

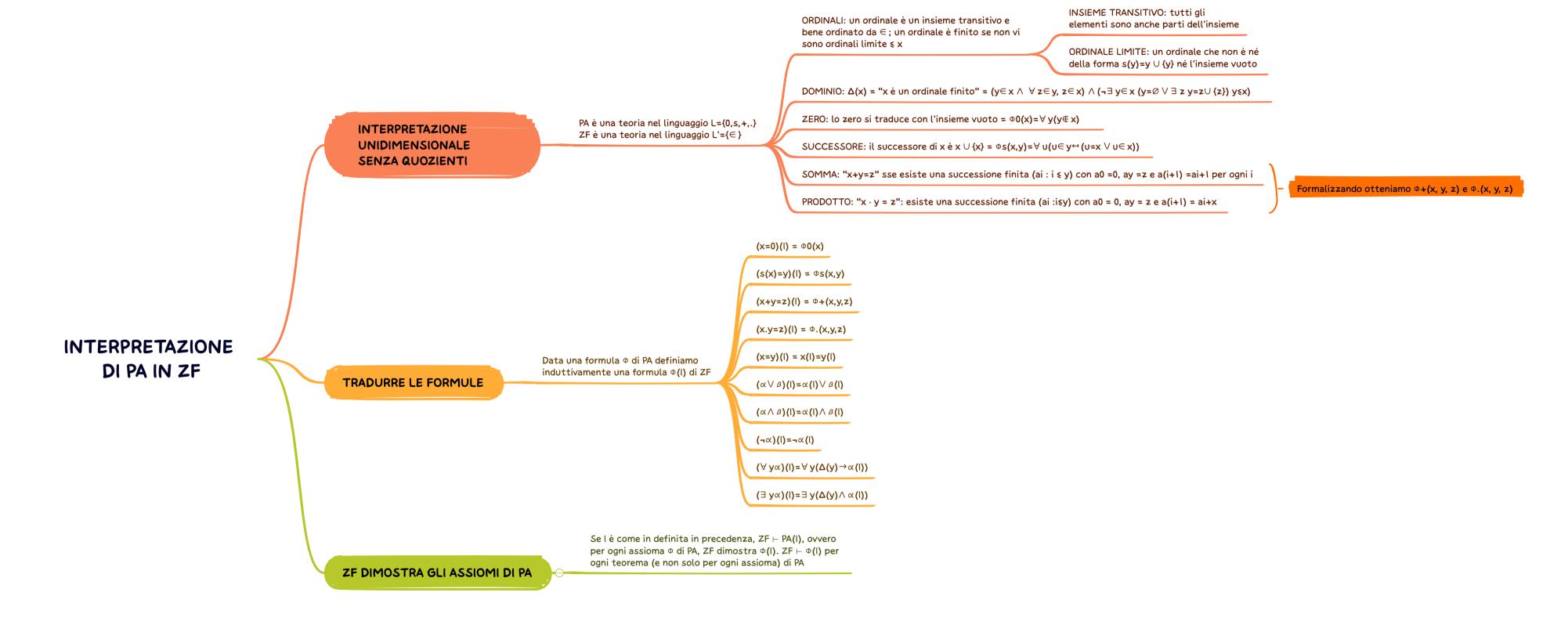
Presa una L-teoria T e una L'-teoria T' vogliamo definire un'interpretazione di T in T', come per le strutture Intuitivamente questa è data da una famiglia di L'-formule I che definiscono il dominio e i concetti primitivi di T in T', in modo tale che T' dimostri tutti gli assiomi di T tradotti nel suo linguaggio INTUITIVAMENTE Una richiesta fondamentale è che per ciascun modello M di T', l'intepretazione I deve fornire un modello N = M(I) di T interpretabile in M e la stessa I deve funzionare per tutti gli M Un'interpretazione di una L-teoria T in una L'-teoria T' è data da una famiglia di Lformule $I=(\Delta, E, \Phi P, \Phi f)P, f \in L'$ tale che, definendo $\Phi(I)$ come nel caso generale si abbia $T \vdash \Phi(I)$ per ogni assioma Φ di T'

T deve dimostrare anche che i simboli di funzione $f\in L$ siano effettivamente intepretati come funzioni in tutti i modelli e che il dominio dell'interpretazione sia sempre non vuoto

 $T \vdash (\forall X \exists ! y (f(X)=y))(I)$

 $T \vdash \exists X\Delta(X)$

DEFINIZIONE



Una teoria T è essenzialmente indecidibile se ogni estensione **ESSENZIALMENTE INDECIDIBILE** coerente di T nello stesso linguaggio è indecidibile Sia I l'interpretazione di T in T'. Se M è un Se T' è coerente lo è anche T modello di T' allora M(I) è un modello T Definiamo S \supseteq T, la L-teoria i cui assiomi sono gli enunciati θ tali che T' $\vdash \theta$ (I). Gli assiomi di S coincidono con i suoi teoremi, quindi $S \vdash \theta$ sse $T' \vdash \theta(I)$. Quindi S è coerente e se T' fosse decidibile lo sarebbe anche S. S non può essere Supponiamo che la L-teoria T sia decidibile perché estende T, quindi T' è indecidibile interpretabile nella L'- teoria T' S è deduttivamente chiusa: cioè $S \vdash \theta$ allora $\theta \in Ax(S)$, cioè $T' \vdash \theta(I)$. Supponiamo che T sia essenzialmente indecidibile. Allora T', se coerente, Da S \vdash θ segue che esiste un insieme finito di assiomi di S tale che σ l $\wedge \dots \wedge \sigma n \rightarrow \theta$ è valida. Poiché $\sigma i \in Ax(S)$ abbiamo T' $\vdash \sigma i(I)$ per ogni è essenzialmente indecidibile i, e inoltre T' $\vdash \sigma I(I) \land \ldots \land \sigma n(I) \rightarrow \theta(I)$ e quindi ho la tesi T' essenzialmente indecidibile: segue dal fatto che se T è interpretabile in T' allora è anche interpretabile in qualsiasi estensione di T' Sia I l'interpretazione di T in S. Allora S dimostra θ (I) per ogni assioma θ di T e che il dominio $\Delta(x)$ dell'interpretazione definisce un insieme non vuoto chiuso rispetto alla interpretazione delle funzioni di L(T) Se T è interpretabile in una estensione coerente L'insieme di queste formule è finito (T fin. ax.) e quindi per S di una teoria T', allora T' è indecidibile Sia T una teoria essenzialmente compattezza basta un sottoinsieme finito degli assiomi di S a dimostrarle, quindi Tè interpretabile in S'⊆S e quindi indecidibile e finitamente assiomatizzata anche in T'+S' che è indecidibile, e siccome S' ha un numero finito di assiomi allora T' è indecidibile RISULTATI PA e ZF sono essenzialmente indecidibili Q è interpretabile in PA (è contenuta) e PA è interpretabile in ZF Th $(N,+,\cdot,0,1)$ è essenzialmente indecidibile, La teoria completa $Th(Z, +, \cdot, 0, 1)$ è indecidibile ed è interpretabile in $Th(Z,+,\cdot,0,1)$ La teoria degli anelli commutativi è contenuta nella teoria di (Z, +, ·, 0, 1); Q è interpretabile in La teoria degli anelli commutativi è indecidibile quest'ultima quindi possiamo concludere Si dimostra che la teoria $Th(N, +, \cdot, 0, 1)$ è interpretabile in **RISULTATI SULLE TEORIE** $Th(Q,+,\cdot,0,1)$ usando un risultato di Julia Robinson che mostra che l'insieme N è definibile in $(Q, +, \cdot, 0, 1)$ La teoria completa $Th(Q,+,\cdot,0,1)$ è essenzialmente indecidibile Q è interpretabile in $Th(N,+,\cdot,0,1)$ che è interpretabile in $Th(Q, +, \cdot, 0, 1)$. Quest'ultima è una estensione coerente La teoria dei campi è indecidibile della teoria dei campi La teoria dei campi con 2 elementi è una La teoria dei campi non è essenzialmente indecidibile estensione decidibile della teoria dei campi Il linguaggio di ZF contiene solamente il simbolo di appartenenza. Possiamo assumere che il linguaggio L dell'ipotesi sia il linguaggio di ZF Sia T la L-teoria con l'insieme vuoto di assiomi. I modelli di T sono i grafi, ovvero gli insiemi con una Sia L un linguaggio con un simbolo di relazione binaria. relazione binaria. I teoremi di T sono gli enunciati L'insieme degli L- enunciati logicamente validi non è decidibile logicamente validi nel linguaggio L, ovvero gli enunciati TEOREMA DI CHURCH veri in tutti i grafi La teoria Q è interpretabile in ZF, che è una estensione coerente di T. Ne segue che T è indecidibile

Una teoria T è decidibile se l'insieme delle codifiche dei suoi teoremi è ricorsivo, ed è indecidibile nel caso contrario