SOLUTIONS OF THE EXERCISES OF WEEK ONE

Exercise 1. For each of the following sentences, state whether they are true or find a counterexample

1. if $n=1$, for every v, w in E_{1} there holds

$$
v \cdot w=0 \Rightarrow v=0 \text { or } w=0
$$

2. the same statement as in 1 . except that $n \geq 2$.

When $n=2$, given $v=\left(v_{1}, v_{2}\right)$ in E_{2}, we define

$$
v^{\perp}:=\left(v_{2},-v_{1}\right) .
$$

In the next questions the linear space is E_{2}.
3. $\|v\|=\left\|v^{\perp}\right\|$
4. given v, w such that $w \neq 0$, we have

$$
|v \cdot w|+\left|v \cdot w^{\perp}\right|=0 \Rightarrow v=0
$$

5. write the quantity

$$
|v \cdot w|^{2}+\left|v \cdot w^{\perp}\right|^{2}
$$

in terms of $\|v\|$ and $\|w\|$
6.

$$
|v \cdot w|=\left|v \cdot w^{\perp}\right| \Rightarrow v=w+w^{\perp} .
$$

Solution.

1. True. In E_{1} the scalar product is the product of two real numbers.
2. False. When $n \geq 2$, the scalar product does not satisfy this property. For instance, take

$$
v=(1,0), \quad w=(0,1)
$$

Clearly, $v \cdot w=0$, but both vectors are non-zero.
3. True.

$$
\left\|v^{\perp}\right\|^{2}=\left|\left(v_{2},-v_{1}\right) \cdot\left(v_{2},-v_{1}\right)\right|=\left|v_{2}^{2}+\left(-v_{1}\right)^{2}\right|=\|v\|^{2} .
$$

4. True.

$$
\begin{aligned}
& |v \cdot w|=0 \Rightarrow v_{1} w_{1}=-v_{2} w_{2} \\
& \left|v \cdot w^{\perp}\right|=0 \Rightarrow v_{1} w_{2}=v_{2} w_{1} .
\end{aligned}
$$

We multiply the first equation by w_{1} and the second equation by w_{2}

$$
\begin{aligned}
& v_{1} w_{1} w_{2}=-v_{2} w_{2}^{2} \\
& v_{1} w_{2} w_{1}=v_{2} w_{1}^{2} .
\end{aligned}
$$

Now, we subtract the members of the second equation from the first one and obtain

$$
0=-v_{2}\|w\|^{2}
$$

Now we multiply the first equation by w_{1} and the second equation by w_{2}

$$
\begin{aligned}
& v_{1} w_{1}^{2}=-v_{2} w_{2} w_{1} \\
& v_{1} w_{2}^{2}=v_{2} w_{1} w_{2}
\end{aligned}
$$

Taking the sum, we obtain

$$
v_{1}\|w\|^{2}=0
$$

which implies $v_{1}=0$.
5.

$$
\begin{aligned}
|v \cdot w|^{2}+\left|v \cdot w^{\perp}\right|^{2} & =\left|v_{1} w_{1}+v_{2} w_{2}\right|^{2}+\left|v_{1} w_{2}-v_{2} w_{1}\right|^{2} \\
& =\left(v_{1} w_{1}\right)^{2}+\left(v_{2} w_{2}\right)^{2}+2 v_{1} w_{1} v_{2} w_{2} \\
& +\left(v_{1} w_{2}\right)^{2}+\left(v_{2} w_{1}\right)^{2}-2 v_{1} w_{2} v_{2} w_{1} \\
& =v_{1}^{2}\left(w_{1}^{2}+w_{2}^{2}\right)+v_{2}^{2}\left(w_{2}^{2}+w_{1}^{2}\right)=\|v\|^{2}\|w\|^{2} .
\end{aligned}
$$

6. False. Take, for instance $w=0$ and v any vector different from zero, like $v:=(1,1)$.

Exercise 2. Prove the Cauchy-Schwarz inequality

$$
|v \cdot w| \leq\|v\|\|w\|
$$

for every $v, w \in \mathbb{R}^{n}$ (start by squaring both terms $|v \cdot w|$ and $\|v\|\|w\|$. It can be easier to look at the case $n=2$ before the general case).

Solution. Firstly, we consider the case $n=2$. We have

$$
|v \cdot w|^{2}=v_{1}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}+2 v_{1} w_{1} v_{2} w_{2} .
$$

On the other side we have

$$
\|v\|^{2}\|w\|^{2}=v_{1}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2} .
$$

So, the inequality holds if and only if

$$
2 v_{1} w_{1} v_{2} w_{2} \leq v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2} .
$$

This, is true. It follows from the inequality

$$
2 a b \leq a^{2}+b^{2}
$$

for any real numbers a, b.
Now, let us look at the general case:

$$
|v \cdot w|^{2}=\sum_{i=1}^{n} v_{i}^{2} w_{i}^{2}+2 \sum_{j<k} v_{j} w_{j} v_{k} w_{k} .
$$

We apply the inequality with $a=v_{j} w_{j}$ and $b=v_{k} w_{k}$, and obtain

$$
2 \sum_{j<k} v_{j} w_{j} v_{k} w_{k} \leq \sum_{j<k}\left(v_{j}^{2} w_{k}^{2}+v_{k}^{2} w_{j}^{2}\right) .
$$

Then

$$
\begin{aligned}
|v \cdot w|^{2} & \leq \sum_{i=1}^{n} v_{i}^{2} w_{i}^{2}+2 \sum_{j<k} v_{j} w_{j} v_{k} w_{k}+\sum_{j<k}\left(v_{j}^{2} w_{k}^{2}+v_{k}^{2} w_{j}^{2}\right) \\
& =\sum_{i=1}^{n} v_{i}^{2} w_{i}^{2}+\sum_{j \neq k} v_{j}^{2} w_{k}^{2}=\sum_{j, k}^{n} v_{j}^{2} w_{k}^{2}=\sum_{j=1}^{n} v_{j}^{2} \cdot \sum_{k=1}^{n} w_{k}^{2}=\|v\|^{2}\|w\|^{2} .
\end{aligned}
$$

