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Introduction

Knot Floer Homology HFK°(Y?3, L)

Heegaard Floer Homology: homology theory for 3-manifolds
developed around 2001 by Peter Ozsvath and Zoltan Szabé as a

variant of Lagrangian Floer theory.
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Introduction

Knot Floer Homology HFK°(Y?3, L)

Heegaard Floer Homology: homology theory for 3-manifolds
developed around 2001 by Peter Ozsvath and Zoltan Szabé as a

variant of Lagrangian Floer theory.

)

In 2003 (O-S + J. Rasmussen) discover that links induce filtrations
on HFK°(Y3) ~» Knot Floer Homology HFK°(Y3, L)

v
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Introduction

Knot Floer Homology HFK°(Y?3, L)

Heegaard Floer Homology: homology theory for 3-manifolds
developed around 2001 by Peter Ozsvath and Zoltan Szabé as a
variant of Lagrangian Floer theory.

) b |
In 2003 (O-S + J. Rasmussen) discover that links induce filtrations
on HFK°(Y3) ~» Knot Floer Homology HFK°(Y3, L)

v

not Floer homology GH®(G):

The original definition is hard! We are instead going to define a
purely combinatorial version, known as Grid Homology.
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Grid Homology: developed by Ozsvath-Szabé-Stipsicz
(+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for K C 53

(toroidal) Grid diagrams:

e n xn grid in R?
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Grid Homology: developed by Ozsvath-Szabd-Stipsicz
(+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for K C S3

(toroidal) Grid diagrams:

e n xn grid in R?

e curves a = {a;} B ={Bi}

Q,
a,
(0 5
a,
&,

S8 B B B B B
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Grid Homology: developed by Ozsvath-Szabé-Stipsicz
(+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for K C S3

(toroidal) Grid diagrams:

o) X e n xn grid in R?

e curves a = {oy} B = {B;}
X 0) i =1,...,n markings (no
two on same row/col)
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Grid Homology: developed by Ozsvath-Szabd-Stipsicz
(+ Manolescu, Hedden, D.Thurston, Sarkar, Wang..) for K C S3

(toroidal) Grid diagrams:

® X e n x n grid in R?

e curves a = {a;} B = {Bi}
T1T?  .x=(x}10=1{0}
¥+ '9) i=1,...,n markings (no
two on same row/col)

L ¢

X O e top-bottom and left-right
O identifications (multipointed
genus 1 H.D. for S3)

Every oriented link in S3 can be encoded in this way

Reidemeister Moves ~~ Cromwell Moves )
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The complex GC~(G):

Take a grid diagram G for the knot K C 3
S(G) = {bijections a «++ B} =&,

o(z) = (31050)
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The complex GC~(G):

Take a grid diagram G for the knot K C S3

S(G) = {bijections a & g} ~ G,

Bigrading

the generating set S(G) can be bigraded:
e Maslov degree M : S(G) — Z (homological)
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The complex GC~(G):

Take a grid diagram G for the knot K C S3
S(G) = {bijections a & g} ~ G,

Bigrading

the generating set S(G) can be bigraded:
e Maslov degree M : S(G) — Z (homological)
o Alexander degree A : S(G) — Z (filtration)
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The complex GC~(G):

Take a grid diagram G for the knot K C S3
S(G) = {bijections a & g} ~ G,

Bigrading

the generating set S(G) can be bigraded:
e Maslov degree M : S(G) — Z (homological)
o Alexander degree A : S(G) — Z (filtration)

A, B sets of finite points in R?:
I(A, B) = {((al,ag), (bl,bg)) CAxB | ay < by and as < bg}

M(z) = Mg(z) = I(z,2) — I(x,0) — I(0,z) + I(0,0) + 1

= £ (Mo() — M(e)) + 5
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The complex GC™(G) is the Fa[Uy, ..., Uy]-module freely
generated over S(G).

We need to extend the degrees to this coefficient ring:
e M(Ux) = M(x) -2
o A(Ux) = A(x) -1
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The complex GC™(G) is the Fa[Uy, ..., Uy]-module freely
generated over S(G).

We need to extend the degrees to this coefficient ring:
e M(Ux) = M(x) -2
o A(Ux) = A(x) -1

GC (@)= @ GC,.(G,a)

m,a€Z
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The complex GC~(G) is the Fa[Uy, ..., U,]-module freely
generated over S(G).

We need to extend the degrees to this coefficient ring:
e M(Ux) = M(x) -2
e A(Ux) = A(x) -1

GC (@)= @ GC,.(G,a)

m,a€Z

M L y
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the differential 0~

If two elements =,y € S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:

Daniele Celoria Grid Homology in Lens spaces



the differential 0~

If two elements 7,y € S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:

O X
X O
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If two elements 7,y € S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:

O X
X O
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the differential 0~

If two elements =,y € S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:

O X
X O
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the differential 0~

If two elements =,y € S(G) differ by a transposition,they can be
connected by an oriented rectangle on the grid:

2z (i)

y€S(G) r€Rect®
rOX=0

e Rect®(x,y) are the empty rectangles conneting x to v,
e.TNz=rNy=>0
° OZ(T) =t {@z N 7“}
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Basic properties of GH™

« (07)=0
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Basic properties of GH™

Daniele Celoria Grid Homology in Lens spaces



Basic properties of GH™

« (07)=0
* A0 () = A(w)
o M(8 (2)) = M(z) — 1
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Basic properties of GH™

Theorem (Ozvath - Rasmussen - Szabé - Stipsicz...)

H,(GC™(G),07) = GH (G;F5) ¥ HFK~ (K ;F>)

is an invariant of K, which categorifies the Alexander polynomial:

X(GH™(G)) = Y (~1)"rk(GH,(G,a))t" = Dk (1)

a,meZ
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Under the hood:

@ P@ =3 > (ZN%) (HUPM))z
2€S(G) ¥, ewlfglgi(g,z) J
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Under the hood:

@@= > > (ZN(%) <HUZ-01<%>>)Z

2€8(G) Y €Poly° (z,z) J
’L/)j NX=0

*—0
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Under the hood:

e £ s (S ([[ue)):

2€5(Q) ¢ €Poly® (x,z) J
’L[Jj ﬁX:(Z)
*—% »
® —° ® ®
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Under the hood:

@@= > > (Z N (¢;) (H UP%’“””)) z
2€8(G) 1, Glfgl}gc’:(g,z) J
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Under the hood:

(87)2(@ = Z Z (Z N (1) (H Uioi(wj)>> z

2€8(G) y;€Poly° (x,z)
7/)j NX=0

J
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Under the hood:

@P@=3 3 (Z N () (ﬁ Uiomwn)) .

2€S5(G) Y €Poly° (x,z) J
Q)ZJJ' ﬂX:@

%

%®
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Under the hood:

@@= 2 2 | 2N (HUiOf<wj>> 2

2€S5(G) Y €Poly°(x,z) J
’l)[)j ﬂX:@

This differential is only well defined over ! I
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Extension of GH ™ to Lens spaces:

Kenneth J. Baker J. Elisenda Grigsby Matt Hedden

“Grid Diagrams for Lens Spaces and Combinatorial Knot Floer
Homology“(2007)
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Extension of GH ™ to Lens spaces:

Kenneth J. Baker J. Elisenda Grigsby Matt Hedden

“Grid Diagrams for Lens Spaces and Combinatorial Knot Floer
Homology“(2007)

(p, q) coprime integers, define L(p, q) = Sig(Q)

Hi(L(p,); Z) = L/, > Spin°(L(p,q))

Only spaces that admit a genus 1 Heegaard decomposition.
We can develop the same approach used with toroidal grids in 53!

v

Daniele Celoria Grid Homology in Lens spaces



A toroidal twisted grid diagram for a link L C L(p, q):
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A toroidal twisted grid diagram for a link L C L(p, q):

— X

I
1
T
1

n x np grid, with nX and nO markings (no two on the same
row/column). As before

S(G) = {bijections between a <> 3}
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A toroidal twisted grid diagram for a link L C L(p, q):

— X

I
1
T
1

i

n x np grid, with nX and nO markings (no two on the same
row/column). As before

S(G) = {bijections between a <> 3}
But this time |o; N G| =p Vi,j=1,...,n, so
5026, x (L)

S(G) 3> x= (04 ]a1,...,an])



We lift markings and generators to S2 to define the gradings.

B ClA C A|B
A|B|C C A B B C A
A B |C AB|C

Lifts for L(3,1) and L(3,2)
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We lift markings and generators to S2 to define the gradings.
and obtain analogous formulas:

M(e) = [13:3) - 1G,8) 10,3 +1(0.8) +1] +dlp.a.0- ) + 2=

A(z) = i [10,0) +13,%) + 1X,3) - 1K X) - 1(3,0) - 10,9)] + Ln
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We lift markings and generators to S2 to define the gradings.
and obtain analogous formulas:

M(z) = % [1G.®) ~ 1G.0) ~ I@,9) + IB,0) + 1] + d(p.g.0 — 1) + L=

A(z) = % [10,0) +13,%) + 1X,3) - 1K X) - 1(3,0) - 10,9)] + Ln

Spin¢ grading:

v

Daniele Celoria Grid Homology in Lens spaces



The definition of 0~ is the same as for S3; here however the
rectangles might “wrap”around the grid:

o X o X
X[o X[0
(6] X 6] X
X[ 1ol [] X[ 1ol []

A rectangle connecting black to white in L(3,1) and L(3,2).
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The definition of 9~ is the same as for S3: here however the
rectangles might “wrap”around the grid:

o X o X
X[o X[0
(6] X 6] X
X[ 1ol [] X[ 1ol []

A rectangle connecting black to white in L(3,1) and L(3,2).

The differential respects the Spin® grading: S(z) = S(0~(x))

p—1
GH (G)=EPGH (G, s)
s=0

Huge polynomial

P(G)= Y Y rk(GH,(G,a,s))t"q"2"

m,a€Q SEZ/pZ
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Signs

Lift of the coefficients from Fy[Uy,...,U,| to Z[Uy,...,U,):

Sign assignment:

S : Rect(G) — {£1}

such that the following conditions hold:

@ If ri xro =13 %1y then S(r1)S(r2) = —S(r3)S(r4).
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Signs

Lift of the coefficients from Fy[Uy,...,U,| to Z[Uy,...,U,):

Sign assignment:

S : Rect(G) — {£1}
such that the following conditions hold:
@ If 7 xrg =173 %1y then S(r1)S(r2) = —S(r3)S(r4).

@ If 71 x ro is a horizontal annulus of height 1 (a-degeneration),
then S(r1)S(r2) = 1.
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Signs

Lift of the coefficients from Fy[Uy,...,U,| to Z[Uy,...,U,):

Sign assignment:

S : Rect(G) — {£1}
such that the following conditions hold:
@ If 7 xrg =173 %1y then S(r1)S(r2) = —S(r3)S(r4).
@ If 71 x ro is a horizontal annulus of height 1 (a-degeneration),
then S(r1)S(r2) = 1.

® If r1 x 7o is a vertical annulus of width 1 (3-degeneration),
then S(r1)S(r2) = —1.
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Lift of the coefficients from Fy[Uy, ..., U,| to Z[Uy, ...,

Sign assignment:

S : Rect(G) — {£1}

such that the following conditions hold:
@ If 7 xrg =173 %1y then S(r1)S(r2) = —S(r3)S(r4).

@ If 71 x ro is a horizontal annulus of height 1 (a-degeneration),
then S(r1)S(r2) = 1.

® If r1 x 7o is a vertical annulus of width 1 (3-degeneration),
then S(r1)S(r2) = —1.

Differential over Z:
- > 3 so(l1s0)
i=1

y€S(G) reRect® (z,y)
rNX=0
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How can we construct such an S on S® or L(p, q)? Gallais (2008)
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How can we construct such an S on S® or L(p, q)? Gallais (2008)

Spin extension of &, = (1;; |1 <i<j<mn)

It's the group én generated by

subject to the following relations:
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How can we construct such an S on S® or L(p, q)? Gallais (2008)

Spin extension of &, = (1;; |1 <i<j<mn)

It's the group én generated by

subject to the following relations:
®:22=1 and 275 = T2 for 1 <i=+j<n
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How can we construct such an S on S® or L(p, q)? Gallais (2008)

Spin extension of &, = (1;; |1 <i<j<mn)

It's the group én generated by

subject to the following relations:
®:22=1 and 275 = T2 for 1 <i=+j<n

@ 7=z and T =27,
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How can we construct such an S on S® or L(p, q)? Gallais (2008)

Spin extension of &, = (1;; |1 <i<j<mn)

It's the group én generated by

subject to the following relations:
® z>=1 and 275 = T2 for 1 <i=+j<n
=2 _ == o
®7 ==z and T;; = 27
(3) ?z',j%:k,l = Z?k,l?i,j for distinct 1 <i,5,k, 0l <n
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How can we construct such an S on S® or L(p, q)? Gallais (2008)

Spin extension of &, = (1;; |1 <i<j<mn)

It's the group én generated by

subject to the following relations:
®:22=1 and 275 = T2 for 1 <i=+j<n
=2 _ == o
®7 ==z and T;; = 27

(3) ?z',j%:k,l = Z?k,l?i,j for distinct 1 <i,5,k, 0l <n

(4] ?i,j?j,k?i,j = ?j,k?’i,j?j,k = ?i,k for distinct 1 <i,5,k <n
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S,, as a central extension:

1—>Z/QZ—>énp—>6n—>1
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S,, as a central extension:

1—>Z/QZ—>énp—>6n—>1

JE— ~. . f— T/L‘7j ifj > /i
p(Z) — 1 and p(Tz,]) - { e if 1 >j
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S,, as a central extension:

1—>Z/QZ—>énp—>6n—>1

JE— ~. . f— T/L‘7j ifj > /i
p(Z) — 1 and p(Tz,]) - { e if 1 >j

We can associate a generalized transposition to each rectangle:

¢ : Rect(G) — Sn ¥ (Z/pZ>n
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S,, as a central extension:

1—>Z/QZ—>énp—>6n—>1

JE— ~. . f— T/L‘7j ifj > /i
p(Z) — 1 and p(Tz,]) - { e if 1 >j

We can associate a generalized transposition to each rectangle:

¢ : Rect(G) — Sn ¥ (Z/pz>n

e first coordinate: 7; j or T;; = 27;
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S,, as a central extension:

1—>Z/QZ—>énp—>6n—>1

JE— ~. . f— T/L‘"j ifj > /i
p(Z) — 1 and p(Tz,]) - { e if 1 >j

We can associate a generalized transposition to each rectangle:

¢ : Rect(G) — Sn ¥ (Z/pZ>n

e first coordinate: 7; ; or 7 ; = 27, ;
e second coordinate: difference of
p-coordinates of the vertices
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Take any section p: &,, — én of the previous SES
for | spaces: p® Id n
(for lens sp P (Z/pZ) )

Signs from sections:

for r € Rect(x,y).
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Take any section p: &,, — én of the previous SES
for lens spaces: p® Id n
(for P pelda, )

Signs from sections:

sp(r):{ 1 ifp(x)so('r’)zg(y)

for r € Rect(x,y).

G(G) = {v :S(G) — Z/QZ} Gauge group.
G(G) acts on sections (and sign assignments) as follows:

N P o
el = { zp(x) ifov(z)=-1

Up to Gauge transformations there is only one: just need to show
invariance of homology for elementary transformations.

v
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Open problems and possible developements:

Computability:
Developed a program in ( sagemath.org )
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Open problems and possible developements:

Computability:
Developed a program in ( sagemath.org )

Grid Homology
GH(L(p,q), L)
(with Z coefficients)

INPUT =

parameters of the grid
X and @ markings

V.
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Open problems and possible developements:

Computability:
Developed a program in ( sagemath.org )

Grid Homology
GH(L(p,q), L)
(with Z coefficients)

INPUT =

parameters of the grid
X and @ markings

V.

Decategorification:

Coincides with the Alexander polynomial from Cornwell's
HOMFLYPT specialization?
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Open problems and possible developements:

Computability:
Developed a program in ( sagemath.org )

Grid Homology
GH(L(p,q), L)
(with Z coefficients)

INPUT =

parameters of the grid
X and @ markings

V.

Decategorification:

Coincides with the Alexander polynomial from Cornwell's
HOMFLYPT specialization?

Berge Conjecture:

Baker-Hedden-Grigsby-Rasmussen reformulation in terms of HF K




