SOLUTIONS OF THE ASSIGNMENT OF WEEK TWELVE

Exercise 1. Show that $\partial A=\bar{A} \cap \overline{A^{c}}$.
Solution. We have

$$
x \in \bar{A} \Rightarrow(x-r, x+r) \cap A \neq \varnothing
$$

for every $r>0$;

$$
x \in \overline{A^{c}} \Rightarrow(x-s, x+s) \cap A^{c} \neq \varnothing .
$$

for every $s>0$. If we take $r=s$, we obtain

$$
(x-r, x+r) \cap A \neq \varnothing, \quad(x-r, x+r) \cap A^{c} \neq \varnothing
$$

whence $x \in \partial A$. Therefore, $\bar{A} \cap \overline{A^{c}} \subseteq \partial A$. The proof of the converse inclusion is similar: if $x \in \partial A$, then

$$
(x-r, x+r) \cap A \neq \varnothing, \quad(x-r, x+r) \cap A^{c} \neq \varnothing
$$

for every $r>0$. Hence $x \in \bar{A} \cap \overline{A^{c}}$.
Exercise 2. Find, $\stackrel{\circ}{E}, \bar{E}, \partial E$ and the isolated points of the set $E:=[0,1) \cap \mathbf{Q}$. What is $\partial(\partial E)$? and $\partial(\partial(\partial E))$?

Solution.

(i) $E=\varnothing$. Otherwise, there exists x and $r>0$ such that $(x-r, x+r) \subseteq[0,1) \cap \mathbf{Q}$. However, this is not possible because

$$
[0,1) \cap \mathbf{Q} \subseteq \mathbf{Q}
$$

is countable and $(x-r, x+r)$ is not countable;
(ii) $\bar{E}=[0,1]$. Given $x \in[0,1]$ and $r>0$, we have to prove that

$$
(x-r, x+r) \cap E \neq \varnothing .
$$

First, suppose that $0 \leq x<1$, there exists $r_{0}<r$ such that $x+r_{0}<1$. Since \mathbf{Q} is dense in \mathbf{R}, there exists $q \in \mathbf{Q}$ such that

$$
0 \leq x<q<x+r_{0}<1
$$

Then $q \in\left(x-r_{0}, x+r_{0}\right) \cap E \neq \varnothing$. Hence

$$
(x-r, x+r) \cap E \neq \varnothing .
$$

If $x=1$, then there exists r_{1} such that

$$
0<x-r_{1} .
$$

Since \mathbf{Q} is dense in \mathbf{R}, there exists $q^{\prime} \in \mathbf{Q}$ such that

$$
0<x-r_{1}<q^{\prime}<1=x
$$

Then $q^{\prime} \in E$ and

$$
\left(x-r_{1}, x+r_{1}\right) \cap E \neq \varnothing .
$$

Date: 2014, June 18.
(iii) now we look at the boundary and its iterations:
$\partial E=[0,1]$. We have $\partial E \subseteq \bar{E}=[0,1]$. Now, we show the converse inclusion: given $x \in[0,1]$ and $r>0$, one between the two intersections
(1)

$$
(x-r, x) \cap[0,1), \quad(x, x+r) \cap[0,1)
$$

is non-empty. For example, we can suppose that the second one is non-empty. The intersection of two interval is an interval. Then

$$
(x, x+r) \cap[0,1)
$$

is an interval. Since \mathbf{Q} is dense in \mathbf{R}, \mathbf{Q} intersects all the non-empty intervals. Then,

$$
\varnothing \neq \mathbf{Q} \cap((x, x+r) \cap[0,1)) \subseteq(x-r, x+r) \cap E .
$$

Since $\mathbf{R}-\mathbf{Q}$ is dense in \mathbf{R},

$$
\varnothing \neq(x, x+r) \cap(\mathbf{R}-\mathbf{Q}) \subseteq(x-r, x+r) \cap E^{c}
$$

we have $\partial(\partial E)=\{0,1\}$ and $\partial(\partial(\partial E))=\{0,1\}$.
(iv) the set of isolated points is empty. We argue by contradiction: let $x \in E$ and $r>0$ such that

$$
(x-r, x+r) \cap E=\{x\} .
$$

Again, one between the two intervals in (1) is non-empty. We can suppose that it is the first one. Then

$$
(x-r, x) \cap[0,1) \neq \varnothing
$$

Since \mathbf{Q} is dense,

$$
\varnothing \neq \mathbf{Q} \cap((x-r, x) \cap[0,1))=(x-r, x) \cap E
$$

Let $q \in(x-r, x) \cap E$. Then

$$
\{q, x\} \subseteq(x-r, x+r) \cap E
$$

which gives a contradiction.

