EXERCISES OF WEEK ONE (2014/09/22, 11:00AM)

Exercise 1. For each of the following sentences, state whether they are true or find a counterexample

1. if $n=1$, for every v, w in E_{1} there holds

$$
v \cdot w=0 \Rightarrow v=0 \text { or } w=0
$$

2. the same statement as in 1 . except that $n \geq 2$.

When $n=2$, given $v=\left(v_{1}, v_{2}\right)$ in E_{2}, we define

$$
v^{\perp}:=\left(v_{2},-v_{1}\right) .
$$

In the next questions the linear space is E_{2}.
3. $\|v\|=\left\|v^{\perp}\right\|$
4. given v, w such that $w \neq 0$, we have

$$
|v \cdot w|+\left|v \cdot w^{\perp}\right|=0 \Rightarrow v=0
$$

5. write the quantity

$$
|v \cdot w|^{2}+\left|v \cdot w^{\perp}\right|^{2}
$$

in terms of $\|v\|$ and $\|w\|$
6.

$$
|v \cdot w|=\left|v \cdot w^{\perp}\right| \Rightarrow v=w+w^{\perp} .
$$

Exercise 2. Prove the Cauchy-Schwarz inequality

$$
|v \cdot w| \leq\|v\|\|w\|
$$

for every $v, w \in \mathbb{R}^{n}$ (start by squaring both terms $|v \cdot w|$ and $\|v\|\|w\|$. It can be easier to look at the case $n=2$ before the general case).

