5. Intersection of planes and lines

Definition 5.1 (Parametric form). Given a point $P \in \mathbb{R}^{3}$ and vectors $v, w \in E^{3}$, a plane is the set

$$
\pi(P, v, w):=\{P+t v+s w \mid t, s \in \mathbb{R}\} .
$$

Definition 5.2. A plane is called non-degenerate if and only if

$$
v \times w \neq 0
$$

Proposition 5.1. Let $\ell_{1}:=\ell(P, v)$ and $\ell_{2}:=\ell(Q, w)$ be two non-degenerate lines such that $\ell_{1} \neq \ell_{2}$. Then $\ell_{1} \cap \ell_{2} \neq \varnothing$ if and only if

$$
\begin{equation*}
\overrightarrow{P Q} \cdot(v \times w)=0, \quad v \times w \neq 0 \tag{42}
\end{equation*}
$$

If the intersection is non-empty, it consists of a single point

$$
\begin{equation*}
R=Q+\frac{(\overrightarrow{P Q} \times v) \cdot(v \times w)}{\|v \times w\|^{2}} w=P+\frac{(\overrightarrow{P Q} \times w) \cdot(v \times w)}{\|v \times w\|^{2}} v \tag{43}
\end{equation*}
$$

Proof. Suppose that $\ell_{1} \cap \ell_{2} \neq \varnothing$. Then, there exists R such that

$$
R \in \ell_{1} \cap \ell_{2}
$$

Then, there are real numbers t, s such that

$$
R=P+t v, \quad R=Q+s w .
$$

Then

$$
\overrightarrow{P Q}=t v-s w \Rightarrow \overrightarrow{P Q} \cdot(v \times w)=0
$$

We can show by contradiction that $v \times w \neq 0$. If $v \times w=0$, then there exists $c \neq 0$ such that

$$
w=c v .
$$

Then

$$
\begin{aligned}
\ell_{1} & =\ell(Q, w)=\ell(P+\overrightarrow{P Q}, w) \\
& =\ell(P+t v-s w, w)=\ell(P+(t-c s) v, c v) \\
& =\ell(P, v)=\ell_{2}
\end{aligned}
$$

which contradicts the assumption that $\ell_{1} \neq \ell_{2}$.
Conversely, suppose that (46) holds. Then, $\overrightarrow{P Q}$ is a vector of the linear space generated by v and w. Then there are α and β such that

$$
\begin{equation*}
\overrightarrow{P Q}=\alpha v+\beta w \tag{44}
\end{equation*}
$$

that is

$$
Q-P=\alpha v+\beta w
$$

whence

$$
\begin{equation*}
Q-\beta w=P+\alpha v . \tag{45}
\end{equation*}
$$

Thus, if we define $R:=P+\alpha v$, we have $R \in \ell_{1} \cap \ell_{2}$.
Now, we wish to find an explicit formula for the intersection point. That is, in (44) we wish to find α and β. We take the cross product with w and obtain

$$
\overrightarrow{P Q} \times w=\alpha v \times w
$$

then

$$
(\overrightarrow{P Q} \times w) \cdot(v \times w)=\alpha\|v \times w\|^{2}
$$

Since $v \times w \neq 0$, we have

$$
\alpha=\frac{(\overrightarrow{P Q} \times w) \cdot(v \times w)}{\|v \times w\|^{2}} .
$$

Then the intersection point is

$$
R=P+\frac{(\overrightarrow{P Q} \times w) \cdot(v \times w)}{\|v \times w\|^{2}} v
$$

By taking the cross product with v, we obtain

$$
\overrightarrow{P Q} \times v=\beta w \times v
$$

whence

$$
\beta=-\frac{(\overrightarrow{P Q} \times v) \cdot(v \times w)}{\|v \times w\|^{2}} w
$$

From (45) the equality (43) follows.
In the next proposition we find an explicit formula for the intersection of a line $\ell(P, v)$ with a plane $\pi(Q, w, z)$. If $\ell \subseteq \pi$, then the intersection $\ell \cap \pi$ is equal to ℓ.

Proposition 5.2 (Intersection between a line and a plane). Suppose that $\ell \nsubseteq \pi$. Then $\ell \cap \pi \neq \varnothing$ if and only if

$$
w \times z \cdot v \neq 0 .
$$

On this case, the intersection is a single point R and

$$
R=P+\left(\frac{\overrightarrow{P Q} \cdot w \times z}{z \cdot w \times z}\right) v .
$$

Proof. If the intersection is non-empty, then $v \cdot(w \times z) \neq 0$.
Let R be a point of the intersection. We show that

$$
v \times w \cdot z \neq 0
$$

On the contrary, there are α and β such that

$$
\begin{equation*}
z=\alpha v+\beta w . \tag{46}
\end{equation*}
$$

Then

$$
\ell(P, v)=\ell(R, v)=\ell(R, \alpha w+\beta z) \subseteq \pi(R, w, z)=\pi(Q, w, z)
$$

And we obtain a contradiction. Now, we prove that if $v \cdot(w \times z) \neq 0$, then the intersection is non-empty. We have to prove that there are t, s, r such that

$$
R=Q+s w+r z, \quad R=P+t z
$$

or

$$
\overrightarrow{P Q}=t v-s w-r z .
$$

Such real numbers exist, because $\{v, w, z\}$ is a basis of E_{3}. Now, we wish to evaluate t to find an explicit formula for the intersection point. We set

$$
\alpha:=t, \quad \beta:=-s, \quad \gamma:=-r
$$

and

$$
b:=\overrightarrow{P Q}
$$

Then, we need to find real numbers α, β, γ such that

$$
b=\alpha v+\beta w+\gamma z .
$$

To this purpose, we use the Cramer's Rule:

$$
\alpha=\frac{b \cdot w \times z}{v \cdot w \times z}, \quad \beta=\frac{v \cdot b \times z}{v \cdot w \times z}, \quad \gamma=\frac{v \cdot w \times b}{v \cdot w \times z} .
$$

Then, the intersection point is

$$
R=P+\left(\frac{\overrightarrow{P Q} \cdot w \times z}{v \cdot w \times z}\right) v=Q-\left(\frac{v \cdot \overrightarrow{P Q} \times z}{v \cdot w \times z}\right) w-\left(\frac{v \cdot w \times \overrightarrow{P Q}}{v \cdot w \times z}\right) z
$$

Given $Q \in \mathbb{R}^{3}$ and a plane $\pi(P, w, z)$. We define the distance between Q and π as

$$
d(Q, \pi):=\inf \{d(Q, R) \mid R \in \pi\}
$$

Proposition 5.3 (Distance between a point and a plane). Given $Q \in \mathbb{R}^{3}$ and a nondegenerate plane $\pi(P, w, z)$. Then

$$
d(Q, \pi)=\frac{|\overrightarrow{P Q} \cdot w \times z|}{\|w \times z\|}
$$

Proof. We define

$$
\ell^{\prime}:=\ell(Q, v \times w) .
$$

By Proposition 5.2, the intersection between ℓ^{\prime} and π consists of a single point

$$
Q^{\prime}=Q-\left(\frac{v \times w \cdot \overrightarrow{P Q}}{\|v \times w\|^{2}}\right) v \times w
$$

Then

$$
\begin{equation*}
d(Q, \pi) \leq\left\|\overrightarrow{Q Q^{\prime}}\right\|=\frac{|v \times w \cdot \overrightarrow{P Q}|}{\|v \times w\|} \tag{47}
\end{equation*}
$$

Now, let R be another point of π. Then

$$
\overrightarrow{R Q} \cdot \overrightarrow{Q Q^{\prime}}=0
$$

Hence

$$
d(Q, R)^{2}=d\left(Q, Q^{\prime}\right)^{2}+d\left(R, Q^{\prime}\right)^{2}
$$

and

$$
d(Q, R) \geq d\left(Q, Q^{\prime}\right)=\frac{|v \times w \cdot \overrightarrow{P Q}|}{\|v \times w\|}
$$

Since the inequality above holds for every $R \in \pi$, we obtain

$$
d(Q, \pi) \geq \frac{|v \times w \cdot \overrightarrow{P Q}|}{\|v \times w\|}
$$

Together with (47), we obtain

$$
d(Q, \pi)=\frac{|v \times w \cdot \overrightarrow{P Q}|}{\|v \times w\|}
$$

