## SOLUTIONS OF THE EXERCISES OF WEEK FIVE

Exercise 1. Suppose that we have two non-degenerate planes in $\mathbb{R}^{3}$

$$
\pi:=\pi(P, u, v), \quad \pi^{\prime}:=\pi(Q, w, z)
$$

We can define a distance between $\pi$ and $\pi^{\prime}$ as

$$
d\left(\pi, \pi^{\prime}\right):=\inf \left\{d\left(R, R^{\prime}\right) \mid R \in \ell, R^{\prime} \in \ell^{\prime}\right\} .
$$

Try to express the distance in terms of $P, Q, u, v, w, z$.
Solution. If $(u \times v) \times(w \times z) \neq 0$, then

$$
\pi \cap \pi^{\prime} \neq \varnothing
$$

On this case, $\operatorname{dist}\left(\pi, \pi^{\prime}\right)=0$. Now, let us suppose that

$$
(u \times v) \times(w \times z) \neq 0
$$

Then, there exists $c \in \mathbb{R}$ such that

$$
u \times v=c w \times z .
$$

On this case, either

$$
\pi=\pi^{\prime}
$$

or

$$
\pi \cap \pi^{\prime} \neq \varnothing=0
$$

On the first case, $\operatorname{dist}\left(\pi, \pi^{\prime}\right)=0$. On the second case, we argue as follows:

$$
\operatorname{dist}\left(\pi, \pi^{\prime}\right)=\inf _{R \in \pi} \operatorname{dist}\left(R, \pi^{\prime}\right)
$$

Let $R$ be a point of $\pi$. Then there are $t, s$ in $\mathbb{R}$ such that

$$
\overrightarrow{P R}=t u+s v .
$$

Now,

$$
\begin{aligned}
\operatorname{dist}(R, \pi(Q, w, z)) & =\frac{|\overrightarrow{Q R} \cdot w \times z|}{\|w \times z\|}=\frac{|(\overrightarrow{Q P}+\overrightarrow{P R}) \cdot w \times z|}{\|w \times z\|} \\
& =\frac{|\overrightarrow{Q P} \cdot w \times z+(t u+s v) \cdot w \times z|}{\|w \times z\|} \\
& =\frac{|\overrightarrow{Q P} \cdot w \times z|}{\|w \times z\|}=\operatorname{dist}(P, \pi) .
\end{aligned}
$$

Then, $\operatorname{dist}\left(R, \pi^{\prime}\right)$ does not depend on $R$. Hence

$$
\operatorname{dist}\left(\pi, \pi^{\prime}\right)=\frac{|\overrightarrow{Q P} \cdot w \times z|}{\|w \times z\|}
$$

Exercise 2. Suppose that you have a line in $\ell \subseteq \mathbb{R}^{2}$ given by the equation

$$
\ell: a x+b y=c
$$

Find a formula for the distance of a point $P\left(x_{0}, y_{0}\right)$ from $\ell$ in terms of $a, b, c$.
Solution. We write the line in parametric form: if $a \neq 0$, then

$$
\ell=\ell(Q(c / a, 0), w=(b,-a))
$$

We have

$$
\begin{aligned}
\overrightarrow{P Q} \times(b,-a) & =\left(x_{0}-c / a, y_{0}\right) \times(b,-a) \\
& =-a\left(x_{0}-c / a\right)-b y_{0}=-\left(a x_{0}+b y_{0}-c\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{dist}(P, \ell(Q(c / a, 0),(b,-a)))=\frac{|\overrightarrow{P Q} \times(b,-a)|}{|(b,-a)|}=\frac{\left|a x_{0}+b y_{0}-c\right|}{\left|\sqrt{a^{2}+b^{2}}\right|} \tag{1}
\end{equation*}
$$

If $b \neq 0$, then

$$
\ell=\ell(R(0, c / b),(b,-a)) .
$$

We have

$$
\begin{aligned}
\overrightarrow{P Q} \times(b,-a) & =\left(x_{0}, y_{0}-c / b\right) \times(b,-a) \\
& =-a x_{0}-\left(y_{0}-c / b\right) b=-\left(a x_{0}+b y_{0}-c\right) .
\end{aligned}
$$

So the distance formula does not depend whether $a$ or $b$ are different from zero.
Exercise 3. Find the intersection of the two planes given in Cartesian form

$$
\begin{align*}
& \pi_{1}: 2 x+3 y+z=1  \tag{2}\\
& \pi_{2}: 2 x+3 y+2 z=-2 . \tag{3}
\end{align*}
$$

Solution. Since $(2,3,1)$ is not parallel to $(2,3,2)$, the intersection is a line, which is parallel to

$$
(2,3,1) \times(2,3,2)=(3,-2,0) .
$$

Since the determinant of the matrix

$$
\left(\begin{array}{ll}
3 & 1 \\
3 & 2
\end{array}\right)
$$

is non-zero, we can find an intersection point $P\left(x_{0}, y_{0}, z_{0}\right)$ with coordinate $x_{0}=0$ and coordinates $y_{0}, z_{0}$ as solution of the system

$$
\begin{align*}
& 3 y_{0}+z_{0}=1  \tag{4}\\
& 3 y_{0}+2 z_{0}=-2 . \tag{5}
\end{align*}
$$

We obtain $z_{0}=-3$ and $y_{0}=4 / 3$. Then, the intersection between the two planes is the line

$$
\ell(P(0,4 / 3,-3),(3,-2,0)) .
$$

Exercise 4. Given two lines in $\mathbb{R}^{2}, \ell(P, v) \neq \ell(Q, w)$ we know that the intersection is non-empty if and only if $v \times w \neq 0$.
Now, suppose that we have three non-degenerate lines in the plane

$$
\ell_{1}:=\ell(P, v), \quad \ell_{2}:=\ell(Q, w), \quad \ell_{3}:=\ell(R, z)
$$

such that

$$
\ell_{j} \neq \ell_{k} \text { for every } j \neq k
$$

find conditions on $P, Q, R, v, w, z$ such that

$$
\ell_{1} \cap \ell_{2} \cap \ell_{3} \neq \varnothing .
$$

Solution. Since the intersection between the three lines is non-empty, then $\ell_{1} \neq \ell_{2}$. The condition $\ell_{1} \neq \ell_{2}$ implies
(6)

$$
v \times w \neq 0
$$

So, there is unique intersection point, namely

$$
T=P+\frac{\overrightarrow{P Q} \times w}{v \times w} w
$$

In order to have

$$
\left(\ell_{1} \cap \ell_{2}\right) \cap \ell_{3} \neq \varnothing
$$

it is necessary that this point $T$ also belongs to $\ell_{3}$. Then $T \in \ell_{3}$ implies

$$
\overrightarrow{T R} \times z=0
$$

that is

$$
\begin{equation*}
\overrightarrow{P R} \times z+\frac{\overrightarrow{P Q} \times w}{v \times w}(w \times z)=0 \tag{7}
\end{equation*}
$$

The conditions (6) and (7) are sufficient.

