SOLUTIONS OF THE EXERCISES OF WEEK THIRTEEN

Exercise 1. Let \mathbf{Q} be the set of rational numbers. Show that there is no open interval I such that $I \neq \varnothing$ and $I \subseteq \mathbf{Q}$.

Solution. If I is an open interval, then $I \approx(-1,2)$. Since $[0,1] \subseteq(-1,2),(-1,2)$ is uncountable, because $[0,1]$ is uncountable. Then I is uncountable, but \mathbf{Q} is countable, so we obtain a contradiction.

Exercise 2. The set $\mathbf{R}-\mathbf{Q}$ is dense in \mathbf{R}.
Solution. Let $a<b \in \mathbf{R}$. If $(a, b) \cap \mathbf{R}-\mathbf{Q}=\varnothing$, then

$$
(a, b) \subseteq \mathbf{Q} .
$$

We obtain a contradiction, because an uncountable set is contained in a countable set.
Here is another solution:
We showed that there exists $r \in \mathbf{R}-\mathbf{Q}$ such that $r>0$ and $r^{2}=2$. We also proved that

$$
0<r<2 .
$$

Given an open interval $(a, b) \subseteq \mathbf{R}$, with $a<b$, there are rational numbers $a<q_{1}<q_{2}<b$ because Q is dense. Then

$$
\left(q_{1}, q_{2}\right) \subseteq(a, b) .
$$

Since r is not rational,

$$
q_{1}<q+\frac{q_{2}-q_{1}}{2} r<q_{2}
$$

is not rational.

