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Introduction and notation
One of the most challenging problems a mathematician can face is giving a meaning to “physics math”.

To describe natural phenomena physicists use the so called Dirac delta: a “function” § : R — R defined
as 0(0) = 400, 6(z) =0 on R\ {0} such that

/ d(x)f(x)dz = f(0) for every physically reasonable f : R — R.
R

To make sense of notions like this Laurent Schwartz introduced the concept of distributions: we can
think the Dirac delta as an operator acting on an appropriate set of test functions. The most common
choice for test functions is the space C§°(£2) where 2 C R™ is an open set. Of course we don’t want
to look at all linear maps C5°(€2) — R but only to a subset of reasonable operators: the ones who
are continuos with respect to a certain topology. It turns out the right topology is not easy to define:
it is an inductive limit of metrizable topological vector spaces. This topology is not metrizable so it
is necessary to invoke the general theory of locally convex topological vector spaces, in fact much
of the mathematical research on this topic was driven by distributions. Not many people know that
even Alexander Grothendieck, the famous algebraic geometer, did his PHD under the supervision of
Schwartz on functional analysis. Nowadays in many fields of analysis turns out one can work with
distributions without warring on the topological aspect: usually continuity for an operator C§°(2) —
R is defined in terms of a “notion of convergence”. Still, if someone wants to achieve a full under-
standing of the theory they should study the topological details. Also I personally believe that this is a
really elegant and beautiful theory that is worth studying regarding the applications. Especially if you
are like me and cannot stand when things are not clearly defined, I really recommend looking into it.

To give an insight of the power of distributions consider the problem of determining if a partial
differential equation admits a solution. Take a linear partial differential operator P € R[0, ..., Oy]
(P is a polynomial in the “variables” 0, ..., 0y with constants real coefficients) who acts on C'*™
functions, given g € C°°(RY) we seek a solution to the partial differential equation

Pf=gfor fe C(RN).

Now we will state three facts about distributions:

« C>°(R™) functions can be embedded in the space of distributions,

« isit possible to define the notion of the derivative of a distribution, and all distributions are infinitely
differentiable,

« we can extend the convolution operation to distributions.

In view of this facts the problem P f = g makes sense when f and g are distributions. Denote by d,
the Dirac delta centered in 0, suppose we find a distribution w that satisfies

Pu = 50
Such u is called a fundamental solution. Then we can convolve both sides with g:
(Pu)xg=20dyxg= Pluxg)=g

were we used the facts that convolution commutes with P (wich is a classical result for C*° functions)
and convolving with J, does not change a distribution. Therefore we can easily find solutions with
arbitrary known data given a fundamental solution. In general u * g is just a distribution, so the
problem of finding a solution turned into the problem of determining the regularity of u * g. It is worth
knowing that this method can be extended to the case of complex coeflicients. Inspired by this and
other techniques Lars Hormander used distribution theory to give the first solid treatment of linear



partial differential equations [1]. Before his contributions there were result focusing on particular
equations but mathematics was lacking of a general theory.

I decided not to include in the notes the general theory of topological vector spaces since it is already
covered in many textbooks, in the appendix there are some facts used later on topological vector spaces
and functional analysis (mostly without proofs).

For the sake of clarity we fix some notation:

« Q will always denote an open set of RYY

« X () is the set of compact subsets of {2

C°(9Q) is the space of continuos functions Q — R

« C*(2) with 0 < k < oo is the space of k-times differentiable functions 2 — R
Ck (), with 0 < k < o0, is the subspace of C*(Q) of functions with compact support

« CF(9Q), with 0 < k < o0, is the subspace of C*(Q) of functions f such that for every € > 0 there
exist a compact set K C Q with |f| <eonQ\ K

. Cbk (Q), with 0 < k < oo, is the subspace of Ck (Q) of functions f such that 9* f is bounded for every
multindex |a| < k

« LP(Q) is the set of measurable functions f : @ — R such that [|f[F < oo

« L} () is the set of measurable functions f :  — R such that for all z €  there exist an open
neighborhood z € U C Q with f € L*(U).



1. Distributions

1.1. Topology on test spaces
Definition 1.1. For a fixed €2 we define the LCTVS

Dy = {f € C(Q) | supp(f) € K}
with the topology induced by the family of seminorms

P (f) = max |0%f]_,m € Zs,

lo| <m

Since 2y has a countable family of seminorms in indeed metrizable with a translation-invariant metric.
Also note that the family of seminorms is filtered (p,,,(f) < p,,(f) for m < n).

Proposition 1.2. 2y is complete, therefore is a Frechét space.
Proof. Let (¢,,) be a Cauchy sequence in Dy, (almost) by definition we have
(@, — ¢m) — Oforall K € X(Q).

n,m— oo
In other words for every multindex « the sequence (0%y,,) is Cauchy with respect to the supremum
norm. Since the supremum norm induces a complete topology all partial derivatives converge
uniformly, say 0%¢,, — 7, It is then a standard fact that n, € C° (), it is supported in K and for

every multindex 0“7, = 7,,. We conclude that ¢,, 2 Mo- d
K

Recall the following definition:

Definition 1.3. A partially ordered set [ is said to be directed if for all x,y € I there exist z € I such
thatz < zandy < 2.

It is obvious that X '(f2) is a directed set ordered by inclusion. As such, we can form directed limits
with objects indexed by X '(€).

Definition 1.4. We define the space of test functions as the direct limit (in the category of topological
vector spaces) of the spaces Dy

D) = li_II)l Dy

()

Note that if K; C K, are two compact sets the topology of Dy is the same as the subspace topology
of Dy C Dy, . We conclude that the limit in the definition is strict. Also Dy is closed in Dy . In
particular keep in mind that a subset A C D(£2) is limited if and only if A is contained and limited in
some Dy Also if (K,) is any exaustion of {2 then D({2) = lim Dy, , and note that as vector spaces
D(R) is just C° ().
Proposition 1.5. The topology on D(£2) is not metrizable.

Proof. Fix an exhaustion (K,,) of Q. Then D(€2) is the union of a countable family of closed sets

D) = D .

Since Dy is a proper subspace it has empty interior. If D({2) were metrizable then it would be
complete by the properties of strict limits, but then Baire’s Theorem would imply that also 2(£2) has
empty interior, a contradiction. O



Definition 1.6. We define the LCTVS of smooth functions £(2) as the space C*°(§2) equipped with
the seminorms

Picon(f) = max [0° Fl, . K € K(Q)m € Zog

Observation 1.7. A sequence (f,,) C £(€2) converges if and only if every derivative is convergent on
compact subsets.

Proposition 1.8. £(£2) is a complete metrizable LCTVS, and therefore Frechét.

Proof. Choose an exhaustion (K,) of €2, then is it easy to see that the countable family of seminorms
{p Kmm} induce the topology on £(2) and therefore is metrizable. For completeness the proof

n,m>0
is similar to Proposition 1.2. O

Proposition 1.9. We have a continuos inclusion D(2) < £(2). Moreover the space D(2) C £(Q) is
dense with respect to the topology on &({2).

Proof. By universal property, fix a compact K € X'(2) and consider 2, < £(2). This is continuos
since for every m > 0 and K’ € X (Q2) we have

pK’,m(f) < pm(f) for all f € DK

Fix an exhaustion (K,) and a family of smooth bump functions (n,,), with n,, = 1 on K,,. Then for
every f € £(Q) the sequence (7, f) is contained in D(Q2) and 7,, f g(—>Q) f. O

Notation. Given o = (aq, ..., ap ), 8 = (B4, .., Bx) multindices we denote
(5)= () ()
B B/ \Bn/
We say that 8 < aif 5, < o, forevery i =1, ..., N.
Lemma 1.10. Let & = (a, ..., ) be a multindex and £, g € C!*/(Q), then
o(f9) = 35 )2° 9%,

B<a

Moreover we have

> ()=
B<a B
Proof. A boring induction. d

Lemma 1.11. (Leibniz estimate) Let f, g € C™(Q), for every |a| < m we have the following estimate:

o < 9laf B B
10%(£9)(@)] < 2% max|0” f(z)| max|9”g(x)|
Proof. We use the previous lemma:

o (fa) )| < 32 () 1025 (@) 19° P(e)] < maxlo? f(@)| max(oPg(x) 3 ()

B<a B<a

— 9lal 8 8
2% max|0” f ()| max|6”g(z)|



Definition 1.12. Let {2;} _, be an open covering of £, we say that a family {n;} _, is a smooth
partition of unity subordinate to {€2;},_ if

1. eachn; € C*>(Q)

2. supp n; C Q, forall 4

3. the family of supports is locally finite, i.e. every point z € {2 has a neighborhood U such that the set

{i€el]|suppn,NU#0}CI
is finite
4. Zz‘el n;(z) = 1forallz € Q
Theorem 1.13. Smooth partitions of unity always exists.

Proof. Omitted since is a classical result. The main ingredient in the proof is the paracompacteness of
Q. Note that in our use cases usually one can construct by hand a partition of unity. O

The following theorem gives a family of seminorms that generates a topology equal to the limit one.

Theorem 1.14. (Garding-Lions seminorms) For every pair o, i1 : 2 — R_ of continuos functions we
define the seminorm on 2D(2)
95,(f) = sup |o(z)0%f()]

e
loe <pu(z)

by varying o, ;1 we obtain a family of seminorms that generates the topology on 2(2).

Proof. We denote by 7, the standard topology on D(£2) and with 7, the topology generated by the
seminorms. To show 7, C 7, we use the universal property of inductive limits and show that for all
K € X () the inclusion Dy < (D(R), 7,) is continuos. Fix a seminorm 4y, 00 D(N2), for every f €
Dy we have

e o < (87 — .
4] o )|o<x>a f@) < (maxo) max  10°f] = (m9%0) P, ()
o <u(z

For the converse let ¢ : Q@ — [0, +00) be a continuos proper map (the preimage of compact sets is
compact). We define

K,=¢p Y ([n—1n+1]) forn>0
U,=¢ (n—1,n+1)) forn>0

and note that (J U, = K, = U, C K, C Qfor every n and U, N U, # 0 if and only if [n —
m/| < 1. Fix an open, convex and balanced neighborhood of zero V' € 7, for all n we have that V' N
Dy, is an open set in Dy and therefore there exists m,,, d,, such that

{¢7E‘Zk% |pmm(¢)<:6n} - VVO:DKH

We wanna patch the constants m,,, d,, together, in order to achieve this take a smooth partition of
unity (7,,) subordinate to (U,,). Now define:

n>0 li—n| <1
gm;+itly (n,)
m7 ]
o(z):= n,(x) - max —
T



Note that if € K, then

w(z) = m,

2mn+n+1pmn,Kn (nn)

d

o(x) >

Now take any f € D(Q) with g, ,(f) < 1, there exists 7 such that supp f C Uy U ... U U;; and
f=nf+..+umf

with n,, f € Dy for every n = 0, ..., . Then by Leibniz estimate (Lemma 1.11)

pmn (nnf) = §Sup ’6a<77nf)(33) < Q‘mn‘pmnyKn (nn)pmn,Kn (f)

zeK,
lo| <m,
And also
N N 2m Kk, (M) o
1>gq,,(f)= sup [o0(2)0*f(z)| = sup |o(z)0%f(z)| > 5 sup |0%f(z)|
zeQ zeK,, n zeK,
laf <p(w) la| <p(z) laf=m,,

where supzek, |0%f(z)| = p,, (f). By the last two inequalities:

la|<m,

2|mn‘pmn,Kn (nn>5n 5n

I, =
pmn (nnf) S 2m pmn (nn)pmn (f) S 2mn+n+1pmn’Kn (nn> o 2n+1

this implies that n,, f € 2~ "*VV N Dk, - Finally note that:

1 1 1 1 1
f:n0f+...+7’]ﬁfE§V+...+ﬁVC (§+"'+QWT>VZ (1—ﬁ)VCV

Where we used the fact that, since V is convex, aV + bV C (a + b)V for every a,b € R (. This
implies { f € D(Q)| ¢, ,(f) <1} C V and we conclude 7, C 7. O
Definition 1.15. We define the space of distributions 2’ () as the topological dual space of D(12).

D'(Q) :={u: D() — R where u is linear and continuos}
We also define the space of compactly supported distributions (the name will be clear afterword)

E'(Q) == {u: E(Q) — R where u is linear and continuos}

Notation. We adopt the duality notation: for v € D’(2) and ¢ € D () we write (u, ) instead of
u(p)-

Proposition 1.16. For a linear map u : 2(2) — R the following are equivalent:

1. w is continuos, i.e. is a distribution

2. forall K € X'(12), u|p_is continuos

forall K € X'(12), there existsn = m(K),C = C(K),suchthat | (u, p)| < Cp,,,, forallp € Dy
there exists o, . € C°(Q), such that (u, ) < ¢, ,(p) forall € D(Q)

for all sequences (y,,) converging to zero in D(2) we have (u, ¢,,) — 0

AR A

for all compact sets K € X (Q2) and all sequences (¢,,) in Dy converging to zero we have
<U, (Pn> —0

Proof. (1) is equivalent to (2) by the universal property of inductive limits. Statement (3) is just (2)
stated in terms of seminorms. Statement (4) is continuity stated in terms of Garding-Lions seminorms.
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Statement (6) is equivalent to (2) because 2 is a metric space and is also equivalent to (5) since a
convergin sequence (¢,,) in D(Q) is bounded, and so (y,,) must lie D, for some K € X' (1). O

It is natural to choose a topology for the space of distributions. Recall:

Definition 1.17. Let X be a vector space, let X* be the dual of X and F' C X* a subspace. We define
the weak topology associated to F', denoted o(X, F'), as the smallest topology on X making all the
maps in F' continuos.

Clearly with this topology all maps in F' are continuos. It is remarkable that a simple excercise in linear
algebra shows:

Exercise 1.18. The topological dual of (X, o(X, F)) is indeed F'.
We can then define a natural topology on 2’ (Q):

Definition 1.19. We define the topology on 2’(2) as the weak topology associated with the family
of functionals D((2), seen as embedded into the bidual space of D(£2). More explicitly it is the weak
topology associated to the functionals

forall p € D(Q).
Now we will make a simple, but powerful, observation.

Proposition 1.20. Let T : D(Q2) — D(2) be a linear continuos map. Then the transpose T :
D'(Q) — D’ (Q) is continuos.

Proof. We shall use the universal property of weak topology. Fix ¢ € D(Q2), we prove that the map
oT*:D'(Q) - R
u s (u, T(p))

is continuos. But this is just the functional on 2D(2) represented by T'(¢) and is therefore continuos
by the definition of the weak topology on 2’ (). O

Proposition 1.21. By transposing the inclusion D(Q2) < £(€2) we obtain a (TODO continuos)
injection
&) = D'(Q)

Proof. Suppose u € £’(2) has the property that (u, ¢) = 0 for all ¢ € D(Q), the we must show that
u = 0. But this follows from the density of test functions in £(2), Proposition 1.9. O

We can embed all “reasonable” functions in 2’((2), this is why distributions are called generalized
functions. Recall that the space L{ . (€2) is topologized via the seminorms

{prc(F) = Iy | K € X)),
Theorem 1.22. There is a continuos embedding

Lioe () <= D'(Q)

fef e

Proof. To show continuity we use the universal property. Fix ¢ € D(2) and consider

-9 -



We have

< ”f”Ll(suppr) ||90"oo = psuppap(f) ||(P||oo

/Qfso

and this shows that the functional is continuos over L{ .. To show injectiveness we shall prove that

/fgz):O forall p e D(2) = f=0 ae.
Q

but this is famous result known as “fundamental Lemma of calculus of variations”. |
Exercise 1.23. Show that the following maps are continous:
D) x D(Q) — D(Q)
(f,9) = fg
E(Q) xE(Q) = £(Q)
(f,9) = fg
E(Q) x D) = D(N)
(f,9) = fg

Exercise 1.24. Recall that for a compact set K € X '(2) the space C°(K) is a Banach space with the
supremum norm, and we can define a topology on C2(2) by

Co(9) = lim C°(K)

()

where the limits in inteded in the category of topological spaces (for the sake of the excercise).
Show that the map

R x CY(Q2) — C2(Q)
A F) = Af
is continuos, and determine if the summation map is continuos:
C2(Q) x C2(Q) = C2(Q)
(fi9)= f+g
1.2. Operations on distributions

Thanks to Proposition 1.20 we can extend an uncountable amount of operations on 2D(f2) to the
distributions. It it left as an exercise to verify that such operations on 2D({2) are continuos.

Definition 1.25. (multiplication by smooth functions) Fix f € £(2), we define multiplication by f as
the transpose of

M;: D(Q) — D(Q)
o= of

-10 -



Explicitly we have (fu, @) = (u, fp).
Definition 1.26. (derivative) Fix a multindex a. The derivative operator is the transpose of
0% :D(Q) — D(Q)
p 0%

multiplied by (—1)!®l. Explicitly we have (0%u, @) = (—1)!%l (u, %¢).

The reason behind the change of sign is to generalize the known formula of integration by parts, in
fact for every f € C'(Q) and ¢ € D(Q):

/Qfai‘P:_/Qaq;fSD

where the integral on 0 is zero beacuse ¢ has compact support. Note how all distributions have
infinite derivatives. As such we can derive all L] functions. Also we can generalize known construc-
tions:

Example 1.27. Sobolev functions W12(Q) are just L? functions with distributional derivative in L.
A non trivial result shows that we can define the space of bounded variation functions BV (2) as the
space of L! functions with a Borel measure as distributional derivative.

1.3. Local nature of distributions

Sheaves are general objects used to track data on topological spaces that can be restricted and glued.
Their use was popularized by Grothendieck who used them systematically in algebraic geometry. We
shall prove that distributions form a sheaf.

Definition 1.28. (Presheaves) A presheaf J of vector spaces on a topological space X is the datum of:
« avector space F (U) for every open set U
- alinear restriction map p¥, : F(U) — F (V) for all open sets V C U

Such that for all triples W C V' C U we have pY, = p¥piy,, in other words we have a commutative
triangle

Py
F(U) y F(W)
Py A
FV)

Notation. If p € F(U) we write |y, for p¥(¢).

Definition 1.29. (Sheaves) A presheaf F is called separated if for every open set U and every open

covering U = |, _, U; we have

« ifp € F(U) and [y, = 0 for all i then ¢ = 0.

If F satisfies also

« foradatum {p;} _, with ; € F(U;), such that %“Uj = |y, forall i, j € I, there exist a (unique
by the previous property) ¢ € F (U) such that @[, = ¢, foralli € I;

then 7 is called a sheaf.

Example 1.30. For all 0 < m < co, C"™ is a sheaf on R™. On the other hand bounded continuous
functions are a separated presheaf but not a sheaf. Similarly L' is not a sheaf but Ly, is. In a certain

-11 -



sense, we can define L as the smallest sheaf containing L'. This process is standard and is known
as sheafification.

What distinguishes presheaves from sheaves is the local nature of the objects encoded.
Proposition 1.31. 2’ is a presheaf on R".
Proof. Given V. C U and u € D’(U), u is naturally an element of 2’ (V) since D(V') C D(U). O

Lemma 1.32. Let = |/, be an open covering. Then

D) = P D),

where the direct sum is intended as sum of vector subspaces.

Proof. Let ¢ € D(R2), by compacteness there exist Q,,...,Q
supp(¢) C Q, U...UQ,, . Now let y, ..., 7, be a smooth partition of unity subordinate to ; U ... U

» elements of the covering such that

Q,,, clearly
P=MmP Tt e
and each 7, is an element of D(£2;). O
Corollary 1.33. 2’ is a separated presheaf.
Proposition 1.34. 2’ is a sheaf.

Proof. Let € = | J, ©2; be an open covering. Let {u; } be a collection of distributions with u; € D’(£;)
that satisfies the compatibility condition of sheaf definition. Given ¢ € D(2) we can decopose ¢
as in the lemma as a sum ¢ = ¢; + ...+ ¢; with each p; € D’(QiT). Now we define (u, ¢) :=
(u; , ;) o+ (u; ,p; ), we just need to check that it is well defined. Let ¢ = ¢, +...+¢; be
another decomposition of ¢, we should have

n n

Z (uira Soir> = Z (U]p onr> .

r=1 r=1

The case n = 2 is easy because p;, = ¢; =1on \ Qy, similarly ¢, =¢; =1onQ,\Q; and

J
on 2, N §2, the distributions u,, u, coincide. The general case follows by induction.

Let now §; ,...,{}; another covering of supp ¢ and ¢ = ¢, + ...+ ¢, a decomposition. We

look for a common refinement. Let 7, ; be a smooth partition of unity associated with the covering
U, , @ N . then

n n m n,m
Z <uira (Pir> = <uirv Z %ﬂr,s> = Z <uira ‘101‘7«777“,3>
r=1 r=1 s=1 r,s=1

Z <uk5’90ks> = Z <uksa Z‘Pksﬂr,s> = Z <uksv<pk577r,s>
s=1 s=1 r=1 r,s=1

Now note that ¢; 7, 5, ¢ 7, , are both supported in €2; N, and by compatibility of distributions
u; =uy_onf); NQ,; . With the help of the previous part we deduce the right expressions are equal
by invariance of the chosen decomposition of ¢ (for a fixed open covering). O
Observation 1.35. The fact that 2’ is a sheaf let us define easily the notion of distributions on
manifolds. Let M be a smooth real manifold, we define canonically 2D(U) for every affine chart U. Since
affine charts form a base for the topology on M the sheaf axioms imply there exists a unique sheaf 2’

defined on the topological space M. The reader can check that elements of 2’(V') acts naturally on

-12 -



elements of C§° (V) for every open set V' C M (not necessarily affine). This process is analogous to
the construction of the structure sheaf on an affine scheme in algebraic geometry.

1.4. Order of a distribution

Definition 1.36. We say that a distribution v € 2’ (2) has order equal or less than m if for all K €
X () the exist C = C(K) such that

lu(f)| < Cp,y,(f) for every f € Dy,.

The minimum of such integers is called the order of w. If there is not such m we say that u has infinite
order.

Example 1.37. Let z, € ), the Dirac delta (3, , ) = ¢(z,) is a distribution of order 0. In general
¢ = 0%p(z) has order |a.

Example 1.38. Let (z,,) be a sequence in {2 that escapes from all compact sets and let & be a non-zero
multindex. For ¢ € D(Q) define

oo

(u,0) =D 0" ().

n=1

It is well defined beacuse for every ¢ the sum is actually finite. It easy to see that u is a distribution
and has infinite order.

Theorem 1.39. Let u € D’(Q2) be a positive distribution, that is (u, ¢) > 0 for all ¢ > 0.If u has order
zero then is a measure.

Proof. Fix K € X (12), by hypothesis there exists a C' > 0 such that | (u, p)| < C|¢|| s, forall ¢ € Dj.
Take now n € D(Q) such that:

° 77‘1«':1
+0<n<1inQ2

and by the positivity hypothesis
(w0 +pllom) = 0 and (u, ¢ — llpfoem) < 0= [(u, P} < (u,n) [Pl
— TODO

This implies that v : Dz — R is continuos with respect to the supremum norm by Hann-Banach we
can extend u on C°(K). By the characterization of the dual space of C°(K) we conclude that there
exists a measure i on K such that

(u, @) = / wdp for all p € Dy
JK

1.5. Sequences of distributions
Proposition 1.40. Let (u,,) be a sequence in 2’(Q2) converging pointwise: for all ¢ € D(Q) the
sequence (u,,, ¢) is convergent in R. Then the map

u:D() >R
@ = lim (u,,p)

n—oo

is linear and continuos and so defines a distribution.
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Proof. The linearity is clear. To prove continuity fix a compact set K € X (Q2) an consider u| D, Since
the set {(u,,, ¥)| ¢ € Dy} is bounded and Dy, is a complete metric space we can apply the Banach-
Steinhaus Theorem and conclude that the sequence (u,,) is uniformly continuos on Dj.. This implies
that exists C = C'(K), m = m(K) such that:

| (u,,p)| < Cp,,(p) for all p € Dy and all n € Z (1)

and by passing to the limit on the left we find the required inequality. |

Corollary 1.41. In the setting of the preceding proposition, if (¢,,) is a sequence converging to ¢ in
D(Q) then (uy,, ,) = (u, 9).

Proof. Since (¢,,) is convergent the exist a K € X' () with supp ¢,, C K for all n. We have

| (U 03 = (s 0)| <[ (U 03) = (U, @)+ [, ) — (i, 9).

The second term goes to zero by definition of u, while for the first we apply the inequality 1

| (U, 0 — 0,)| < Cpp(@ —0,) — 0

n—oo

where we used the fact that ¢, — . d
D(Q)

1.6. Support

We can extend the notion of support to distribution. Recall that the support is define for L{ . functions:

Definition 1.42. Let f € Li..(2), we define the support as the complement of the maximal open set
Qy C Qwith flg = 0ae, that is {1 is the union of all open sets U C Q with f|; = 0 ae.

It is slightly non trivial that f|, =0 a.e. because €2 can be the union of a uncountable family of
open sets. For a proof we refer to [2]. Clearly if f is continuos then this new definitions generalizes
the classical one. Now we move onto distributions:

Definition 1.43. Let u € D’(2), we define the support as the complement of the maximal open set
Qo where ul, = 0. That is, let {U;} be the family of open subsets U; C Q with u[; = 0, then € :=
U, Ui and supp u := Q\ .

The fact that u|Q0 = 0 follows from the fact that distributions form separated presheaf by Corollary
1.33.

Example 1.44. The support of 6, is just {z}.

Proposition 1.45. Let u € 2’(Q2), K € X' (£2) and consider the following statements:
1. supp u C Int(K)

2. there exists C' > 0,m € Z such that | (u, p)| < Cp,, (p) forall p € D(Q)

3. supp u C K

then (1) = (2) = (3).

Proof. (1) = (2) Since supp w is closed and supp u C K then it is compact. We can find an open set
U with supp v C U C K and a bump function v with

c0<yp<1

e p=1onU

« supp ¥ C K

This implies that for any ¢ € D(Q)
{z e Q] (1 —-)px) #0} CQ\U CQ\supp u
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and therefore
Since ¢ € Dy, by continuity of u there exists C' > 0, m € Z with

| {u,0)| = [ (u, o9)| < Cpyy i (P0)

and by Leibniz estimate (Lemma 1.11)

and this is true for all ¢ € D(9Q).

(2) = (3) Let U C Q be an open set with U N K = (), we must show that u|; = 0. Take any ¢ €
DU) C D(Q), we have p,,, i (¢) = 0 and | (u, p)| < Cp,, x(p) = 0. O

Remark 1.46. In the hypothesis of the first statement of the last proposition we can extend u on
a continuos functional defined over C™(f2). Recall that C™(f2) is topologized via the seminorms
{pm’K}Ke iy Ve an define for every ¢ € C*°(Q):

(@, ) == (u, Yp)
where 1 is the bump function used in the proof. The inequality remains valid:
| <@, >| < Cp,, g(p) for all p € C=(Q),
this implies @ is continuos on C*°(2) C C"™ (). Then extend @ on all C™(Q2) by density of C*°(Q2).

Now we can give a full characterization of distributions with compact support (and justify the name

of £'(€2)). Recall that we have an embedding £’(Q2) < 2D’ () (Proposition 1.21).

Theorem 1.47. Let u € 2D’(12), then the following are equivalent:

1. supp u is compact
2. ue&(Q)

Proof. (1) = (2) Find a compact set K’ € X' (2) such that supp v C Int(K"), then by the previous
remark u extends on a continuos functional defined on £(£2).

(2) = (1) By continuity of u with respect to the topology on £(£2) there must exists C' > 0, m € Z
and K € X' () such that

| {u, p)| < Cp,, k() for all p € £().

By implication (2) = (3) of the last proposition we get that u is supported in K. O

Example 1.48. The implication (2) = (1) is false, to see it just take any distribution with support a
single point.

Example 1.49. The implication (3) = (2) is a false, for a counterexample take 2 =R, K = {0} U
{1} and
nNIneZyg
1 1
= — — | — 0
(u, @) n§>1 n(@(n) ( ))

then supp ¢ = K, take now a sequence (¢,,) such that:
* o € D(Q)
« op(z)=0forz < =

- 15 -



« pp(z) =1forz e [1 1]
c0<p, <1
then we have ¢¥)(z) =0 for all k> 0 and z € K so the only hope is to bound | (u, ¢, )| with

n
lal., - But

and ||(pn||OO,K = 1for all n.

Exercise 1.50. Find some regularity hypothesis on K in order to make the implication (3) = (2) true.
We can also characterize distributions with support equal to a point.

Proposition 1.51. Let u € D'(Q2) with supp u = {4} C €, then there exists m € Z., and real
constants {c, } such that

la| <m

<u,p>= Z ¢, 0%p(z) for all p € D(Q).

la| <m

Proof. Without loss of generality z, = 0 € (). Let 1 be a cutoff function:
« n € C>®(RY)

«n=10on35(0,1)

+0<n<1

« supp 1 C B(0,2)

and define 7, := 77(%), note that for small € (say ) we have supp 7, C (2. By hypothesis we have
(u, @) = (u,n.¢p) for all € < g,. By continuity of u there must exists C' > 0 and m € Z such that

| (u,n.0)| < Cp,(n.p) for all e < gy, € D(Q).

Now by generalized Leibniz rule:
(6% (0% X
")) < (5 ) 10 @onPe@) = 3 () 1< #0n( 2 )om (e
p<a p<a €

Suppose now that ¢ = o(]|z|™), and observe that if x € supp 7, then |z| < 2e. This implies that
thinking of € as a variable then ¢ = 0(¢™), this is fundamental since the goal is taking the limit ¢ —
0. Now, by Taylor’s formula, we have that o p= o(em*(‘o‘*ﬁb) and furthermore there exists M >
0 such that [0°n(2)| < M for all || < m,z € supp 7. Finally we see that

0 () (@) < 1 3 () 0% ()

B<a

and e 71l |92 Byp| = o(e™” =l = W') = o(em*“"'). Since we have a finite sum all the expression is
o(e™~ lel), in particular we deduce that p,, (n.¢) = o(1), and so

[ {w, 0} = | (u,nep)| < Cppa (11c9) —2 0

Now take any ¢ € D(Q), by Taylor’s formula:

= Z _aaz!(()) z® + R(x)

lal <m

where R = o(||z|™). Then
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) =, Y L8 Dpey ytumy= 3 T8Oy 4oy

|
|| <m o |a|<m
because (u, R) = 0, and the thesis follows by setting c,, := <uf!a>. O
1.7. Some exercises
Exercise 1.52. Consider the following operator
T:DR)—=R
@ lim Mdav
e—0t

|z| >e
Show T is a well defined distribution of order 1.

Solution. Notice that the function £ is odd, therefore

/ p(z) / p(z) — o(0)
ol 2e F ol 2e o
Take ¢ € 2}_ s pg)> We have by Lagrange’s Theorem:
p(z) — (0) :
ol [ [HOEO o
e< |z| <M

this shows that the integral is convergent by dominated convergence and 7 is continuos with order
< 1. To show that the order is 1 consider a function ¢_:

* 920
* (0)=1
« . =1lonle1].
Then
'
T2 [ 12 8@l el =, +oc
so we cannot bound (T, ) with |¢] .- O

Exercise 1.53. Consider the following operator

T:DR) - R
. o(x), 2
w > D, 27 de = el

|lz| >e
Show T is a well defined distribution of order 2.

Solution. Notice that for M > 0

so it follows
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Suppose ¢ € D_y p), then by Langrange’s reminder

90(1‘)_(10«))_3790,(0) 1 21,
e < 2|
so we get the bound
p(x) — (0) — zp’(0) 2 VLI 2
T = dr — — (0 - =
o= o 2 v —20(0)| < M2 |+ rlole

So by dominated convergence theorem the integral converges and 7" ha order less or equal than 2. O

Exercise 1.54.Let f € L{ (RY \ {0}) with f = O(|z|~™) asz — 0. Then, as a distribution, f extends
to an element T' € 2’ (RY). Also characterize all the possible extension of f.

Solution. We define T using Taylor’s expansion:

0%p(0)
<Tv >:: fo+ f - z¢
7 /|z||21 7 /uz|s1 ((p 2 ol )

la) <m

checking that is well defined and continuos is similar to the previous exercises with Lagrange’s
reminder:

ole)— 3 T80l < 0p, (el

|a| <m

for some constant C' > 0. To characterize all the extensions take T}, T, extensions of f. Notice that
supp (177 — T;) = {0}, so by Proposition 1.51 we have

(Ty,¢) = (Ty, ) + Z ca0%p(0) for all p € D(RY)
la| <7
So two extensions of f differ by a linear combination of derivatives of Dirac deltas. O

Exercise 1.55. Let f € Li, (RY \ {0}), f > 0, such that % = o(|z|™) asx — 0, that is f grows more
than any polynomial. Then f do not admit, as a distribution, an extension on 2’ (R™).

Solution. By contradiction suppose T is an extension of f. We seek a sequence (p,,) C D(R™ \ {0})

such that p,, — 0but not on D(RY \ {0}). Let n € D(RY) be such that:
D(RN)

c0<n<l1
e supp n C B<04)\B(0/1>
« n=10n35(0,3) \ B(0,2)

Ww . Notice that

and define 7, :=

1
0%ny(z) = Ek“” 0°n(kz) = p,, () < Ek’”pm( n) v 0 for all m >0

SO 1y, —> 0 but does not converge in D(R”Y \ {0}) since the supports of the 7, are not contained
DRN
in any compact set K C RV \ {0}. Since T is an extension of f:

k! kn 0<H |<2 " k—oo

C
T = [ gmzg [ prgo mEof o o
R n
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O

Exercise 1.56.Let T € D’ (RN), fe €(RN) and suppose f = 0 onsupp 7. Thenisis true that fT" =
0?
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A Appendix

A.1 Topological vector spaces
Definition 1.1. A topological vector space (TVS) over K(= R or C) is a vector space X equipped
with a topology such that the maps

XxX—-X Kx X —-X
(z,y) > z+y (a,z) = ax

are continuos.

Observation 1.2. Since translations are homeomorphism the topology of a TVS is determined by the
open neighborhoods of 0.

Definition 1.3. A TVS is called locally convex (LCTVS) if it admits a basis for the open neighborhoods
consisting of convex sets.

Proposition 1.4. Let X be a LCTVS. Then there exist a family of seminorms ? = {p,} e such that

1
V(pl,n):{xEX\pZ(z) < ﬁ} WithiGI,n€Z>0

is a prebase that generates the topology of X.

Proposition 1.5. If X is a LCTVS topologized via a countable family of seminorms ? = {p,, } such
that for all z € X there exist n with p,,(z) # 0. Then X is metrizable with the translation-invariant
distance

=1 p,(z,z)
dz,2') =) "~
;::12 1+p,(z,z)

A complete metrizable LCTVS with a translation-invariant distance is often called a Frechét space.

Definition 1.6. A subset A C X of a vector space is said to be:
+ balanced if A C A for every |a| < 1
+ absorbing if for every x € X there exist t > 0 such that x € tA

Observation 1.7. In a TVS all open neighborhoods of 0 are absorbing.

Proposition 1.8. Every TVS X admits a basis I/ for the open neighborhoods of 0 such that every set
U € U is balanced. If X is a LCTVS then one can construct & such that all the neighborhoods are
convex.

Definition 1.9. Given two subsets A, B C X of a vector space we say that B absorbs A is there exist
t > 0 such that A C tB. We say that a subset A C X of a TVS is bounded if it is absorbed by every
neighborhood of 0.

Definition 1.10. Let X be a TVS. A sequence (z,,) C X is a Cauchy sequence if for all open neigh-
borhoods U of zero we have x,, — x,, € U definitively. X is called complete if all Cauchy sequences
converge.

It easy to check that Cauchy sequences are bounded.

Proposition 1.11. Let X be a TVS, then

+ X is always T5 (you can separate points and closed sets)
+ X is T}y if and only if is T}

o If X is Ty then X is T,
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« Let Y be a direct summand of {0}, then X is isomorphic (as TVS) to {0} ® Y and Y is T}.

Definition 1.12. (Inductive limits in TVS) Let (X,,) be a sequence of TVS with continuos injections
X, = X, ;1. Let

X =JX,

n>1

we define the topology 7., on X __ by constructing a family of balanced open neighborhoods of 0:

2 i=U2 %

n>1 n>1 k=1
where each V, is an open balanced neighborhood of 0 in X,,. The TVS (X, 7. ) is called the direct
limit of the sequence (X,,) and is denoted by

(X ooy Too) = lim X,
—

It easy to prove that an inductive limit of LCTVS is again a LCTVS.

Theorem 1.13. (Universal property of TVS limit) Let (X,,) be a sequence of TVS with continuos
injections X, < X, ;. Denote with X | = lim X, and let Y be a TVS, then a linear map L : X _ —
Y is continuos if and only if L|x : X,, — Y is continuos for all n.

Corollary 1.14. The limit topology 7., on X is the finest TVS topology making all inclusions X,, <
X, continuos.

Proof. Let T be another TVS topology making all inclusion continuos. Apply the universal property to
showid : (X, 7.) — (X, 7) is continuos. O

Observation 1.15. The limit topology on X __ is in general different from the limit topology in the
category of topological spaces. This means if A C X is a subset such that A N X, is open for every
n then A is not necessarily open in X __.

Definition 1.16. An inductive limit of TVS is said to be strict if the maps X,, < X, | are topological
embeddings.

Strict limits have very nice properties:

Theorem 1.17. (Properties of strict limits) Let X _ = lim,, X, be a strict limit of TVS. Then:

1. For all n the map X,, < X is a topological embedding

2. Fixny > 0and C' C X,, , then C is closed in X, if and only if is closed X, for every n > n,. In
particular if every X, is closed in X, ; then every X, is closed in X .

3. If every X, is T}, then X is T},

4. If X is closed in X, ; for every n then a subset A C X__ is bounded if and only if there exist n
with A C X, and A is bounded in X, .

5. If X, is closed in X, ,; and X, is complete for every n then the limit is complete.

A.2 Functional analysis

Usually the Banach-Steinhaus Theorem is presented in the context of Banach spaces. To generalize
it we need some definitions and results. The reader who is familiar with the standard notion of
equicontinuity should not be bothered by the following definition:

Notation. If X, Y are TVS we write L(X,Y’) for the vector space of continuos linear maps X — Y.
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Proposition 1.18. A family {Li}iel C L(X,Y) is called equicontinuos if for all open neighborhoods
U of 0 € Y there exist an open neighborhood V' of 0 € X such that

L,(V)CUforalliel.

Definition 1.19. A subspace A C X of a topological space is called nowhere dense if Int (Z) =0. A
is said to be of first category if it is a countable union of nowhere dense subsets, otherwise is said to
be of second category.

Theorem 1.20. (Baire's category theorem) Let {U,,} C X be a countable collection of dense open sets,
where X is

« a complete metric space, or

« alocally compact Hausdorff space;

then ﬂn U,, is dense. In particular X is of second category.

Theorem 1.21. (Banach-Steinhaus) Let X,Y be TVS and (L;),_, C L(X,Y) a pointwise bounded
family on a second category subspace, that is to say the set

{z € X | the set {L;(z) | i € I} C Y is bounded}

is of second category. Then (Li)ie is equicontinuos.

I
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