

Figure 2. Scalar product in terms of $\cos \vartheta$

2. Scalar product in Euclidean spaces

In this section, we introduce the definition of segment. Given two points $P, Q \in \mathbb{R}^{n}$, the segment between P and Q is a subset of \mathbb{R}^{n} defined as

$$
\{P+t \overrightarrow{P Q} \mid 0 \leq t \leq 1\} \subseteq \mathbb{R}^{n}
$$

Definition 2.1. Given two vectors $v, w \in E$, we define the real number

$$
v \cdot w:=\sum_{i=1}^{n} v_{i} w_{i}
$$

It is called scalar product or dot product.
The scalar product satisfies the following equalities for every $v, w, z \in E_{n}$ and $c, d \in \mathbb{R}$

$$
\begin{align*}
(c v+d w) \cdot z & =c v \cdot z+c v \cdot z \tag{8}\\
v \cdot w & =w \cdot v \tag{9}\\
v \cdot v & \geq 0 \text { and } v \cdot v=0 \Leftrightarrow v=0 . \tag{10}
\end{align*}
$$

Definition 2.2 (Norm and unit vectors). Given $v \in E$ we define the norm of v as $\|v\|:=\sqrt{v \cdot v}$. A vector $w \in E$ is a unit vector if $\|w\|=1$.

We can always write a vector $v \neq 0$ as product of a real number and a unit vector

$$
\begin{equation*}
v=\frac{v}{\|v\|} \cdot\|v\| . \tag{11}
\end{equation*}
$$

The norm of a vector (also called magnitude) can be represented as the length of the segment between P and $P+v$; the scalar product $v \cdot w$ has a geometric interpretation in terms of the cosinus of the angle between v and w.

In Figure 2 we wrote the length of each side of the triangle $P Q R$. By the Cosinus Theorem, there holds

$$
\|v-w\|^{2}=\|v\|^{2}+\|w\|^{2}-2\|v\|\|w\| \cos \vartheta
$$

whence

$$
\begin{aligned}
\|v\|^{2}+\|w\|^{2}-2 v \cdot w & =\|v\|^{2}+\|w\|^{2}-2\|v\|\|w\| \cos \vartheta \\
& \Rightarrow v \cdot w=\|v\|\|w\| \cos \vartheta .
\end{aligned}
$$

If $\|v\|\|w\|>0$, then

$$
\cos \vartheta=\frac{v \cdot w}{\|v\|\|w\|}
$$

Definition 2.3 (Parallel and orthogonal vectors).
(i) Two vectors $v, w \in E$ are parallel to each other if either $w=0$ or there exists $c \in \mathbb{R}$ such that $v=c w$. We use the notation $v \| w$
(ii) v is orthogonal to w if and only if $v \cdot w=0$. We use the notation $v \perp w$.

Proposition 2.1 (The Cauchy-Schwarz inequality). Given $v, w \in \mathbb{R}^{n}$ there holds
(a) $|v \cdot w| \leq\|v\|\|w\|$
(b) if the equality holds and $w \neq 0$, then there exists c in \mathbb{R} such that $v=c w$.

Before giving the proof of this proposition, we notice that the geometric interpretation of the cosinus provides us with a proof: (a) follows from the fact that $|\cos \vartheta| \leq 1$; if the equality holds, we have $\cos \vartheta= \pm 1$ which means that ϑ is a multiple of π and (b) follows.
Now, we give a proof based only on the definition of the scalar product without any appeal to the geometric intuition.

Proof of the Cauchy-Schwarz inequality. If $w=0$, then the inequality turns into $0 \leq 0$, which is true. Suppose that $w \neq 0$. Then, we define

$$
a=v-\left(\frac{v \cdot w}{\|w\|^{2}}\right) w
$$

In the Figure 2, a corresponds to the vector $\overrightarrow{R^{\prime} Q}$.

$$
\begin{equation*}
A:=\|a\|^{2} \tag{12}
\end{equation*}
$$

is non-negative from property (10). We have

$$
\begin{equation*}
0 \leq A=\|v\|^{2}+\frac{(v \cdot w)^{2}}{\|w\|^{4}}\|w\|^{2}-2 \frac{(v \cdot w)^{2}}{\|w\|^{2}}=\|v\|^{2}-\frac{(v \cdot w)^{2}}{\|w\|^{2}} \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|v\|^{2}-\frac{(v \cdot w)^{2}}{\|w\|^{2}} \geq 0 \tag{14}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\|v\|^{2}\|w\|^{2} \geq|v \cdot w|^{2} \tag{15}
\end{equation*}
$$

whence

$$
\begin{equation*}
\|v\|\|w\| \geq|v \cdot w| \tag{16}
\end{equation*}
$$

If the equality holds in (16), then the term in (14) is equal to zero. Then, from (12), $A=0$. Again, by property (10),

$$
v=\frac{v \cdot w}{\|w\|^{2}} w
$$

so $v:=c w$ with the choice

$$
c=\frac{v \cdot w}{\|w\|^{2}}
$$

implying, again $v \| w$.
Proposition 2.2 (The triangular inequality). Given $v, w \in E_{n}$ there holds

$$
\|v+w\| \leq\|v\|+\|w\| .
$$

Proof. We take the square of $\|v+w\|$ and obtain

$$
\begin{aligned}
\|v+w\|^{2} & =(v+w) \cdot(v+w)=\|v\|^{2}+\|w\|^{2}+2 v \cdot w \\
& \leq\|v\|^{2}+\|w\|^{2}+2\|v\|\|w\| .
\end{aligned}
$$

Such inequality takes its name from the following geometric property: given a triangle $P Q R$, each edge is smaller than the sum of the two other edges:

$$
\|\overrightarrow{P Q}\|=\|\overrightarrow{P R}+\overrightarrow{R Q}\| \leq\|\overrightarrow{P R}\|+\|\overrightarrow{R Q}\| .
$$

