SOLUTIONS OF THE EXERCISES OF WEEK FIVE

Exercise 1. Suppose that we have two non-degenerate planes in \mathbb{R}^3

 $\pi := \pi(P, u, v), \quad \pi' := \pi(Q, w, z).$

We can define a distance between π and π' as

$$d(\pi,\pi'):=\inf\{d(R,R')\mid R\in\ell, R'\in\ell'\}.$$

Try to express the distance in terms of P, Q, u, v, w, z.

Solution. If $(u \times v) \times (w \times z) \neq 0$, then

$$\pi \cap \pi' \neq \emptyset$$

On this case, $\operatorname{dist}(\pi,\pi') = 0$. Now, let us suppose that

 $(u \times v) \times (w \times z) \neq 0.$

Then, there exists $c \in \mathbb{R}$ such that

$$u \times v = cw \times z.$$

On this case, either

$$\pi = \pi'$$

or

$$\pi \cap \pi' \neq \emptyset = 0.$$

On the first case, $dist(\pi, \pi') = 0$. On the second case, we argue as follows:

$$\operatorname{dist}(\pi,\pi') = \inf_{R \in \pi} \operatorname{dist}(R,\pi').$$

Let *R* be a point of π . Then there are *t*, *s* in \mathbb{R} such that

$$\overrightarrow{PR} = tu + sv.$$

Now,

$$dist(R, \pi(Q, w, z)) = \frac{|\overrightarrow{QR} \cdot w \times z|}{\|w \times z\|} = \frac{|(\overrightarrow{QP} + \overrightarrow{PR}) \cdot w \times z|}{\|w \times z\|}$$
$$= \frac{|\overrightarrow{QP} \cdot w \times z + (tu + sv) \cdot w \times z|}{\|w \times z\|}$$
$$= \frac{|\overrightarrow{QP} \cdot w \times z|}{\|w \times z\|} = dist(P, \pi).$$

Then, dist(R, π') does not depend on R. Hence

dist
$$(\pi, \pi') = \frac{|\overline{QP} \cdot w \times z|}{\|w \times z\|}.$$

Date: 2014, October 1.

Exercise 2. Suppose that you have a line in $\ell \subseteq \mathbb{R}^2$ given by the equation

$$\ell: ax + by = c$$

Find a formula for the distance of a point $P(x_0, y_0)$ from ℓ in terms of a, b, c.

Solution. We write the line in parametric form: if $a \neq 0$, then

$$\ell = \ell(Q(c/a, 0), w = (b, -a)).$$

We have

$$\overrightarrow{PQ} \times (b, -a) = (x_0 - c/a, y_0) \times (b, -a) = -a(x_0 - c/a) - by_0 = -(ax_0 + by_0 - c).$$

Then

(1)
$$\operatorname{dist}(P, \ell(Q(c/a, 0), (b, -a))) = \frac{|\overline{PQ} \times (b, -a)|}{|(b, -a)|} = \frac{|ax_0 + by_0 - c|}{|\sqrt{a^2 + b^2}|}.$$

If $b \neq 0$, then

$$\ell = \ell(R(0,c/b),(b,-a)).$$

We have

$$\overline{PQ} \times (b, -a) = (x_0, y_0 - c/b) \times (b, -a)$$

= $-ax_0 - (y_0 - c/b)b = -(ax_0 + by_0 - c).$

So the distance formula does not depend whether *a* or *b* are different from zero.

Exercise 3. Find the intersection of the two planes given in Cartesian form

(2)
$$\pi_1: 2x + 3y + z = 1$$

(3)
$$\pi_2 : 2x + 3y + 2z = -2$$

Solution. Since (2,3,1) is not parallel to (2,3,2), the intersection is a line, which is parallel to

$$(2,3,1) \times (2,3,2) = (3,-2,0).$$

Since the determinant of the matrix

$$\begin{pmatrix} 3 & 1 \\ 3 & 2 \end{pmatrix}$$

is non-zero, we can find an intersection point $P(x_0, y_0, z_0)$ with coordinate $x_0 = 0$ and coordinates y_0, z_0 as solution of the system

(4)
$$3y_0 + z_0 = 1$$

(5)
$$3y_0 + 2z_0 = -2$$

We obtain $z_0 = -3$ and $y_0 = 4/3$. Then, the intersection between the two planes is the line

$$\ell(P(0,4/3,-3),(3,-2,0)).$$

Exercise 4. Given two lines in \mathbb{R}^2 , $\ell(P, v) \neq \ell(Q, w)$ we know that the intersection is non-empty if and only if $v \times w \neq 0$.

Now, suppose that we have three non-degenerate lines in the plane

$$\ell_1 := \ell(P, v), \quad \ell_2 := \ell(Q, w), \quad \ell_3 := \ell(R, z)$$

such that

$$\ell_j \neq \ell_k$$
 for every $j \neq k$

find conditions on *P*, *Q*, *R*, *v*, *w*, *z* such that

 $\ell_1 \cap \ell_2 \cap \ell_3 \neq \emptyset.$

Solution. Since the intersection between the three lines is non-empty, then $\ell_1 \neq \ell_2$. The condition $\ell_1 \neq \ell_2$ implies

(6) $v \times w \neq 0.$

So, there is unique intersection point, namely

$$T = P + \frac{\overrightarrow{PQ} \times w}{v \times w}w.$$

In order to have

$$(\ell_1 \cap \ell_2) \cap \ell_3 \neq \emptyset$$

it is necessary that this point *T* also belongs to ℓ_3 . Then $T \in \ell_3$ implies

$$\overrightarrow{TR} \times z = 0.$$

that is

(7)
$$\overrightarrow{PR} \times z + \frac{PQ \times w}{v \times w} (w \times z) = 0$$

The conditions (6) and (7) are sufficient.