EXERCISES OF WEEK FOUR (2014/10/07, 11:00AM)

Exercise 1. Suppose that we have two non-degenerate planes in \mathbb{R}^3

 $\pi := \pi(P, u, v), \quad \pi' := \pi(Q, w, z).$

We can define a distance between π and π' as

$$d(\pi,\pi'):=\inf\{d(R,R')\mid R\in\ell, R'\in\ell'\}.$$

Try to express the distance in terms of P, Q, u, v, w, z.

Exercise 2. Suppose that you have a line in $\ell \subseteq \mathbb{R}^2$ given by the equation

$$\ell:ax+by=c$$

Find a formula for the distance of a point $P(x_0, y_0)$ from ℓ in terms of a, b, c.

Exercise 3. Find the intersection of the two planes given in Cartesian form

(1)
$$\pi_1: 2y + 3y + z = 1$$

(2) $\pi_2: 2y + 3y + 2z = -2.$

Exercise 4. Given two lines in \mathbb{R}^2 , $\ell(P, v) \neq \ell(Q, w)$ we know that the intersection is non-empty if and only if $v \times w \neq 0$.

Now, suppose that we have three non-degenerate lines in the plane

$$\ell_1 := \ell(P, v), \quad \ell_2 := \ell(Q, w), \quad \ell_3 := \ell(R, z)$$

such that

$$\ell_i \neq \ell_k$$
 for every $j \neq k$

find conditions on *P*, *Q*, *R*, *v*, *w*, *z* such that

$$\ell_1 \cap \ell_2 \cap \ell_3 \neq \emptyset.$$

Date: 2014, October 1.