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Figure 2. Scalar product in terms of cos ϑ

2. SCALAR PRODUCT IN EUCLIDEAN SPACES

In this section, we introduce the definition of segment. Given two points P, Q ∈ R
n,

the segment between P and Q is a subset of R
n defined as

{P + t
#   »

PQ | 0 ≤ t ≤ 1} ⊆ R
n.

Definition 2.1. Given two vectors v, w ∈ E, we define the real number

v · w :=
n

∑
i=1

viwi.

It is called scalar product or dot product.

The scalar product satisfies the following equalities for every v, w, z ∈ En and c, d ∈ R

(cv + dw) · z = cv · z + cv · z(8)

v · w = w · v(9)

v · v ≥ 0 and v · v = 0 ⇔ v = 0.(10)

Definition 2.2 (Norm and unit vectors). Given v ∈ E we define the norm of v as
‖v‖ :=

√
v · v. A vector w ∈ E is a unit vector if ‖w‖ = 1.

We can always write a vector v 6= 0 as product of a real number and a unit vector

(11) v =
v

‖v‖ · ‖v‖.

The norm of a vector (also called magnitude) can be represented as the length of the
segment between P and P + v; the scalar product v · w has a geometric interpretation
in terms of the cosinus of the angle between v and w.

In Figure 2 we wrote the length of each side of the triangle PQR. By the Cosinus
Theorem, there holds

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos ϑ

whence

‖v‖2 + ‖w‖2 − 2v · w = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos ϑ

⇒ v · w = ‖v‖‖w‖ cos ϑ.

If ‖v‖‖w‖ > 0, then

cos ϑ =
v · w

‖v‖‖w‖ .

Definition 2.3 (Parallel and orthogonal vectors).



(i) Two vectors v, w ∈ E are parallel to each other if either w = 0 or there exists
c ∈ R such that v = cw. We use the notation v ‖ w

(ii) v is orthogonal to w if and only if v · w = 0. We use the notation v ⊥ w.

Proposition 2.1 (The Cauchy-Schwarz inequality). Given v, w ∈ R
n there holds

(a) |v · w| ≤ ‖v‖‖w‖
(b) if the equality holds and w 6= 0, then there exists c in R such that v = cw.

Before giving the proof of this proposition, we notice that the geometric interpretation
of the cosinus provides us with a proof: (a) follows from the fact that | cos ϑ| ≤ 1; if
the equality holds, we have cos ϑ = ±1 which means that ϑ is a multiple of π and (b)
follows.

Now, we give a proof based only on the definition of the scalar product without any
appeal to the geometric intuition.

Proof of the Cauchy-Schwarz inequality. If w = 0, then the inequality turns into 0 ≤ 0,
which is true. Suppose that w 6= 0. Then, we define

a = v −
(

v · w

‖w‖2

)

w.

In the Figure 2, a corresponds to the vector
#     »

R′Q.

(12) A := ‖a‖2

is non-negative from property (10). We have

(13) 0 ≤ A = ‖v‖2 +
(v · w)2

‖w‖4
‖w‖2 − 2

(v · w)2

‖w‖2
= ‖v‖2 − (v · w)2

‖w‖2
.

Then

(14) ‖v‖2 − (v · w)2

‖w‖2
≥ 0

which implies

(15) ‖v‖2‖w‖2 ≥ |v · w|2

whence

(16) ‖v‖‖w‖ ≥ |v · w|.
If the equality holds in (16), then the term in (14) is equal to zero. Then, from (12),
A = 0. Again, by property (10),

v =
v · w

‖w‖2
w

so v := cw with the choice

c =
v · w

‖w‖2

implying, again v ‖ w. �

Proposition 2.2 (The triangular inequality). Given v, w ∈ En there holds

‖v + w‖ ≤ ‖v‖+ ‖w‖.
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Proof. We take the square of ‖v + w‖ and obtain

‖v + w‖2 = (v + w) · (v + w) = ‖v‖2 + ‖w‖2 + 2v · w

≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖.

�

Such inequality takes its name from the following geometric property: given a triangle
PQR, each edge is smaller than the sum of the two other edges:

‖ #   »

PQ‖ = ‖ #   »

PR +
#    »

RQ‖ ≤ ‖ #   »

PR‖+ ‖ #    »

RQ‖.
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