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Abstract

Chaotic dynamical systems are characterized by the existence of a predictability
horizon, connected to the notion of Lyapunov time, beyond which predictions of
the state of the system are meaningless. In order to study the main features of orbit
determination in presence of chaos, Spoto and Milani (2016) applied the classical
least squares fit and differential correction algorithm to determine a chaotic orbit
and a dynamical parameter of a simple discrete system – Chirikov standard map
(cf. Chirikov (1979)) – with observations distributed beyond the predictability
horizon. They found a time limit beyond which numerical calculations are af-
fected by numerical instability: the computability horizon. In this article we aim
at pushing forward such inherent obstacle to numerical calculations in chaotic or-
bit determination by applying the classical and the constrained multi-arc method
(cf. Alessi et al. (2012)) to the same dynamical system. These strategies entail
the determination of an orbit when observations are grouped in separate observed
arcs. For each arc a set of initial conditions is determined and, in the case of the
constrained multi-arc method, all subsequent arcs are constrained to belong to the
same trajectory. We show that the use of these techniques in place of the standard
least squares method has significant advantages: not only can we perform accu-
rate numerical calculations well beyond the computability horizon, in particular
the constrained multi-arc strategy improves considerably the determination of the
dynamical parameter.
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1. Introduction

The classical techniques of orbit determination were introduced between the
XVIII and the XIX century for the solution of practical problems of celestial
mechanics, like the determination of a future position of a newly-discovered small
celestial body so as to be able to observe it again. Nowadays, orbit determination
methods are also essential for the Radio Science experiments of space missions:
from measurements of the range and range-rate of a spacecraft orbiting a planet
we can infer the trajectory of the orbiter as well as the value of some parameters
characterizing the planet, e.g. the gravity field coefficients, the tidal parameters,
the inclination of its rotation axis, etc. In abstract terms, orbit determination can
be applied to reconstruct an orbit of a dynamical system, starting from a set of
observations. The analytical expression of the dynamical system is supposed to
be known, therefore in order to reconstruct the orbit it is sufficient to determine
the initial state at an initial time instant, the so-called initial conditions. If the
system depends on some other free parameters, the dynamical parameters, they
can be recovered with orbit determination as well.

Many of the space-related applications of orbit determination are characterized
by chaotic phenomena. For example, chaos appears when an asteroid has a deep
close encounter with a planet (in the case of Near Earth Asteroids, especially the
Earth) and its main effect is to change the orbit of the object and to increase the
uncertainty of its state. Space missions grand tours of planetary systems represent
another critical example of arising chaos. As in the case of the NASA/ESA/ASI
Cassini-Huygens mission, the many close encounters of the orbiter with Saturn
and its moons produced great uncertainty in the determination of the entire orbit,
possibly affecting also the determination of some parameters regarding the planet.

Generally speaking, chaotic dynamical systems are characterized by a pre-
dictability horizon (cf. Lighthill et al. (1986)), a time limit beyond which it is
impossible to forecast the state of the system within a desired accuracy. In the
case of orbit determination of a chaotic system, this means that some parameters
characterizing the system cannot be determined.

In an attempt of investigating the problem of the determination of chaotic or-
bits from a mathematically rigorous and abstract point of view, Spoto and Milani
(2016) studied a relatively simple model problem in such a way that the results
are representative of the real behaviour of more complicated systems, like the ones
mentioned above. They considered the dynamical system known as Chirikov stan-
dard map (cf. Chirikov (1979)), a discrete system of the two-dimensional torus
which has both chaotic and ordered orbits1. They simulated a full-cycle orbit de-

1Since its introduction, Chirikov standard map has been used in Celestial Mechanics as a test
problem to understand features of more complicated nearly-integrable and dissipative models
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termination process: the observations were iterations of Chirikov standard map
plus a Gaussian random error and used the non-linear least squares method, de-
scribed in Sect. 2.1, to solve the problem of orbit determination of that dynamical
system, determining a set of initial conditions and a dynamical parameter. Their
goal was to understand the behaviour of the uncertainty in the determination of
these parameters, as a function of the number of observations processed. For both
chaotic and ordered orbits, they obtained that the uncertainties of the parameters
decrease as a polynomial function of the number of observations. However, in the
chaotic case they found that there exists a maximum number of observations that
can be processed before the computation becomes numerically unstable. Such time
limit is called computability horizon. It strongly depends on the chaoticity of the
system, and it is a consequence of the numerical instability of the orbit compu-
tation. The computability horizon is therefore a realization of the predictability
horizon when dealing with numerical experiments: its value, which depends on the
Lyapunov exponent of the orbit, can be computed by a simple empirical formula.
No computability horizon was found in the ordered case.

The first goal of this paper is to explore a different numerical technique to
overcome the limitation coming from the computability horizon. To be able to
compare our outcomes with the previous results, we consider the same problem
model studied in Spoto and Milani (2016). The novelty is the introduction of
a multi-arc approach in the orbit determination. The idea of the classical pure
multi-arc method (Sect. 2.2) is to consider observations grouped in separate and
relatively short arcs, and determine initial conditions for each arc. If we also impose
the constraint that all arcs belong to the same trajectory, we obtain the constrained
multi-arc strategy (introduced by Alessi et al. (2012) for the orbit determination of
the ESA/JAXA BepiColombo mission to Mercury). We analyze the case when, in
addition to the initial conditions, we also solve for a global dynamical parameter,
shared by all arcs. The main advantage of multi-arc methods is that numerical
computations are performed arc by arc, therefore we can choose the number of
observations of each arc in such a way that the computability horizon is never met.
We also aim to study the behaviour of the formal uncertainty associated with the
solve-for parameters. We will be particularly interested in assessing whether the
constrained multi-arc method provides an improvement in the determination of
the dynamical parameter with respect to the pure multi-arc method.

This paper is organized as follows. In Sect. 2 we recall classical notions of orbit
determination, multi-arc techniques and introduce the notation used throughout

(cf. Celletti et al. (2010)). Moreover, it locally approximates the Kepler map, an area-preserving
map describing the motion of a celestial body on a nearly-parabolic orbit (cf. Petrosky (1986),
Chirikov and Vecheslavov (1986) and Schevchenko (2011)).
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the article. Sect. 3 describes our framework and presents the mathematical for-
mulation of the pure and constrained multi-arc techniques in the case of Chirikov
standard map. In Sect. 4 we set up the numerical experiment, show the results
obtained, and discuss the differences between one chaotic example and one belong-
ing to an ordered region. Finally, in Sect. 5 we draw our conclusions and hint at
possible applications of this work.

2. Orbit determination

The scope of this section is to provide the essential notions of orbit determina-
tion, non-linear least-squares and multi-arc strategies, as well as to introduce the
terminology used in the rest of the article. The reader may refer to Milani and
Gronchi (2010) for a comprehensive discussion on the subject.

2.1. Non-linear least squares

Orbit determination indicates the process of reconstructing the orbit of a dy-
namical system (possibly dependent on some dynamical parameters µ){

ẋ = f(t,x,µ)

ẋ(t0) = x0,

starting from a set of observations r1, . . . , rm at times t1, . . . , tm. Since the func-
tional expression f on the right-hand side is usually known, the orbit x(t) is
uniquely determined by x0 and µ. Observations are not necessarily made up
of direct measurements of the state of the system, but can be a function of it.
For instance, in the case of a planetary orbiter the goal is to determine the plan-
etocentric position and velocity of the spacecraft, but the observations are most
commonly range (radial distance from the Earth) or range-rate (radial velocity
w.r.t. the Earth) measurements.

To model the observations we use a prediction function r(t,x0,µ), depending
on the time t, the unknown initial conditions x0 and the dynamical parameters µ.
Note that the distinction between initial conditions and dynamical parameters is
purely formal: for this reason, in the following we will use the term “parameters”
to refer to either x0 or µ. The residuals are defined as

ξi = ri − r(ti,x0,µ), i = 1, . . . ,m,

thus the vector of the residuals ξ = (ξi) is a function of x0 and µ. The least-squares
method allows to compute a solution for a desired subset u of the parameters (the
solve-for parameters), along with some statistical information associated with it.
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The solution of the orbit determination problem should - in some sense - minimize
the residuals. More rigorously, let us define the weighted target function

Q(u) =
1

m

m∑
i=1

ξ2i (u)

σ2
i

,

where σ−1
i is the weight2 associated to observation ri. The least-squares method

states that the solution u is a local minimum point of Q. This leads to the
differential correction algorithm, that is an iterative procedure to compute u: we
start from an initial guess u0 and generate a sequence (uj), where uj+1 is obtained
solving the normal equations :

C(uj+1 − uj) = D, j ≥ 0 (1)

where B = ∂ξ/∂u is called design matrix, C = BTWB is called normal matrix,
D = −BTWξ and W = diag(σ−2

1 , . . . , σ−2
m ) is the weight matrix. At convergence,

the obtained value u∗ is the solution of the orbit determination problem. The
statistical information about u∗ are contained in the covariance matrix Γ = C−1:
the formal uncertainty of parameter ui is

√
Γii, and the correlation between two

parameters ui and uj is Γij/(
√

Γii
√

Γjj).
When some information on one or more solve-for parameters is available, it

may be taken into account during the differential corrections process. Not only is
this useful to stabilize the convergence of the algorithm, but it is also the only way
to cure a possible rank deficiency of that specific orbit determination problem.
Let uP be the apriori value of the N parameters that we want to include in the
fit. With each apriori observation ui = uP,i, i = 1, . . . , N is associated an apriori
standard deviation σP,i, i = 1, . . . , N . If CP = diag(σ−2

P,1, . . . , σ
−2
P,N), adding apriori

observations u = uP can be realized modifying the target function Q as follows:

Q(u) =
1

m+N
[ξTWξ + (u− uP )TCP (u− uP )].

As a consequence, the normal equations considering the apriori observations are:

(C + CP )(uj+1 − uj) = D + CP (uj − uP ).

2.2. Multi-arc strategies

In the case of planetary space missions with an orbiter, the spacecraft is never
continuously tracked from Earth due to visibility conditions, mission design, body

2Weighing observations is a common technique used to take into account the possibility that
some observations are more accurate than the others, for instance because they were realized
with better instrumentation.
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occultations of the probe, etc., therefore observations are naturally divided into
arcs, separated by intervals in the dark. Dark periods are extended in time (days
or even weeks) and scheduled manoeuvres often occur in that time. The uncer-
tainty introduced by such manoeuvres and the difficulty of modeling the long-term
effects of non-gravitational perturbations make the orbit determination process a
challenging task. One possible solution is to use a classical (in the following, pure)
multi-arc method: we can neglect all dynamics happening in the dark periods as
long as we determine - in addition to the dynamical parameters - a set of initial
conditions of the probe for each observed arc3. For the practical calculation of
the prediction function, this means that numerical propagation of the state of the
spacecraft is made arc by arc. On the contrary, in a single-arc strategy the initial
conditions have to be propagated for the entire duration of the mission.

Let us shortly describe the mathematical formulation of the pure multi-arc
method. Let us suppose that the observations are divided in n disjoint subsets,
called arcs, and let xk0 be the initial conditions vector of arc k, k = 1, . . . , n. Let
us divide the set of parameters in two subsets: the global parameters g, which are
shared by all arcs, and the local parameters h1, . . . ,hk, which are characteristic of
the single arcs (e.g. hk includes xk0). Moreover, the local parameters from one arc
do not influence the dynamics of the other arcs. The residuals vector ξ is divided
in k subvectors:

ξ(g,h1, . . . ,hk) = (ξ1(g,h1), . . . , ξ
k(g,hk), . . . , ξ

n(g,hn))

and consequently
∂ξi

∂hj
= 0, for i 6= j.

The normal matrix inherits an arrow-like structure:

C =


Cgg Cgh1 . . . Cghn

Ch1g Ch1h1 0 0
... 0

. . . 0
Chng 0 0 Chnhn

 ,
where

Cgg =
n∑
k=1

(Bk
g)TW kBk

g

Cghk
= (Bk

g)TW kBk
hk

= CT
hkg

, Chkhk
= (Bk

hk
)TW kBk

hk
, k = 1, . . . , n,

3From another point of view, this is equivalent to having a different spacecraft for each arc.
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W k is the weight matrix of arc k, and the design sub-matrices are

Bk
g =

∂ξk

∂g
, Bk

hk
=
∂ξk

∂hk
, k = 1, . . . , n.

Finally, the right-hand side of the normal equations D is divided into sub-vectors:

Dg = −
n∑
k=1

(Bk
g)TW kξk

Dhk
= −(Bk

hk
)TW kξk, k = 1, . . . , n.

This particular structure can be exploited to split the normal equations (1) in
smaller systems, which are more convenient to solve from a numerical point of
view.

Alessi et al. (2012) presented a new version of the multi-arc method for the
Radio Science Experiment of the ESA/JAXA BepiColombo mission (cf. Benkhoff
et al. (2010)), called constrained multi-arc strategy. This is based on the idea that
all arcs belong to the same orbit, therefore they should be connected in a smooth
way. The connection is established as follows: for every pair of subsequent arcs,
their initial conditions are propagated to the central time of the dark interval be-
tween them, and the difference between the two resulting states is constrained to
be smaller than the observation noise (see later, Fig. 1). In the case of interplan-
etary missions, such strategy is more difficult to implement since the dynamical
model of the spacecraft has to take into account the perturbations occurring in
the dark periods. On the other hand, using such approach improves considerably
the stability of the entire orbit determination process. The rigorous mathematical
formulation of the constrained multi-arc method will be given in the next section
for the model problem we are considering.

3. Multi-arc strategies for Chirikov standard map

In this section we describe the mathematical formulation of the pure and con-
strained multi-arc methods for the orbit determination problem of Chirikov stan-
dard map.

Let us start recalling the definition of the dynamical system we are dealing
with. Chirikov standard map is a conservative discrete dynamical system, defined
on a two-dimensional torus by the following formula:

Si+1
µ0

[(x0, y0)] =

{
xi+1 = xi + yi+1

yi+1 = yi − µ0 sin(xi), i ∈ N, (2)
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where S0
µ0

[(x0, y0)] =: (x0, y0) are the initial conditions and µ0 is a parameter. The
system could have both ordered and chaotic orbits, depending on the choice of
(x0, y0) and µ0. There are more regular orbits for smaller values of µ0, whereas
larger values of this parameter result in more chaotic orbits.

3.1. Pure multi-arc method

The first element we need for setting up an orbit determination process are
the observations. Since we are aiming at using a multi-arc method, we need to
reproduce the same natural observational framework where multi-arc techniques
are used in practice, thus we need observations organized in arcs and dark periods
between them. As done in Spoto and Milani (2016), the observations are simply
iterations of the dynamical system and are obtained by means of the following
procedure. Firstly, we compute forward and backward iterations of (2) starting
from the initial conditions (x0, y0). Secondly, we add a random noise, modeled as a
Gaussian distribution N (0, σ), obtaining (x̄i, ȳi) = (N (xi, σ),N (yi, σ)). From this
sequence of modified iterates, we extract observations grouped in 2n+ 1 observed
arcs, numbered from −n to n, in such a way that:

• each arc k contains 2m + 1 observations (x̄j, ȳj)
k, j = −m, . . . ,m, and

(x̄0, ȳ0)
k denotes the central point of each arc;

• (x̄0, ȳ0) := (x̄0, ȳ0)
0 is the central point of arc 0;

• any two subsequent arcs are separated by a dark interval composed of 2md+1
iterates, numbered from −md to md.

Consequently, the total number of observations is (2n + 1)(2m + 1). Since the
observations are practically iterations of the map with a noise, in the following the
word “iteration” will be used as a synonym of “observation”.

The prediction function is given by the standard map itself, depending on
the dynamical parameter µ0 and the central point of each arc (x0, y0)

k, which we
will consider from now on initial conditions of the arc. The set of the solve-for
parameters in the orbit determination process is {µ0, (x0, y0)

k, k = −n, . . . , n}.
As already stated before, the parameters can be divided into global and local
parameters. In our case, the vector of the global parameters g is only the dynamical
parameter µ0, whereas the vector of the local parameters h is the vector of all the
initial conditions {(x0, y0)k, k = −n, . . . , n}, which can be split in subvectors
hk = (x0, y0)

k, k = −n, . . . , n.
The core of the least squares fit is the minimization of the target function

Q =
1

(2n+ 1)(2m+ 1)

n∑
k=−n

(ξk)TW kξk, (3)

8



•
(x, y)k

•
(x, y)k+1

Sm+md
µ [(x, y)k]

•

•
S
−(m+md)
µ [(x, y)k+1]

dk

Figure 1: The jump vector dk between arcs k and k+1 given by (5) is the difference between the
backward-propagated current initial conditions of arc k + 1, namely (x, y)k+1, and the forward-
propagated current initial conditions of arc k, namely (x, y)k, to the central point of the dark
interval between the two arcs.

where W k is the weight matrix of arc k and ξk = (ξk−m, . . . , ξ
k
m) are the residuals

relative to arc k, which read

ξkj = (x̄j, ȳj)
k − Sjµ[(x, y)k], j = −m, . . . ,m.

Here (x, y)k = (x0 + δx, y0 + δy)k and µ = µ0 + δµ are the current guess of
the parameters. The crucial property characterizing the multi-arc strategies is
described by

∂ξk1

∂(x0, y0)k2
= 0, for all k1 6= k2, k1, k2 = −n, . . . , n, (4)

which expresses the fact that the residuals from one arc do not depend on the
local parameters of another arc. We do not report the expressions of the normal
equations and the matrices involved as they are formally identical to those in
Sect. 2.2, except for summations, now running over k = −n, . . . , n. Note that
these matrices have explicit formulae and they can be computed as shown in Spoto
and Milani (2016), Sect. 2.

3.2. Constrained multi-arc

Let us now show the mathematical formulation of the constrained multi-arc
method for Chirikov standard map. The observations, the prediction function and
the residuals are the same as in the classical multi-arc strategy. The main idea is
to impose the constraint that two subsequent arcs belong to the same orbit.

We define the jump vector between arcs k and k + 1 as (see Fig. 1)

dk := S−(m+md)
µ [(x, y)k+1]− Sm+md

µ [(x, y)k], k = −n, . . . , n− 1 (5)

where S is given by (2), (x, y)k and (x, y)k+1 are the current guess of the initial
conditions of arc k and k + 1 respectively, and µ is the current guess of the dy-
namical parameter. Constraining two consecutive arcs to belong to the same orbit

9



is equivalent to including the following apriori observations to the fit:

dk = 0, (6)

with associated apriori standard deviation σP . This corresponds to adding 2n
quadratic forms to the target function (3), which now reads

Q̃ =
1

(2n+ 1)(2m+ 1) + 4n

(
n∑

k=−n

(ξk)TW kξk +
1

σ2
P

n−1∑
k=−n

(dk)Tdk

)
.

The constrained multi-arc design matrix contains also the derivative of the jump
vectors with respect to the parameters:

∂dk

∂g
=


∂S

−(m+md)
µ [(x, y)k+1]

∂µ0

−
∂Sm+md

µ [(x, y)k]

∂µ0

k = −n, . . . , n− 1

0 k = n

∂dk−1

∂hk
=


∂S

−(m+md)
µ [(x, y)k]

∂(x0, y0)k
k = −n+ 1, . . . , n

0 k = −n

∂dk

∂hk
=

−
∂Sm+md

µ [(x, y)k]

∂(x0, y0)k
k = −n, . . . , n− 1

0 k = n.

The constrained multi-arc normal matrix C̃ results in a block tridiagonal arrow-
shaped matrix:

C̃ =


C̃gg C̃gh−n . . . . . . C̃ghn

C̃h−ng C̃h−nh−n C̃h−nh−n+1 0 0
... C̃h−n+1h−n

. . . . . .
...

... 0
. . . . . . C̃hn−1hn

C̃hng 0 0 C̃hnhn−1 C̃hnhn

 ;
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where

C̃gg = Cgg +
1

σ2
P

n−1∑
k=−n

(
∂dk

∂g

)T
∂dk

∂g

C̃ghk
= Cghk

+
1

σ2
P

(
∂dk

∂g

)T
∂dk

∂hk
+

1

σ2
P

(
∂dk−1

∂g

)T
∂dk−1

∂hk
= C̃T

hkg
, k = −n, . . . , n

C̃hkhk
= Chkhk

+
1

σ2
P

(
∂dk

∂hk

)T
∂dk

∂hk
+

1

σ2
P

(
∂dk−1

∂hk

)T
∂dk−1

∂hk
, k = −n, . . . , n

C̃hk−1hk
=

1

σ2
P

(
∂dk−1

∂hk−1

)T
∂dk−1

∂hk
= C̃T

hk+1hk
, k = −n+ 1, . . . , n.

Finally, the constrained multi-arc right-hand side is

D̃g = Dg −
1

σ2
P

n−1∑
k=−n

∂dk

∂g
dk

D̃hk
= Dhk

− 1

σ2
P

(
∂dk

∂hk

)T
dk − 1

σ2
P

(
∂dk−1

∂hk

)T
dk−1, k = −n, . . . , n.

4. Numerical experiments

Spoto and Milani (2016) showed that the determination of a Chirikov standard
map’s orbit with initial conditions (x0, y0) = (3, 0), using the classical single-arc
method and determining (x0, y0) and the dynamical parameter µ0, is limited by
the computability horizon. For that orbit and in double precision, after ∼ 200
iterations of the map (i.e, when processing more than ∼ 200 observations), com-
putation becomes numerically unstable. Since the Lyapunov time4 of that orbit
is about 11 iterations, the limit in this case corresponds to about 200/11 ∼ 18
Lyapunov times. Using a multi-arc strategy is a way to overcome this limitation:
since such technique entails that the computation of the prediction function (which
also requires numerical propagations of the dynamical system) is performed arc by
arc, if the number of observations belonging to each arc is small enough, the com-
putability horizon is never reached and numerical instability is thus avoided. In
our experiments with the same dynamical system and the same chaotic orbit, we
push orbit determination up to more than 60 Lyapunov times in double precision,
as described in the following.

4The Lyapunov time of an orbit is the inverse of the largest Lyapunov exponent of that orbit
and indicates the time after which the distance between two nearby trajectories increase by a
factor e. The computation of the Lyapunov times of the orbits of Chirikov standard map is
described in Spoto and Milani (2016).
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4.1. Setup of the experiment

We create the observations as explained in Sec. 3. We use σ = 10−8 as the
Gaussian noise standard deviation, and we choose m = 5, md = 1, n = 50. In this
way each arc is composed of 11 observations - approximately 1 Lyapunov time -,
the dark intervals are composed of 3 iterations, and the total number of arcs is
101. The number of iterations required for simulating the observables is ∼ 700,
forward and backward, which correspond to more than 60 Lyapunov times of the
orbit with initial conditions (3, 0). With this choice of m and md we are able to
avoid the computability horizon.

We apply the least squares fit and the differential corrections algorithm via pure
and constrained multi-arc approaches. As already described in Sect. 2, the differen-
tial corrections algorithm consists of solving iteratively the normal equations until
a given convergence criterion is satisfied. We will discuss such criterion in Sec. 4.2.
The solve-for parameters are the initial conditions (x0, y0)

k, k = −n, . . . , n of the
arcs and the dynamical parameter µ0.

In order to ensure stability of the process, we tackle orbit determination in
a progressive fashion. At step 0 we process only arc 0, solving for the initial
conditions of this arc and µ0. For each parameter we use as first guess its true value
(i.e. the value used to create the observables) incremented by 10σ. We do this to
simulate a real orbit determination case, where the first guess of the parameters is
usually very different from the value at convergence. Once convergence is reached,
we have corrected values for such parameters. We use them in step 1 as new first
guess in an orbit determination process in which we now process, along with arc
0, also arcs 1 and −1, and we solve for the initial conditions of the three arcs and
µ0. The first guess for the initial conditions of the newly added arcs is given by
their simulation value plus 10σ, as in the previous steps. In general, at step k + 1
we add arcs −k − 1 and k + 1 to the set of the previously processed 2k + 1 arcs
(from −k to k) and solve for the initial conditions of all arcs and µ0. The first
guess values of the parameters are chosen as done in the previous steps. We repeat
such scheme until the total number of arcs is reached.

4.2. Convergence conditions

The differential corrections entail the iterative solution of the normal equations,
therefore it is crucial to establish a criterion for the termination of the algorithm.
The principle of convergence is based on two conditions: on the one hand, we
want to make sure that the last correction of the parameters (i.e. the difference
between the value of the parameters at the present iteration and at the previous
one) is “small”, in a sense we are going to specify; on the other hand, when coping
with a constrained multi-arc strategy, we need to ensure that the jump vectors are
not larger than the observation noise, say at least ten times smaller. These two
specifications translate into the following mathematical conditions: 1) if ∆u is the
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last correction to the solve-for parameters, we require that its norm ‖∆u‖C (C is
the normal matrix of the adopted multi-arc strategy) satisfies

‖∆u‖C :=

√
∆uTC∆u

(2n+ 1)(2m+ 1)
� 1,

meaning that all following iterations will not improve significantly the solution; 2)
in order to have a smooth orbit, the norm of the jump vectors should be negligible
with respect to the observation noise σ, resulting in

dRMS :=

√√√√ n−1∑
k=−n

‖dk‖2
4n

≤ σ∗, (7)

where ‖dk‖ is the euclidean norm of dk and σ∗ is a fraction of σ. The same value σ∗

is considered for the apriori standard deviation σP associated with the contraints.
We adopt a value of σP which varies along with the iteration of the fit:

σP = max

(
dRMS

100
, σ∗
)
.

4.3. Results: chaotic case

The results presented in this section refer to the determination of an orbit
of Chirikov standard map simulated with initial conditions (x0, y0) = (3, 0) and
µ0 = 0.5, with the setup described in Sect. 4.1. Such an orbit belongs to a chaotic
region of the phase space of the considered dynamical system. We have already
observed that the use of a multi-arc strategy allows to avoid the computability
horizon, therefore in the following we will focus on the uncertainties attainable for
the solve-for parameters.

4.3.1. Pure multi-arc

Let us first present the results obtained when we apply the pure multi-arc
method. Figure 2 shows the cumulative formal uncertainties on the initial condi-
tions of arc 0 (x0, y0) and the dynamical parameter µ0 as a function of the total
number of arcs k processed, k = 1, . . . , 2n+ 1, in a log-log plot.

The uncertainty on µ0 decreases as a polynomial function ka of the number
of arcs, with a ∼ −0.5. This is evident if we observe that by definition of pure
multi-arc strategy the observed arcs are independent, that is the information on
the dynamical parameter contained in each arc is the same in all arcs. As a
consequence, as we add more arcs to the fit, the normal matrix C grows as k, and
the covariance decreases as k−0.5, as we found.
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Figure 2: Formal uncertainties of the initial conditions of arc 0 (x0, y0) = (3, 0) and the dynamical
parameter µ0 = 0.5 as a function of the total number of processed arcs, using a pure multi-arc
strategy, chaotic case (log-log plot). The slope of the µ0 formal uncertainty curve is ∼ −0.5.

The uncertainty on the initial conditions has a different behaviour. Compo-
nent x0 first decreases polynomially (roughly with the same exponent as µ0), then
it reaches a point where no further improvement is gained, therefore remaining
almost constant. Component y0 shows no improvement whatsoever. A similar
behaviour was expected since by definition in a pure multi-arc strategy the infor-
mation carried by each observed arc is relevant only for the global parameters and
the local parameters of that arc. In particular, it does not affect the local param-
eters of other arcs. The moderate initial decreasing trend of the x0 component
is due to correlation with µ0: improving the knowledge of the latter helps better
determine the former. After a number of arcs the correlation is broken and no
further improvement for x0 is obtainable.

4.3.2. Constrained multi-arc

Figure 3 shows the results obtained using the constrained multi-arc method in
four different scenarios, corresponding to four different choices of the convergence
parameter σ∗, namely σ∗ = σ/10h, for h = 1, 2, 3, 4 respectively. The smaller σ∗,
the tighter the constraints between the arcs.

As far as the uncertainties of the initial conditions are concerned, the con-
strained multi-arc does not change the qualitative behaviour observed in the pure
multi-arc case. Both uncertainties decrease at first, then they tend to an asymp-
totic value. As σ∗ decreases, we observe that the asymptotic value is smaller, thus
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the accuracies attainable for the initial conditions are higher. This is in agree-
ment with how the constrained multi-arc works: smaller values of σ∗ correspond
to tighter constraints between subsequent arcs, thus better accuracy in the de-
termination of the orbit. Of course σ∗ cannot be chosen infinitely small, or we
would encounter numerical instability. We found indeed that for σ∗ < σ/104 the
iterative procedure of differential corrections fails. It is worth remarking that for
large values of σ∗ we find similar results to those obtained in the pure multi-arc
case, since imposing a loose constraint between two subsequent arcs is in practice
equivalent to not constraining them at all.

As regards the dynamical parameter µ0, in all cases its formal uncertainty is
a polynomial function of the number of processed arcs, ka, where a < −0.5. The
smaller σ∗ is, the smaller a: in other words, tighter constraints between arcs result
in better determination of the dynamical parameter. Note that a is smaller than
in the pure multi-arc case for every choice of σ∗, therefore the determination of µ0

benefits from the adoption of a constrained multi-arc technique.
Numerical experiments conducted on other chaotic orbits of the same dynami-

cal system show that such behaviour is in fact general. Although the value a of the
slope changes as we change the test orbit, we always find that a < −0.5. This re-
sult shows that chaotic orbits provide favourable opportunities for estimating free
parameters of a dynamical system, and the only way not to deal with numerical
computation issues is the use of a constrained multi-arc method.

4.4. Results: ordered case

In this section we investigate the results of orbit determination of Chirikov
standard map using a multi-arc strategy (pure and constrained) in an ordered
case. We chose (x0, y0) = (2, 2), µ0 = 0.5.

The results obtained using a pure multi-arc strategy are qualitatively similar
to the ones obtained with the same strategy in the chaotic case (cf. Fig. 4). The
uncertainty in the determination of µ0 decreases indeed as ka, a ∼ −0.5, where k
is the number of arcs, and the initial conditions of arc zero (x0, y0) do not improve
much, for the same reasons explained in Sect. 4.3.1.

Let us go on with the constrained multi-arc strategy. For comparison with the
chaotic case, we examined the ordered case similarly to what was done in Sect.
4.3.2: we repeated the same experiment four times, each time with a smaller value
of the convergence parameter σ∗. As shown in Fig. 5, in all cases the formal un-
certainty of the dynamical parameter µ0 is a polynomial function of the number of
arcs, ka, a ∼ −0.5. With regard to the initial conditions, their formal uncertain-
ties strongly depend on the choice of σ∗. For larger values of σ∗ they initially tend
to decrease, then remain constant, analogously to the chaotic case. The reason is
the same as in the previous case: when constraints are rather loose, adding ob-
served arcs to the fit provides little information on other arcs, so the uncertainties
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Figure 3: Formal uncertainties of the initial conditions of arc 0 (x0, y0) and the dynamical
parameter µ0 as a function of the total number of processed arcs, using a constrained multi-arc
strategy (log-log plot), chaotic case. The four figures refer to four different experiments repeated
with the same setting (x0, y0) = (3, 0), µ0 = 0.5, except for different values of the convergence
parameter σ∗ (see formula 7). The formal uncertainty of µ0 is a polynomial function of the
number of processed arcs, ka,.
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Figure 4: Formal uncertainties of the initial conditions of arc 0 (x0, y0) = (2, 2) and the dynamical
parameter µ0 = 0.5 as a function of the total number of processed arcs, using a pure multi-arc
strategy, ordered case (log-log plot). The slope of the µ0 uncertainty is ∼ −0.5.

of the initial conditions do not decrease after they reach a certain minimum value.
On the other hand, if σ∗ is small enough, the formal uncertainties of the initial
condition follow the same law as the dynamical parameter (Fig. 5(d)). This is
what happens if we attempt a single-arc solution (cf. Spoto and Milani (2016),
Fig. 10), since in the limit for σ∗ → 0 the constrained multi-arc strategy tends to
the single-arc one. Note that in contrast with the chaotic case, in the ordered case
no instability is encountered when choosing σ∗ < σ/104. We have studied indeed
the case when σ∗ = σ/105, one order of magnitude less than what is possible to
do in the chaotic case.

As a final remark, we observe that the determination of µ0 in the ordered
case is not affected by the choice of the particular multi-arc strategy used in orbit
determination process. As in either case the formal uncertainty of the dynami-
cal parameter is decreasing like k−0.5, the constrained multi-arc method does not
improve the determination of the parameters when dealing with non-chaotic prob-
lems. Nevertheless, it should be adopted in all practical cases when the stability of
the computation is compromised by dynamical effects that are difficult to model,
for instance in the BepiColombo MORE experiment (Alessi et al. (2012)).
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(d) σ∗ = σ/105

Figure 5: Formal uncertainties of the initial conditions of arc 0 (x0, y0) and the dynamical
parameter µ0 as a function of the total number of processed arcs, using a constrained multi-arc
strategy (log-log plot), ordered case. The four figures refer to four different experiments repeated
with the same setting, (x0, y0) = (2, 2), µ0 = 0.5, except for different values of the convergence
parameter σ∗ (see formula 7).
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5. Conclusions

We have applied the classical multi-arc method and the recently-introduced
constrained multi-arc method for orbit determination of Chirikov standard map.
We simulated observations organized in disjoint arcs and we have solved for a
pair of initial conditions for each arc and a global dynamical parameter. We have
compared the results obtained with the analysis carried out by Spoto and Milani
(2016), where they considered a unique observed arc and solved for a single pair
of initial conditions and the same dynamical parameter. Since in the multi-arc
strategies the computation of the prediction function is performed arc by arc, by
choosing relatively short arcs (about one Lyapunov time of the orbit) we have
avoided the computability horizon found in the single-arc strategy when trying to
compute a prediction for more than 18 Lyapunov times. We have indeed shown
that we are able to compute an orbit of the system for at least 60 Lyapunov times,
and the limit is far from being reached. We went even beyond the computability
horizon encountered in quadrupole precision, occurring after ∼ 39.2 Lyapunov
times (cf. Spoto and Milani (2016)), which confirms the remarkable strength of
this method. Since the uncertainties of the solve-for parameters decrease as the
number of observations increases, this allows to achieve higher accuracies in the
orbit determination of a chaotic system.

For the determination of a chaotic orbit, in the case of a pure multi-arc strat-
egy, we found that the knowledge of the initial conditions cannot be significantly
improved increasing the number of observed arcs. Although we have shown such
result for the initial conditions (x0, y0)

0 of the central arc, it is also valid for the
initial conditions of all the other arcs. On the other hand, the constrained multi-
arc strategy helps to improve the accuracy on the initial conditions as we add
more arcs, provided that we constrain all subsequent arcs to belong to the same
trajectory with very small apriori uncertainty σ∗ (as large as a fraction of the
observation noise). Moreover, we observed that the smaller σ∗ is, the larger the
improvement we obtain. However, we also noted that we are not allowed to choose
σ∗ arbitrarily small. This choise would correspond to impose that the arcs are
connected with infinite precision; were we allowed to do so, we would also be able
to use a single-arc method, as in Spoto and Milani (2016), to process as many
observations as desired, which is not the case, as it has already been stated. In
fact, there exists a value of σ∗, such that the differential corrections algorithm
cannot find a solution. This is the counterpart of the computability horizon for
the constrained multi-arc: we can process a number of observations much larger
than in the single-arc case, but we are only able to reconstruct a piecewise orbit,
whose components are connected within a certain approximation. As regards the
determination of the dynamical parameter, we found that its formal uncertainty
decreases as a polynomial function of the number of arcs k. Such functional law
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is k−0.5 when applying a pure multi-arc technique and ka, a < −0.5 for the con-
strained one, a being smaller when tighter constraints between the arcs are applied.
This implies that, using the same number of observations, the constrained multi-
arc method helps to better determine the dynamical parameter with respect to
the pure one.

We have also studied an ordered case. We noted that as opposed to the chaotic
case we can push orbit determination with constrained multi-arc method to smaller
values of the apriori uncertainty σ∗. However, the resulting uncertainty on the
dynamical parameter does not depend on the multi-arc technique used: in both
cases it decreases as k−0.5. On the other hand, we observed that using a constrained
multi-arc method improves the determination of the initial conditions of arc 0,
provided that we use a small value of σ∗. For σ∗ = σ/105 such uncertainties
behave like k−0.5, as in the single arc case.

The product of orbit determination with constrained multi-arc strategy is a
collection of orbits, each one relative to an arc, which connect within a certain
precision at the central time of the dark period between one arc and the following.
One might question the validity of determining such a piecewise orbit in contrast
to a single one. Is this “patchwork” of orbits a good approximation of the real one?
The answer is positive and comes from an application of the Shadowing Lemma
(Anosov (1967), Bowen (1975), Pilyugin (1999) and Spoto and Milani (2016)).
Using the standard notation for this theorem, once we fix ε, the result of the orbit
determination via constrained multi-arc is a δ-psudotrajectory, δ = δ(σ2

P , σ, σ
∗) >

0 and the Shadowing Lemma ensures that there exists an ε-shadowing, that is a
unique orbit, which approximates the result of the least-squares.

Although we only dealt with a model problem, we believe that the results of
this article are of particular relevance in practical applications, especially in the
case of space missions exploring the outer planets of the Solar systems and their
satellites, like the NASA/ESA/ASI Cassini-Huygens mission to Saturn or the ESA
JUICE mission to the jovian system. These kinds of missions are characterized
by many close approaches with the planet and its moons5, and therefore the or-
bit of the spacecraft is chaotic (the Lyapunov time being of the same order as
the time between two subsequent close encounters). To the best of the authors’
knowledge, no single-arc solution has been published yet for any past mission. As
already suggested in Dirkx et al. (2017), the use of a constrained multi-arc method
would allow to control possible numerical instability arising when the number of
observations grows, and at the same time it would ensure significant benefits for
the determination of the dynamical parameters, e.g. the spherical harmonics co-
efficients of the gravity field of the planets/moons, tidal parameters, etc., whose

5For instance, the Cassini mission had 127 fly-bys with Titan alone.
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measurement is the ultimate goal of the Radio Science experiments on board of
space missions.
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