
4. LINES IN R
2

Notation 4.1. Given v ∈ E2, we define

v⊥ := (v2,−v1).

It is not difficult to show that

(35) �v⊥�2 = �v�2 = |v × v⊥|.
Definition 4.1 (Lines). Given P ∈ R

2 and v ∈ E2, a line is the subset of

ℓ(P, v) := {P + tv | t ∈ R}.

If v = 0, then ℓ(P, v) = {P} is just a point. A point is a degenerate line.

The following equalities hold

ℓ(P, v) = ℓ(P, rv), ∀r ∈ R − {0}(36)

ℓ(P, v) = ℓ(P + cv, v), ∀c ∈ R.(37)

In view of the above equalities, the representation of a line with a pair (P, v) is not
unique. We wish to state a precise relation between two pairs (P, v) and (Q, w) such
that

ℓ(P, v) = ℓ(Q, w).

Proposition 4.1. Given (P, v) and (Q, w) such that v, w �= 0 there holds

ℓ(P, v) = ℓ(Q, w) ⇔ #   »

PQ × v = v × w = 0.

If v = w = 0, then the proposition fails: just take P �= Q. If only one vector between v
and w is equal to zero, then ℓ is different from ℓ′.

Proof. We use the notation

ℓ := ℓ(P, v), ℓ
′ := ℓ(Q, w).

We prove the left implication. If ℓ = ℓ′, then ℓ′ ⊆ ℓ. Thus,

Q ∈ ℓ
′ ⇒ Q ∈ ℓ.

Therefore, there exists t1 such that

Q = P + t1w and
#   »

PQ = t1v.

From (29),

(38)
#   »

PQ × v = 0.

Now, since Q + w is in ℓ′ it also belongs to ℓ. Then, there exists t2 in R such that

Q + w = P + t2v.

which implies
#   »

PQ = −w + t2v.

From (29) and (38),

(39) 0 =
#   »

PQ × v = −v × w.

The (38) and (39) are the sought relations.

Now, we prove the right implication. Since each of the two vectors is non-zero, there
are c, d ∈ R − {0} such that

w = cv,
#   »

PQ = dv.
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Then by (35) and (36), we have

ℓ(Q, w) = ℓ(P + dv, cv) = ℓ(P, v).

�

Proposition 4.2 (Intersection of two lines). Given two non-degenerate lines

ℓ := ℓ(P, v), ℓ
′ := ℓ(Q, w)

such that ℓ �= ℓ′, there holds

ℓ ∩ ℓ
′ �= ∅ ⇔ v × w �= 0.

If v × w �= 0, then the intersection contains the unique point

P +

�

#   »

PQ × w

v × w

�

v.

Proof. We prove the left implication. We argue by contradiction. Suppose that T is in
ℓ ∩ ℓ′ and v × w = 0. Then, there are t, s and c �= 0 such that

v = cw, T = Q + tw, T = P + sv.

Then, by (36) and (35)

ℓ = ℓ(P, v) = ℓ(T − sv, v) = ℓ(T − scw, cw)

= ℓ(T, w) = ℓ(Q + tw, w) = ℓ(Q, w) = ℓ
′.

We obtained a contradiction with the assumption ℓ �= ℓ′.
We prove the right implication. Suppose that v × w �= 0. We have to show that

ℓ ∩ ℓ
′ �= ∅

that is, we have to show that there are t, s such that

P + tv = Q + sw.

If the equality above holds, then

tv − sw =
#   »

PQ.

we can take the cross product in E2 with w. Then

(tv − sw)× w =
#   »

PQ × w ⇒ tv × w =
#   »

PQ × w.

Since v × w �= 0,

t =

#   »

PQ × w

v × w
.

Then, if an intersection point exists, this must be

(40) R = P +

�

#   »

PQ × w

v × w

�

v.

So, we proved the uniqueness of the intersection point. Now, we show that R is in ℓ∩ ℓ′

(this will prove the existence of the intersection point). In fact, R is in ℓ by definition of
ℓ(P, v). We check that R is in ℓ′; so must show that R − Q = hw for some h in R. Since
w �= 0, it is enough to prove that

#    »

QR × w = 0.
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From (40), we have

#    »

QR × w =
#   »

QP × w +

�

#   »

PQ × w

v × w

�

v × w =
#   »

QP × w +
#   »

PQ × w = 0.

�

Proposition 4.3. Given two points Q, R such that Q �= R, there exists a unique line ℓ such
that

Q, R ∈ ℓ.

Proof. Firstly, we show that

Q, R ∈ ℓ(Q,
#    »

QR).

In fact,
Q = Q + 0 · #    »

QR ⇒ Q ∈ ℓ

and
R = Q + 1 · #    »

QR = Q + (R − Q) = R ⇒ R ∈ ℓ.

Now, we show that the ℓ(Q,
#    »

QR) is the unique line which contains Q and R. Let
ℓ := ℓ(P, v) be such that Q, R ∈ ℓ(P, v). Since Q, R ∈ ℓ, there are t1, t2 such that

Q = P + t1v, R = P + t2v.

Since Q �= R, we have t1 �= t2. Then

v = c
#    »

QR, c :=
1

t2 − t1
�= 0.

From (35) and (36), there holds

ℓ(P, v) = ℓ(Q − t1v, c
#    »

QR) = ℓ(Q,
#    »

QR).

�

Definition 4.2 (Distance between two points). Given P, Q in R
n, we define

dist(P, Q) = � #   »

PQ�.

It is called distance between P and Q.

Definition 4.3 (Distance between a point and a line). Given a point Q and a line ℓ, we
define

d(Q, ℓ) := inf{d(Q, R) | R ∈ ℓ}.

Proposition 4.4. Given a non-degenerate line ℓ(P, v) and a point Q, there holds

d(P, ℓ) =
|v × #   »

PQ|
�v� .

Proof. We consider the line ℓ′ := ℓ(Q, v⊥). By Proposition 4.2,

ℓ ∩ ℓ
′ �= ∅

and the intersection contains only the point

Q′ := Q +

�

#   »

QP × v

v⊥ × v

�

v⊥.

We claim that
dist(P, ℓ) = dist(P, Q′).
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Since
#     »

Q′R ·
#      »

Q′Q = 0

for every R ∈ ℓ, there holds

d(R, Q)2 = d(R, Q′)2 + d(Q, Q′)2.

Then, for every R
d(R, Q) ≥ d(Q, Q′)

and the equality holds when R = Q′. Thus,

d(Q, ℓ) = d(Q, Q′) =

�

�

�

�

�

�

#   »

QP × v

v × v⊥

�

v⊥
�

�

�

�

�

=
|v × #   »

PQ|
�v� .

�

4.1. Cartesian form of a line. Given a non-degenerate line ℓ(P, v) , we can express
its points using the Cartesian coordinates. We need the coordinates of the point P and
the vector v

P(x1, x2), v = (v1, v2).

Then, if Q(x, y) is in ℓ(P, v), then that

∃t ∈ R such that
#   »

PQ = tv.

Since v �= 0, the statement above is equivalent to
#   »

PQ × v = 0

that is

(41) a(x − x1) + b(y − x2) = 0.

where a = v2 and b = −v1.
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