossing changes happen only at specific local configurations resembling the hooked geometries 
[6], we can test the Buck and Zechiedrich hooked-juxtaposition hypothesis [9]: topo II achieves disentaglement by 
performing strand passages only at hooked juxtapositions. Each grid diagram (and the crossing changes applicable  to 
it) can be described by a pair of permutations on n = GN elements, defining the placement of the markings. This 
allows for a easily computable theory, in which theoretically it is feasible to work with grids of arbitrary dimensions.
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Total data for unbiased strand passages, with  GN in the range 
[8,20].

Total data for strand passages happening only at hooked
juxtapositions with  GN in the range [8,20].

Each plot on the left summarises the data on random unbiased random strand passages between configurations with a specific GN. Grid numbers are considered in the range [8,20]. The three external 
segments above each knot type represent (from the innermost) the percentages of outgoing and incoming exchanges between the knot and its neighbours, following the colour code. The external segments 
represent the sum of the previous two. The internal segments' sizes encode the occurence values of each knot type, and ribbons (whose sizes depend on the values of the transition probabilities) are 
coloured according to the starting knot types. In the lower GN, we observe a prevalance of configurations representing the trivial knot, decreasing as the GN increases. This agrees with the notion that, for 
closed polymers, the probability that a polymer is unknotted decreases as the length of the polymer increases [11] [12]. Indeed, diagrams with GN = g may be tought as closed polymers of length ~2g [13]. 
The total data is then summarised in a single plot, and compared with with the circos plot representing the transition probabilities  of crossing changes happening at hooked juxtapositions. 

Previous simulations [4], [5] show that strand passages happening at specific hooked geometries present an unknotting preference consistent with experimental data [15]. Besides providing further evidence confirming the hooked-
juxtaposition hypothesis [9] using a different knot representation, our data provides a map of the intensities of exchanges between configurations representing a closed DNA molecule, undergoing the action of a hypothetical 
unbiased topo II. We obtain a picture for one-passage connectivity between knots with up to 6 crossings, that can be compared with previous simulations. For instance, we observe a clear difference with results in [3] in the stationary 
probabilities of each knot type (ours being sensibly lower, with the exception of the 61 knot), in the relevant range of GN. Despite these discrepancies, we observe a good agreement in the unknotting probabilities for knots represented 
by grid diagrams with GN between 12-16. Although these discrepancies may be explained  with the significant differences between the models, another reason might be in the different methods of sampling used. While uniformity of 
sampling is built in in our model, in [3] the equilateral polymers are obtained by applying random moves on the  ideal configurations [14] of each knot type, possibly creating non-negligible biases.

The right-most circos plot shows a clear increment in the unknotting 
probability (i.e. the the probability with which a specific knot type gets 
converted into the trivial  knot) of each knot type; futhermore, in the case of the 
knot type 51  (It is known that it cannot be transformed into the trivial knot by a 
single crossing change), we note an   increased transition probability 
towards knots with higher unknotting probabilities. Unknotting probabilities 
are plotted on the right, as a function of GN. Since the occurence probabilities of 
six-crossing knots is significantly lower than for the other knot types, the 
diagrams on the right are affected by statistical noise. To remedy this, we ran a 
random sampling restricted the each knot type. Results (N = 1000 for each knot 
type) are shown in the bar diagram. Note that the stationary probability (i.e. 
the the probability with which a specific knot type remains the same after a 
strand passage) of the 61 knot (see the bar diagram) is remarkably high with 
respect to the other six-crossings knots. This is in disagrement with a conjecture 
from [3], claiming that the probability of remaining in the same knot type after a 
single random intersegmental passage decreases with the L/D ratio of the 
corresponding ideal knots [14].
 
 

Methods
We begin our analysis by enumerating all grid diagrams with grid number GN < 8, and we detect their corresponding knot types using a combination of knot invariants (knot polynomials, determinant, signature). We then 
keep track of every possible crossing change from each configuration. The number of configurations grows super-factorially with GN, and an exhaustive computation for higher values of GN becomes quickly unfeasible; the 
investigation on diagrams with higher grid number is then performed through random sampling. Since a grid diagram is completely determined by a pair of permutations defining the positions of the markings, uniformity 
of sampling is automatically built in our model. We restrict our analisys to knots with minimal crossing number up to 6. For every GN  the obtained data is visualised using circos plots [10], in whch different knot 
types (labeled following Alexander-Briggs' notation) are identified using a colour code, shown on the right. These results provide a control group that we can subsequently compare with the data obtained by counting only 
the crossing changes happening exclusevely at local configurations that resemble the  hooked geometries [6]. 
 

Grid diagrams are a special kind of knot diagrams, first introduced in [8]; they are composed by a square planar grid of 
dimension n, where n is called the grid number GN, in which 2n markings are placed.  Each line/column must contain 
exactly two markings.
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