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Introduction and notation
One of the most challenging problems a mathematician can face is giving a meaning to “physics math”. 

To describe natural phenomena physicists use the so called Dirac delta: a “function” 𝛿 : ℝ → ℝ defined 

as 𝛿(0) = +∞, 𝛿(𝑥) = 0 on ℝ \ {0} such that

∫
ℝ

𝛿(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑓(0) for every physically reasonable 𝑓 : ℝ → ℝ.

To make sense of notions like this Laurent Schwartz introduced the concept of distributions: we can 

think the Dirac delta as an operator acting on an appropriate set of test functions. The most common 

choice for test functions is the space 𝐶∞
0 (Ω) where Ω ⊂ ℝ𝑛 is an open set. Of course we don’t want 

to look at all linear maps 𝐶∞
0 (Ω) → ℝ but only to a subset of reasonable operators: the ones who 

are continuos with respect to a certain topology. It turns out the right topology is not easy to define: 

it is an inductive limit of metrizable topological vector spaces. This topology is not metrizable so it 

is necessary to invoke the general theory of locally convex topological vector spaces, in fact much 

of the mathematical research on this topic was driven by distributions. Not many people know that 

even Alexander Grothendieck, the famous algebraic geometer, did his PHD under the supervision of 

Schwartz on functional analysis. Nowadays in many fields of analysis turns out one can work with 

distributions without warring on the topological aspect: usually continuity for an operator 𝐶∞
0 (Ω) →

ℝ is defined in terms of a “notion of convergence”. Still, if someone wants to achieve a full under

standing of the theory they should study the topological details. Also I personally believe that this is a 

really elegant and beautiful theory that is worth studying regarding the applications. Especially if you 

are like me and cannot stand when things are not clearly defined, I really recommend looking into it.

To give an insight of the power of distributions consider the problem of determining if a partial 

differential equation admits a solution. Take a linear partial differential operator 𝑃 ∈ ℝ[𝜕1, …, 𝜕𝑁 ] 
(𝑃  is a polynomial in the “variables” 𝜕1, …, 𝜕𝑁  with constants real coefficients) who acts on 𝐶∞ 

functions, given 𝑔 ∈ 𝐶∞(ℝ𝑁) we seek a solution to the partial differential equation

𝑃𝑓 = 𝑔 for 𝑓 ∈ 𝐶∞(ℝ𝑁).

Now we will state three facts about distributions:

• 𝐶∞(ℝ𝑛) functions can be embedded in the space of distributions,

• is it possible to define the notion of the derivative of a distribution, and all distributions are infinitely 

differentiable,

• we can extend the convolution operation to distributions.

In view of this facts the problem 𝑃𝑓 = 𝑔 makes sense when 𝑓  and 𝑔 are distributions. Denote by 𝛿0 

the Dirac delta centered in 0, suppose we find a distribution 𝑢 that satisfies

𝑃𝑢 = 𝛿0

Such 𝑢 is called a fundamental solution. Then we can convolve both sides with 𝑔:

(𝑃𝑢) ∗ 𝑔 = 𝛿0 ∗ 𝑔 ⇒ 𝑃(𝑢 ∗ 𝑔) = 𝑔

were we used the facts that convolution commutes with 𝑃  (wich is a classical result for 𝐶∞ functions) 

and convolving with 𝛿0 does not change a distribution. Therefore we can easily find solutions with 

arbitrary known data given a fundamental solution. In general 𝑢 ∗ 𝑔 is just a distribution, so the 

problem of finding a solution turned into the problem of determining the regularity of 𝑢 ∗ 𝑔. It is worth 

knowing that this method can be extended to the case of complex coefficients. Inspired by this and 

other techniques Lars Hörmander used distribution theory to give the first solid treatment of linear 
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partial differential equations [1]. Before his contributions there were result focusing on particular 

equations but mathematics was lacking of a general theory.

I decided not to include in the notes the general theory of topological vector spaces since it is already 

covered in many textbooks, in the appendix there are some facts used later on topological vector spaces 

and functional analysis (mostly without proofs).

For the sake of clarity we fix some notation:

• Ω will always denote an open set of ℝ𝑁

• 𝒦︀(Ω) is the set of compact subsets of Ω
• 𝐶0(Ω) is the space of continuos functions Ω → ℝ
• 𝐶𝑘(Ω) with 0 < 𝑘 ≤ ∞ is the space of 𝑘-times differentiable functions Ω → ℝ
• 𝐶𝑘

𝑐 (Ω), with 0 ≤ 𝑘 ≤ ∞, is the subspace of 𝐶𝑘(Ω) of functions with compact support

• 𝐶𝑘
0 (Ω), with 0 ≤ 𝑘 ≤ ∞, is the subspace of 𝐶𝑘(Ω) of functions 𝑓  such that for every 𝜀 > 0 there 

exist a compact set 𝐾 ⊂ Ω with |𝑓| < 𝜀 on Ω \ 𝐾
• 𝐶𝑘

𝑏 (Ω), with 0 ≤ 𝑘 ≤ ∞, is the subspace of 𝐶𝑘(Ω) of functions 𝑓  such that 𝜕𝛼𝑓  is bounded for every 

multindex |𝛼| ≤ 𝑘
• 𝐿𝑝(Ω) is the set of measurable functions 𝑓 : Ω → ℝ such that ∫|𝑓|𝑝 < ∞
• 𝐿1

loc(Ω) is the set of measurable functions 𝑓 : Ω → ℝ such that for all 𝑥 ∈ Ω there exist an open 

neighborhood 𝑥 ∈ 𝑈 ⊆ Ω with 𝑓 ∈ 𝐿1(𝑈).
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1. Distributions

1.1. Topology on test spaces

Definition 1.1. For a fixed Ω we define the LCTVS

𝒟︀𝐾 ≔ {𝑓 ∈ 𝐶∞
𝑐 (Ω) | supp(𝑓) ⊆ 𝐾}

with the topology induced by the family of seminorms

𝑝𝑚(𝑓) ≔ max
|𝛼| ≤𝑚

‖𝜕𝛼𝑓‖∞, 𝑚 ∈ ℤ≥0

Since 𝒟︀𝐾  has a countable family of seminorms in indeed metrizable with a translation-invariant metric. 

Also note that the family of seminorms is filtered (𝑝𝑚(𝑓) ≤ 𝑝𝑛(𝑓) for 𝑚 ≤ 𝑛).

Proposition 1.2. 𝒟︀𝐾  is complete, therefore is a Frechét space.

Proof. Let (𝜑𝑛) be a Cauchy sequence in 𝒟︀𝐾 , (almost) by definition we have

𝑝𝐾(𝜑𝑛 − 𝜑𝑚) ⟶
𝑛,𝑚→∞

0 for all 𝐾 ∈ 𝒦︀(Ω).

In other words for every multindex 𝛼 the sequence (𝜕𝛼𝜑𝑛) is Cauchy with respect to the supremum 

norm. Since the supremum norm induces a complete topology all partial derivatives converge 

uniformly, say 𝜕𝛼𝜑𝑛 ⟶
‖⋅‖∞

𝜂𝛼. It is then a standard fact that 𝜂0 ∈ 𝐶∞
𝑐 (Ω), it is supported in 𝐾 and for 

every multindex 𝜕𝛼𝜂0 = 𝜂𝛼. We conclude that 𝜑𝑛 ⟶
𝒟︀𝐾

𝜂0. □

Recall the following definition:

Definition 1.3. A partially ordered set 𝐼  is said to be directed if for all 𝑥, 𝑦 ∈ 𝐼  there exist 𝑧 ∈ 𝐼  such 

that 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧.

It is obvious that 𝒦︀(Ω) is a directed set ordered by inclusion. As such, we can form directed limits 

with objects indexed by 𝒦︀(Ω).

Definition 1.4. We define the space of test functions as the direct limit (in the category of topological 

vector spaces) of the spaces 𝒟︀𝐾 :

𝒟︀(Ω) ≔ lim
⟶

𝒦︀(Ω)

𝒟︀𝐾 .

Note that if 𝐾1 ⊂ 𝐾2 are two compact sets the topology of 𝒟︀𝐾1
 is the same as the subspace topology 

of 𝒟︀𝐾1
⊂ 𝒟︀𝐾2

. We conclude that the limit in the definition is strict. Also 𝒟︀𝐾1
 is closed in 𝒟︀𝐾2

. In 

particular keep in mind that a subset 𝐴 ⊂ 𝒟︀(Ω) is limited if and only if 𝐴 is contained and limited in 

some 𝒟︀𝐾 . Also if (𝐾𝑛) is any exaustion of Ω then 𝒟︀(Ω) ≅ lim 𝒟︀𝐾𝑛
, and note that as vector spaces 

𝒟︀(Ω) is just 𝐶∞
𝑐 (Ω).

Proposition 1.5. The topology on 𝒟︀(Ω) is not metrizable.

Proof. Fix an exhaustion (𝐾𝑛) of Ω. Then 𝒟︀(Ω) is the union of a countable family of closed sets

𝒟︀(Ω) = ⋃
𝑛

𝒟︀𝐾𝑛
.

Since 𝒟︀𝐾𝑛
 is a proper subspace it has empty interior. If 𝒟︀(Ω) were metrizable then it would be 

complete by the properties of strict limits, but then Baire’s Theorem would imply that also 𝒟︀(Ω) has 

empty interior, a contradiction. □
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Definition 1.6. We define the LCTVS of smooth functions ℰ︀(Ω) as the space 𝐶∞(Ω) equipped with 

the seminorms

𝑝𝐾,𝑚(𝑓) = max
|𝛼|≤𝑚

‖𝜕𝛼𝑓‖𝐾,∞, 𝐾 ∈ 𝒦︀(Ω), 𝑚 ∈ ℤ≥0

Observation 1.7. A sequence (𝑓𝑛) ⊂ ℰ︀(Ω) converges if and only if every derivative is convergent on 

compact subsets.

Proposition 1.8. ℰ︀(Ω) is a complete metrizable LCTVS, and therefore Frechét.

Proof. Choose an exhaustion (𝐾𝑛) of Ω, then is it easy to see that the countable family of seminorms 

{𝑝𝐾𝑛,𝑚}
𝑛,𝑚≥0

 induce the topology on ℰ︀(Ω) and therefore is metrizable. For completeness the proof 

is similar to Proposition 1.2. □

Proposition 1.9. We have a continuos inclusion 𝒟︀(Ω) ↪︎ ℰ︀(Ω). Moreover the space 𝒟︀(Ω) ⊂ ℰ︀(Ω) is 

dense with respect to the topology on ℰ︀(Ω).

Proof. By universal property, fix a compact 𝐾 ∈ 𝒦︀(Ω) and consider 𝒟︀𝐾 ↪︎ ℰ︀(Ω). This is continuos 

since for every 𝑚 ≥ 0 and 𝐾′ ∈ 𝒦︀(Ω) we have

𝑝𝐾′,𝑚(𝑓) ≤ 𝑝𝑚(𝑓) for all 𝑓 ∈ 𝒟︀𝐾

Fix an exhaustion (𝐾𝑛) and a family of smooth bump functions (𝜂𝑛), with 𝜂𝑛 = 1 on 𝐾𝑛. Then for 

every 𝑓 ∈ ℰ︀(Ω) the sequence (𝜂𝑛𝑓) is contained in 𝒟︀(Ω) and 𝜂𝑛𝑓 ⟶
ℰ︀(Ω)

𝑓 . □

Notation. Given 𝛼 = (𝛼1, …, 𝛼𝑁), 𝛽 = (𝛽1, …, 𝛽𝑁) multindices we denote

(𝛼
𝛽

) ≔ (𝛼1
𝛽1

) ⋅ … ⋅ (𝛼𝑁
𝛽𝑁

).

We say that 𝛽 ≤ 𝛼 if 𝛽𝑖 ≤ 𝛼𝑖 for every 𝑖 = 1, …, 𝑁 .

Lemma 1.10. Let 𝛼 = (𝛼1, …, 𝛼𝑁) be a multindex and 𝑓, 𝑔 ∈ 𝐶 |𝛼|(Ω), then

𝜕𝛼(𝑓𝑔) = ∑
𝛽≤𝛼

(𝛼
𝛽

)𝜕𝛽𝑓 𝜕𝛼−𝛽𝑔.

Moreover we have

∑
𝛽≤𝛼

(𝛼
𝛽

) = 2|𝛼|.

Proof. A boring induction. □

Lemma 1.11. (Leibniz estimate) Let 𝑓, 𝑔 ∈ 𝐶𝑚(Ω), for every |𝛼| ≤ 𝑚 we have the following estimate:

|𝜕𝛼(𝑓𝑔)(𝑥)| ≤ 2|𝛼| max
𝛽≤𝛼

|𝜕𝛽𝑓(𝑥)| max
𝛽≤𝛼

|𝜕𝛽𝑔(𝑥)|

Proof. We use the previous lemma:

|𝜕𝛼(𝑓𝑔)(𝑥)| ≤ ∑
𝛽≤𝛼

(𝛼
𝛽

) |𝜕𝛽𝑓(𝑥)| |𝜕𝛼−𝛽𝑔(𝑥)| ≤ max
𝛽≤𝛼

|𝜕𝛽𝑓(𝑥)| max
𝛽≤𝛼

|𝜕𝛽𝑔(𝑥)| ∑
𝛽≤𝛼

(𝛼
𝛽

)

= 2|𝛼| max
𝛽≤𝛼

|𝜕𝛽𝑓(𝑥)| max
𝛽≤𝛼

|𝜕𝛽𝑔(𝑥)|

□
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Definition 1.12. Let {Ω𝑖}𝑖∈𝐼  be an open covering of Ω, we say that a family {𝜂𝑖}𝑖∈𝐼  is a smooth 

partition of unity subordinate to {Ω𝑖}𝑖∈𝐼  if

1. each 𝜂𝑖 ∈ 𝐶∞(Ω)
2. supp 𝜂𝑖 ⊂ Ω𝑖 for all 𝑖
3. the family of supports is locally finite, i.e. every point 𝑥 ∈ Ω has a neighborhood 𝑈  such that the set

{𝑖 ∈ 𝐼 | supp 𝜂𝑖 ∩ 𝑈 ≠ ∅} ⊂ 𝐼

is finite

4. ∑𝑖∈𝐼 𝜂𝑖(𝑥) = 1 for all 𝑥 ∈ Ω

Theorem 1.13. Smooth partitions of unity always exists.

Proof. Omitted since is a classical result. The main ingredient in the proof is the paracompacteness of 

Ω. Note that in our use cases usually one can construct by hand a partition of unity. □

The following theorem gives a family of seminorms that generates a topology equal to the limit one.

Theorem 1.14. (Gårding-Lions seminorms) For every pair 𝜎, 𝜇 : Ω → ℝ>0 of continuos functions we 

define the seminorm on 𝒟︀(Ω)

𝑞𝜎,𝜇(𝑓) = sup
𝑥∈Ω

|𝛼| ≤𝜇(𝑥)

|𝜎(𝑥)𝜕𝛼𝑓(𝑥)|

by varying 𝜎, 𝜇 we obtain a family of seminorms that generates the topology on 𝒟︀(Ω).

Proof. We denote by 𝜏∞ the standard topology on 𝒟︀(Ω) and with 𝜏𝑞 the topology generated by the 

seminorms. To show 𝜏𝑞 ⊂ 𝜏∞ we use the universal property of inductive limits and show that for all 

𝐾 ∈ 𝒦︀(Ω) the inclusion 𝒟︀𝐾 ↪︎ (𝒟︀(Ω), 𝜏𝑞) is continuos. Fix a seminorm 𝑞𝜎,𝜇 on 𝒟︀(Ω), for every 𝑓 ∈
𝒟︀𝐾  we have

𝑞𝜎,𝜇(𝑓) = sup
𝑥∈Ω

|𝛼| ≤𝜇(𝑥)

|𝜎(𝑥)𝜕𝛼𝑓(𝑥)| ≤ (max
𝐾

𝜎) max
|𝛼| ≤⌈max𝐾 𝜇⌉

‖𝜕𝛼𝑓‖∞ = (max
𝐾

𝜎)𝑝⌈max𝐾 𝜇⌉(𝑓).

For the converse let 𝜑 : Ω → [0, +∞) be a continuos proper map (the preimage of compact sets is 

compact). We define

𝐾𝑛 ≔ 𝜑−1([𝑛 − 1, 𝑛 + 1]) for 𝑛 ≥ 0

𝑈𝑛 ≔ 𝜑−1((𝑛 − 1, 𝑛 + 1)) for 𝑛 ≥ 0

and note that ⋃𝑛 𝑈𝑛 = ⋃𝑛 𝐾𝑛 = Ω, 𝑈𝑛 ⊂ 𝐾𝑛 ⊂ Ω for every 𝑛 and 𝑈𝑛 ∩ 𝑈𝑚 ≠ ∅ if and only if |𝑛 −
𝑚| ≤ 1. Fix an open, convex and balanced neighborhood of zero 𝑉 ∈ 𝜏∞, for all 𝑛 we have that 𝑉 ∩
𝒟︀𝐾𝑛

 is an open set in 𝒟︀𝐾𝑛
 and therefore there exists 𝑚𝑛, 𝛿𝑛 such that

{𝜑 ∈ 𝒟︀𝐾𝑛
| 𝑝𝑚𝑛

(𝜑) < 𝛿𝑛} ⊂ 𝑉 ∩ 𝒟︀𝐾𝑛
.

We wanna patch the constants 𝑚𝑛, 𝛿𝑛 together, in order to achieve this take a smooth partition of 

unity (𝜂𝑛) subordinate to (𝑈𝑛). Now define:

𝜇(𝑥) ≔ ∑
𝑛≥0

𝜂𝑛(𝑥) ⋅ max
|𝑗−𝑛| ≤1

(𝑚𝑗)

𝜎(𝑥) ≔ ∑
𝑛≥0

𝜂𝑛(𝑥) ⋅ max
|𝑗−𝑛| ≤1

(
2𝑚𝑗+𝑗+1𝑝𝑚𝑗,𝐾𝑗

(𝜂𝑗)
𝛿𝑗

)
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Note that if 𝑥 ∈ 𝐾𝑛 then

𝜇(𝑥) ≥ 𝑚𝑛

𝜎(𝑥) ≥
2𝑚𝑛+𝑛+1𝑝𝑚𝑛,𝐾𝑛

(𝜂𝑛)
𝛿𝑛

Now take any 𝑓 ∈ 𝒟︀(Ω) with 𝑞𝜎,𝜇(𝑓) < 1, there exists 𝑛 such that supp 𝑓 ⊂ 𝑈0 ∪ … ∪ 𝑈𝑛 and

𝑓 = 𝜂0𝑓 + … + 𝜂𝑛𝑓

with 𝜂𝑛𝑓 ∈ 𝒟︀𝐾𝑛
 for every 𝑛 = 0, …, 𝑛. Then by Leibniz estimate (Lemma 1.11)

𝑝𝑚𝑛
(𝜂𝑛𝑓) = sup

𝑥∈𝐾𝑛
|𝛼| ≤𝑚𝑛

|𝜕𝛼(𝜂𝑛𝑓)(𝑥) ≤ 2|𝑚𝑛|𝑝𝑚𝑛,𝐾𝑛
(𝜂𝑛)𝑝𝑚𝑛,𝐾𝑛

(𝑓)

And also

1 > 𝑞𝜎,𝜇(𝑓) = sup
𝑥∈Ω

|𝛼| ≤𝜇(𝑥)

|𝜎(𝑥)𝜕𝛼𝑓(𝑥)| ≥ sup
𝑥∈𝐾𝑛

|𝛼| ≤𝜇(𝑥)

|𝜎(𝑥)𝜕𝛼𝑓(𝑥)| ≥
2𝑚𝑛+𝑛+1𝑝𝑚𝑛,𝐾𝑛

(𝜂𝑛)
𝛿𝑛

sup
𝑥∈𝐾𝑛

|𝛼|≤𝑚𝑛

|𝜕𝛼𝑓(𝑥)|

where sup𝑥∈𝐾𝑛
|𝛼|≤𝑚𝑛

|𝜕𝛼𝑓(𝑥)| = 𝑝𝑚𝑛
(𝑓). By the last two inequalities:

𝑝𝑚𝑛
(𝜂𝑛𝑓) ≤ 2|𝑚𝑛|𝑝𝑚𝑛

(𝜂𝑛)𝑝𝑚𝑛
(𝑓) ≤

2|𝑚𝑛|𝑝𝑚𝑛,𝐾𝑛
(𝜂𝑛)𝛿𝑛

2𝑚𝑛+𝑛+1𝑝𝑚𝑛,𝐾𝑛
(𝜂𝑛)

= 𝛿𝑛
2𝑛+1

this implies that 𝜂𝑛𝑓 ∈ 2−(𝑛+1)𝑉 ∩ 𝒟︀𝐾𝑛
. Finally note that:

𝑓 = 𝜂0𝑓 + … + 𝜂𝑛𝑓 ∈ 1
2
𝑉 + … + 1

2𝑛+1 𝑉 ⊂ (1
2

+ … + 1
2𝑛+1 )𝑉 = (1 − 1

2𝑛+1 )𝑉 ⊂ 𝑉

Where we used the fact that, since 𝑉  is convex, 𝑎𝑉 + 𝑏𝑉 ⊆ (𝑎 + 𝑏)𝑉  for every 𝑎, 𝑏 ∈ ℝ≥0. This 

implies {𝑓 ∈ 𝒟︀(Ω)| 𝑞𝜎,𝜇(𝑓) < 1} ⊂ 𝑉  and we conclude 𝜏∞ ⊂ 𝜏𝑞 . □

Definition 1.15. We define the space of distributions 𝒟︀′(Ω) as the topological dual space of 𝒟︀(Ω).

𝒟︀′(Ω) ≔ {𝑢 : 𝒟︀(Ω) → 𝑅 where 𝑢 is linear and continuos}

We also define the space of compactly supported distributions (the name will be clear afterword)

ℰ︀′(Ω) ≔ {𝑢 : ℰ︀(Ω) → 𝑅 where 𝑢 is linear and continuos}

Notation. We adopt the duality notation: for 𝑢 ∈ 𝒟︀′(Ω) and 𝜑 ∈ 𝒟︀(Ω) we write ⟨𝑢, 𝜑⟩ instead of 

𝑢(𝜑).

Proposition 1.16. For a linear map 𝑢 : 𝒟︀(Ω) → ℝ the following are equivalent:

1. 𝑢 is continuos, i.e. is a distribution

2. for all 𝐾 ∈ 𝒦︀(Ω), 𝑢|𝒟︀𝑘
 is continuos

3. for all 𝐾 ∈ 𝒦︀(Ω), there exists 𝑚 = 𝑚(𝐾), 𝐶 = 𝐶(𝐾), such that | ⟨𝑢, 𝜑⟩| ≤ 𝐶𝑝𝑚(𝜑) for all 𝜑 ∈ 𝒟︀𝐾
4. there exists 𝜎, 𝜇 ∈ 𝐶0(Ω)+ such that ⟨𝑢, 𝜑⟩ ≤ 𝑞𝜎,𝜇(𝜑) for all 𝜑 ∈ 𝒟︀(Ω)
5. for all sequences (𝜑𝑛) converging to zero in 𝒟︀(Ω) we have ⟨𝑢, 𝜑𝑛⟩ ⟶ 0
6. for all compact sets 𝐾 ∈ 𝒦︀(Ω) and all sequences (𝜑𝑛) in 𝒟︀𝐾  converging to zero we have 

⟨𝑢, 𝜑𝑛⟩ ⟶ 0

Proof. (1) is equivalent to (2) by the universal property of inductive limits. Statement (3) is just (2) 

stated in terms of seminorms. Statement (4) is continuity stated in terms of Gårding-Lions seminorms. 
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Statement (6) is equivalent to (2) because 𝒟︀𝐾  is a metric space and is also equivalent to (5) since a 

convergin sequence (𝜑𝑛) in 𝒟︀(Ω) is bounded, and so (𝜑𝑛) must lie 𝒟︀𝐾  for some 𝐾 ∈ 𝒦︀(Ω). □

It is natural to choose a topology for the space of distributions. Recall:

Definition 1.17. Let X be a vector space, let 𝑋∗ be the dual of 𝑋 and 𝐹 ⊂ 𝑋∗ a subspace. We define 

the weak topology associated to 𝐹 , denoted 𝜎(𝑋, 𝐹), as the smallest topology on 𝑋 making all the 

maps in 𝐹  continuos.

Clearly with this topology all maps in 𝐹  are continuos. It is remarkable that a simple excercise in linear 

algebra shows:

Exercise 1.18. The topological dual of (𝑋, 𝜎(𝑋, 𝐹)) is indeed 𝐹 .

We can then define a natural topology on 𝒟︀′(Ω):

Definition 1.19. We define the topology on 𝒟︀′(Ω) as the weak topology associated with the family 

of functionals 𝒟︀(Ω), seen as embedded into the bidual space of 𝒟︀(Ω). More explicitly it is the weak 

topology associated to the functionals

𝜑̃ : 𝒟︀′(Ω) → ℝ
𝑢 ↦ ⟨𝑢, 𝜑⟩

for all 𝜑 ∈ 𝒟︀(Ω).

Now we will make a simple, but powerful, observation.

Proposition 1.20. Let 𝑇 : 𝒟︀(Ω) → 𝒟︀(Ω) be a linear continuos map. Then the transpose 𝑇 ∗ :
𝒟︀′(Ω) → 𝒟︀′(Ω) is continuos.

Proof. We shall use the universal property of weak topology. Fix 𝜑 ∈ 𝒟︀(Ω), we prove that the map

𝜑̃ ∘ 𝑇 ∗ : 𝒟︀′(Ω) → ℝ
𝑢 ↦ ⟨𝑢, 𝑇 (𝜑)⟩

is continuos. But this is just the functional on 𝒟︀(Ω) represented by 𝑇 (𝜑) and is therefore continuos 

by the definition of the weak topology on 𝒟︀′(Ω). □

Proposition 1.21. By transposing the inclusion 𝒟︀(Ω) ↪︎ ℰ︀(Ω) we obtain a (TODO continuos) 

injection

ℰ︀′(Ω) ↪︎ 𝒟︀′(Ω)

Proof. Suppose 𝑢 ∈ ℰ︀′(Ω) has the property that ⟨𝑢, 𝜑⟩ = 0 for all 𝜑 ∈ 𝒟︀(Ω), the we must show that 

𝑢 = 0. But this follows from the density of test functions in ℰ︀(Ω), Proposition 1.9. □

We can embed all “reasonable” functions in 𝒟︀′(Ω), this is why distributions are called generalized 

functions. Recall that the space 𝐿1
loc(Ω) is topologized via the seminorms

{𝑝𝐾(𝑓) = ‖𝑓‖𝐿1(𝐾) | 𝐾 ∈ 𝒦︀(Ω)}.

Theorem 1.22. There is a continuos embedding

𝐿1
loc(Ω) ↪︎ 𝒟︀′(Ω)

𝑓 ↦ ∫
Ω

𝑓 ⋅ −

Proof. To show continuity we use the universal property. Fix 𝜑 ∈ 𝒟︀(Ω) and consider
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𝐿1
loc → ℝ

𝑓 ↦ ∫
Ω

𝑓𝜑

We have

|∫
Ω

𝑓𝜑| ≤ ‖𝑓‖𝐿1(supp𝜑)‖𝜑‖∞ = 𝑝supp𝜑(𝑓)‖𝜑‖∞.

and this shows that the functional is continuos over 𝐿1
loc. To show injectiveness we shall prove that

∫
Ω

𝑓𝜑 = 0  for all 𝜑 ∈ 𝒟︀(Ω) ⇒ 𝑓 = 0 a.e.

but this is famous result known as “fundamental Lemma of calculus of variations”. □

Exercise 1.23. Show that the following maps are continous:

𝒟︀(Ω) × 𝒟︀(Ω) → 𝒟︀(Ω)
(𝑓, 𝑔) ↦ 𝑓𝑔

ℰ︀(Ω) × ℰ︀(Ω) → ℰ︀(Ω)
(𝑓, 𝑔) ↦ 𝑓𝑔

ℰ︀(Ω) × 𝒟︀(Ω) → 𝒟︀(Ω)
(𝑓, 𝑔) ↦ 𝑓𝑔

Exercise 1.24. Recall that for a compact set 𝐾 ∈ 𝒦︀(Ω) the space 𝐶0(𝐾) is a Banach space with the 

supremum norm, and we can define a topology on 𝐶0
𝑐 (Ω) by

𝐶0
𝑐 (Ω) ≔ lim

⟶
𝒦︀(Ω)

𝐶0(𝐾)

where the limits in inteded in the category of topological spaces (for the sake of the excercise). 

Show that the map

ℝ × 𝐶0
𝑐 (Ω) → 𝐶0

𝑐 (Ω)
(𝜆, 𝑓) ↦ 𝜆𝑓

is continuos, and determine if the summation map is continuos:

𝐶0
𝑐 (Ω) × 𝐶0

𝑐 (Ω) → 𝐶0
𝑐 (Ω)

(𝑓, 𝑔) ↦ 𝑓 + 𝑔

1.2. Operations on distributions

Thanks to Proposition 1.20 we can extend an uncountable amount of operations on 𝒟︀(Ω) to the 

distributions. It it left as an exercise to verify that such operations on 𝒟︀(Ω) are continuos.

Definition 1.25. (multiplication by smooth functions) Fix 𝑓 ∈ ℰ︀(Ω), we define multiplication by 𝑓  as 

the transpose of

𝑀𝑓 : 𝒟︀(Ω) → 𝒟︀(Ω)

𝜑 ↦ 𝜑𝑓
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Explicitly we have ⟨𝑓𝑢, 𝜑⟩ = ⟨𝑢, 𝑓𝜑⟩.

Definition 1.26. (derivative) Fix a multindex 𝛼. The derivative operator is the transpose of

𝜕𝛼 : 𝒟︀(Ω) → 𝒟︀(Ω)
𝜑 ↦ 𝜕𝛼𝜑

multiplied by (−1)|𝛼|. Explicitly we have ⟨𝜕𝛼𝑢, 𝜑⟩ = (−1)|𝛼| ⟨𝑢, 𝜕𝛼𝜑⟩.

The reason behind the change of sign is to generalize the known formula of integration by parts, in 

fact for every 𝑓 ∈ 𝐶1(Ω) and 𝜑 ∈ 𝒟︀(Ω):

∫
Ω

𝑓𝜕𝑖𝜑 = − ∫
Ω

𝜕𝑖𝑓𝜑

where the integral on 𝜕Ω is zero beacuse 𝜑 has compact support. Note how all distributions have 

infinite derivatives. As such we can derive all 𝐿1
loc functions. Also we can generalize known construc

tions:

Example 1.27. Sobolev functions 𝑊 1,2(Ω) are just 𝐿2 functions with distributional derivative in 𝐿2. 

A non trivial result shows that we can define the space of bounded variation functions BV(Ω) as the 

space of 𝐿1 functions with a Borel measure as distributional derivative.

1.3. Local nature of distributions

Sheaves are general objects used to track data on topological spaces that can be restricted and glued. 

Their use was popularized by Grothendieck who used them systematically in algebraic geometry. We 

shall prove that distributions form a sheaf.

Definition 1.28. (Presheaves) A presheaf ℱ︀ of vector spaces on a topological space 𝑋 is the datum of:

• a vector space ℱ︀(𝑈) for every open set 𝑈
• a linear restriction map 𝜌𝑈

𝑉 : ℱ︀(𝑈) → ℱ︀(𝑉 ) for all open sets 𝑉 ⊂ 𝑈

Such that for all triples 𝑊 ⊂ 𝑉 ⊂ 𝑈  we have 𝜌𝑈
𝑊 = 𝜌𝑈

𝑉 𝜌𝑉
𝑊 , in other words we have a commutative 

triangle

𝜌𝑈
𝑊

𝜌𝑈
𝑉 𝜌𝑉

𝑊

ℱ︀(𝑈)

ℱ︀(𝑉 )

ℱ︀(𝑊)

Notation. If 𝜑 ∈ ℱ︀(𝑈) we write 𝜑|𝑉  for 𝜌𝑈
𝑉 (𝜑).

Definition 1.29. (Sheaves) A presheaf ℱ︀ is called separated if for every open set 𝑈  and every open 

covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 we have

• if 𝜑 ∈ ℱ︀(𝑈) and 𝜑|𝑈𝑖
= 0 for all 𝑖 then 𝜑 = 0.

If ℱ︀ satisfies also

• for a datum {𝜑𝑖}𝑖∈𝐼  with 𝜑𝑖 ∈ ℱ︀(𝑈𝑖), such that 𝜑𝑖|𝑈𝑗
= 𝜑𝑗|𝑈𝑖

 for all 𝑖, 𝑗 ∈ 𝐼 , there exist a (unique 

by the previous property) 𝜑 ∈ ℱ︀(𝑈) such that 𝜑|𝑈𝑖
= 𝜑𝑖 for all 𝑖 ∈ 𝐼 ;

then ℱ︀ is called a sheaf.

Example 1.30. For all 0 ≤ 𝑚 ≤ ∞, 𝐶𝑚 is a sheaf on ℝ𝑛. On the other hand bounded continuous 

functions are a separated presheaf but not a sheaf. Similarly 𝐿1 is not a sheaf but 𝐿1
loc is. In a certain 
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sense, we can define 𝐿1
loc as the smallest sheaf containing 𝐿1. This process is standard and is known 

as sheafification.

What distinguishes presheaves from sheaves is the local nature of the objects encoded.

Proposition 1.31. 𝒟︀′ is a presheaf on ℝ𝑛.

Proof. Given 𝑉 ⊂ 𝑈  and 𝑢 ∈ 𝒟︀′(𝑈), 𝑢 is naturally an element of 𝒟︀′(𝑉 ) since 𝒟︀(𝑉 ) ⊂ 𝒟︀(𝑈). □

Lemma 1.32. Let Ω = ⋃ Ω𝑖 be an open covering. Then

𝒟︀(Ω) = ⨁
𝑖

𝒟︀(Ω𝑖),

where the direct sum is intended as sum of vector subspaces.

Proof. Let 𝜑 ∈ 𝒟︀(Ω), by compacteness there exist Ω1, …, Ω𝑛 elements of the covering such that 

supp(𝜑) ⊂ Ω1 ∪ … ∪ Ω𝑛. Now let 𝜂1, …, 𝜂𝑛 be a smooth partition of unity subordinate to Ω1 ∪ … ∪
Ω𝑛, clearly

𝜑 = 𝜂1𝜑 + … + 𝜂𝑛𝜑

and each 𝜂𝑘𝜑 is an element of 𝒟︀(Ω𝑘). □

Corollary 1.33. 𝒟︀′ is a separated presheaf.

Proposition 1.34. 𝒟︀′ is a sheaf.

Proof. Let Ω = ⋃𝑖 Ω𝑖 be an open covering. Let {𝑢𝑖} be a collection of distributions with 𝑢𝑖 ∈ 𝒟︀′(Ω𝑖) 
that satisfies the compatibility condition of sheaf definition. Given 𝜑 ∈ 𝒟︀(Ω) we can decopose 𝜑 

as in the lemma as a sum 𝜑 = 𝜑𝑖1
+ … + 𝜑𝑖𝑛

 with each 𝜑𝑖𝑟
∈ 𝒟︀′(Ω𝑖𝑟

). Now we define ⟨𝑢, 𝜑⟩ ≔
⟨𝑢𝑖1

, 𝜑𝑖1
⟩ +… + ⟨𝑢𝑖𝑛

, 𝜑𝑖𝑛
⟩, we just need to check that it is well defined. Let 𝜑 = 𝜑𝑗1

+ … + 𝜑𝑗𝑛
 be 

another decomposition of 𝜑, we should have

∑
𝑛

𝑟=1
⟨𝑢𝑖𝑟

, 𝜑𝑖𝑟
⟩ = ∑

𝑛

𝑟=1
⟨𝑢𝑗𝑟

, 𝜑𝑗𝑟
⟩ .

The case 𝑛 = 2 is easy because 𝜑𝑖1
= 𝜑𝑗1

= 1 on Ω1 \ Ω2, similarly 𝜑𝑖2
= 𝜑𝑗2

= 1 on Ω2 \ Ω1 and 

on Ω1 ∩ Ω2 the distributions 𝑢1, 𝑢2 coincide. The general case follows by induction.

Let now Ω𝑗1
, …, Ω𝑗𝑚

 another covering of supp 𝜑 and 𝜑 = 𝜑𝑘1
+ … + 𝜑𝑘𝑚

 a decomposition. We 

look for a common refinement. Let 𝜂𝑟,𝑠 be a smooth partition of unity associated with the covering 

⋃𝑟,𝑠 Ω𝑖𝑟
∩ Ω𝑘𝑠

, then

∑
𝑛

𝑟=1
⟨𝑢𝑖𝑟

, 𝜑𝑖𝑟
⟩ = ∑

𝑛

𝑟=1
⟨𝑢𝑖𝑟

, ∑
𝑚

𝑠=1
𝜑𝑖𝑟

𝜂𝑟,𝑠⟩ = ∑
𝑛,𝑚

𝑟,𝑠=1
⟨𝑢𝑖𝑟

, 𝜑𝑖𝑟
𝜂𝑟,𝑠⟩

∑
𝑛

𝑠=1
⟨𝑢𝑘𝑠

, 𝜑𝑘𝑠
⟩ = ∑

𝑛

𝑠=1
⟨𝑢𝑘𝑠

, ∑
𝑚

𝑟=1
𝜑𝑘𝑠

𝜂𝑟,𝑠⟩ = ∑
𝑛,𝑚

𝑟,𝑠=1
⟨𝑢𝑘𝑠

, 𝜑𝑘𝑠
𝜂𝑟,𝑠⟩

Now note that 𝜑𝑖𝑟
𝜂𝑟,𝑠, 𝜑𝑘𝑠

𝜂𝑟,𝑠 are both supported in Ω𝑖𝑟
∩ Ω𝑗𝑠

 and by compatibility of distributions 

𝑢𝑖𝑟
= 𝑢𝑘𝑠

 on Ω𝑖𝑟
∩ Ω𝑗𝑠

. With the help of the previous part we deduce the right expressions are equal 

by invariance of the chosen decomposition of 𝜑 (for a fixed open covering). □

Observation 1.35. The fact that 𝒟︀′ is a sheaf let us define easily the notion of distributions on 

manifolds. Let 𝑀  be a smooth real manifold, we define canonically 𝒟︀(𝑈) for every affine chart 𝑈 . Since 

affine charts form a base for the topology on 𝑀  the sheaf axioms imply there exists a unique sheaf 𝒟︀′ 

defined on the topological space 𝑀 . The reader can check that elements of 𝒟︀′(𝑉 ) acts naturally on 
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elements of 𝐶∞
0 (𝑉 ) for every open set 𝑉 ⊂ 𝑀  (not necessarily affine). This process is analogous to 

the construction of the structure sheaf on an affine scheme in algebraic geometry.

1.4. Order of a distribution

Definition 1.36. We say that a distribution 𝑢 ∈ 𝒟︀′(Ω) has order equal or less than 𝑚 if for all 𝐾 ∈
𝒦︀(Ω) the exist 𝐶 = 𝐶(𝐾) such that

|𝑢(𝑓)| ≤ 𝐶𝑝𝑚(𝑓) for every 𝑓 ∈ 𝒟︀𝐾 .

The minimum of such integers is called the order of 𝑢. If there is not such 𝑚 we say that 𝑢 has infinite 

order.

Example 1.37. Let 𝑥0 ∈ Ω, the Dirac delta ⟨𝛿𝑥0
, 𝜑⟩ = 𝜑(𝑥0) is a distribution of order 0. In general 

𝜑 ↦ 𝜕𝛼𝜑(𝑥0) has order |𝛼|.

Example 1.38. Let (𝑥𝑛) be a sequence in Ω that escapes from all compact sets and let 𝛼 be a non-zero 

multindex. For 𝜑 ∈ 𝒟︀(Ω) define

⟨𝑢, 𝜑⟩ ≔ ∑
∞

𝑛=1
𝜕𝑛⋅𝛼𝜑(𝑥𝑛).

It is well defined beacuse for every 𝜑 the sum is actually finite. It easy to see that 𝑢 is a distribution 

and has infinite order.

Theorem 1.39. Let 𝑢 ∈ 𝒟︀′(Ω) be a positive distribution, that is ⟨𝑢, 𝜑⟩ ≥ 0 for all 𝜑 ≥ 0. If 𝑢 has order 

zero then is a measure.

Proof. Fix 𝐾 ∈ 𝒦︀(Ω), by hypothesis there exists a 𝐶 > 0 such that | ⟨𝑢, 𝜑⟩| ≤ 𝐶‖𝜑‖∞ for all 𝜑 ∈ 𝒟︀𝐾 . 

Take now 𝜂 ∈ 𝒟︀(Ω) such that:

• 𝜂|𝐾 = 1
• 0 ≤ 𝜂 ≤ 1 in Ω

and by the positivity hypothesis

⟨𝑢, 𝜑 + ‖𝜑‖∞𝜂⟩ ≥ 0 and ⟨𝑢, 𝜑 − ‖𝜑‖∞𝜂⟩ ≤ 0 ⇒ | ⟨𝑢, 𝜑⟩| ≤ ⟨𝑢, 𝜂⟩ ‖𝜑‖∞

— TODO

This implies that 𝑢 : 𝒟︀𝐾 → ℝ is continuos with respect to the supremum norm by Hann-Banach we 

can extend 𝑢 on 𝐶0(𝐾). By the characterization of the dual space of 𝐶0(𝐾) we conclude that there 

exists a measure 𝜇 on 𝐾 such that

⟨𝑢, 𝜑⟩ = ∫
𝐾

𝜑𝑑𝜇 for all 𝜑 ∈ 𝒟︀𝐾

□

1.5. Sequences of distributions

Proposition 1.40. Let (𝑢𝑛) be a sequence in 𝒟︀′(Ω) converging pointwise: for all 𝜑 ∈ 𝒟︀(Ω) the 

sequence ⟨𝑢𝑛, 𝜑⟩ is convergent in ℝ. Then the map

𝑢 : 𝒟︀(Ω) → ℝ
𝜑 ↦ lim

𝑛→∞
⟨𝑢𝑛, 𝜑⟩

is linear and continuos and so defines a distribution.
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Proof. The linearity is clear. To prove continuity fix a compact set 𝐾 ∈ 𝒦︀(Ω) an consider 𝑢|𝒟︀𝐾
. Since 

the set {⟨𝑢𝑛, 𝜑⟩| 𝜑 ∈ 𝒟︀𝐾} is bounded and 𝒟︀𝐾  is a complete metric space we can apply the Banach-

Steinhaus Theorem and conclude that the sequence (𝑢𝑛) is uniformly continuos on 𝒟︀𝐾 . This implies 

that exists 𝐶 = 𝐶(𝐾), 𝑚 = 𝑚(𝐾) such that:

| ⟨𝑢𝑛, 𝜑⟩| ≤ 𝐶𝑝𝑚(𝜑) for all 𝜑 ∈ 𝒟︀𝐾 and all 𝑛 ∈ ℤ>0 (1)

and by passing to the limit on the left we find the required inequality. □

Corollary 1.41. In the setting of the preceding proposition, if (𝜑𝑛) is a sequence converging to 𝜑 in 

𝒟︀(Ω) then ⟨𝑢𝑛, 𝜑𝑛⟩ → ⟨𝑢, 𝜑⟩.

Proof. Since (𝜑𝑛) is convergent the exist a 𝐾 ∈ 𝒦︀(Ω) with supp 𝜑𝑛 ⊆ 𝐾 for all 𝑛. We have

| ⟨𝑢𝑛, 𝜑𝑛⟩ − ⟨𝑢, 𝜑⟩| ≤ | ⟨𝑢𝑛, 𝜑𝑛⟩ − ⟨𝑢𝑛, 𝜑⟩| + | ⟨𝑢𝑛, 𝜑⟩ − ⟨𝑢, 𝜑⟩|.

The second term goes to zero by definition of 𝑢, while for the first we apply the inequality 1

| ⟨𝑢𝑛, 𝜑 − 𝜑𝑛⟩| ≤ 𝐶𝑝𝑚(𝜑 − 𝜑𝑛) ⟶
𝑛→∞

0

where we used the fact that 𝜑𝑛 ⟶
𝒟︀(Ω)

𝜑. □

1.6. Support

We can extend the notion of support to distribution. Recall that the support is define for 𝐿1
loc functions:

Definition 1.42. Let 𝑓 ∈ 𝐿1
loc(Ω), we define the support as the complement of the maximal open set 

Ω0 ⊂ Ω with 𝑓|Ω0
= 0 a.e., that is Ω0 is the union of all open sets 𝑈 ⊂ Ω with 𝑓|𝑈 = 0 a.e.

It is slightly non trivial that 𝑓|Ω0
= 0 a.e. because Ω0 can be the union of a uncountable family of 

open sets. For a proof we refer to [2]. Clearly if 𝑓  is continuos then this new definitions generalizes 

the classical one. Now we move onto distributions:

Definition 1.43. Let 𝑢 ∈ 𝒟︀′(Ω), we define the support as the complement of the maximal open set 

Ω0 where 𝑢|Ω0
= 0. That is, let {𝑈𝑖} be the family of open subsets 𝑈𝑖 ⊂ Ω with 𝑢|𝑈𝑖

= 0, then Ω0 ≔
⋃𝑖 𝑈𝑖 and supp 𝑢 ≔ Ω \ Ω0.

The fact that 𝑢|Ω0
= 0 follows from the fact that distributions form separated presheaf by Corollary 

1.33.

Example 1.44. The support of 𝛿𝑥0
 is just {𝑥0}.

Proposition 1.45. Let 𝑢 ∈ 𝒟︀′(Ω), 𝐾 ∈ 𝒦︀(Ω) and consider the following statements:

1. supp 𝑢 ⊂ Int(𝐾)
2. there exists 𝐶 > 0, 𝑚 ∈ ℤ≥0 such that | ⟨𝑢, 𝜑⟩| ≤ 𝐶𝑝𝑚,𝐾(𝜑) for all 𝜑 ∈ 𝒟︀(Ω)
3. supp 𝑢 ⊂ 𝐾

then (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2) Since supp 𝑢 is closed and supp 𝑢 ⊂ 𝐾 then it is compact. We can find an open set 

𝑈  with supp 𝑢 ⊂ 𝑈 ⊂ 𝐾 and a bump function 𝜓 with

• 0 ≤ 𝜓 ≤ 1
• 𝜓 = 1 on 𝑈
• supp 𝜓 ⊂ 𝐾

This implies that for any 𝜑 ∈ 𝒟︀(Ω)

{𝑥 ∈ Ω | (1 − 𝜓(𝑥)𝜑(𝑥) ≠ 0} ⊂ Ω \ 𝑈 ⊂ Ω \ supp 𝑢
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and therefore

0 = ⟨𝑢, (1 − 𝜓)𝜑⟩ ⇒ ⟨𝑢, 𝜑⟩ = ⟨𝑢, 𝜓𝜑⟩ .

Since 𝜓𝜑 ∈ 𝒟︀𝐾 , by continuity of 𝑢 there exists 𝐶 > 0, 𝑚 ∈ ℤ≥0 with

| ⟨𝑢, 𝜑⟩| = | ⟨𝑢, 𝜑𝜓⟩| ≤ 𝐶𝑝𝑚,𝐾(𝜓𝜑)

and by Leibniz estimate (Lemma 1.11)

𝐶𝑝𝑚,𝐾(𝜓𝜑) ≤ 𝐶2𝑚𝑝𝑚,𝐾(𝜓)𝑝𝑚,𝐾(𝜑)

and this is true for all 𝜑 ∈ 𝒟︀(Ω).

(2) ⇒ (3) Let 𝑈 ⊂ Ω be an open set with 𝑈 ∩ 𝐾 = ∅, we must show that 𝑢|𝑈 = 0. Take any 𝜑 ∈
𝒟︀(𝑈) ⊂ 𝒟︀(Ω), we have 𝑝𝑚,𝐾(𝜑) = 0 and | ⟨𝑢, 𝜑⟩| ≤ 𝐶𝑝𝑚,𝐾(𝜑) = 0. □

Remark 1.46. In the hypothesis of the first statement of the last proposition we can extend 𝑢 on 

a continuos functional defined over 𝐶𝑚(Ω). Recall that 𝐶𝑚(Ω) is topologized via the seminorms 

{𝑝𝑚,𝐾}
𝐾∈ 𝒦︀(Ω)

, we can define for every 𝜑 ∈ 𝐶∞(Ω):

⟨𝑢̃, 𝜑⟩ ≔ ⟨𝑢, 𝜓𝜑⟩

where 𝜓 is the bump function used in the proof. The inequality remains valid:

| < 𝑢̃, 𝜑 > | ≤ 𝐶𝑝𝑚,𝐾(𝜑) for all 𝜑 ∈ 𝐶∞(Ω),

this implies 𝑢̃ is continuos on 𝐶∞(Ω) ⊂ 𝐶𝑚(Ω). Then extend 𝑢̃ on all 𝐶𝑚(Ω) by density of 𝐶∞(Ω).

Now we can give a full characterization of distributions with compact support (and justify the name 

of ℰ︀′(Ω)). Recall that we have an embedding ℰ︀′(Ω) ↪︎ 𝒟︀′(Ω) (Proposition 1.21).

Theorem 1.47. Let 𝑢 ∈ 𝒟︀′(Ω), then the following are equivalent:

1. supp 𝑢 is compact

2. 𝑢 ∈ ℰ︀′(Ω)

Proof. (1) ⇒ (2) Find a compact set 𝐾′ ∈ 𝒦︀(Ω) such that supp 𝑢 ⊂ Int(𝐾′), then by the previous 

remark 𝑢 extends on a continuos functional defined on ℰ︀(Ω).

(2) ⇒ (1) By continuity of 𝑢 with respect to the topology on ℰ︀(Ω) there must exists 𝐶 > 0, 𝑚 ∈ ℤ≥0 

and 𝐾 ∈ 𝒦︀(Ω) such that

| ⟨𝑢, 𝜑⟩| ≤ 𝐶𝑝𝑚,𝐾(𝜑) for all 𝜑 ∈ ℰ︀(Ω).

By implication (2) ⇒ (3) of the last proposition we get that 𝑢 is supported in 𝐾 . □

Example 1.48. The implication (2) ⇒ (1) is false, to see it just take any distribution with support a 

single point.

Example 1.49. The implication (3) ⇒ (2) is a false, for a counterexample take Ω = ℝ, 𝐾 = {0} ∪
{ 1

𝑛}
𝑛∈ℤ>0

 and

⟨𝑢, 𝜑⟩ ≔ ∑
𝑛≥1

1
𝑛

(𝜑(1
𝑛

) − 𝜑(0))

then supp 𝜑 = 𝐾 , take now a sequence (𝜑𝑛) such that:

• 𝜑𝑛 ∈ 𝒟︀(Ω)
• 𝜑𝑛(𝑥) = 0 for 𝑥 ≤ 1

𝑛+1
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• 𝜑𝑛(𝑥) = 1 for 𝑥 ∈ [ 1
𝑛 , 1]

• 0 ≤ 𝜑𝑛 ≤ 1

then we have 𝜑(𝑘)
𝑛 (𝑥) = 0 for all 𝑘 > 0 and 𝑥 ∈ 𝐾 so the only hope is to bound | ⟨𝑢, 𝜑𝑛⟩| with 

‖𝜑𝑛‖∞,𝐾 . But:

⟨𝑢, 𝜑𝑛⟩ = ∑
𝑛

𝑗≥1

1
𝑗

⟶
𝑛→+∞

+∞

and ‖𝜑𝑛‖∞,𝐾 = 1 for all 𝑛.

Exercise 1.50. Find some regularity hypothesis on 𝐾 in order to make the implication (3) ⇒ (2) true.

We can also characterize distributions with support equal to a point.

Proposition 1.51. Let 𝑢 ∈ 𝒟︀′(Ω) with supp 𝑢 = {𝑥0} ⊂ Ω, then there exists 𝑚 ∈ ℤ≥0 and real 

constants {𝑐𝛼}|𝛼| ≤𝑚 such that

< 𝑢, 𝜑 >= ∑
|𝛼| ≤𝑚

𝑐𝛼𝜕𝛼𝜑(𝑥0) for all 𝜑 ∈ 𝒟︀(Ω) .

Proof. Without loss of generality 𝑥0 = 0 ∈ Ω. Let 𝜂 be a cutoff function:

• 𝜂 ∈ 𝐶∞(ℝ𝑁)
• 𝜂 = 1 on ℬ︀(0, 1)
• 0 ≤ 𝜂 ≤ 1
• supp 𝜂 ⊂ ℬ︀(0, 2)

and define 𝜂𝜀 ≔ 𝜂(𝑥
𝜀 ), note that for small 𝜀 (say 𝜀0) we have supp 𝜂𝜀0

⊂ Ω. By hypothesis we have 

⟨𝑢, 𝜑⟩ = ⟨𝑢, 𝜂𝜀𝜑⟩ for all 𝜀 < 𝜀0. By continuity of 𝑢 there must exists 𝐶 > 0 and 𝑚 ∈ ℤ≥0 such that

| ⟨𝑢, 𝜂𝜀𝜑⟩| ≤ 𝐶𝑝𝑚(𝜂𝜀𝜑) for all 𝜀 < 𝜀0, 𝜑 ∈ 𝒟︀(Ω) .

Now by generalized Leibniz rule:

|𝜕𝛼(𝜂𝜀𝜑)(𝑥)| ≤ ∑
𝛽≤𝛼

(𝛼
𝛽

) |𝜕𝛽𝜂𝜀(𝑥)𝜕𝛼−𝛽𝜑(𝑥)| = ∑
𝛽≤𝛼

(𝛼
𝛽

) | 𝜀−|𝛽|𝜕𝛽𝜂(𝑥
𝜀
)𝜕𝛼−𝛽𝜑(𝑥)|

Suppose now that 𝜑 = 𝑜(‖𝑥‖𝑚), and observe that if 𝑥 ∈ supp 𝜂𝜀 then ‖𝑥‖ < 2𝜀. This implies that 

thinking of 𝜀 as a variable then 𝜑 = 𝑜(𝜀𝑚), this is fundamental since the goal is taking the limit 𝜀 →
0+. Now, by Taylor’s formula, we have that 𝜕𝛼−𝛽𝜑 = 𝑜(𝜀𝑚−(|𝛼−𝛽|)) and furthermore there exists 𝑀 >
0 such that |𝜕𝛽𝜂(𝑥

𝜀 )| ≤ 𝑀  for all |𝛽| ≤ 𝑚, 𝑥 ∈ supp 𝜂. Finally we see that

|𝜕𝛼(𝜂𝜀𝜑)(𝑥)| ≤ 𝑀 ∑
𝛽≤𝛼

(𝛼
𝛽

)𝜀−|𝛽| |𝜕𝛼−𝛽𝜑(𝑥)|

and 𝜀−|𝛽| |𝜕𝛼−𝛽𝜑| = 𝑜(𝜀𝑚− |𝛼−𝛽| − |𝛽|) = 𝑜(𝜀𝑚−|𝛼|). Since we have a finite sum all the expression is 

𝑜(𝜀𝑚− |𝛼|), in particular we deduce that 𝑝𝑚(𝜂𝜀𝜑) = 𝑜(1), and so

| ⟨𝑢, 𝜑⟩| = | ⟨𝑢, 𝜂𝜀𝜑⟩| ≤ 𝐶𝑝𝑚(𝜂𝜀𝜑) ⟶
𝜀→0+

0

Now take any 𝜑 ∈ 𝒟︀(Ω), by Taylor’s formula:

𝜑 = ∑
|𝛼| ≤𝑚

𝜕𝛼𝜑(0)
𝛼!

𝑥𝛼 + 𝑅(𝑥)

where 𝑅 = 𝑜(‖𝑥‖𝑚). Then
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⟨𝑢, 𝜑⟩ = ⟨𝑢, ∑
|𝛼| ≤𝑚

𝜕𝛼𝜑(0)
𝛼!

𝑥𝛼⟩ + ⟨𝑢, 𝑅⟩ = ∑
|𝛼|≤𝑚

𝜕𝛼𝜑(0)
𝛼!

⟨𝑢, 𝑥𝛼⟩

because ⟨𝑢, 𝑅⟩ = 0, and the thesis follows by setting 𝑐𝛼 ≔ ⟨𝑢,𝑥𝛼⟩
𝛼! . □

1.7. Some exercises

Exercise 1.52. Consider the following operator

𝑇 : 𝒟︀(ℝ) → ℝ

𝜑 ↦ lim
𝜀→0+

∫
|𝑥| ≥𝜀

𝜑(𝑥)
𝑥

𝑑𝑥

Show 𝑇  is a well defined distribution of order 1.

Solution. Notice that the function 
𝜑(0)

𝑥  is odd, therefore

∫
|𝑥| ≥𝜀

𝜑(𝑥)
𝑥

= ∫
|𝑥| ≥𝜀

𝜑(𝑥) − 𝜑(0)
𝑥

Take 𝜑 ∈ 𝒟︀[−𝑀,𝑀], we have by Lagrange’s Theorem:

| ⟨𝑇 , 𝜑⟩| ≤ ∫
𝜀≤ |𝑥| ≤𝑀

|𝜑(𝑥) − 𝜑(0)
𝑥

| ≤ 2𝑀‖𝜑′‖∞

this shows that the integral is convergent by dominated convergence and 𝑇  is continuos with order 

≤ 1. To show that the order is 1 consider a function 𝜑𝜀:

• 𝜑𝜀 ≥ 0
• 𝜑𝜀(0) = 1
• 𝜑𝜀 = 1 on [𝜀, 1].

Then

𝑇 (𝜑𝜀) ≥ ∫
1

𝜀

1
𝑥

≥ | log(𝜀)| ‖𝜑𝜀‖∞ ⟶
𝜀→0+

+∞

so we cannot bound ⟨𝑇 , 𝜑⟩ with ‖𝜑‖∞. □

Exercise 1.53. Consider the following operator

𝑇 : 𝒟︀(ℝ) → ℝ

𝜑 ↦ lim
𝜀→0+

∫
|𝑥| ≥𝜀

𝜑(𝑥)
𝑥2 𝑑𝑥 − 2

𝜀
𝜑(0)

Show 𝑇  is a well defined distribution of order 2.

Solution. Notice that for 𝑀 > 0

2
𝜀

= ∫
𝜀≤ |𝑥| ≤𝑀

1
𝑥2 𝑑𝑥 + 2

𝑀

so it follows

∫
𝜀≤ |𝑥| ≤𝑀

𝜑(𝑥)
𝑥2 𝑑𝑥 − 2

𝜀
𝜑(0) = ∫

𝜀≤ |𝑥| ≤𝑀

𝜑(𝑥) − 𝜑(0) − 𝑥𝜑′(0)
𝑥2 𝑑𝑥 − 2

𝑀
𝜑(0)
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Suppose 𝜑 ∈ 𝒟︀[−𝑀,𝑀], then by Langrange’s reminder

|𝜑(𝑥) − 𝜑(0) − 𝑥𝜑′(0)
𝑥2 | ≤ 1

2
𝑥2‖𝜑″‖∞

so we get the bound

| ⟨𝑇 , 𝜑⟩| = |∫
𝜀≤ |𝑥| ≤𝑀

𝜑(𝑥) − 𝜑(0) − 𝑥𝜑′(0)
𝑥2 𝑑𝑥 − 2

𝑀
𝜑(0)| ≤ 1

2
𝑀2‖𝜑″‖∞ + 2

𝑀
‖𝜑‖∞

So by dominated convergence theorem the integral converges and 𝑇  ha order less or equal than 2. □

Exercise 1.54. Let 𝑓 ∈ 𝐿1
loc(ℝ𝑁 \ {0}) with 𝑓 = 𝑂(‖𝑥‖−𝑚) as 𝑥 → 0. Then, as a distribution, f extends 

to an element 𝑇 ∈ 𝒟︀′(ℝ𝑁). Also characterize all the possible extension of 𝑓 .

Solution. We define 𝑇  using Taylor’s expansion:

⟨𝑇 , 𝜑⟩ ≔ ∫
‖𝑥‖≥1

𝑓𝜑 + ∫
‖𝑥‖≤1

𝑓
(
𝜑 − ∑

|𝛼| <𝑚

𝜕𝛼𝜑(0)
𝛼!

𝑥𝛼

)


checking that is well defined and continuos is similar to the previous exercises with Lagrange’s 

reminder:

|𝜑(𝑥) − ∑
|𝛼| <𝑚

𝜕𝛼𝜑(0)
𝛼!

𝑥𝛼| ≤ 𝐶𝑝𝑚(𝜑)‖𝑥‖𝑚

for some constant 𝐶 > 0. To characterize all the extensions take 𝑇1, 𝑇2 extensions of 𝑓 . Notice that 

supp (𝑇1 − 𝑇2) = {0}, so by Proposition 1.51 we have

⟨𝑇1, 𝜑⟩ = ⟨𝑇2, 𝜑⟩ + ∑
|𝛼| ≤𝑟

𝑐𝛼𝜕𝛼𝜑(0) for all 𝜑 ∈ 𝒟︀(ℝ𝑁)

So two extensions of 𝑓  differ by a linear combination of derivatives of Dirac deltas. □

Exercise 1.55. Let 𝑓 ∈ 𝐿1
loc(ℝ𝑁 \ {0}), 𝑓 > 0, such that 1𝑓 = 𝑜(‖𝑥‖𝑚) as 𝑥 → 0, that is 𝑓  grows more 

than any polynomial. Then 𝑓  do not admit, as a distribution, an extension on 𝒟︀′(ℝ𝑁).

Solution. By contradiction suppose 𝑇  is an extension of 𝑓 . We seek a sequence (𝜑𝑛) ⊂ 𝒟︀(ℝ𝑁 \ {0}) 

such that 𝜑𝑛 ⟶
𝒟︀(ℝ𝑁)

0 but not on 𝒟︀(ℝ𝑁 \ {0}). Let 𝜂 ∈ 𝒟︀(ℝ𝑁) be such that:

• 0 ≤ 𝜂 ≤ 1
• supp 𝜂 ⊂ ℬ︀(0, 4) \ ℬ︀(0, 1)
• 𝜂 = 1 on ℬ︀(0, 3) \ ℬ︀(0, 2)

and define 𝜂𝑘 ≔ 𝜂(𝑘𝑥)
𝑘! . Notice that

𝜕𝛼𝜂𝑘(𝑥) = 1
𝑘!

𝑘|𝛼|𝜕𝛼𝜂(𝑘𝑥) ⇒ 𝑝𝑚(𝜂𝑘) ≤ 1
𝑘!

𝑘𝑚𝑝𝑚(𝜂) ⟶
𝑘→∞

0 for all 𝑚 ≥ 0

so 𝜂𝑘 ⟶
𝒟︀(ℝ𝑁)

0 but does not converge in 𝒟︀(ℝ𝑁 \ {0}) since the supports of the 𝜂𝑘 are not contained 

in any compact set 𝐾 ⊂ ℝ𝑁 \ {0}. Since 𝑇  is an extension of 𝑓 :

⟨𝑇 , 𝜂𝑘⟩ = ∫
ℝ𝑁\{0}

𝑓𝜂𝑘 ≥ 1
𝑘!

∫
2
𝑘≤‖𝑥‖≤3

𝑘

𝑓 ≥ 1
𝑘!

𝐶
𝑘𝑛 inf

0<‖𝑥‖<3
𝑘

𝑓 ⟶
𝑘→∞

+∞
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□

Exercise 1.56. Let 𝑇 ∈ 𝒟︀′(ℝ𝑁), 𝑓 ∈ ℰ︀(ℝ𝑁) and suppose 𝑓 = 0 on supp 𝑇 . Then is is true that 𝑓𝑇 =
0?
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A Appendix

A.1 Topological vector spaces

Definition 1.1. A topological vector space (TVS) over 𝕂(= ℝ or ℂ) is a vector space 𝑋 equipped 

with a topology such that the maps

𝑋 × 𝑋 → 𝑋 𝕂 × 𝑋 → 𝑋
(𝑥, 𝑦) ↦ 𝑥 + 𝑦 (𝛼, 𝑥) ↦ 𝛼𝑥

are continuos.

Observation 1.2. Since translations are homeomorphism the topology of a TVS is determined by the 

open neighborhoods of 0.

Definition 1.3. A TVS is called locally convex (LCTVS) if it admits a basis for the open neighborhoods 

consisting of convex sets.

Proposition 1.4. Let 𝑋 be a LCTVS. Then there exist a family of seminorms 𝒫︀ = {𝑝𝑖}𝑖∈𝐼  such that

𝑉 (𝑝𝑖, 𝑛) = {𝑥 ∈ 𝑋 | 𝑝𝑖(𝑥) < 1
𝑛

} with 𝑖 ∈ 𝐼, 𝑛 ∈ ℤ>0

is a prebase that generates the topology of 𝑋.

Proposition 1.5. If 𝑋 is a LCTVS topologized via a countable family of seminorms 𝒫︀ = {𝑝𝑛} such 

that for all 𝑥 ∈ 𝑋 there exist 𝑛 with 𝑝𝑛(𝑥) ≠ 0. Then 𝑋 is metrizable with the translation-invariant 

distance

𝑑(𝑥, 𝑥′) = ∑
∞

𝑛=1

1
2𝑛

𝑝𝑛(𝑥, 𝑥′)
1 + 𝑝𝑛(𝑥, 𝑥′)

A complete metrizable LCTVS with a translation-invariant distance is often called a Frechét space.

Definition 1.6. A subset 𝐴 ⊂ 𝑋 of a vector space is said to be:

• balanced if 𝛼𝐴 ⊆ 𝐴 for every |𝛼| ≤ 1
• absorbing if for every 𝑥 ∈ 𝑋 there exist 𝑡 > 0 such that 𝑥 ∈ 𝑡𝐴

Observation 1.7. In a TVS all open neighborhoods of 0 are absorbing.

Proposition 1.8. Every TVS 𝑋 admits a basis 𝒰︀ for the open neighborhoods of 0 such that every set 

𝑈 ∈ 𝒰︀ is balanced. If 𝑋 is a LCTVS then one can construct 𝒰︀ such that all the neighborhoods are 

convex.

Definition 1.9. Given two subsets 𝐴, 𝐵 ⊂ 𝑋 of a vector space we say that 𝐵 absorbs 𝐴 is there exist 

𝑡 > 0 such that 𝐴 ⊂ 𝑡𝐵. We say that a subset 𝐴 ⊂ 𝑋 of a TVS is bounded if it is absorbed by every 

neighborhood of 0.

Definition 1.10. Let 𝑋 be a TVS. A sequence (𝑥𝑛) ⊂ 𝑋 is a Cauchy sequence if for all open neigh

borhoods 𝑈  of zero we have 𝑥𝑛 − 𝑥𝑚 ∈ 𝑈  definitively. 𝑋 is called complete if all Cauchy sequences 

converge.

It easy to check that Cauchy sequences are bounded.

Proposition 1.11. Let 𝑋 be a TVS, then

• 𝑋 is always 𝑇3 (you can separate points and closed sets)

• 𝑋 is 𝑇0 if and only if is 𝑇1
• If 𝑋 is 𝑇0 then 𝑋 is 𝑇2
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• Let 𝑌  be a direct summand of {0}, then 𝑋 is isomorphic (as TVS) to {0} ⊕ 𝑌  and 𝑌  is 𝑇2.

Definition 1.12. (Inductive limits in TVS) Let (𝑋𝑛) be a sequence of TVS with continuos injections 

𝑋𝑛 ↪︎ 𝑋𝑛+1. Let

𝑋∞ ≔ ⋃
𝑛≥1

𝑋𝑛

we define the topology 𝜏∞ on 𝑋∞ by constructing a family of balanced open neighborhoods of 0:

∑
𝑛≥1

𝑉𝑘 ≔ ⋃
𝑛≥1

∑
𝑛

𝑘=1
𝑉𝑘

where each 𝑉𝑛 is an open balanced neighborhood of 0 in 𝑋𝑛. The TVS (𝑋∞, 𝜏∞) is called the direct 

limit of the sequence (𝑋𝑛) and is denoted by

(𝑋∞, 𝜏∞) = lim
⟶

𝑋𝑛

It easy to prove that an inductive limit of LCTVS is again a LCTVS.

Theorem 1.13. (Universal property of TVS limit) Let (𝑋𝑛) be a sequence of TVS with continuos 

injections 𝑋𝑛 ↪︎ 𝑋𝑛+1. Denote with 𝑋∞ = lim 𝑋𝑛 and let 𝑌  be a TVS, then a linear map 𝐿 : 𝑋∞ →
𝑌  is continuos if and only if 𝐿|𝑋𝑛

: 𝑋𝑛 → 𝑌  is continuos for all 𝑛.

Corollary 1.14. The limit topology 𝜏∞ on 𝑋∞ is the finest TVS topology making all inclusions 𝑋𝑛 ↪︎
𝑋∞ continuos.

Proof. Let 𝜏  be another TVS topology making all inclusion continuos. Apply the universal property to 

show id : (𝑋, 𝜏∞) → (𝑋, 𝜏) is continuos. □

Observation 1.15. The limit topology on 𝑋∞ is in general different from the limit topology in the 

category of topological spaces. This means if 𝐴 ⊂ 𝑋∞ is a subset such that 𝐴 ∩ 𝑋𝑛 is open for every 

𝑛 then 𝐴 is not necessarily open in 𝑋∞.

Definition 1.16. An inductive limit of TVS is said to be strict if the maps 𝑋𝑛 ↪︎ 𝑋𝑛+1 are topological 

embeddings.

Strict limits have very nice properties:

Theorem 1.17. (Properties of strict limits) Let 𝑋∞ = lim𝑛 𝑋𝑛 be a strict limit of TVS. Then:

1. For all 𝑛 the map 𝑋𝑛 ↪︎ 𝑋∞ is a topological embedding

2. Fix 𝑛0 > 0 and 𝐶 ⊂ 𝑋𝑛0
, then 𝐶 is closed in 𝑋∞ if and only if is closed 𝑋𝑛 for every 𝑛 ≥ 𝑛0. In 

particular if every 𝑋𝑛 is closed in 𝑋𝑛+1 then every 𝑋𝑛 is closed in 𝑋∞.

3. If every 𝑋𝑛 is 𝑇0 then 𝑋∞ is 𝑇0
4. If 𝑋𝑛 is closed in 𝑋𝑛+1 for every 𝑛 then a subset 𝐴 ⊂ 𝑋∞ is bounded if and only if there exist 𝑛0 

with 𝐴 ⊂ 𝑋𝑛0
 and 𝐴 is bounded in 𝑋𝑛0

.

5. If 𝑋𝑛 is closed in 𝑋𝑛+1 and 𝑋𝑛 is complete for every 𝑛 then the limit is complete.

A.2 Functional analysis

Usually the Banach-Steinhaus Theorem is presented in the context of Banach spaces. To generalize 

it we need some definitions and results. The reader who is familiar with the standard notion of 

equicontinuity should not be bothered by the following definition:

Notation. If 𝑋, 𝑌  are TVS we write 𝐿(𝑋, 𝑌 ) for the vector space of continuos linear maps 𝑋 → 𝑌 .
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Proposition 1.18. A family {𝐿𝑖}𝑖∈𝐼 ⊂ 𝐿(𝑋, 𝑌 ) is called equicontinuos if for all open neighborhoods 

𝑈  of 0 ∈ 𝑌  there exist an open neighborhood 𝑉  of 0 ∈ 𝑋 such that

𝐿𝑖(𝑉 ) ⊆ 𝑈 for all 𝑖 ∈ 𝐼.

Definition 1.19. A subspace 𝐴 ⊆ 𝑋 of a topological space is called nowhere dense if Int(𝐴) = ∅. 𝐴 

is said to be of first category if it is a countable union of nowhere dense subsets, otherwise is said to 

be of second category.

Theorem 1.20. (Baire's category theorem) Let {𝑈𝑛} ⊆ 𝑋 be a countable collection of dense open sets, 

where 𝑋 is

• a complete metric space, or

• a locally compact Hausdorff space;

then ⋂𝑛 𝑈𝑛 is dense. In particular 𝑋 is of second category.

Theorem 1.21. (Banach-Steinhaus) Let 𝑋, 𝑌  be TVS and (𝐿𝑖)𝑖∈𝐼 ⊂ 𝐿(𝑋, 𝑌 ) a pointwise bounded 

family on a second category subspace, that is to say the set

{𝑥 ∈ 𝑋 | the set {𝐿𝑖(𝑥) | 𝑖 ∈ 𝐼} ⊂ 𝑌 is bounded}

is of second category. Then (𝐿𝑖)𝑖∈𝐼  is equicontinuos.
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