Grid Homology in Lens spaces

Daniele Celoria

Universitá di Firenze

February 16, 2015

Daniele Celoria Grid Homology in Lens spaces

Knot Floer Homology $HFK^{\circ}(Y^3, L)$

Heegaard Floer Homology: homology theory for 3-manifolds developed around 2001 by Peter Ozsváth and Zoltán Szabó as a variant of Lagrangian Floer theory.

In 2003 (O-S + J. Rasmussen) discover that links induce filtrations on $HFK^{\circ}(Y^3) \rightsquigarrow$ Knot Floer Homology $HFK^{\circ}(Y^3, L)$

Knot Floer homology $GH^{\circ}(G)$:

The original definition is hard! We are instead going to define a purely combinatorial version, known as Grid Homology.

Knot Floer Homology $HFK^{\circ}(Y^3, L)$

Heegaard Floer Homology: homology theory for 3-manifolds developed around 2001 by Peter Ozsváth and Zoltán Szabó as a variant of Lagrangian Floer theory.

In 2003 (O-S + J. Rasmussen) discover that links induce filtrations on $HFK^{\circ}(Y^3) \rightsquigarrow \text{Knot Floer Homology } HFK^{\circ}(Y^3, L)$

Knot Floer homology $GH^{\circ}(G)$:

The original definition is hard! We are instead going to define a purely combinatorial version, known as Grid Homology.

Knot Floer Homology $HFK^{\circ}(Y^3, L)$

Heegaard Floer Homology: homology theory for 3-manifolds developed around 2001 by Peter Ozsváth and Zoltán Szabó as a variant of Lagrangian Floer theory.

In 2003 (O-S + J. Rasmussen) discover that links induce filtrations on $HFK^{\circ}(Y^3) \rightsquigarrow \text{Knot Floer Homology } HFK^{\circ}(Y^3, L)$

Knot Floer homology $GH^{\circ}(G)$:

The original definition is hard! We are instead going to define a purely combinatorial version, known as Grid Homology.

Grid Homology: developed by Ozsváth-Szabó-Stipsicz (+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for $K\subset S^3$

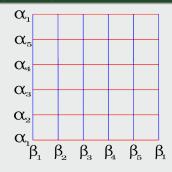
(toroidal) Grid diagrams:

- $n \times n$ grid in \mathbb{R}^2
- curves $\underline{\alpha} = \{\alpha_i\} \ \underline{\beta} = \{\beta_i\}$
- $X = \{X_i\} \cup \{0\}$ $i = 1, \dots, n$ markings (no two on same row/col)
- top-bottom and left-right identifications (multipointed genus 1 H.D. for S³)

(日) (日) (日)

Grid Homology: developed by Ozsváth-Szabó-Stipsicz (+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for $K\subset S^3$

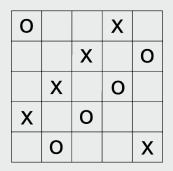
(toroidal) Grid diagrams:



- $n \times n$ grid in \mathbb{R}^2
- curves $\underline{\alpha} = \{\alpha_i\} \ \underline{\beta} = \{\beta_i\}$
- $\mathbb{X} = {\mathbb{X}_i} \mathbb{O} = {\mathbb{O}_i}$ $i = 1, \dots, n \text{ markings (no two on same row/col)}$
- top-bottom and left-right identifications (multipointed genus 1 H.D. for S^3)

Grid Homology: developed by Ozsváth-Szabó-Stipsicz (+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for $K\subset S^3$

(toroidal) Grid diagrams:

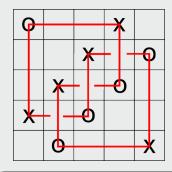


- $n \times n$ grid in \mathbb{R}^2
- curves $\underline{\alpha} = \{\alpha_i\} \ \underline{\beta} = \{\beta_i\}$
- $\mathbb{X} = {\mathbb{X}_i} \mathbb{O} = {\mathbb{O}_i}$ $i = 1, \dots, n \text{ markings (no two on same row/col)}$
- top-bottom and left-right identifications (multipointed genus 1 H.D. for S^3)

- E - - E

Grid Homology: developed by Ozsváth-Szabó-Stipsicz (+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for $K \subset S^3$

(toroidal) Grid diagrams:



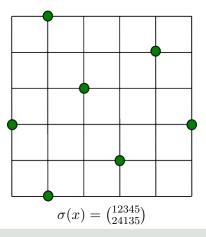
- $n \times n$ grid in \mathbb{R}^2
- curves $\underline{\alpha} = \{\alpha_i\} \ \underline{\beta} = \{\beta_i\}$
- $\mathbb{X} = \{\mathbb{X}_i\} \mathbb{O} = \{\mathbb{O}_i\}$ $i = 1, \dots, n \text{ markings (no two on same row/col)}$
- top-bottom and left-right identifications (multipointed genus 1 H.D. for S^3)

Every oriented link in S^3 can be encoded in this way

Reidemeister Moves \rightsquigarrow Cromwell Moves

Take a grid diagram G for the knot $K \subset S^3$

$$S(G) = \left\{ \text{bijections } \underline{\alpha} \ \leftrightarrow \ \underline{\beta} \right\} \cong \mathfrak{S}_n$$



Bigrading

Take a grid diagram G for the knot $K \subset S^3$

$$S(G) = \left\{ \text{bijections } \underline{\alpha} \ \leftrightarrow \ \underline{\beta} \right\} \cong \mathfrak{S}_n$$

Bigrading

the generating set S(G) can be bigraded:

- Maslov degree $M: S(G) \longrightarrow \mathbb{Z}$ (homological)
- Alexander degree $A: S(G) \longrightarrow \mathbb{Z}$ (filtration)

A, B sets of finite points in \mathbb{R}^2 : $I(A, B) = \{((a_1, a_2), (b_1, b_2)) \subset A \times B \mid a_1 < b_1 \text{ and } a_2 < b_2\}$

$$M(x) = M_{\mathbb{O}}(x) = I(x, x) - I(x, \mathbb{O}) - I(\mathbb{O}, x) + I(\mathbb{O}, \mathbb{O}) + 1$$

$$A(x) = \frac{1}{2} \left(M_{\mathbb{Q}}(x) - M_{\mathbb{X}}(x) \right) + \frac{1-n}{2}$$

Take a grid diagram G for the knot $K \subset S^3$

$$S(G) = \left\{ \text{bijections } \underline{\alpha} \ \leftrightarrow \ \underline{\beta} \right\} \cong \mathfrak{S}_n$$

Bigrading

the generating set S(G) can be bigraded:

- Maslov degree $M: S(G) \longrightarrow \mathbb{Z}$ (homological)
- Alexander degree $A: S(G) \longrightarrow \mathbb{Z}$ (filtration)

A, B sets of finite points in \mathbb{R}^2 : $I(A, B) = \{((a_1, a_2), (b_1, b_2)) \subset A \times B \mid a_1 < b_1 \text{ and } a_2 < b_2\}$

$$M(x) = M_{\mathbb{O}}(x) = I(x, x) - I(x, \mathbb{O}) - I(\mathbb{O}, x) + I(\mathbb{O}, \mathbb{O}) + 1$$

$$A(x) = \frac{1}{2} \left(M_{\mathbb{Q}}(x) - M_{\mathbb{X}}(x) \right) + \frac{1-n}{2}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Take a grid diagram G for the knot $K \subset S^3$

$$S(G) = \left\{ \text{bijections } \underline{\alpha} \ \leftrightarrow \ \underline{\beta} \right\} \cong \mathfrak{S}_n$$

Bigrading

the generating set S(G) can be bigraded:

- Maslov degree $M: S(G) \longrightarrow \mathbb{Z}$ (homological)
- Alexander degree $A: S(G) \longrightarrow \mathbb{Z}$ (filtration)

 $\begin{array}{l} A,B \text{ sets of finite points in } \mathbb{R}^2 \\ I(A,B) = \{((a_1,a_2),(b_1,b_2)) \subset A \times B \mid a_1 < b_1 \text{ and } a_2 < b_2\} \end{array}$

$$M(x) = M_{\mathbb{O}}(x) = I(x, x) - I(x, \mathbb{O}) - I(\mathbb{O}, x) + I(\mathbb{O}, \mathbb{O}) + 1$$

$$A(x) = \frac{1}{2} \left(M_{\mathbb{O}}(x) - M_{\mathbb{X}}(x) \right) + \frac{1-n}{2}$$

We need to extend the degrees to this coefficient ring:

- M(Ux) = M(x) 2
- A(Ux) = A(x) -1

$$GC^{-}(G) = \bigoplus_{m,a \in \mathbb{Z}} GC_m^{-}(G,a)$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

We need to extend the degrees to this coefficient ring:

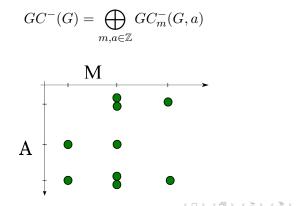
- M(Ux) = M(x) 2
- A(Ux) = A(x) -1

$$GC^{-}(G) = \bigoplus_{m,a \in \mathbb{Z}} GC_m^{-}(G,a)$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

We need to extend the degrees to this coefficient ring:

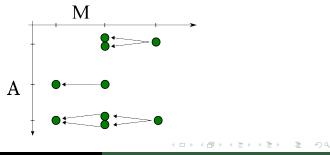
•
$$A(Ux) = A(x) - 1$$

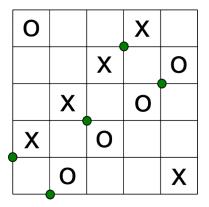


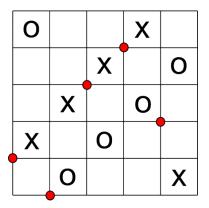
We need to extend the degrees to this coefficient ring:

•
$$A(Ux) = A(x) - 1$$

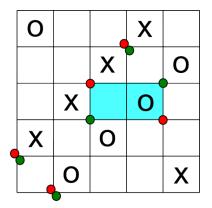
$$GC^{-}(G) = \bigoplus_{m,a \in \mathbb{Z}} GC_m^{-}(G,a)$$



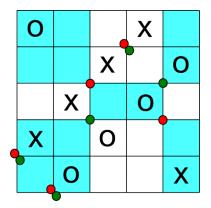




the differential ∂^{-1}



the differential ∂^-



the differential ∂^-

If two elements $x, y \in S(G)$ differ by a transposition, they can be connected by an oriented rectangle on the grid:

$$\partial^{-}(x) = \sum_{\substack{y \in S(G) \\ r \cap \mathbb{X} = \emptyset}} \sum_{\substack{r \in Rect^{\circ}(x,y) \\ r \cap \mathbb{X} = \emptyset}} \left(\prod_{i=1}^{n} U_{i}^{O_{i}(r)} \right) y$$

Rect[°](x, y) are the empty rectangles conneting x to y,
 i.e. r̂ ∩ x = r̂ ∩ y = ∅

•
$$O_i(r) = \# \{ \mathbb{O}_i \cap r \}$$

•
$$(\partial^{-})^2 = 0$$

•
$$A(\partial^-(x)) = A(x)$$

•
$$M(\partial^-(x)) = M(x) - 1$$

Theorem (Ozváth - Rasmussen - Szabó - Stipsicz...)

$$H_*(GC^-(G),\partial^-) = GH^-(G;\mathbb{F}_2) \cong HFK^-(K;\mathbb{F}_2)$$

is an invariant of K, which categorifies the Alexander polynomial:

$$\chi_t(GH^-(G)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(GH_m^-(G,a))t^a = \Delta_K(t)$$

•
$$(\partial^{-})^2 = 0$$

•
$$A(\partial^-(x)) = A(x)$$

•
$$M(\partial^-(x)) = M(x) - 1$$

Theorem (Ozváth - Rasmussen - Szabó - Stipsicz...)

$$H_*(GC^-(G),\partial^-) = GH^-(G;\mathbb{F}_2) \cong HFK^-(K;\mathbb{F}_2)$$

is an invariant of K, which categorifies the Alexander polynomial:

$$\chi_t(GH^-(G)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(GH_m^-(G,a))t^a = \Delta_K(t)$$

•
$$(\partial^{-})^{2} = 0$$

•
$$A(\partial^-(x)) = A(x)$$

•
$$M(\partial^-(x)) = M(x) - 1$$

Theorem (Ozváth - Rasmussen - Szabó - Stipsicz...)

$$H_*(GC^-(G),\partial^-) = GH^-(G;\mathbb{F}_2) \cong HFK^-(K;\mathbb{F}_2)$$

is an invariant of K, which categorifies the Alexander polynomial:

$$\chi_t(GH^-(G)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(GH_m^-(G,a))t^a = \triangle_K(t)$$

•
$$(\partial^{-})^{2} = 0$$

•
$$A(\partial^-(x)) = A(x)$$

•
$$M(\partial^-(x)) = M(x) - 1$$

Theorem (Ozváth - Rasmussen - Szabó - Stipsicz...)

$$H_*(GC^-(G),\partial^-) = GH^-(G;\mathbb{F}_2) \cong HFK^-(K;\mathbb{F}_2)$$

is an invariant of K, which categorifies the Alexander polynomial:

$$\chi_t(GH^-(G)) = \sum_{a,m \in \mathbb{Z}} (-1)^m rk(GH_m^-(G,a))t^a = \Delta_K(t)$$

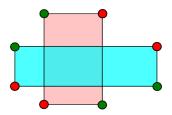
() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

$$(\partial^{-})^{2}(x) = \sum_{\substack{z \in S(G) \ \psi_{j} \in \underline{Poly}^{\circ}(x,z) \\ \psi_{j} \cap \mathbb{X} = \emptyset}} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$$

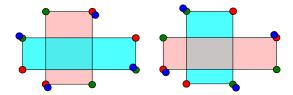
This differential is only well defined over \mathbb{F}_2 !

Daniele Celoria Grid Homology in Lens spaces

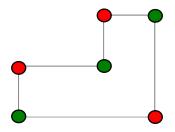
 $(\partial^{-})^{2}(x) = \sum_{z \in S(G)} \sum_{\psi_{j} \in Poly^{\circ}(x,z)} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$ $\psi_i \cap \mathbb{X} = \emptyset$



$$(\partial^{-})^{2}(x) = \sum_{z \in S(G)} \sum_{\substack{\psi_{j} \in Poly^{\circ}(x,z) \\ \psi_{j} \cap \mathbb{X} = \emptyset}} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$$



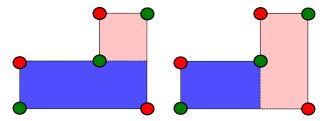
$$(\partial^{-})^{2}(x) = \sum_{z \in S(G)} \sum_{\substack{\psi_{j} \in \operatorname{Poly}^{\circ}(x,z) \\ \psi_{j} \cap \mathbb{X} = \emptyset}} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$$



This differential is only well defined over \mathbb{F}_2 !

Daniele Celoria Grid Homology in Lens spaces

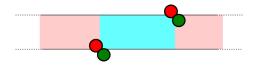
$$(\partial^{-})^{2}(x) = \sum_{z \in S(G)} \sum_{\substack{\psi_{j} \in Poly^{\circ}(x,z) \\ \psi_{j} \cap \mathbb{X} = \emptyset}} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$$



This differential is only well defined over $\mathbb{F}_2!$

Daniele Celoria Grid Homology in Lens spaces

$$(\partial^{-})^{2}(x) = \sum_{z \in S(G)} \sum_{\substack{\psi_{j} \in \operatorname{Poly}^{\circ}(x,z) \\ \psi_{j} \cap \mathbb{X} = \emptyset}} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$$



This differential is only well defined over \mathbb{F}_2 !

Daniele Celoria Grid Homology in Lens spaces

→ ∃ > < ∃ >

17 ▶

$$(\partial^{-})^{2}(x) = \sum_{\substack{z \in S(G) \ \psi_{j} \in \underline{Poly}^{\circ}(x,z) \\ \psi_{j} \cap \mathbb{X} = \emptyset}} \left(\sum_{j} N(\psi_{j}) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(\psi_{j})} \right) \right) z$$

This differential is only well defined over $\mathbb{F}_2!$

Daniele Celoria Grid Homology in Lens spaces

3

 $\equiv >$

< ∃ >

Extension of GH^- to Lens spaces:

Kenneth J. Baker

J. Elisenda Grigsby

Matt Hedden

"Grid Diagrams for Lens Spaces and Combinatorial Knot Floer Homology"(2007)

(p,q) coprime integers, define $L(p,q) = S^3_{-\frac{p}{q}}(\bigcirc)$

$$H_1(L(p,q);\mathbb{Z}) = \mathbb{Z}_{p\mathbb{Z}} \leftrightarrow Spin^c(L(p,q))$$

Only spaces that admit a genus 1 Heegaard decomposition. We can develop the same approach used with toroidal grids in S^3

Extension of GH^- to Lens spaces:

Kenneth J. Baker

J. Elisenda Grigsby

Matt Hedden

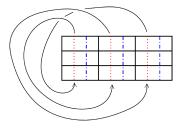
"Grid Diagrams for Lens Spaces and Combinatorial Knot Floer Homology"(2007)

(p,q) coprime integers, define $L(p,q)=S^3_{-\frac{p}{q}}(\bigcirc)$

$$H_1(L(p,q);\mathbb{Z}) = \mathbb{Z}_{\mathbb{Z}} \leftrightarrow Spin^c(L(p,q))$$

Only spaces that admit a genus 1 Heegaard decomposition. We can develop the same approach used with toroidal grids in S^3 !

A toroidal twisted grid diagram for a link $L \subset L(p,q)$:



 $n\times np$ grid, with $n\mathbb{X}$ and $n\mathbb{O}$ markings (no two on the same row/column). As before

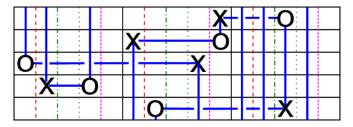
 $S(G) = \left\{ \mathsf{bijections} \ \mathsf{between} \ \ \underline{\alpha} \leftrightarrow \underline{\beta} \right\}$

But this time $|\alpha_i \cap \beta_j| = p \ \forall i, j = 1, \dots, n$, so

$$S(G) \cong \mathfrak{S}_n \times \left(\mathbb{Z}_p\mathbb{Z}\right)^n$$

$$S(G) \ni x = (\sigma_x, [a_1, \dots, a_n])$$

A toroidal twisted grid diagram for a link $L \subset L(p,q)$:



 $n\times np$ grid, with $n\mathbb{X}$ and $n\mathbb{O}$ markings (no two on the same row/column). As before

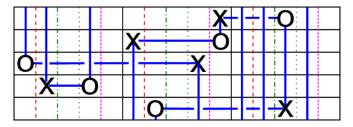
 $S(G) = \left\{ \text{bijections between } \underline{\alpha} \leftrightarrow \underline{\beta} \right\}$

But this time $|\alpha_i \cap \beta_j| = p \ \forall i, j = 1, \dots, n$, so

$$S(G) \cong \mathfrak{S}_n \times \left(\mathbb{Z}_p\mathbb{Z}\right)^n$$

$$S(G) \ni x = (\sigma_x, [a_1, \dots, a_n])$$

A toroidal twisted grid diagram for a link $L \subset L(p,q)$:



 $n\times np$ grid, with $n\mathbb{X}$ and $n\mathbb{O}$ markings (no two on the same row/column). As before

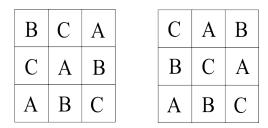
$$S(G) = \left\{ \text{bijections between } \underline{\alpha} \leftrightarrow \underline{\beta} \right\}$$

But this time $|\alpha_i\cap\beta_j|=p ~~\forall i,j=1,\ldots,n$, so

$$S(G) \cong \mathfrak{S}_n \times \left(\mathbb{Z}_p \mathbb{Z} \right)^n$$

$$S(G) \ni x = (\sigma_x, [a_1, \dots, a_n])$$

We lift markings and generators to S^3 to define the gradings.



Lifts for L(3,1) and L(3,2)

and obtain analogous formulas:

$$M(x) = \frac{1}{p} \left[I(\tilde{x}, \tilde{x}) - I(\tilde{x}, \tilde{\mathbb{O}}) - I(\tilde{\mathbb{O}}, \tilde{x}) + I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) + 1 \right] + d(p, q, q - 1) + \frac{p - 1}{p}$$
$$A(x) = \frac{1}{2p} \left[I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) + I(\tilde{x}, \tilde{\mathbb{X}}) + I(\tilde{\mathbb{X}}, \tilde{x}) - I(\tilde{\mathbb{X}}, \tilde{\mathbb{X}}) - I(\tilde{x}, \tilde{\mathbb{O}}) - I(\tilde{\mathbb{O}}, \tilde{x}) \right] + \frac{1 - n}{2}$$

We lift markings and generators to S^3 to define the gradings. and obtain analogous formulas:

$$M(x) = \frac{1}{p} \left[I(\tilde{x}, \tilde{x}) - I(\tilde{x}, \tilde{\mathbb{O}}) - I(\tilde{\mathbb{O}}, \tilde{x}) + I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) + 1 \right] + d(p, q, q - 1) + \frac{p - 1}{p}$$
$$A(x) = \frac{1}{2p} \left[I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) + I(\tilde{x}, \tilde{\mathbb{X}}) + I(\tilde{\mathbb{X}}, \tilde{x}) - I(\tilde{\mathbb{X}}, \tilde{\mathbb{X}}) - I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) - I(\tilde{\mathbb{O}}, \tilde{x}) \right] + \frac{1 - n}{2}$$

Spin^c grading:

$$S: S(G) \cong \mathfrak{S}_n \times \left(\mathbb{Z}_{p\mathbb{Z}}\right)^n \longrightarrow \mathbb{Z}_{p\mathbb{Z}}$$

$$S(x) = q - 1 + \sum_{i=1}^{n} \left(a_i^{\mathbb{O}} - a_i \right) \pmod{p}$$

Daniele Celoria Grid Homology in Lens spaces

< 17 ▶

< ∃ >

문 논 문

We lift markings and generators to S^3 to define the gradings. and obtain analogous formulas:

$$M(x) = \frac{1}{p} \left[I(\tilde{x}, \tilde{x}) - I(\tilde{x}, \tilde{\mathbb{O}}) - I(\tilde{\mathbb{O}}, \tilde{x}) + I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) + 1 \right] + d(p, q, q - 1) + \frac{p - 1}{p}$$
$$A(x) = \frac{1}{2p} \left[I(\tilde{\mathbb{O}}, \tilde{\mathbb{O}}) + I(\tilde{x}, \tilde{\mathbb{X}}) + I(\tilde{\mathbb{X}}, \tilde{x}) - I(\tilde{\mathbb{X}}, \tilde{\mathbb{X}}) - I(\tilde{x}, \tilde{\mathbb{O}}) - I(\tilde{\mathbb{O}}, \tilde{x}) \right] + \frac{1 - n}{2}$$

$Spin^c$ grading:

$$S: S(G) \cong \mathfrak{S}_n \times \left(\mathbb{Z}_{p\mathbb{Z}}\right)^n \longrightarrow \mathbb{Z}_{p\mathbb{Z}}$$

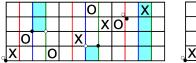
$$S(x) = q - 1 + \sum_{i=1}^{n} \left(a_i^{\mathbb{O}} - a_i \right) \pmod{p}$$

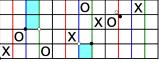
Daniele Celoria Grid Homology in Lens spaces

 $\exists \rightarrow$

< 17 ▶

The definition of ∂^- is the same as for S^3 ; here however the rectangles might "wrap" around the grid:





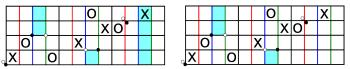
A rectangle connecting black to white in L(3,1) and L(3,2).

The differential respects the $Spin^c$ grading: $S(x) = S(\partial^-(x))$

$$GH^{-}(G) = \bigoplus_{s=0}^{p-1} GH^{-}(G,s)$$

Huge polynomial $P(G) = \sum_{m,a \in \mathbb{Q}} \sum_{s \in \mathbb{Z}/p\mathbb{Z}} rk(GH_m^-(G,a,s))t^a q^m z^s$

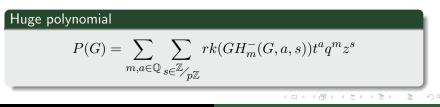
The definition of ∂^- is the same as for S^3 ; here however the rectangles might "wrap" around the grid:



A rectangle connecting black to white in L(3,1) and L(3,2).

The differential respects the $Spin^c$ grading: $S(x) = S(\partial^-(x))$

$$GH^{-}(G) = \bigoplus_{s=0}^{p-1} GH^{-}(G,s)$$



Lift of the coefficients from $\mathbb{F}_2[U_1, \ldots, U_n]$ to $\mathbb{Z}[U_1, \ldots, U_n]$:

Sign assignment:

$$\mathcal{S}: Rect(G) \longrightarrow \{\pm 1\}$$

such that the following conditions hold:

- **1** If $r_1 * r_2 = r_3 * r_4$ then $S(r_1)S(r_2) = -S(r_3)S(r_4)$.
- 2 If $r_1 * r_2$ is a horizontal annulus of height 1 (α -degeneration), then $S(r_1)S(r_2) = 1$.

Solution If $r_1 * r_2$ is a vertical annulus of width 1 (β -degeneration), then $S(r_1)S(r_2) = -1$.

Differential over \mathbb{Z} :

$$\partial_{\mathcal{S}}^{-}(x) = \sum_{\substack{y \in S(G) \ r \in Rect^{\circ}(x,y) \\ r \cap \mathbb{X} = \emptyset}} \mathcal{S}(r) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(r)} \right) y$$

Lift of the coefficients from $\mathbb{F}_2[U_1, \ldots, U_n]$ to $\mathbb{Z}[U_1, \ldots, U_n]$:

Sign assignment:

$$\mathcal{S}: Rect(G) \longrightarrow \{\pm 1\}$$

such that the following conditions hold:

- **1** If $r_1 * r_2 = r_3 * r_4$ then $\mathcal{S}(r_1)\mathcal{S}(r_2) = -\mathcal{S}(r_3)\mathcal{S}(r_4)$.
- **2** If $r_1 * r_2$ is a horizontal annulus of height 1 (α -degeneration), then $S(r_1)S(r_2) = 1$.

3 If $r_1 * r_2$ is a vertical annulus of width 1 (β -degeneration), then $S(r_1)S(r_2) = -1$.

Differential over \mathbb{Z} :

$$\partial_{\mathcal{S}}^{-}(x) = \sum_{\substack{y \in S(G) \ r \in Rect^{\circ}(x,y) \\ r \cap \mathbb{X} = \emptyset}} \mathcal{S}(r) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(r)} \right) y$$

Lift of the coefficients from $\mathbb{F}_2[U_1, \ldots, U_n]$ to $\mathbb{Z}[U_1, \ldots, U_n]$:

Sign assignment:

$$\mathcal{S}: Rect(G) \longrightarrow \{\pm 1\}$$

such that the following conditions hold:

- **1** If $r_1 * r_2 = r_3 * r_4$ then $\mathcal{S}(r_1)\mathcal{S}(r_2) = -\mathcal{S}(r_3)\mathcal{S}(r_4)$.
- **2** If $r_1 * r_2$ is a horizontal annulus of height 1 (α -degeneration), then $S(r_1)S(r_2) = 1$.
- 3 If $r_1 * r_2$ is a vertical annulus of width 1 (β -degeneration), then $S(r_1)S(r_2) = -1$.

Differential over \mathbb{Z} :

$$\partial_{\mathcal{S}}^{-}(x) = \sum_{\substack{y \in S(G) \\ r \in Rect^{\circ}(x,y) \\ r \cap \mathbb{X} = \emptyset}} \mathcal{S}(r) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(r)} \right) y$$

Lift of the coefficients from $\mathbb{F}_2[U_1, \ldots, U_n]$ to $\mathbb{Z}[U_1, \ldots, U_n]$:

Sign assignment:

$$\mathcal{S}: Rect(G) \longrightarrow \{\pm 1\}$$

such that the following conditions hold:

- **1** If $r_1 * r_2 = r_3 * r_4$ then $\mathcal{S}(r_1)\mathcal{S}(r_2) = -\mathcal{S}(r_3)\mathcal{S}(r_4)$.
- **2** If $r_1 * r_2$ is a horizontal annulus of height 1 (α -degeneration), then $S(r_1)S(r_2) = 1$.
- 3 If $r_1 * r_2$ is a vertical annulus of width 1 (β -degeneration), then $S(r_1)S(r_2) = -1$.

Differential over \mathbb{Z} :

$$\partial_{\mathcal{S}}^{-}(x) = \sum_{\substack{y \in S(G) \\ r \in Rect^{\circ}(x,y) \\ r \cap \mathbb{X} = \emptyset}} \mathcal{S}(r) \left(\prod_{i=1}^{n} U_{i}^{O_{i}(r)}\right) y$$

Grid Homology in Lens spaces

Daniele Celoria

Spin extension of $\mathfrak{S}_n = \langle \tau_{i,j} \mid 1 \leq i < j \leq n \rangle$

It's the group $\widetilde{\mathfrak{S}}_n$ generated by

 $\langle z, \widetilde{\tau}_{i,j} \mid 0 \le i \ne j < n \rangle$

subject to the following relations:

$$\begin{array}{l} \bullet \hspace{0.1cm} z^{2} = 1 \hspace{0.1cm} \text{and} \hspace{0.1cm} z\widetilde{\tau}_{i,j} = \widetilde{\tau}_{i,j}z \hspace{0.1cm} \text{for} \hspace{0.1cm} 1 \leq i \neq j \leq n \\ \hline \bullet \hspace{0.1cm} 2 \hspace{0.1cm} \widetilde{\tau}_{i,j}^{2} = z \hspace{0.1cm} \text{and} \hspace{0.1cm} \widetilde{\tau}_{i,j} = z\widetilde{\tau}_{j,i} \\ \hline \bullet \hspace{0.1cm} \widetilde{\tau}_{i,j}\widetilde{\tau}_{k,l} = z\widetilde{\tau}_{k,l}\widetilde{\tau}_{i,j} \hspace{0.1cm} \text{for distinct} \hspace{0.1cm} 1 \leq i,j,k,l \leq n \\ \hline \bullet \hspace{0.1cm} \widetilde{\tau}_{i,j}\widetilde{\tau}_{j,k}\widetilde{\tau}_{i,j} = \widetilde{\tau}_{j,k}\widetilde{\tau}_{i,j}\widetilde{\tau}_{j,k} = \widetilde{\tau}_{i,k} \hspace{0.1cm} \text{for distinct} \hspace{0.1cm} 1 \leq i,j,k \leq n \end{array}$$

化氯化 化氯

Spin extension of
$$\mathfrak{S}_n = \langle \tau_{i,j} \mid 1 \leq i < j \leq n \rangle$$

It's the group $\widetilde{\mathfrak{S}}_n$ generated by

$$\langle z, \widetilde{\tau}_{i,j} \mid 0 \le i \ne j < n \rangle$$

subject to the following relations:

$${f D} \ z^2=1$$
 and $z\widetilde{ au}_{i,j}=\widetilde{ au}_{i,j}z$ for $1\leq i
eq j\leq n$

2)
$$\widetilde{ au}_{i,j}^2=z$$
 and $\widetilde{ au}_{i,j}=z\widetilde{ au}_{j,i}$

3 $\tilde{\tau}_{i,j}\tilde{\tau}_{k,l} = z\tilde{\tau}_{k,l}\tilde{\tau}_{i,j}$ for distinct $1 \leq i, j, k, l \leq n$

Spin extension of
$$\mathfrak{S}_n = \langle \tau_{i,j} \mid 1 \leq i < j \leq n \rangle$$

It's the group $\widetilde{\mathfrak{S}}_n$ generated by

$$\langle z, \widetilde{\tau}_{i,j} \mid 0 \le i \ne j < n \rangle$$

1
$$z^2 = 1$$
 and $z \tilde{\tau}_{i,j} = \tilde{\tau}_{i,j} z$ for $1 \le i \ne j \le n$
2 $\tilde{\tau}_{i,j}^2 = z$ and $\tilde{\tau}_{i,j} = z \tilde{\tau}_{j,i}$
3 $\tilde{\tau}_{i,j} \tilde{\tau}_{k,l} = z \tilde{\tau}_{k,l} \tilde{\tau}_{i,j}$ for distinct $1 \le i, j, k, l \le n$
4 $\tilde{\tau}_{i,j} \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} = \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} \tilde{\tau}_{j,k} = \tilde{\tau}_{i,k}$ for distinct $1 \le i, j, k \le n$

Spin extension of
$$\mathfrak{S}_n = \langle \tau_{i,j} \mid 1 \leq i < j \leq n \rangle$$

It's the group $\widetilde{\mathfrak{S}}_n$ generated by

$$\langle z, \widetilde{\tau}_{i,j} \mid 0 \le i \ne j < n \rangle$$

1
$$z^2 = 1$$
 and $z \tilde{\tau}_{i,j} = \tilde{\tau}_{i,j} z$ for $1 \le i \ne j \le n$
2 $\tilde{\tau}_{i,j}^2 = z$ and $\tilde{\tau}_{i,j} = z \tilde{\tau}_{j,i}$
3 $\tilde{\tau}_{i,j} \tilde{\tau}_{k,l} = z \tilde{\tau}_{k,l} \tilde{\tau}_{i,j}$ for distinct $1 \le i, j, k, l \le n$
4 $\tilde{\tau}_{i,j} \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} = \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} \tilde{\tau}_{j,k} = \tilde{\tau}_{i,k}$ for distinct $1 \le i, j, k \le n$

Spin extension of
$$\mathfrak{S}_n = \langle \tau_{i,j} \mid 1 \leq i < j \leq n \rangle$$

It's the group $\widetilde{\mathfrak{S}}_n$ generated by

$$\langle z, \widetilde{\tau}_{i,j} \mid 0 \le i \ne j < n \rangle$$

1
$$z^2 = 1$$
 and $z \tilde{\tau}_{i,j} = \tilde{\tau}_{i,j} z$ for $1 \le i \ne j \le n$
2 $\tilde{\tau}_{i,j}^2 = z$ and $\tilde{\tau}_{i,j} = z \tilde{\tau}_{j,i}$
3 $\tilde{\tau}_{i,j} \tilde{\tau}_{k,l} = z \tilde{\tau}_{k,l} \tilde{\tau}_{i,j}$ for distinct $1 \le i, j, k, l \le n$
4 $\tilde{\tau}_{i,j} \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} = \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} \tilde{\tau}_{j,k} = \tilde{\tau}_{i,k}$ for distinct $1 \le i, j, k \le n$

Spin extension of
$$\mathfrak{S}_n = \langle \tau_{i,j} \mid 1 \leq i < j \leq n \rangle$$

It's the group $\widetilde{\mathfrak{S}}_n$ generated by

$$\langle z, \widetilde{\tau}_{i,j} \mid 0 \le i \ne j < n \rangle$$

1
$$z^2 = 1$$
 and $z \tilde{\tau}_{i,j} = \tilde{\tau}_{i,j} z$ for $1 \le i \ne j \le n$
2 $\tilde{\tau}_{i,j}^2 = z$ and $\tilde{\tau}_{i,j} = z \tilde{\tau}_{j,i}$
3 $\tilde{\tau}_{i,j} \tilde{\tau}_{k,l} = z \tilde{\tau}_{k,l} \tilde{\tau}_{i,j}$ for distinct $1 \le i, j, k, l \le n$
4 $\tilde{\tau}_{i,j} \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} = \tilde{\tau}_{j,k} \tilde{\tau}_{i,j} \tilde{\tau}_{j,k} = \tilde{\tau}_{i,k}$ for distinct $1 \le i, j, k \le n$

$$1 \longrightarrow \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \widetilde{\mathfrak{S}}_n \xrightarrow{p} \mathfrak{S}_n \longrightarrow 1$$

$$p(z) = 1 \text{ and } p(\widetilde{\tau}_{i,j}) = \begin{cases} \tau_{i,j} & \text{if } j > i \\ \tau_{j,i} & \text{if } i > j \end{cases}$$

$$\varphi: Rect(G) \longrightarrow \widetilde{\mathfrak{S}}_n \times \left(\mathbb{Z}_p \mathbb{Z} \right)^n$$

- first coordinate: $\widetilde{ au}_{i,j}$ or $\widetilde{ au}_{j,i}=z\widetilde{ au}_{i,j}$
- second coordinate: difference of p-coordinates of the vertices

p(z) =

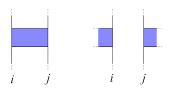
$$1 \longrightarrow \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \widetilde{\mathfrak{S}}_n \xrightarrow{p} \mathfrak{S}_n \longrightarrow 1$$

= 1 and $p(\widetilde{\tau}_{i,j}) = \begin{cases} \tau_{i,j} & \text{if } j > i \\ \tau_{i,i} & \text{if } i > j \end{cases}$

We can associate a generalized transposition to each rectangle:

$$\varphi : Rect(G) \longrightarrow \widetilde{\mathfrak{S}}_n \times \left(\mathbb{Z}_p \mathbb{Z} \right)^n$$

- first coordinate: $\widetilde{ au}_{i,j}$ or $\widetilde{ au}_{j,i}=z\widetilde{ au}_{i,j}$
- second coordinate: difference of p-coordinates of the vertices



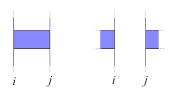
∃ → 4

$$1 \longrightarrow \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \widetilde{\mathfrak{S}}_n \xrightarrow{p} \mathfrak{S}_n \longrightarrow 1$$

$$p(z) = 1 \text{ and } p(\widetilde{\tau}_{i,j}) = \begin{cases} \tau_{i,j} & \text{if } j > i \\ \tau_{j,i} & \text{if } i > j \end{cases}$$

$$\varphi: Rect(G) \longrightarrow \widetilde{\mathfrak{S}}_n \times \left(\mathbb{Z}_{p\mathbb{Z}} \right)^n$$

- first coordinate: $\widetilde{\tau}_{i,j}$ or $\widetilde{\tau}_{j,i} = z \widetilde{\tau}_{i,j}$
- second coordinate: difference of *p*-coordinates of the vertices



$$1 \longrightarrow \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \widetilde{\mathfrak{S}}_n \xrightarrow{p} \mathfrak{S}_n \longrightarrow 1$$

$$p(z) = 1 \text{ and } p(\widetilde{\tau}_{i,j}) = \begin{cases} \tau_{i,j} & \text{if } j > i \\ \tau_{j,i} & \text{if } i > j \end{cases}$$

$$\varphi : Rect(G) \longrightarrow \widetilde{\mathfrak{S}}_n \times \left(\mathbb{Z}_{p\mathbb{Z}} \right)^n$$

- first coordinate: $\widetilde{\tau}_{i,j}$ or $\widetilde{\tau}_{j,i} = z \widetilde{\tau}_{i,j}$
- second coordinate: difference of p-coordinates of the vertices

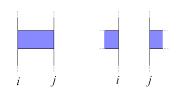


$$1 \longrightarrow \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \widetilde{\mathfrak{S}}_n \xrightarrow{p} \mathfrak{S}_n \longrightarrow 1$$

$$p(z) = 1 \text{ and } p(\widetilde{\tau}_{i,j}) = \begin{cases} \tau_{i,j} & \text{if } j > i \\ \tau_{j,i} & \text{if } i > j \end{cases}$$

$$\varphi: Rect(G) \longrightarrow \widetilde{\mathfrak{S}}_n \times \left(\mathbb{Z}_{p\mathbb{Z}} \right)^n$$

- first coordinate: $\widetilde{\tau}_{i,j}$ or $\widetilde{\tau}_{j,i} = z \widetilde{\tau}_{i,j}$
- second coordinate: difference of p-coordinates of the vertices



Take any section $\rho : \mathfrak{S}_n \longrightarrow \widetilde{\mathfrak{S}}_n$ of the previous SES (for lens spaces: $\rho \otimes Id_{(\mathbb{Z}/p\mathbb{Z})^n}$)

Signs from sections:

$$\mathcal{S}_{\rho}(r) = \left\{ \begin{array}{cc} 1 & \text{if } \rho(x)\varphi(r) = \rho(y) \\ -1 & \text{if } \rho(x)\varphi(r) = z\rho(y) \end{array} \right.$$

for $r \in Rect(x, y)$.

Uniqueness:

$$\mathcal{G}(G) = \left\{ v : S(G) \longrightarrow \mathbb{Z}/_{2\mathbb{Z}} \right\} \text{ Gauge group.}$$

 $\mathcal{G}(G)$ acts on sections (and sign assignments) as follows:

$$\rho^{v}(x) = \begin{cases} \rho(x) & \text{if } v(x) = 1\\ z\rho(x) & \text{if } v(x) = -1 \end{cases}$$

Up to Gauge transformations there is only one: just need to show invariance of homology for elementary transformations.

Take any section $\rho : \mathfrak{S}_n \longrightarrow \widetilde{\mathfrak{S}}_n$ of the previous SES (for lens spaces: $\rho \otimes Id_{\left(\mathbb{Z}/p\mathbb{Z}\right)^n}$)

Signs from sections:

$$\mathcal{S}_{\rho}(r) = \left\{ \begin{array}{cc} 1 & \text{if } \rho(x)\varphi(r) = \rho(y) \\ -1 & \text{if } \rho(x)\varphi(r) = z\rho(y) \end{array} \right.$$

for $r \in Rect(x, y)$.

Uniqueness:

$$\mathcal{G}(G) = \left\{ v : S(G) \longrightarrow \mathbb{Z}/_{2\mathbb{Z}} \right\}$$
 Gauge group.

 $\mathcal{G}(G)$ acts on sections (and sign assignments) as follows:

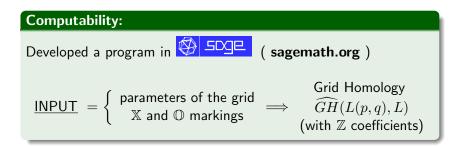
$$\rho^{v}(x) = \begin{cases} \rho(x) & \text{if } v(x) = 1\\ z\rho(x) & \text{if } v(x) = -1 \end{cases}$$

Up to Gauge transformations there is only one: just need to show invariance of homology for elementary transformations.

Decategorification:

Coincides with the Alexander polynomial from Cornwell's HOMFLYPT specialization?

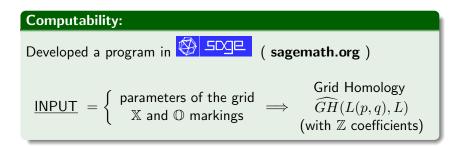
Berge Conjecture:



Decategorification:

Coincides with the Alexander polynomial from Cornwell's HOMFLYPT specialization?

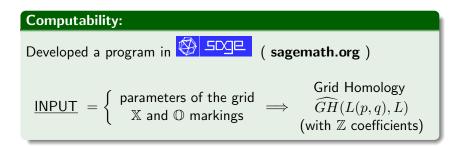
Berge Conjecture:



Decategorification:

Coincides with the Alexander polynomial from Cornwell's HOMFLYPT specialization?

Berge Conjecture:



Decategorification:

Coincides with the Alexander polynomial from Cornwell's HOMFLYPT specialization?

Berge Conjecture: