Explicit Serre's open image theorem for rational elliptic curves

Lorenzo Furio

17 April 2024

Lorenzo Furio Explicit Serre's open image theorem for rational elliptic curves

Open Image Theorem

Definition

Let K be a number field and $E_{/K}$ an elliptic curve. Set $\mathbf{G}_{K} := \operatorname{Gal}\left(\overline{K}_{/K}\right)$ the absolute Galois group and $T_{p} := \varprojlim E[p^{n}]$ the *p*-adic Tate module of *E*. We define the Galois representations

$$\rho_{E,p^{\infty}}: \mathbf{G}_{K} \to \operatorname{Aut}(T_{p}) \cong \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

and

$$\rho_{\mathcal{E}}: \mathbf{G}_{\mathcal{K}} \to \prod_{p \text{ prime}} \mathrm{GL}_2(\mathbb{Z}_p) = \mathrm{GL}_2(\widehat{\mathbb{Z}}).$$

Open Image Theorem

Definition

Let K be a number field and $E_{/K}$ an elliptic curve. Set $\mathbf{G}_{K} := \operatorname{Gal}\left(\overline{K}_{/K}\right)$ the absolute Galois group and $T_{p} := \varprojlim E[p^{n}]$ the *p*-adic Tate module of *E*. We define the Galois representations

$$\rho_{E,p^{\infty}}: \mathbf{G}_{K} \to \operatorname{Aut}(T_{p}) \cong \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

and

$$\rho_{\mathcal{E}}: \mathbf{G}_{\mathcal{K}} \to \prod_{p \text{ prime}} \mathrm{GL}_{2}(\mathbb{Z}_{p}) = \mathrm{GL}_{2}(\widehat{\mathbb{Z}}).$$

Theorem (Serre, 1972)

If ${}^{E}/K$ is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Serre, 1972)

If $E_{/K}$ is an elliptic curve without CM, then the image of ρ_E is open in $GL_2(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N = N(K) such that for every elliptic curve E_{K} without CM the index $[GL_2(\widehat{\mathbb{Z}}) : Im \rho_E]$ is smaller than N?

Theorem (Serre, 1972)

If E_{K} is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N = N(K) such that for every elliptic curve E_{K} without CM the index $[GL_2(\widehat{\mathbb{Z}}) : Im \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

伺 ト イヨト イヨト

Theorem (Serre, 1972)

If E_{K} is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N = N(K) such that for every elliptic curve E_{K} without CM the index $[GL_2(\widehat{\mathbb{Z}}) : Im \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

current strategy \rightarrow giving a 'vertical' bound on the index of the image of local representations $\rho_{E,p^{\infty}}$;

< 同 > < 三 > < 三 >

Theorem (Serre, 1972)

If E_{K} is an elliptic curve without CM, then the image of ρ_{E} is open in $GL_{2}(\widehat{\mathbb{Z}})$ and hence is a finite-index subgroup.

Question

Does there exist an integer N = N(K) such that for every elliptic curve E_{K} without CM the index $[GL_2(\widehat{\mathbb{Z}}) : Im \rho_E]$ is smaller than N?

Conjecture

The question is true when $K = \mathbb{Q}$.

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

• There are constants C, γ such that

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,\rho_E] < C\max\{1,\mathsf{h}(j)\}^{\gamma}.$

.

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

• There are constants C, γ such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,\rho_E] < C \max\{1,\mathsf{h}(j)\}^{\gamma}.$$

• There is a constant C such that

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \operatorname{Im} \rho_E] < C(68N(1 + \log \log N)^{\frac{1}{2}})^{24\omega(N)}.$

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

• There are constants C, γ such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,\rho_E] < C\,\max\{1,\mathsf{h}(j)\}^{\gamma}.$$

There is a constant C such that $[\operatorname{GL}_2(\widehat{\mathbb{Z}}) : \operatorname{Im} \rho_E] < C(68N(1 + \log \log N)^{\frac{1}{2}})^{24\omega(N)}.$

• Assuming GRH there is a constant C such that $[\operatorname{GL}_2(\widehat{\mathbb{Z}}) : \operatorname{Im} \rho_E] < (C \log N (\log \log 2N)^3)^{24\omega(N)}.$

伺下 イヨト イヨト

Theorem (Zywina, 2011)

Let E be a non-CM elliptic curve over \mathbb{Q} with j = j(E). Let N be the product of primes for which E has bad reduction.

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,\rho_E] < C\,\max\{1,\mathsf{h}(j)\}^{\gamma}.$$

• There is a constant C such that

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \operatorname{Im} \rho_E] < C(68N(1 + \log \log N)^{\frac{1}{2}})^{24\omega(N)}.$

• Assuming GRH there is a constant C such that $[GL_2(\widehat{\mathbb{Z}}) : Im \rho_E] < (C \log N (\log \log 2N)^3)^{24\omega(N)}.$

Theorem (Lombardo, 2015)

Let E be a non-CM elliptic curve over a number field K. Setting ${\cal C}=\exp(1.9\cdot10^{10})$ and $\gamma=12395$ we have

 $[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,\rho_E] < C([\mathcal{K}:\mathbb{Q}]\max\{1,\mathsf{h}_{\mathcal{F}}(E),\mathsf{log}[\mathcal{K}:\mathbb{Q}]\})^{\gamma}.$

naa

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over \mathbb{Q} . There exist explicit constants C_1, C_2 such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,
ho_{\mathcal{E}}] < C_1(\mathsf{h}_{\mathcal{F}}(\mathcal{E}) + 32)^{3.531}$$

and

$$[\mathsf{GL}_{2}(\widehat{\mathbb{Z}}): \operatorname{Im} \rho_{E}] < C_{2}(\mathsf{h}_{\mathcal{F}}(E) + 23.5)^{3+O\left(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\right)},$$
where the function $O\left(\frac{1}{\log\log\mathsf{h}_{\mathcal{F}}(E)}\right)$ is explicit.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over \mathbb{Q} . There exist explicit constants C_1, C_2 such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,
ho_E] < C_1(\mathsf{h}_\mathcal{F}(E) + 32)^{3.531}$$

and

$$[\operatorname{GL}_{2}(\widehat{\mathbb{Z}}):\operatorname{Im}\rho_{E}] < C_{2}(h_{\mathcal{F}}(E) + 23.5)^{3+O\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)},$$
where the function $O\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)$ is explicit.

Main improvements:

Classification of the possible images modulo pⁿ;

伺 ト イヨト イヨト

э

Theorem (F., 2024?)

Let E be a non-CM elliptic curve over \mathbb{Q} . There exist explicit constants C_1, C_2 such that

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{Im}\,
ho_E] < C_1(\mathsf{h}_\mathcal{F}(E) + 32)^{3.531}$$

and

$$[\operatorname{GL}_{2}(\widehat{\mathbb{Z}}): \operatorname{Im} \rho_{E}] < C_{2}(h_{\mathcal{F}}(E) + 23.5)^{3+O\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)},$$
where the function $O\left(\frac{1}{\log\log h_{\mathcal{F}}(E)}\right)$ is explicit.

Main improvements:

- Classification of the possible images modulo pⁿ;
- Bound on the product of the prime powers pⁿ for which Im ρ_{E,pⁿ} lies in the normaliser of a non-split Cartan.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Im $\rho_{E,p}$ can be contained in

 'exceptional' subgroups: Serre showed they cannot occur for p > 13.

★ 3 → < 3</p>

 $\operatorname{Im} \rho_{E,p}$ can be contained in

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).

 $\operatorname{Im} \rho_{E,p}$ can be contained in

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types

• • = • • = •

 $\operatorname{Im} \rho_{E,p}$ can be contained in

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types
 - **split**: This doesn't occur for p > 13 (Bilu–Parent, 2011).

伺下 イヨト イヨト

 $\operatorname{Im} \rho_{E,p}$ can be contained in

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types
 - **split**: This doesn't occur for p > 13 (Bilu–Parent, 2011).
 - **non-split**: we don't know.

伺 と く ヨ と く ヨ と

 $\operatorname{Im} \rho_{E,p}$ can be contained in

- 'exceptional' subgroups: Serre showed they cannot occur for p > 13.
- **Borel subgroups**: they don't occur for p > 37 (Mazur, 1978).
- Normalisers of Cartan subgroups: Cartan subgroups can be of two types
 - **split**: This doesn't occur for p > 13 (Bilu–Parent, 2011).
 - **non-split**: we don't know.

Definition

Given an odd prime p, $\varepsilon \in \mathbb{Z}_p$ which is not a square modulo p and a positive integer n, we call a non-split Cartan subgroup

$$C_{ns}(p^n) := \left\{ \begin{pmatrix} a & \varepsilon b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z}_{p^n \mathbb{Z}} \text{ not both } 0 \mod p \right\}$$

and
$$C^+_{ns}(p^n)=C_{ns}(p^n)\cup egin{pmatrix} 1&0\\ 0&-1 \end{pmatrix} C_{ns}(p^n)$$
 its normaliser.

Possible images modulo p^n

Theorem (Zywina, 2011)

Suppose that p > 3 and $\text{Im } \rho_{E,p} \subseteq C_{ns}^+(p)$, for every $n \ge 1$ one of the following holds:

• Im
$$\rho_{E,p^n} \subseteq C^+_{ns}(p^n);$$

• Im
$$\rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).$$

Possible images modulo p^n

Theorem (Zywina, 2011)

Suppose that p > 3 and $\text{Im } \rho_{E,p} \subseteq C_{ns}^+(p)$, for every $n \ge 1$ one of the following holds:

• Im
$$\rho_{E,p^n} \subseteq C^+_{ns}(p^n);$$

• Im
$$\rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).$$

Remark

If Im $\rho_{E,p^{\infty}} \supset I + p^{4n}M_2(\mathbb{Z}_p)$, the index of the image is bounded by p^{16n} .

→ < Ξ → <</p>

Possible images modulo p^n

Theorem (Zywina, 2011)

Suppose that p > 3 and $\text{Im } \rho_{E,p} \subseteq C_{ns}^+(p)$, for every $n \ge 1$ one of the following holds:

• Im
$$\rho_{E,p^n} \subseteq C^+_{ns}(p^n);$$

• Im
$$\rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p).$$

Remark

If Im $\rho_{E,p^{\infty}} \supset I + p^{4n} M_2(\mathbb{Z}_p)$, the index of the image is bounded by p^{16n} .

Theorem

If p > 37 and $\rho_{E,p}$ is not surjective, then $\text{Im } \rho_{E,p} = C_{ns}^+(p)$.

Remark

Combining these two results, we notice that it is sufficient to bound all the prime powers p^n such that $\text{Im } \rho_{E,p^n} \subseteq C^+_{ns}(p^n)$.

Theorem (F.,2024)

Suppose that p > 5 and $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. If n is the largest integer such that $\operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^n M_2(\mathbb{Z}_p)$ and n > 2, then

$$\operatorname{Im} \rho_{E,p^n} = C^+_{ns}(p^n).$$

• • = • • = •

Theorem (F.,2024)

Suppose that p > 5 and $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. If n is the largest integer such that $\operatorname{Im} \rho_{E,p^{\infty}} \supset I + p^n M_2(\mathbb{Z}_p)$ and n > 2, then

$$\operatorname{Im} \rho_{E,p^n} = C^+_{ns}(p^n).$$

Remark

In this case, we have that $[GL_2(\mathbb{Z}_p) : Im \rho_{E,p^{\infty}}] \leq p^{2n}$.

< 同 > < 三 > < 三 >

Theorem (Le Fourn, 2016)

Let $E_{\mathbb{P}}$ be a non-CM elliptic curve and let Λ be a product of odd primes p such that $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. We have that $\Lambda < 2^{\omega(\Lambda)+1} \cdot 10^{3.5}(\max\{h_{\mathcal{F}}(E), 985\} + 4\omega(\Lambda)\log 2),$ where $\omega(\Lambda)$ is the prime divisor counting function.

Theorem (Le Fourn, 2016)

Let $E_{\mathbb{Q}}$ be a non-CM elliptic curve and let Λ be a product of odd primes p such that $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. We have that $\Lambda < 2^{\omega(\Lambda)+1} \cdot 10^{3.5} (\max\{h_{\mathcal{F}}(E), 985\} + 4\omega(\Lambda) \log 2),$ where $\omega(\Lambda)$ is the prime divisor counting function.

Theorem (F. – Lombardo, F.)

Let $E_{\mathbb{Q}}$ be a non-CM elliptic curve and let Λ be a product of odd p^n such that $\operatorname{Im} \rho_{E,p^n} \subseteq C_{ns}^+(p^n)$. We have $\Lambda < 2908 \cdot 2^{\omega(\Lambda)} \left(h_{\mathcal{F}}(E) + 2 \log \Lambda + \frac{3}{2} \log (h_{\mathcal{F}}(E) + 1) + 5 \right)$. In particular,

$$\Lambda < 26000 \left(h_{\mathcal{F}}(E) + 32 \right)^{1.177} \text{ and } \Lambda < 2908 h_{\mathcal{F}}(E)^{1 + O\left(\frac{1}{\log \log h_{\mathcal{F}}(E)} \right)}.$$

イロト イポト イヨト イヨト

-

Thank you for your attention