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Introduction

Knot Floer Homology HFK◦(Y 3, L)

Heegaard Floer Homology: homology theory for 3-manifolds
developed around 2001 by Peter Ozsváth and Zoltán Szabó as a
variant of Lagrangian Floer theory.

In 2003 (O-S + J. Rasmussen) discover that links induce filtrations
on HFK◦(Y 3)  Knot Floer Homology HFK◦(Y 3, L)

Knot Floer homology GH◦(G):

The original definition is hard! We are instead going to define a
purely combinatorial version, known as Grid Homology.
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Grid Homology: developed by Ozsváth-Szabó-Stipsicz
(+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for K ⊂ S3

(toroidal) Grid diagrams:

• n× n grid in R2

• curves α = {αi} β = {βi}
• X = {Xi} O = {Oi}
i = 1, . . . , n markings (no
two on same row/col)

• top-bottom and left-right
identifications (multipointed
genus 1 H.D. for S3)
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Grid Homology: developed by Ozsváth-Szabó-Stipsicz
(+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for K ⊂ S3

(toroidal) Grid diagrams:

• n× n grid in R2

• curves α = {αi} β = {βi}
• X = {Xi} O = {Oi}
i = 1, . . . , n markings (no
two on same row/col)

• top-bottom and left-right
identifications (multipointed
genus 1 H.D. for S3)

Every oriented link in S3 can be encoded in this way

Reidemeister Moves  Cromwell Moves
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The complex GC−(G):

Take a grid diagram G for the knot K ⊂ S3

S(G) =
{

bijections α ↔ β
} ∼= Sn

σ(x) =
(
12345
24135

)
Bigrading

the generating set S(G) can be bigraded:

• Maslov degree M : S(G) −→ Z (homological)

• Alexander degree A : S(G) −→ Z (filtration)

A,B sets of finite points in R2:
I(A,B) = {((a1, a2), (b1, b2)) ⊂ A×B | a1 < b1 and a2 < b2}

M(x) = MO(x) = I(x, x)− I(x,O)− I(O, x) + I(O,O) + 1

A(x) =
1

2
(MO(x)−MX(x)) +

1− n
2
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The complex GC−(G) is the F2[U1, . . . , Un]-module freely
generated over S(G).

We need to extend the degrees to this coefficient ring:

• M(Ux) = M(x) -2

• A(Ux) = A(x) -1

GC−(G) =
⊕
m,a∈Z

GC−m(G, a)
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the differential ∂−

If two elements x, y ∈ S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:
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the differential ∂−

If two elements x, y ∈ S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:

∂−(x) =
∑

y∈S(G)

∑
r∈Rect◦(x,y)

r∩X=∅

(
n∏
i=1

U
Oi(r)
i

)
y

• Rect◦(x, y) are the empty rectangles conneting x to y,
i.e. r̊ ∩ x = r̊ ∩ y = ∅

• Oi(r) = # {Oi ∩ r}
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Basic properties of GH−

• (∂−)
2

= 0

• A(∂−(x)) = A(x)

• M(∂−(x)) = M(x)− 1

Theorem (Ozváth - Rasmussen - Szabó - Stipsicz...)

H∗(GC
−(G), ∂−) = GH−(G;F2) ∼= HFK−(K;F2)

is an invariant of K, which categorifies the Alexander polynomial:

χt(GH
−(G)) =

∑
a,m∈Z

(−1)mrk(GH−m(G, a))ta = 4K(t)
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Theorem (Ozváth - Rasmussen - Szabó - Stipsicz...)

H∗(GC
−(G), ∂−) = GH−(G;F2) ∼= HFK−(K;F2)

is an invariant of K, which categorifies the Alexander polynomial:

χt(GH
−(G)) =

∑
a,m∈Z

(−1)mrk(GH−m(G, a))ta = 4K(t)

Daniele Celoria Grid Homology in Lens spaces



Basic properties of GH−

• (∂−)
2

= 0

• A(∂−(x)) = A(x)

• M(∂−(x)) = M(x)− 1
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Under the hood:

(∂−)2(x) =
∑

z∈S(G)

∑
ψj∈Poly◦(x,z)

ψj∩X=∅

∑
j

N(ψj)

(
n∏
i=1

Ui
Oi(ψj)

) z

Remark:

This differential is only well defined over F2!
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Extension of GH− to Lens spaces:

Kenneth J. Baker J. Elisenda Grigsby Matt Hedden

Grid Diagrams for Lens Spaces and Combinatorial Knot Floer
Homology˝(2007)

(p, q) coprime integers, define L(p, q) = S3
− p

q
(©)

H1(L(p, q);Z) = Z�pZ↔ Spinc(L(p, q))

Only spaces that admit a genus 1 Heegaard decomposition.
We can develop the same approach used with toroidal grids in S3!
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A toroidal twisted grid diagram for a link L ⊂ L(p, q):

n× np grid, with nX and nO markings (no two on the same
row/column). As before

S(G) =
{

bijections between α↔ β
}

But this time |αi ∩ βj | = p ∀i, j = 1, . . . , n, so

S(G) ∼= Sn ×
(
Z�pZ

)n
S(G) 3 x = (σx, [a1, . . . , an])
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We lift markings and generators to S3 to define the gradings.

Lifts for L(3, 1) and L(3, 2)

and obtain analogous formulas:

M(x) =
1

p

[
I(x̃, x̃)− I(x̃, Õ)− I(Õ, x̃) + I(Õ, Õ) + 1

]
+ d(p, q, q − 1) +

p− 1

p

A(x) =
1

2p

[
I(Õ, Õ) + I(x̃, X̃) + I(X̃, x̃)− I(X̃, X̃)− I(x̃, Õ)− I(Õ, x̃)

]
+

1− n
2

Spinc grading:

S : S(G) ∼= Sn ×
(
Z�pZ

)n
−→ Z�pZ

S(x) = q − 1 +

n∑
i=1

(
aOi − ai

)
(mod p)
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]
+ d(p, q, q − 1) +

p− 1

p

A(x) =
1

2p

[
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The definition of ∂− is the same as for S3; here however the
rectangles might wrap˝around the grid:

A rectangle connecting black to white in L(3, 1) and L(3, 2).

The differential respects the Spinc grading: S(x) = S(∂−(x))

GH−(G) =

p−1⊕
s=0

GH−(G, s)

Huge polynomial

P (G) =
∑
m,a∈Q

∑
s∈Z�pZ

rk(GH−m(G, a, s))taqmzs
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Signs

Lift of the coefficients from F2[U1, . . . , Un] to Z[U1, . . . , Un]:

Sign assignment:

S : Rect(G) −→ {±1}

such that the following conditions hold:

1 If r1 ∗ r2 = r3 ∗ r4 then S(r1)S(r2) = −S(r3)S(r4).

2 If r1 ∗ r2 is a horizontal annulus of height 1 (α-degeneration),
then S(r1)S(r2) = 1.

3 If r1 ∗ r2 is a vertical annulus of width 1 (β-degeneration),
then S(r1)S(r2) = −1.

Differential over Z:

∂−S (x) =
∑

y∈S(G)

∑
r∈Rect◦(x,y)

r∩X=∅

S(r)

(
n∏
i=1

Ui
Oi(r)

)
y
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How can we construct such an S on S3 or L(p, q)? Gallais (2008)

Spin extension of Sn = 〈τi,j | 1 ≤ i < j ≤ n〉

It’s the group S̃n generated by

〈z, τ̃i,j | 0 ≤ i 6= j < n〉

subject to the following relations:

1 z2 = 1 and zτ̃i,j = τ̃i,jz for 1 ≤ i 6= j ≤ n
2 τ̃2i,j = z and τ̃i,j = zτ̃j,i

3 τ̃i,j τ̃k,l = zτ̃k,lτ̃i,j for distinct 1 ≤ i, j, k, l ≤ n
4 τ̃i,j τ̃j,kτ̃i,j = τ̃j,kτ̃i,j τ̃j,k = τ̃i,k for distinct 1 ≤ i, j, k ≤ n
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S̃n as a central extension:

1 −→ Z�2Z −→ S̃n
p−−→ Sn −→ 1

p(z) = 1 and p(τ̃i,j) =

{
τi,j if j > i
τj,i if i > j

We can associate a generalized transposition to each rectangle:

ϕ : Rect(G) −→ S̃n ×
(
Z�pZ

)n
• first coordinate: τ̃i,j or τ̃j,i = zτ̃i,j

• second coordinate: difference of
p-coordinates of the vertices
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Take any section ρ : Sn −→ S̃n of the previous SES
(for lens spaces: ρ⊗ Id(Z�pZ)n)

Signs from sections:

Sρ(r) =

{
1 if ρ(x)ϕ(r) = ρ(y)
−1 if ρ(x)ϕ(r) = zρ(y)

for r ∈ Rect(x, y).

Uniqueness:

G(G) =
{
v : S(G) −→ Z�2Z

}
Gauge group.

G(G) acts on sections (and sign assignments) as follows:

ρv(x) =

{
ρ(x) if v(x) = 1
zρ(x) if v(x) = −1

Up to Gauge transformations there is only one: just need to show
invariance of homology for elementary transformations.
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Open problems and possible developements:

Computability:

Developed a program in ( sagemath.org )

INPUT =

{
parameters of the grid
X and O markings

=⇒
Grid Homology

ĜH(L(p, q), L)
(with Z coefficients)

Decategorification:

Coincides with the Alexander polynomial from Cornwell’s
HOMFLYPT specialization?

Berge Conjecture:

Baker-Hedden-Grigsby-Rasmussen reformulation in terms of HFK
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