EXERCISES OF WEEK FOUR (2014/09/29, 11:00AM)

Exercise 1. Given three vectors $a, b, c \in E_{3}$, let A be the matrix defined column-wise

$$
A:=(a|b| c)
$$

Show that $\operatorname{det}(A)=a \cdot(b \times c)$.
Solution.

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| & =a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \\
& =a_{1}\left(b_{2} c_{3}-c_{2} b_{3}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-c_{1} b_{2}\right) \\
& =a \cdot b \times c .
\end{aligned}
$$

Exercise 2. Let

$$
\ell_{1}:=\ell(P, v), \quad \ell_{2}:=\ell(Q, w)
$$

be two non-degenerate lines such that $v \times w=0$. Show that either

$$
\ell_{1}=\ell_{2} \text { or } \ell_{1} \cap \ell_{2}=\varnothing
$$

Solution. Since v and w are non-degenerate, there exists c in $\mathbb{R}-\{0\}$ such that $v=c w$. Suppose that

$$
\ell_{1} \cap \ell_{2} \neq \varnothing .
$$

Then, there exists R such that R belongs to $\ell_{1} \cap \ell_{2}$. Then

$$
\ell_{1}=\ell(P, v)=\ell(R, v)=\ell(R, c w)=\ell(R, w)=\ell(Q, w)=\ell_{2} .
$$

Exercise 3. Suppose that we have two non-degenerate lines

$$
\ell:=\ell(P, v), \quad \ell^{\prime}:=\ell(Q, w) .
$$

in the plane. We can define a distance between ℓ and ℓ^{\prime}

$$
d\left(\ell, \ell^{\prime}\right):=\inf \left\{d\left(R, R^{\prime}\right) \mid R \in \ell, R^{\prime} \in \ell^{\prime}\right\}
$$

Try to express the distance in terms of P, Q, v, w.
Solution. If $v \times w \neq 0$, then there exists R in $\ell \cap \ell^{\prime}$. Hence

$$
\operatorname{dist}\left(\ell, \ell^{\prime}\right)=0
$$

Then, suppose that $v \times w=0$. That is

$$
w=c v, \quad c \neq 0
$$

We claim that

$$
\operatorname{dist}\left(P, \ell^{\prime}\right)=\operatorname{dist}\left(\ell, \ell^{\prime}\right)
$$

Clearly, the inequality $\operatorname{dist}\left(P, \ell^{\prime}\right) \geq \operatorname{dist}\left(\ell, \ell^{\prime}\right)$ holds. We can write

$$
\operatorname{dist}\left(\ell, \ell^{\prime}\right)=\inf _{R \in \ell} \operatorname{dist}\left(R, \ell^{\prime}\right)
$$

Given $R \in \ell$, we have

$$
\overrightarrow{R Q}=\overrightarrow{R P}+\overrightarrow{P Q}
$$

Since R is in ℓ, there exists t such that

$$
\overrightarrow{R P}=t v
$$

Then

$$
\begin{aligned}
\operatorname{dist}\left(R, \ell^{\prime}\right) & =\frac{|\overrightarrow{R Q} \times w|}{\|w\|}=\frac{|\overrightarrow{R Q} \times c v|}{\|c v\|}=\frac{|\overrightarrow{R Q} \times v|}{\|v\|}=\frac{|(\overrightarrow{R P}+\overrightarrow{P Q}) \times v|}{\|v\|} \\
& =\frac{|(\overrightarrow{R P}+\overrightarrow{P Q}) \times v|}{\|v\|}=\frac{|(t v+\overrightarrow{P Q}) \times v|}{\|v\|}=\frac{|\overrightarrow{P Q} \times v|}{\|v\|} .
\end{aligned}
$$

So,

$$
\operatorname{dist}\left(\ell, \ell^{\prime}\right)=\inf _{R \in \ell^{\prime}} \frac{|\overrightarrow{P Q} \times v|}{\|v\|}=\frac{|\overrightarrow{P Q} \times v|}{\|v\|} .
$$

Exercise 4. Find the area of the polygon with vertices given by the points

$$
P(0,0), \quad Q(2,3), \quad R(5,6), \quad T(1,5) .
$$

