4. Lines in \mathbb{R}^{2}

Notation 4.1. Given $v \in E_{2}$, we define

$$
v^{\perp}:=\left(v_{2},-v_{1}\right) .
$$

It is not difficult to show that

$$
\begin{equation*}
\left\|v^{\perp}\right\|^{2}=\|v\|^{2}=\left|v \times v^{\perp}\right| . \tag{35}
\end{equation*}
$$

Definition 4.1 (Lines). Given $P \in \mathbb{R}^{2}$ and $v \in E^{2}$, a line is the subset of

$$
\ell(P, v):=\{P+t v \mid t \in \mathbb{R}\} .
$$

If $v=0$, then $\ell(P, v)=\{P\}$ is just a point. A point is a degenerate line.
The following equalities hold

$$
\begin{align*}
& \ell(P, v)=\ell(P, r v), \forall r \in \mathbb{R}-\{0\} \tag{36}\\
& \ell(P, v)=\ell(P+c v, v), \forall c \in \mathbb{R} . \tag{37}
\end{align*}
$$

In view of the above equalities, the representation of a line with a pair (P, v) is not unique. We wish to state a precise relation between two pairs (P, v) and (Q, w) such that

$$
\ell(P, v)=\ell(Q, w)
$$

Proposition 4.1. Given (P, v) and (Q, w) such that $v, w \neq 0$ there holds

$$
\ell(P, v)=\ell(Q, w) \Leftrightarrow \overrightarrow{P Q} \times v=v \times w=0
$$

If $v=w=0$, then the proposition fails: just take $P \neq Q$. If only one vector between v and w is equal to zero, then ℓ is different from ℓ^{\prime}.
Proof. We use the notation

$$
\ell:=\ell(P, v), \quad \ell^{\prime}:=\ell(Q, w) .
$$

We prove the left implication. If $\ell=\ell^{\prime}$, then $\ell^{\prime} \subseteq \ell$. Thus,

$$
Q \in \ell^{\prime} \Rightarrow Q \in \ell .
$$

Therefore, there exists t_{1} such that

$$
Q=P+t_{1} w \text { and } \overrightarrow{P Q}=t_{1} v
$$

From (29),

$$
\begin{equation*}
\overrightarrow{P Q} \times v=0 \tag{38}
\end{equation*}
$$

Now, since $Q+w$ is in ℓ^{\prime} it also belongs to ℓ. Then, there exists t_{2} in \mathbb{R} such that

$$
Q+w=P+t_{2} v
$$

which implies

$$
\overrightarrow{P Q}=-w+t_{2} v
$$

From (29) and (38),

$$
\begin{equation*}
0=\overrightarrow{P Q} \times v=-v \times w \tag{39}
\end{equation*}
$$

The (38) and (39) are the sought relations.
Now, we prove the right implication. Since each of the two vectors is non-zero, there are $c, d \in \mathbb{R}-\{0\}$ such that

$$
w=c v, \quad \overrightarrow{P Q}=d v
$$

Then by (35) and (36), we have

$$
\ell(Q, w)=\ell(P+d v, c v)=\ell(P, v) .
$$

Proposition 4.2 (Intersection of two lines). Given two non-degenerate lines

$$
\ell:=\ell(P, v), \quad \ell^{\prime}:=\ell(Q, w)
$$

such that $\ell \neq \ell^{\prime}$, there holds

$$
\ell \cap \ell^{\prime} \neq \varnothing \Leftrightarrow v \times w \neq 0 .
$$

If $v \times w \neq 0$, then the intersection contains the unique point

$$
P+\left(\frac{\overrightarrow{P Q} \times w}{v \times w}\right) v
$$

Proof. We prove the left implication. We argue by contradiction. Suppose that T is in $\ell \cap \ell^{\prime}$ and $v \times w=0$. Then, there are t, s and $c \neq 0$ such that

$$
v=c w, \quad T=Q+t w, \quad T=P+s v .
$$

Then, by (36) and (35)

$$
\begin{aligned}
\ell & =\ell(P, v)=\ell(T-s v, v)=\ell(T-s c w, c w) \\
& =\ell(T, w)=\ell(Q+t w, w)=\ell(Q, w)=\ell^{\prime} .
\end{aligned}
$$

We obtained a contradiction with the assumption $\ell \neq \ell^{\prime}$.
We prove the right implication. Suppose that $v \times w \neq 0$. We have to show that

$$
\ell \cap \ell^{\prime} \neq \varnothing
$$

that is, we have to show that there are t, s such that

$$
P+t v=Q+s w .
$$

If the equality above holds, then

$$
t v-s w=\overrightarrow{P Q}
$$

we can take the cross product in E_{2} with w. Then

$$
(t v-s w) \times w=\overrightarrow{P Q} \times w \Rightarrow t v \times w=\overrightarrow{P Q} \times w
$$

Since $v \times w \neq 0$,

$$
t=\frac{\overrightarrow{P Q} \times w}{v \times w}
$$

Then, if an intersection point exists, this must be

$$
\begin{equation*}
R=P+\left(\frac{\overrightarrow{P Q} \times w}{v \times w}\right) v . \tag{40}
\end{equation*}
$$

So, we proved the uniqueness of the intersection point. Now, we show that R is in $\ell \cap \ell^{\prime}$ (this will prove the existence of the intersection point). In fact, R is in ℓ by definition of $\ell(P, v)$. We check that R is in ℓ^{\prime}; so must show that $R-Q=h w$ for some h in \mathbb{R}. Since $w \neq 0$, it is enough to prove that

$$
\overrightarrow{Q R} \times w=0
$$

From (40), we have

$$
\overrightarrow{Q R} \times w=\overrightarrow{Q P} \times w+\left(\frac{\overrightarrow{P Q} \times w}{v \times w}\right) v \times w=\overrightarrow{Q P} \times w+\overrightarrow{P Q} \times w=0
$$

Proposition 4.3. Given two points Q, R such that $Q \neq R$, there exists a unique line ℓ such that

$$
Q, R \in \ell .
$$

Proof. Firstly, we show that
$Q, R \in \ell(Q, \overrightarrow{Q R})$.
In fact,

$$
Q=Q+0 \cdot \overrightarrow{Q R} \Rightarrow Q \in \ell
$$

and

$$
R=Q+1 \cdot \overrightarrow{Q R}=Q+(R-Q)=R \Rightarrow R \in \ell
$$

Now, we show that the $\ell(Q, \overrightarrow{Q R})$ is the unique line which contains Q and R. Let $\ell:=\ell(P, v)$ be such that $Q, R \in \ell(P, v)$. Since $Q, R \in \ell$, there are t_{1}, t_{2} such that

$$
Q=P+t_{1} v, \quad R=P+t_{2} v .
$$

Since $Q \neq R$, we have $t_{1} \neq t_{2}$. Then

$$
v=c \overrightarrow{Q R}, \quad c:=\frac{1}{t_{2}-t_{1}} \neq 0
$$

From (35) and (36), there holds

$$
\ell(P, v)=\ell\left(Q-t_{1} v, c \overrightarrow{Q R}\right)=\ell(Q, \overrightarrow{Q R}) .
$$

Definition 4.2 (Distance between two points). Given P, Q in \mathbb{R}^{n}, we define

$$
\operatorname{dist}(P, Q)=\|\overrightarrow{P Q}\|
$$

It is called distance between P and Q.
Definition 4.3 (Distance between a point and a line). Given a point Q and a line ℓ, we define

$$
d(Q, \ell):=\inf \{d(Q, R) \mid R \in \ell\}
$$

Proposition 4.4. Given a non-degenerate line $\ell(P, v)$ and a point Q, there holds

$$
d(P, \ell)=\frac{|v \times \overrightarrow{P Q}|}{\|v\|}
$$

Proof. We consider the line $\ell^{\prime}:=\ell\left(Q, v^{\perp}\right)$. By Proposition 4.2,

$$
\ell \cap \ell^{\prime} \neq \varnothing
$$

and the intersection contains only the point

$$
Q^{\prime}:=Q+\left(\frac{\overrightarrow{Q P} \times v}{v^{\perp} \times v}\right) v^{\perp}
$$

We claim that

$$
\operatorname{dist}(P, \ell)=\operatorname{dist}\left(P, Q^{\prime}\right)
$$

Since

$$
\overrightarrow{Q^{\prime} R} \cdot \overrightarrow{Q^{\prime} Q}=0
$$

for every $R \in \ell$, there holds

$$
d(R, Q)^{2}=d\left(R, Q^{\prime}\right)^{2}+d\left(Q, Q^{\prime}\right)^{2}
$$

Then, for every R

$$
d(R, Q) \geq d\left(Q, Q^{\prime}\right)
$$

and the equality holds when $R=Q^{\prime}$. Thus,

$$
d(Q, \ell)=d\left(Q, Q^{\prime}\right)=\left\|\left(\frac{\overrightarrow{Q P} \times v}{v \times v^{\perp}}\right) v^{\perp}\right\|=\frac{|v \times \overrightarrow{P Q}|}{\|v\|} .
$$

4.1. Cartesian form of a line. Given a non-degenerate line $\ell(P, v)$, we can express its points using the Cartesian coordinates. We need the coordinates of the point P and the vector v

$$
P\left(x_{1}, x_{2}\right), v=\left(v_{1}, v_{2}\right) .
$$

Then, if $Q(x, y)$ is in $\ell(P, v)$, then that

$$
\exists t \in \mathbb{R} \text { such that } \overrightarrow{P Q}=t v
$$

Since $v \neq 0$, the statement above is equivalent to

$$
\overrightarrow{P Q} \times v=0
$$

that is

$$
\begin{equation*}
a\left(x-x_{1}\right)+b\left(y-x_{2}\right)=0 . \tag{41}
\end{equation*}
$$

where $a=v_{2}$ and $b=-v_{1}$.

