SOLUTIONS OF THE EXERCISES OF WEEK THIRTEEN

Exercise 1. Let **Q** be the set of rational numbers. Show that there is no open interval *I* such that $I \neq \emptyset$ and $I \subseteq \mathbf{Q}$.

Solution. If *I* is an open interval, then $I \approx (-1,2)$. Since $[0,1] \subseteq (-1,2)$, (-1,2) is uncountable, because [0,1] is uncountable. Then *I* is uncountable, but **Q** is countable, so we obtain a contradiction.

Exercise 2. The set $\mathbf{R} - \mathbf{Q}$ is dense in \mathbf{R} .

Solution. Let $a < b \in \mathbf{R}$. If $(a, b) \cap \mathbf{R} - \mathbf{Q} = \emptyset$, then

 $(a,b) \subseteq \mathbf{Q}.$

We obtain a contradiction, because an uncountable set is contained in a countable set.

Here is another solution:

We showed that there exists $r \in \mathbf{R} - \mathbf{Q}$ such that r > 0 and $r^2 = 2$. We also proved that

$$0 < r < 2.$$

Given an open interval $(a,b) \subseteq \mathbf{R}$, with a < b, there are rational numbers $a < q_1 < q_2 < b$ because Q is dense. Then

$$(q_1,q_2) \subseteq (a,b).$$

Since *r* is not rational,

$$q_1 < q + \frac{q_2 - q_1}{2}r < q_2$$

is not rational.

Date: 2014, June 16.