Notation 4.1. Given $v \in E_2$, we define

 $v^{\perp} := (v_2, -v_1).$

It is not difficult to show that

(35)
$$||v^{\perp}||^2 = ||v||^2 = |v \times v^{\perp}|.$$

Definition 4.1 (Lines). Given $P \in \mathbb{R}^2$ and $v \in E^2$, a line is the subset of

$$\ell(P,v) := \{P + tv \mid t \in \mathbb{R}\}$$

If v = 0, then $\ell(P, v) = \{P\}$ is just a point. A point is a *degenerate* line. The following equalities hold

(36)
$$\ell(P,v) = \ell(P,rv), \ \forall r \in \mathbb{R} - \{0\}$$

(37) $\ell(P,v) = \ell(P+cv,v), \ \forall c \in \mathbb{R}.$

In view of the above equalities, the representation of a line with a pair (P, v) is not unique. We wish to state a precise relation between two pairs (P, v) and (Q, w) such that

$$\ell(P, v) = \ell(Q, w)$$

Proposition 4.1. *Given* (P, v) *and* (Q, w) *such that* $v, w \neq 0$ *there holds*

$$\ell(P, v) = \ell(Q, w) \Leftrightarrow \overrightarrow{PQ} \times v = v \times w = 0.$$

If v = w = 0, then the proposition fails: just take $P \neq Q$. If only one vector between v and w is equal to zero, then ℓ is different from ℓ' .

Proof. We use the notation

$$\ell := \ell(P, v), \quad \ell' := \ell(Q, w).$$

We prove the left implication. If $\ell = \ell'$, then $\ell' \subseteq \ell$. Thus,

$$Q \in \ell' \Rightarrow Q \in \ell.$$

Therefore, there exists t_1 such that

$$Q = P + t_1 w$$
 and $\overrightarrow{PQ} = t_1 v$.

From (29),

Now, since Q + w is in ℓ' it also belongs to ℓ . Then, there exists t_2 in \mathbb{R} such that

$$Q + w = P + t_2 v.$$

 $\overrightarrow{PO} \times v = 0.$

which implies

$$\overrightarrow{PQ} = -w + t_2 v_2$$

From (29) and (38),

(39) $0 = \overrightarrow{PQ} \times v = -v \times w.$

The (38) and (39) are the sought relations.

Now, we prove the right implication. Since each of the two vectors is non-zero, there are $c, d \in \mathbb{R} - \{0\}$ such that

$$w = cv, \quad \overrightarrow{PQ} = dv.$$

Then by (35) and (36), we have

$$\ell(Q, w) = \ell(P + dv, cv) = \ell(P, v).$$

Proposition 4.2 (Intersection of two lines). Given two non-degenerate lines

$$\ell := \ell(P, v), \quad \ell' := \ell(Q, w)$$

such that $\ell \neq \ell'$, there holds

$$\ell \cap \ell' \neq \emptyset \Leftrightarrow v \times w \neq 0.$$

If $v \times w \neq 0$ *, then the intersection contains the unique point*

$$P + \left(\frac{\overrightarrow{PQ} \times w}{v \times w}\right) v.$$

Proof. We prove the left implication. We argue by contradiction. Suppose that *T* is in $\ell \cap \ell'$ and $v \times w = 0$. Then, there are *t*, *s* and $c \neq 0$ such that

$$v = cw$$
, $T = Q + tw$, $T = P + sv$.

Then, by (36) and (35)

$$\ell = \ell(P, v) = \ell(T - sv, v) = \ell(T - scw, cw)$$
$$= \ell(T, w) = \ell(Q + tw, w) = \ell(Q, w) = \ell'.$$

We obtained a contradiction with the assumption $\ell \neq \ell'$.

We prove the right implication. Suppose that $v \times w \neq 0$. We have to show that

$$\ell \cap \ell' \neq \emptyset$$

that is, we have to show that there are *t*, *s* such that

$$P + tv = Q + sw.$$

If the equality above holds, then

$$tv - sw = \overrightarrow{PQ}.$$

we can take the cross product in E_2 with w. Then

$$(tv - sw) \times w = \overrightarrow{PQ} \times w \Rightarrow tv \times w = \overrightarrow{PQ} \times w$$

Since $v \times w \neq 0$,

$$t = \frac{\overrightarrow{PQ} \times w}{v \times w}$$

Then, if an intersection point exists, this must be

(40)
$$R = P + \left(\frac{\overrightarrow{PQ} \times w}{v \times w}\right) v.$$

So, we proved the uniqueness of the intersection point. Now, we show that *R* is in $\ell \cap \ell'$ (this will prove the existence of the intersection point). In fact, *R* is in ℓ by definition of $\ell(P, v)$. We check that *R* is in ℓ' ; so must show that R - Q = hw for some *h* in \mathbb{R} . Since $w \neq 0$, it is enough to prove that

$$\overrightarrow{QR} \times w = 0.$$

From (40), we have

$$\overrightarrow{QR} \times w = \overrightarrow{QP} \times w + \left(\frac{\overrightarrow{PQ} \times w}{v \times w}\right) v \times w = \overrightarrow{QP} \times w + \overrightarrow{PQ} \times w = 0.$$

Proposition 4.3. *Given two points* Q*,* R *such that* $Q \neq R$ *, there exists a unique line* ℓ *such that*

 $Q, R \in \ell$.

Proof. Firstly, we show that

$$Q, R \in \ell(Q, Q\hat{R}).$$

In fact,

$$Q = Q + 0 \cdot \overrightarrow{QR} \Rightarrow Q \in \ell$$

and

$$R = Q + 1 \cdot Q\dot{R} = Q + (R - Q) = R \Rightarrow R \in \ell.$$

Now, we show that the $\ell(Q, QR)$ is the unique line which contains Q and R. Let $\ell := \ell(P, v)$ be such that $Q, R \in \ell(P, v)$. Since $Q, R \in \ell$, there are t_1, t_2 such that

$$Q = P + t_1 v, \quad R = P + t_2 v.$$

Since $Q \neq R$, we have $t_1 \neq t_2$. Then

$$v = c \overrightarrow{QR}, \quad c := \frac{1}{t_2 - t_1} \neq 0.$$

From (35) and (36), there holds

$$\ell(P,v) = \ell(Q - t_1 v, c \overrightarrow{QR}) = \ell(Q, \overrightarrow{QR}).$$

Definition 4.2 (Distance between two points). Given P, Q in \mathbb{R}^n , we define

$$\operatorname{dist}(P,Q) = \|\overrightarrow{PQ}\|.$$

It is called *distance between P* and *Q*.

Definition 4.3 (Distance between a point and a line). Given a point Q and a line ℓ , we define

$$d(Q,\ell) := \inf\{d(Q,R) \mid R \in \ell\}$$

Proposition 4.4. *Given a non-degenerate line* $\ell(P, v)$ *and a point* Q*, there holds*

$$d(P,\ell) = \frac{|v \times P\dot{Q}|}{\|v\|}.$$

Proof. We consider the line $\ell' := \ell(Q, v^{\perp})$. By Proposition 4.2,

 $\ell\cap\ell'\neq \emptyset$

and the intersection contains only the point

$$Q' := Q + \left(\frac{\overrightarrow{QP} \times v}{v^{\perp} \times v}\right) v^{\perp}.$$

We claim that

$$\operatorname{dist}(P, \ell) = \operatorname{dist}(P, Q').$$

L		

Since

$$\overrightarrow{Q'R}\cdot\overrightarrow{Q'Q}=0$$

for every $R \in \ell$, there holds

$$d(R,Q)^2 = d(R,Q')^2 + d(Q,Q')^2.$$

Then, for every *R*

$$d(R,Q) \ge d(Q,Q')$$

and the equality holds when R = Q'. Thus,

$$d(Q,\ell) = d(Q,Q') = \left\| \left(\frac{\overrightarrow{QP} \times v}{v \times v^{\perp}} \right) v^{\perp} \right\| = \frac{|v \times \overrightarrow{PQ}|}{\|v\|}.$$

4.1. **Cartesian form of a line.** Given a non-degenerate line $\ell(P, v)$, we can express its points using the Cartesian coordinates. We need the coordinates of the point *P* and the vector *v*

$$P(x_1, x_2), v = (v_1, v_2).$$

Then, if Q(x, y) is in $\ell(P, v)$, then that

$$\exists t \in \mathbb{R} \text{ such that } PQ = tv.$$

Since $v \neq 0$, the statement above is equivalent to

$$\overrightarrow{PQ} \times v = 0$$

that is

(41) $a(x-x_1) + b(y-x_2) = 0.$

where $a = v_2$ and $b = -v_1$.