EXERCISES OF WEEK FOUR (2014/10/07, 11:00AM)

Exercise 1. Suppose that we have two non-degenerate planes in \mathbb{R}^{3}

$$
\pi:=\pi(P, u, v), \quad \pi^{\prime}:=\pi(Q, w, z) .
$$

We can define a distance between π and π^{\prime} as

$$
d\left(\pi, \pi^{\prime}\right):=\inf \left\{d\left(R, R^{\prime}\right) \mid R \in \ell, R^{\prime} \in \ell^{\prime}\right\} .
$$

Try to express the distance in terms of P, Q, u, v, w, z.
Exercise 2. Suppose that you have a line in $\ell \subseteq \mathbb{R}^{2}$ given by the equation

$$
\ell: a x+b y=c
$$

Find a formula for the distance of a point $P\left(x_{0}, y_{0}\right)$ from ℓ in terms of a, b, c.
Exercise 3. Find the intersection of the two planes given in Cartesian form

$$
\begin{align*}
& \pi_{1}: 2 y+3 y+z=1 \tag{1}\\
& \pi_{2}: 2 y+3 y+2 z=-2 . \tag{2}
\end{align*}
$$

Exercise 4. Given two lines in $\mathbb{R}^{2}, \ell(P, v) \neq \ell(Q, w)$ we know that the intersection is non-empty if and only if $v \times w \neq 0$.
Now, suppose that we have three non-degenerate lines in the plane

$$
\ell_{1}:=\ell(P, v), \quad \ell_{2}:=\ell(Q, w), \quad \ell_{3}:=\ell(R, z)
$$

such that

$$
\ell_{j} \neq \ell_{k} \text { for every } j \neq k
$$

find conditions on P, Q, R, v, w, z such that

$$
\ell_{1} \cap \ell_{2} \cap \ell_{3} \neq \varnothing
$$

