SOLUTIONS OF EXERCISES 1 AND 2, PAGE 31 OF THE BOOK

Suppose that $m: \mathscr{A} \to [0, +\infty]$ is a measure function on a σ -algebra which is σ -additive. Then

(1) *m* is monotone. That is, for every $A, B \in \mathcal{A}$, there holds $m(A) \leq m(B)$

(2) if there exists $A \in \mathcal{A}$ such that $m(A) < \infty$. Then $m(\phi) = 0$.

Solution.

(1) We can write

$$B = A \cup (B \cap A^c).$$

Since $A \in \mathcal{A}$, $A^c \in \mathcal{A}$ and $B \cap A^c \in \mathcal{A}$. Since the two sets are disjoint from each other, we have

 $m(B) = A \cup (B \cap A^c) = m(A) + m(B \cap A^c).$

Since $m \ge 0$, we obtain $m(B) \ge m(A)$

(2) by the σ -additivity property, we have

$$m(A) = m(A \cup \emptyset) = m(A) + m(\emptyset).$$

Then $m(\phi) = 0$.

Date: 2014, June 16.