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. Sets, subsets, membership relations, page 3

. equality between sets, page 3

. distributive laws of the intersection with respect to the union
. difference between sets A — B, page 4

. De Morgan’s Laws, page 4

. collections of sets

. the power set 24, page 3

. notations: P(A) =24, P(A)* .= P(A) — {0}

. generalized unions and intersections, Definition 1
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. Choice function, Definition 2
. Choice Axiom 1

. equivalence relations, page 5
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. the quotient set, page 5.
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14. Properties of the quotient set, Proposition 1

15. partial orderings, page 6

16. fully ordered sets, Definition 3

17. the Class Construction Axiom 2

18. axiomatic definition of the set of real numbers

18.1. Field Axioms, page 7

18.2. Positivity Axioms, page 8

18.3. Completeness Axiom, page 9

19. the uniqueness (up to isomorphism) of the set of real numbers, Theorem 1

Definition 1 (Generalized unions and intersection, from (9.)). Given a collection of
sets & # 0, we define N and UZ as follows:

rEUAB < JAst. r€e Ac R
reEUB VA B(xecA).

Definition 2 (Choice functions, from (10.)). Given a set A # 0, a choice function ¢ is
a function ¢: F(A)* — A such that ¢(B) € B for every B € Z(A)*.

Axiom 1 (Choice Axiom, from (11.)). Every non-emptyset A has a choice function.

Proposition 1 (Properties of the quotient set, from (14.)). Given an equivalence rela-
tion (A, R) the following properties hold:

(i) for every H € A/R, the set H is non-empty

(i) VA/R=A

Date: 2016, May 2.
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(iii) given H,G in A/R there holds
(HNG#0)= (H=0G).

Proof.
(i). I{et z € A be such that H = G;. From (R), z € R,;, therefore, H is non-empty.
(ii). Since A/R is a collection of subsets of A, we have
UA/R C A.

Now, given = € A, from (i), we have z € G;. From

re€G, €A/R
we have z € A/R.
(iii). Let z and y be such that H = R, and G = R,. Suppose that H NG is non-empty
and let z in A be such that z € R, N R,. Let w € R, then. From (8S),

zRw = wRz.
Since z € R, we have xRz From (T),

(wRzx) A (zRz) = wRxz.
Since z € Ry, we have zRy. Again, from (T) and (S)
(wRz) A (2Ry) = wRy = yRw = w € Ry.

By switching the role of = and y, we obtain the reversed inclusion Ry C R;. Then
R, = Ry, implying G = H. O
Definition 3 (Fully orderings, from (16.)). A partial ordering (A, R), is a full ordering
if for every x,y € A either zRy or yRz.
Axiom 2 (Class Construction Axiom of Zermelo-Fraenkel, from (17.)). Given a sentence
p(z) and a set A there exists a set S C A such that x € S & x € AAp(z).

Theorem 1 (Uniqueness up to isomorphism, from (19.)). Let (R, +,-) and (Ra, +, )
two sets satisfying the field, positivity and completeness Axioms. Then there exists a
bijective function g: R; — Ry such that

gla+b)=g(a)+g(), glab)=g(a)g(b), g(P1)C P
where P; and P, are the positive sets.
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20. Injective, surjective and bijective functions, page 4

21. direct and inverse images, page 4

22. equipotent set, A ~ B or #A = #B

23. the positive set gives an order relation in R, Proposition 2

24. intervals, page 9

25. bounded sets, lower bounds and upper bounds, page 9

26. least and greatest elements, Definition 4

27. definition of least upper bound and greatest lower bound, page 9
28. the Completeness Axiom

29. if E is bounded from below, then inf(E) = —sup(—E), exercise 6, page 11
30. inductive sets, page 11

31. the set of natural numbers, page 11

32. Principle of Mathematical Induction, page 11

33. n > 1 for every n.
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34. NN (0,1) = 0, Exercise 1

35. given n,m € N such that n > m, n —m € N, ex. 9, page 13 and Exercise 2
36. the set of Natural numbers is well-ordered, Theorem 1, page 11
37. subsets of N bounded from above have maximum, Proposition 3
38. Archimedean property, page 11

39. integers, Definition 5

40. rational numbers, page 12

41. dense subsets, page 12

42. the set of rational numbers is dense, page 12

43. the set Ny, Definition 6

44. finite sets, page 13

45. countable sets, page 13

46. the Bernstein’s Lemma, Lemma, 1 .

Proposition 2. (R, <) is an ordered set.

Proof. The reflectivity holds, because z < z = z = z.
(T). Given z < y and y < 2, we have

(1) (z=y)V(y—z€P)
and
(2) (y=2)V(z—y€P).

We have to show that z < z, in all the four cases. If equalities hold in (1) and (2), then
=y)AN(y=2)=>zc=2=>zx<z2

If equality holds in (1) but not in (2), then
(x=y)AN(z—yeP)=>z—xz€P

The case where the equality holds in (2) but not in (1) is similar. Finally, we consider
the case where we have two strict inequalities:

(y—z€eP)AN(z—yeP)=>(z—-y)+(y—x)=2—x€P.

We used P1).

(A). Let z,y € R be such that x < y Ay < 2. If equality holds in one of the two
inequalities, then, clearly, z = y. So, we study only the case z < y A (y < z). We have

y—w,—(y—.’v) epP
which gives a contradiction with P2). O

Definition 4 (Least and greatest element, from (26.)). Let M be an upper bound for
E; if M € E we call it greatest element. Similarly, a least element m for E is a lower
bound which belongs to E.

Exercise 1 (from (34.)). NN (0,1).
Proof. This follows from the fact that n > 1 for every n € N, (47.). O

Exercise 2 (from (35.), ex. 9, page 13). Given n,m € N such that n > m, n—m € N.
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Proof. Here I am writing a slightly different proof from the one I showed you during the
lectures. We consider the property p(n) : n — 1 € N and define

$:={neN|pm}u{1)
and prove that § = N. Clearly, 1 € S, by definition. Now, suppose that n € S. Then
(n+1)—1=neN.
Now we consider the property
glm):n>m=>n—-meN

and the set T := {m | g¢(m)}. We proved that 1 € T. Now, suppose that m € T. We
will show that m+ 1 € T. Given n > m+ 1, clearly n # 1. Then n — 1 € N. We have

n>m+1=>n-1>m.
SincemeT andn—1€N,n—(m+1)eN. O

Proposition 3 (from (37.)). Subsets of N bounded from above have a maximum.

Proof. Let E C N be a non-empty subset bounded from above. From the Completeness
Axiom there exists ¢ := sup(F). We prove that ¢ = max(F). On the contrary, we
consider ¢ — 1. Since c is the least upper bound, ¢ — 1 is not an upper bound. Then
there exists n € E such that

c—l<n<e
Clearly n # ¢ because, otherwise, we would have ¢ € E. Since n < ¢, it is not an upper
bound of E. Then, there exists m € E such that
n<m<ec.

We set k := m —n. By Exercise 2, k € N and 0 < k < 1. Therefore, we obtained a
contradiction with (34.). O

Definition 5 (Integers, from (39.)). The set of integers Z is defined by the property
p(m): (m=0)V (meN)V (—meN).

Definition 6 (Definition of Ny, from (43.)). We define N, the subset of N of the
natural numbers satisfying 1 <n < k.

Lemma 1 (Bernstein’s Lemma, from (46.)). Given two non-empty sets A and B such
that there exists f: A — B injective and g: B — A injective, there exists h: A - B
bijective.
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47.If g: A — B is bijective, then A — {z} = B — {g(z)}, Lemma 2

48.if k > 2, then N — {z} ~ Ng_; for every, z € N, Lemma 3

49. N}, = Ny if and only if A = k, Proposition 4

50. given B # ), if B C N is not finite, then B ~ N, Theorem 3, page 13
51. N = N — {z} for every z € N. Then N is not finite, Proposition 5
52.if n = ab, then n > a,b

53. N x N is countable, Corollary 4, 14

54. the continuum, R, and functional cardinality, Z(R).

Lemma 2 (From (47.)). If A and B are non-empty and there exist g: A — B bijective,
then A — {z} = B — {g(z)}, provided the two sets are non-empty.
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Proof. Weset A’ := A—{z} and B’ := B—{g(x)}. We define ¢': A’ — B’ as ¢'(a) = a.
Firstly, ¢’(a) € B’, otherwise, ¢'(a) = g(z), hence a = z because ¢ is injective; however,
this contradicts the assumption a € A’. Clearly, g is an injective function; given y € B’,
there exists ' € A such that g(z') = y. We show that =’ # z; on the contrary,
B' 3y =g(2') = g(x) ¢ B’ we obtain a contradiction. O

Lemma 3 (From (48.)). If k > 2, then Ny — {} &~ Ny_; for every x € Ni.

Proof. We define the function g: Ny — {z} — Ng_; as follows: g(y) =y ify <z -1,
gy)=z+1ify>z+1. O

Proposition 4 (From (49.)). Given h,k € N, N}, = Ny, if and only if h = k.

Proof. If h = k, then Nj, = Ng. Then Nj =~ Nj. In order to prove the converse
implication, we apply the Mathematical Induction Principle to the set
S:={heN|VE(N,~N,=h=k)}

(i) 1 € S. If N; = Ny, then there exists a bijective function g: Ny — Ng. Thus, g is
surjective and

Ny = g(N1) = {g(1)}.
Since 1,y € Ng, we have 1 =y = g(1).
(ii) h€ S = h+1€S. Suppose that N1 =~ Ny. Firstly, we notice that £k > 2. In
fact, if £ = 1, we have
Nh+1 ~ Nl.
We can, then, apply the case 1 € S and conclude that 2 4+ 1 = 1 which contradicts the
assumption that h € N. There exists a bijective function g: Nj+1 — Ng. Since k > 2,
we can apply Lemma 2 and obtain
Np=Npy1 —{h+1} = N —{g(h + 1)}
In fact, both sets are non-empty, because k£ > 2. Then, from Lemma 3
Ny — {g(h + 1)} ~ Np_1.
Then Nj, &~ Ng_1. Since h € S, we have h=k —1. Then h+1 = k. O

Proposition 5 (From (51.)). N ~ N — {z} for every x € N. Then N is not finite.

Proof. The bijective function is defined as g(k) = kifk <z —1and g(k) = k+1if

k > z. Now, if N was finite, then N =~ Ny for some ¥ > 1. Since 1,2 € N we can

suppose that N — {z} is non-empty. Then, from Lemma 2 and Lemma 3, we obtain
Ny ~N=N-{z} =~ Ny —{y} =~ Np_;

which implies £ = k — 1, from Proposition 4 and we obtain a contradiction. O

2016 MARcH 17, WEEK 3 - LECTURE 2

55. Q is countable, Proposition 6

56. non-degenerate intervals in R. are uncountable, Theorem 7, page 15
57. I.(z) = (x —r,z+ )

58. open sets, Definition page 16

59. union and finite intersections of open sets are open, Proposition 8
60. closure points, Definition, page 17

61. closed sets, page 17

62. convex sets, Definition 7

63. intervals are convex, Proposition 7
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64. bounded convex sets are intervals, Proposition 8.

Proposition 6 (From (55.)). Q is countable.

Proof. Given q € @, we define
E,:={¢geN|qgz e Z}.

Since g is a rational number, E; # 0. Then, by the Well Ordering Theorem, the set has
a minimum. We define

h: Q@ +Z xN, h(q) := (¢gmin(E,), min(E,)).
This function is injective: given g, ¢’ such that h(q) = h(q’), we have
gmin(E,;) = ¢ min(Ey), min(E,) = min(Ey).
If we substitute the equality on the right in the left equality, we obtain ¢ = ¢'. Then,
we have a chain of injective functions
Q2>ZxXxN—->NxN->N

which is injective. Thus, by (50.), Q is countable. O

Definition 7 (Convex sets, from (62.)). A subset S C R is convex if for everyz <y € S,
there holds [z,y] C S.

Proposition 7 (Intervals are convex, from (63.)). Intervals are convex.

Proof. Let [a,b] be a closed bounded interval. Given z,y € [a,b], we have a < z < b
anda<y<b Thenifz<z<y,wehavea<z <2z<y<b,s0zE€ [a,b]. O

Proposition 8 (Convex sets are interval, from (64.)). Convex sets are intervals.

Proof. Now, suppose that S is convex. We divide the proof into four cases:

(1), S is bounded. By the Completeness Axiom there are a := inf(S) and b := sup(S).
Clearly, S C [a, b]. Now, we show that (a,b) C S. In fact, let £ be an element of (a, b).
Then

a<zx.
Since @ is the g.l.b., z is not a lower bound of S. Therefore, there exists ' € S such
that ’ < . We also have z < b. Since b is the Lu.b., z is not an upper bounded for
S. Then, there exists " € S such that x < z”. Since S is convex, [z/,z"] C S. Since
' <z <z alsox €S. Since a < x’ and z” < b, then the set S satisfies
(a,b) €S C [a,b)].
There are only four sets satisfiying the inclusions above:
[a,b], (a,b], [a,b), (a,b).
(2). S is unbounded from below and bounded from above. We define
b := sup(S).
We can prove that
(3) (—00,b) €S C (—o00,b].

Suppose that z < b. Then z is not the l.u.b. Then, there exists ' € S such that z < z'.
Since S is not bounded from below, —(|z| + 1) is not a lower bound. Then, there exists
z" € S such that
' < —(z|+1) <z < 7.
Since S is convex,
zelz,2"]C8S.
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Then z € S. Sets satisfying (3) are only
(—00,b), (—00,b].

The cases (3) and (4) where S is unbounded from above and bounded from below, or S
is unbounded from below and from above, are similar to the case (2). O

2016, MARCH 21 - WEEK 4, LECTURE 1

65. Generalized intersection of convex sets, Proposition 9

66. generalized union of convex sets, Proposition 10

67. convex sets are intervals, Proposition 11

68. open sets are countable unions of pairwise disjoint intervals, Theorem 2
69. open covers, page 18

70. compact sets, Definition 8 .

Proposition 9 (From (65.)). If € is a collection of convex set such that N% # @, then
N% is convex.

Proof. Let z,y be two elements of N¢. Then z,y € C for every C € N¥. Since C is
convex, [z,y] C C for every C € N¥, which implies [z,y] C NF. O

Proposition 10 (From (66.)). If 9 is a collection of convex set such that N2 # 0,
then UZ is convex.

Proof. Let g be an element of NZ. Let z,y € D := UZ be two elements. Then, there
are D7 and D such that z € D; and y € Ds. Here we consider different cases:
zo <z <y. Then [z,y] C [z0,y] € D2 C D because D; is convex. If z < y < zp, then
[z,y] C [z,20] € D1 C D because D; is convex. Finally, if z < 2o < y, we have

[z, 20] € D; and [zg,y] € D2 = [z,y] € D1 U Ds.

Proposition 11 (From (67.)). Convex sets are intervals.

Proof. Let C be a convex non-empty set and let ¢ € C be an element of C. We define
Cy, = CN(—n+=zg,n+xo) for every natural number n > 1. We also define the collection
of intervals

¢ :={Cn|n>1}, C=U%.
From Proposition 9, C, is convex. Moreover, N€ = (—1+ zg, 1 + zq) # 0. By Proposi-
tion 10, U%¥ is convex. O

Theorem 2 (From (68.)). Let 2 be an open non-empty set of R. Then  is countable
union of open intervals which are disjoint from each other.

Proof. Let x be an element of Q. Since ( is open, there exists r > 0 such that I.(z) C Q.
We define the collection

(4) oy, = {J open interval |z € J C Q}.
Clearly, 7, is non-empty, because I,.(z) € ;. We also define J, := U, The sets J,
satisfy some properties that we list below
(1) ze g
(ii) J5 is an open set
(iii) Jy is an interval
(iv) given z,y € Q, either J, = Jy, or J, N J, =0
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(i). Since I-(z) € &% and = € I.(z), then € J, by definition of generalized union.
(if) J. is open because is the union of a collection of open sets, namely ;. (iil) J,
is an interval: & is a collection of intervals, that is, convex sets. Each of these sets
contain z, from (i). Thus, Ne7, # 0. From Proposition 10, J, is a convex set. From
Proposition 11, J, is an interval.

(iv). Let us suppose that J;NJ, # 0. Then there exists z in the intersection. Therefore,
by Proposition 10 and Proposition 11, J, U Jy is an interval. It is open, because is the
union of two open sets. Since z € J,; U Jy, there holds.

JeUJy € .
Then
JeUJy CUS, =y
therefore J, C J,. Similarly, from y € J; U Jy, we can show that J, C J;. Thus,
Jz = Jy. We define the collection G as follows:

JeG&xeQst. H=J,.

From (i), UG = Q. We claim that G is countable. Since Q is dense in R, for every
J € G, the set J N Q is non-empty. We define the following function

f:G=Q, f(J)=¢(JNQ)
where ¢ is a Choice Function for R. This function is injective. In fact, given J1, J2 € G,
there holds

f() =f(R)=6(1NQ)=¢(2NQ).
We define w := ¢(J1 N Q) = ¢(J2 N Q). Since ¢ is a choice function,

w e (JlﬂQ)ﬂ(JzﬂQ) Cc JiNds.
From (iV), Jl = Jg. O

Definition 8 (Compact sets, from (70.)). A non-empty set £ C R is compact if for
every open cover % there exists a finite sub-cover %' C % .

2016, MARCH 24 - WEEK 4, LECTURE 2

71. Solutions of the exercises of Week Three
72. Heine-Borel Theorem, page 18.

WEEK 5, LECTURE 1 - 2016, MARCH 28

73. o-algebras, Definition 9

74. o-algebras generated by collections, Definition 10 and Proposition 12
75. the Borel’s o-algebra, Definition, page 20

76. G5 sets and F), sets, page 20

77. properties of measures m: # — [0, +o0]

77.1. translation invariance m(A + y) = m(A)

77.2. finite additivity, m(A U B) = m(A) + m(B)

77.3. o-additivity: if (A,) is a disjoint countable collection

+o0 +oo
n=1 n=1
77.4. o-sub-additivity: if (A4,) is a countable collection

+oo +oo
m( U Ap) < Zm(An)
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77.5. m*(I) = £(I)

78. length of intervals

78.1. bounded intervals: I € {(a,b), [a,b), (a,b],[a,b]}, £(I):=b—a
78.2. unbounded intervals: £(I) = co

79. length of collection of intervals, Definition 11

80. the Lebesgue outer measure, §2.2, page 31.

Definition 9 (o-algebras, from (73.)). A collection of sets & is a o-algebra if it satisfies
the following properties:
(i) Ve
(i) FeB=E°cR
(iii) given a countable collection G C 4, there holds UG € 4.

Definition 10 (Length of collection, from (74.)). Given a collection A C #(R), we
define

Fa={PB|(AC B)N (L is a o-algebra} C Z(Z(R)).
We define #(A) :=NFa.

Proposition 12 (From (74.)). #B(A) is a o-algebra.

Proof.

(i) For all & we have ) € # € F4. Then 0 € #B(A)
(ii) F € B(A) implies E € # € F4 for every . Then E° € #, hence E° € F4
(iii) let G C %B(A) be a countable collection. Then, G C & for every B € F4. Then
BCNFa.

O

Definition 11 (Length of collection, from (79.)). Given a countable collection of inter-
vals J, we define its length as L(J) := Y23 £(I,,), where I, € J.

n=1

WEEK 10, LECTURE 1 - 2016, MAY 2

81. Monotonicity of the outer measure, page 31

82. the outer-measure of a countable set is zero, Example in page 31
83. given two bounded intervals I, I, £(I; U I3) < £(I1) + £(12)

84. Proposition 13

85. the outer measure of an interval is equal to its length, Theorem 3.

Proposition 13 (From (84.)). If [a,b] C UJ there J is a disjoint collection of open
interval, then there exists I € J such that [a,b] C I.

Proof. Suppose that there are two intervals Iy # I such that @ € I1 and b € I;. Without
loss of generality we can suppose that I; is bounded from above, I is bounded from
below and sup(l;) = s < S = inf(I2). Since all the intervals are open, s ¢ UJ. Since
a € I, we have a < s. Since b € Iy, we also have s < b. Therefore, s € [a,b] C UJ gives
a contradiction. O

Theorem 3 (From (85.)). If A is an interval, then m*(A) = £(A).

Proof. Firstly, we consider bounded intervals and, in particular, the closed bounded
interval [a, b]. For every natural number n, we have the collection

In i ={(ea—1/2n,b+1/2n)}, [a,b] C UJ,.



Then m*([a,d]) < L(J,) = b—a+1/n. The last inequality holds for every n € N. Then
m*([a,b]) < b—a.
We prove the converse inequality. Given n € N, there exists J, such that [a,b] C J,
and L(J,) < m*(A) +1/n. By the Heine-Borel’s theorem, there exists a finite subcover
J).. We claim that L(J},) > b — a and prove the claim by induction on k := #J),. If
k =1, then J}, contains exactly one interval, namely, I = (c,d). Since [a,b] C (c,d) we
have
c<a<b<d.
Then L(J}) =4I)=d—c>b—c>b—a={(a,b]). Now, we prove that k =k + 1.
We consider the two different cases:
First case. J}, is a disjoint collection of open intervals. Then, by Proposition 13, there
exists I € J}, such that [a,b] C I. Then
£([a,]) < £(I) < L(Jp,)-
Second case. There are two intervals I’,I” € Jj, such that I’ # I" and I' N I" # 0.
Then we define I := I’ U I" which is interval because the intersection is non-empty. We
define _
I = Jp U{I} —{I', 1"}
which is an open cover of [a,b] and #J// = k. Then, by the inductive hypothesis,
b—a < L(J}) < L(J))
The second inequality follows from £(I) < £(I') 4 £(I"). This settles the second case.
Finally,
b—a < L(L) < L(Jn) < ma(fa,b) + .
Taking the limit, we obtain b — a < m.([a, b]).

Other bounded intervals. Given n > 1, we consider the set [a + 1/2n,b — 1/2n]. Then
(a,b) 2 [a+ 1/2n,b — 1/2n]. Since the outer measure is monotone, from the inclusions
[a,b] 2 [a,b), (a,b] 2 (a,b) D [a+1/2n,b—1/2n].

‘We obtain
m*([a,b]) =2 m*([a, b)), m*((a,b]) 2 m*((a,b)) 2 m*([a +1/2n,b—1/2n])
then
b—a > m*([a,b)),m*((a,b]) 2 m*((a,0)) 2b—a—1/n.

Taking the limit, we obtain

b—a=m*([a,b)) = m*((a,b]) = m*((a,b))
which is equal to the length of each of those intervals.
Unbounded intervals. We use the monotonicity property of the outer-measure. From
the inclusions

[a, +00) 2 (a,+00) 2 (a,7]
we obtain that m*((a, +00)) > n—a for every n € N. Then m*([a, +00)) = m*((a,+00)) =
oo.
(—00,b] D (—00,b) 2 (—n,b.

Then m*((—o0,b) > b+ n. Then m*((—o0, b)) = m*((—o0,b]) = co. Finally,

(VneN): RD(-n/2,n/2) = m*(R) >n
which implies that m*(R) = oo. O



