
WEEK TEN

2016 February 29, Week 1 - Lecture 1

1. Sets, subsets, membership relations, page 3

2. equality between sets, page 3

3. distributive laws of the intersection with respect to the union

4. difference between sets A−B, page 4

5. De Morgan’s Laws, page 4

6. collections of sets

7. the power set 2A, page 3

8. notations: P(A) := 2A, P(A)∗ := P(A)− {∅}
9. generalized unions and intersections, Definition 1

10. Choice function, Definition 2

11. Choice Axiom 1

12. equivalence relations, page 5

13. the quotient set, page 5.

2016 March 3, Week 1 - Lecture 2

14. Properties of the quotient set, Proposition 1

15. partial orderings, page 6

16. fully ordered sets, Definition 3

17. the Class Construction Axiom 2

18. axiomatic definition of the set of real numbers

18.1. Field Axioms, page 7

18.2. Positivity Axioms, page 8

18.3. Completeness Axiom, page 9

19. the uniqueness (up to isomorphism) of the set of real numbers, Theorem 1

Definition 1 (Generalized unions and intersection, from (9.)). Given a collection of
sets B 6= ∅, we define ∩B and ∪B as follows:

x ∈ ∪B ⇔ ∃A s.t. x ∈ A ∈ B

x ∈ ∪B ⇔ ∀A ∈ B(x ∈ A).

Definition 2 (Choice functions, from (10.)). Given a set A 6= ∅, a choice function φ is
a function φ : P(A)∗ → A such that φ(B) ∈ B for every B ∈P(A)∗.

Axiom 1 (Choice Axiom, from (11.)). Every non-emptyset A has a choice function.

Proposition 1 (Properties of the quotient set, from (14.)). Given an equivalence rela-
tion (A,R) the following properties hold:

(i) for every H ∈ A/R, the set H is non-empty
(ii) ∪A/R = A

Date: 2016, May 2.
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(iii) given H,G in A/R there holds

(H ∩G 6= ∅)⇒ (H = G).

Proof.

(i). Let x ∈ A be such that H = Gx. From (R), x ∈ Rx, therefore, H is non-empty.

(ii). Since A/R is a collection of subsets of A, we have

∪A/R ⊆ A.
Now, given x ∈ A, from (i), we have x ∈ Gx. From

x ∈ Gx ∈ A/R
we have x ∈ A/R.

(iii). Let x and y be such that H = Rx and G = Ry. Suppose that H ∩G is non-empty
and let z in A be such that z ∈ Rx ∩Ry. Let w ∈ Rx then. From (S),

xRw ⇒ wRx.

Since z ∈ Rx, we have xRz From (T),

(wRx) ∧ (xRz)⇒ wRz.

Since z ∈ Ry, we have zRy. Again, from (T) and (S)

(wRz) ∧ (zRy)⇒ wRy ⇒ yRw ⇒ w ∈ Ry.
By switching the role of x and y, we obtain the reversed inclusion Ry ⊆ Rx. Then
Rx = Ry, implying G = H. �

Definition 3 (Fully orderings, from (16.)). A partial ordering (A,R), is a full ordering
if for every x, y ∈ A either xRy or yRx.

Axiom 2 (Class Construction Axiom of Zermelo-Fraenkel, from (17.)). Given a sentence
p(x) and a set A there exists a set S ⊆ A such that x ∈ S ⇔ x ∈ A ∧ p(x).

Theorem 1 (Uniqueness up to isomorphism, from (19.)). Let (R1,+, ·) and (R2,+, ·)
two sets satisfying the field, positivity and completeness Axioms. Then there exists a
bijective function g : R1 → R2 such that

g(a+ b) = g(a) + g(b), g(ab) = g(a)g(b), g(P1) ⊆ P2

where P1 and P2 are the positive sets.

2016 March 7, Week 2 - Lecture 1

20. Injective, surjective and bijective functions, page 4

21. direct and inverse images, page 4

22. equipotent set, A ≈ B or #A = #B

23. the positive set gives an order relation in R, Proposition 2

24. intervals, page 9

25. bounded sets, lower bounds and upper bounds, page 9

26. least and greatest elements, Definition 4

27. definition of least upper bound and greatest lower bound, page 9

28. the Completeness Axiom

29. if E is bounded from below, then inf(E) = − sup(−E), exercise 6, page 11

30. inductive sets, page 11

31. the set of natural numbers, page 11

32. Principle of Mathematical Induction, page 11

33. n ≥ 1 for every n.
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2016 March 10, Week 2 - Lecture 2

34. N ∩ (0, 1) = ∅, Exercise 1

35. given n,m ∈ N such that n > m, n−m ∈ N, ex. 9, page 13 and Exercise 2

36. the set of Natural numbers is well-ordered, Theorem 1, page 11

37. subsets of N bounded from above have maximum, Proposition 3

38. Archimedean property, page 11

39. integers, Definition 5

40. rational numbers, page 12

41. dense subsets, page 12

42. the set of rational numbers is dense, page 12

43. the set Nk, Definition 6

44. finite sets, page 13

45. countable sets, page 13

46. the Bernstein’s Lemma, Lemma 1 .

Proposition 2. (R,≤) is an ordered set.

Proof. The reflectivity holds, because x ≤ x⇒ x = x.

(T). Given x ≤ y and y ≤ z, we have

(1) (x = y) ∨ (y − x ∈ P )

and

(2) (y = z) ∨ (z − y ∈ P ).

We have to show that x ≤ z, in all the four cases. If equalities hold in (1) and (2), then

(x = y) ∧ (y = z)⇒ x = z ⇒ x ≤ z.

If equality holds in (1) but not in (2), then

(x = y) ∧ (z − y ∈ P )⇒ z − x ∈ P.

The case where the equality holds in (2) but not in (1) is similar. Finally, we consider
the case where we have two strict inequalities:

(y − x ∈ P ) ∧ (z − y ∈ P )⇒ (z − y) + (y − x) = z − x ∈ P.

We used P1).

(A). Let x, y ∈ R be such that x ≤ y ∧ y ≤ x. If equality holds in one of the two
inequalities, then, clearly, x = y. So, we study only the case x < y ∧ (y < x). We have

y − x,−(y − x) ∈ P

which gives a contradiction with P2). �

Definition 4 (Least and greatest element, from (26.)). Let M be an upper bound for
E; if M ∈ E we call it greatest element. Similarly, a least element m for E is a lower
bound which belongs to E.

Exercise 1 (from (34.)). N ∩ (0, 1).

Proof. This follows from the fact that n ≥ 1 for every n ∈ N, (47.). �

Exercise 2 (from (35.), ex. 9, page 13). Given n,m ∈ N such that n > m, n−m ∈ N.
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Proof. Here I am writing a slightly different proof from the one I showed you during the
lectures. We consider the property p(n) : n− 1 ∈ N and define

S := {n ∈ N | p(n)} ∪ {1}

and prove that S = N. Clearly, 1 ∈ S, by definition. Now, suppose that n ∈ S. Then

(n+ 1)− 1 = n ∈ N.

Now we consider the property

q(m) : n > m⇒ n−m ∈ N

and the set T := {m | q(m)}. We proved that 1 ∈ T . Now, suppose that m ∈ T . We
will show that m+ 1 ∈ T . Given n > m+ 1, clearly n 6= 1. Then n− 1 ∈ N. We have

n > m+ 1⇒ n− 1 > m.

Since m ∈ T and n− 1 ∈ N, n− (m+ 1) ∈ N. �

Proposition 3 (from (37.)). Subsets of N bounded from above have a maximum.

Proof. Let E ⊆ N be a non-empty subset bounded from above. From the Completeness
Axiom there exists c := sup(E). We prove that c = max(E). On the contrary, we
consider c − 1. Since c is the least upper bound, c − 1 is not an upper bound. Then
there exists n ∈ E such that

c− 1 < n < c.

Clearly n 6= c because, otherwise, we would have c ∈ E. Since n < c, it is not an upper
bound of E. Then, there exists m ∈ E such that

n < m < c.

We set k := m − n. By Exercise 2, k ∈ N and 0 < k < 1. Therefore, we obtained a
contradiction with (34.). �

Definition 5 (Integers, from (39.)). The set of integers Z is defined by the property

p(m) : (m = 0) ∨ (m ∈ N) ∨ (−m ∈ N).

Definition 6 (Definition of Nk, from (43.)). We define Nk the subset of N of the
natural numbers satisfying 1 ≤ n ≤ k.

Lemma 1 (Bernstein’s Lemma, from (46.)). Given two non-empty sets A and B such
that there exists f : A → B injective and g : B → A injective, there exists h : A → B
bijective.

2016 March 14, Week 3 - Lecture 1

47. If g : A→ B is bijective, then A− {x} ≈ B − {g(x)}, Lemma 2

48. if k ≥ 2, then Nk − {x} ≈ Nk−1 for every, x ∈ Nk, Lemma 3

49. Nh ≈ Nk if and only if h = k, Proposition 4

50. given B 6= ∅, if B ⊆ N is not finite, then B ≈ N, Theorem 3, page 13

51. N ≈ N− {x} for every x ∈ N. Then N is not finite, Proposition 5

52. if n = ab, then n ≥ a, b
53. N×N is countable, Corollary 4, 14

54. the continuum, R, and functional cardinality, P(R).

Lemma 2 (From (47.)). If A and B are non-empty and there exist g : A→ B bijective,
then A− {x} ≈ B − {g(x)}, provided the two sets are non-empty.
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Proof. We set A′ := A−{x} and B′ := B−{g(x)}. We define g′ : A′ → B′ as g′(a) = a.
Firstly, g′(a) ∈ B′, otherwise, g′(a) = g(x), hence a = x because g is injective; however,
this contradicts the assumption a ∈ A′. Clearly, g is an injective function; given y ∈ B′,
there exists x′ ∈ A such that g(x′) = y. We show that x′ 6= x; on the contrary,
B′ 3 y = g(x′) = g(x) /∈ B′ we obtain a contradiction. �

Lemma 3 (From (48.)). If k ≥ 2, then Nk − {x} ≈ Nk−1 for every x ∈ Nk.

Proof. We define the function g : Nk − {x} → Nk−1 as follows: g(y) = y if y ≤ x − 1,
g(y) = x+ 1 if y ≥ x+ 1. �

Proposition 4 (From (49.)). Given h, k ∈ N, Nh ≈ Nk if and only if h = k.

Proof. If h = k, then Nh = Nk. Then Nh ≈ Nk. In order to prove the converse
implication, we apply the Mathematical Induction Principle to the set

S := {h ∈ N | ∀k(Nh ≈ Nk ⇒ h = k)}.
(i) 1 ∈ S. If N1 ≈ Nk, then there exists a bijective function g : N1 → Nk. Thus, g is
surjective and

Nk = g(N1) = {g(1)}.
Since 1, y ∈ Nk, we have 1 = y = g(1).

(ii) h ∈ S ⇒ h + 1 ∈ S. Suppose that Nh+1 ≈ Nk. Firstly, we notice that k ≥ 2. In
fact, if k = 1, we have

Nh+1 ≈ N1.

We can, then, apply the case 1 ∈ S and conclude that h+ 1 = 1 which contradicts the
assumption that h ∈ N. There exists a bijective function g : Nh+1 → Nk. Since k ≥ 2,
we can apply Lemma 2 and obtain

Nh = Nh+1 − {h+ 1} ≈ Nk − {g(h+ 1)}
In fact, both sets are non-empty, because k ≥ 2. Then, from Lemma 3

Nk − {g(h+ 1)} ≈ Nk−1.

Then Nh ≈ Nk−1. Since h ∈ S, we have h = k − 1. Then h+ 1 = k. �

Proposition 5 (From (51.)). N ≈ N− {x} for every x ∈ N. Then N is not finite.

Proof. The bijective function is defined as g(k) = k if k ≤ x − 1 and g(k) = k + 1 if
k ≥ x. Now, if N was finite, then N ≈ Nk for some k ≥ 1. Since 1, 2 ∈ N we can
suppose that N− {x} is non-empty. Then, from Lemma 2 and Lemma 3, we obtain

Nk ≈ N ≈ N− {x} ≈ Nk − {y} ≈ Nk−1

which implies k = k − 1, from Proposition 4 and we obtain a contradiction. �

2016 March 17, Week 3 - Lecture 2

55. Q is countable, Proposition 6

56. non-degenerate intervals in R are uncountable, Theorem 7, page 15

57. Ir(x) := (x− r, x+ r)

58. open sets, Definition page 16

59. union and finite intersections of open sets are open, Proposition 8

60. closure points, Definition, page 17

61. closed sets, page 17

62. convex sets, Definition 7

63. intervals are convex, Proposition 7
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64. bounded convex sets are intervals, Proposition 8.

Proposition 6 (From (55.)). Q is countable.

Proof. Given q ∈ Q, we define

Eq := {q ∈ N | qx ∈ Z}.
Since q is a rational number, Eq 6= ∅. Then, by the Well Ordering Theorem, the set has
a minimum. We define

h : Q→ Z×N, h(q) := (qmin(Eq),min(Eq)).

This function is injective: given q, q′ such that h(q) = h(q′), we have

qmin(Eq) = q′min(Eq′), min(Eq) = min(Eq′).

If we substitute the equality on the right in the left equality, we obtain q = q′. Then,
we have a chain of injective functions

Q→ Z×N→ N×N→ N

which is injective. Thus, by (50.), Q is countable. �

Definition 7 (Convex sets, from (62.)). A subset S ⊆ R is convex if for every x ≤ y ∈ S,
there holds [x, y] ⊆ S.

Proposition 7 (Intervals are convex, from (63.)). Intervals are convex.

Proof. Let [a, b] be a closed bounded interval. Given x, y ∈ [a, b], we have a ≤ x ≤ b
and a ≤ y ≤ b. Then if x ≤ z ≤ y, we have a ≤ x ≤ z ≤ y ≤ b, so z ∈ [a, b]. �

Proposition 8 (Convex sets are interval, from (64.)). Convex sets are intervals.

Proof. Now, suppose that S is convex. We divide the proof into four cases:

(1), S is bounded. By the Completeness Axiom there are a := inf(S) and b := sup(S).
Clearly, S ⊆ [a, b]. Now, we show that (a, b) ⊆ S. In fact, let x be an element of (a, b).
Then

a < x.

Since a is the g.l.b., x is not a lower bound of S. Therefore, there exists x′ ∈ S such
that x′ < x. We also have x < b. Since b is the l.u.b., x is not an upper bounded for
S. Then, there exists x′′ ∈ S such that x < x′′. Since S is convex, [x′, x′′] ⊆ S. Since
x′ < x < x′′, also x ∈ S. Since a ≤ x′ and x′′ ≤ b, then the set S satisfies

(a, b) ⊆ S ⊆ [a, b].

There are only four sets satisfiying the inclusions above:

[a, b], (a, b], [a, b), (a, b).

(2). S is unbounded from below and bounded from above. We define

b := sup(S).

We can prove that

(3) (−∞, b) ⊆ S ⊆ (−∞, b].
Suppose that x < b. Then x is not the l.u.b. Then, there exists x′ ∈ S such that x < x′.
Since S is not bounded from below, −(|x|+ 1) is not a lower bound. Then, there exists
x′′ ∈ S such that

x′′ < −(|x|+ 1) < x < x′.

Since S is convex,

x ∈ [x′, x′′] ⊆ S.
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Then x ∈ S. Sets satisfying (3) are only

(−∞, b), (−∞, b].
The cases (3) and (4) where S is unbounded from above and bounded from below, or S
is unbounded from below and from above, are similar to the case (2). �

2016, March 21 - Week 4, Lecture 1

65. Generalized intersection of convex sets, Proposition 9

66. generalized union of convex sets, Proposition 10

67. convex sets are intervals, Proposition 11

68. open sets are countable unions of pairwise disjoint intervals, Theorem 2

69. open covers, page 18

70. compact sets, Definition 8 .

Proposition 9 (From (65.)). If C is a collection of convex set such that ∩C 6= ∅, then
∩C is convex.

Proof. Let x, y be two elements of ∩C . Then x, y ∈ C for every C ∈ ∩C . Since C is
convex, [x, y] ⊆ C for every C ∈ ∩C , which implies [x, y] ⊆ ∩C . �

Proposition 10 (From (66.)). If D is a collection of convex set such that ∩D 6= ∅,
then ∪D is convex.

Proof. Let x0 be an element of ∩D . Let x, y ∈ D := ∪D be two elements. Then, there
are D1 and D2 such that x ∈ D1 and y ∈ D2. Here we consider different cases:

x0 ≤ x ≤ y. Then [x, y] ⊆ [x0, y] ⊆ D2 ⊆ D because D2 is convex. If x ≤ y ≤ x0, then
[x, y] ⊆ [x, x0] ⊆ D1 ⊆ D because D1 is convex. Finally, if x ≤ x0 ≤ y, we have

[x, x0] ⊆ D1 and [x0, y] ⊆ D2 ⇒ [x, y] ⊆ D1 ∪D2.

�

Proposition 11 (From (67.)). Convex sets are intervals.

Proof. Let C be a convex non-empty set and let x0 ∈ C be an element of C. We define
Cn := C∩(−n+x0, n+x0) for every natural number n ≥ 1. We also define the collection
of intervals

C := {Cn | n ≥ 1}, C = ∪C .

From Proposition 9, Cn is convex. Moreover, ∩C = (−1 + x0, 1 + x0) 6= ∅. By Proposi-
tion 10, ∪C is convex. �

Theorem 2 (From (68.)). Let Ω be an open non-empty set of R. Then Ω is countable
union of open intervals which are disjoint from each other.

Proof. Let x be an element of Ω. Since Ω is open, there exists r > 0 such that Ir(x) ⊆ Ω.
We define the collection

(4) Ax := {J open interval | x ∈ J ⊆ Ω}.
Clearly, Ax is non-empty, because Ir(x) ∈ Ax. We also define Jx := ∪Ax The sets Jx
satisfy some properties that we list below

(i) x ∈ Jx
(ii) Jx is an open set

(iii) Jx is an interval
(iv) given x, y ∈ Ω, either Jx = Jy or Jx ∩ Jy = ∅
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(i). Since Ir(x) ∈ Ax and x ∈ Ir(x), then x ∈ Jx by definition of generalized union.
(ii) Jx is open because is the union of a collection of open sets, namely Ax. (iii) Jx
is an interval: Ax is a collection of intervals, that is, convex sets. Each of these sets
contain x, from (i). Thus, ∩Ax 6= ∅. From Proposition 10, Jx is a convex set. From
Proposition 11, Jx is an interval.

(iv). Let us suppose that Jx∩Jy 6= ∅. Then there exists z in the intersection. Therefore,
by Proposition 10 and Proposition 11, Jx ∪ Jy is an interval. It is open, because is the
union of two open sets. Since x ∈ Jx ∪ Jy, there holds.

Jx ∪ Jy ∈ Ax.

Then
Jx ∪ Jy ⊆ ∪Ax = Jx

therefore Jy ⊆ Jx. Similarly, from y ∈ Jx ∪ Jy, we can show that Jy ⊆ Jx. Thus,
Jx = Jy. We define the collection G as follows:

J ∈ G⇔ ∃x ∈ Ω s.t. H = Jx.

From (i), ∪G = Ω. We claim that G is countable. Since Q is dense in R, for every
J ∈ G, the set J ∩Q is non-empty. We define the following function

f : G→ Q, f(J) = φ(J ∩Q)

where φ is a Choice Function for R. This function is injective. In fact, given J1, J2 ∈ G,
there holds

f(J1) = f(J2)⇒ φ(J1 ∩Q) = φ(J2 ∩Q).

We define w := φ(J1 ∩Q) = φ(J2 ∩Q). Since φ is a choice function,

w ∈ (J1 ∩Q) ∩ (J2 ∩Q) ⊆ J1 ∩ J2.
From (iv), J1 = J2. �

Definition 8 (Compact sets, from (70.)). A non-empty set E ⊆ R is compact if for
every open cover U there exists a finite sub-cover U ′ ⊆ U .

2016, March 24 - Week 4, Lecture 2

71. Solutions of the exercises of Week Three

72. Heine-Borel Theorem, page 18.

Week 5, Lecture 1 - 2016, March 28

73. σ-algebras, Definition 9

74. σ-algebras generated by collections, Definition 10 and Proposition 12

75. the Borel’s σ-algebra, Definition, page 20

76. Gδ sets and Fσ sets, page 20

77. properties of measures m : B → [0,+∞]

77.1. translation invariance m(A+ y) = m(A)

77.2. finite additivity, m(A ∪B) = m(A) +m(B)

77.3. σ-additivity: if (An) is a disjoint countable collection

m(
+∞⋃
n=1

An) =
+∞∑
n=1

m(An)

77.4. σ-sub-additivity: if (An) is a countable collection

m(
+∞⋃
n=1

An) ≤
+∞∑
n=1

m(An)
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77.5. m∗(I) = `(I)

78. length of intervals

78.1. bounded intervals: I ∈ {(a, b), [a, b), (a, b], [a, b]}, `(I) := b− a
78.2. unbounded intervals: `(I) =∞
79. length of collection of intervals, Definition 11

80. the Lebesgue outer measure, §2.2, page 31.

Definition 9 (σ-algebras, from (73.)). A collection of sets B is a σ-algebra if it satisfies
the following properties:

(i) ∅ ∈ B
(ii) E ∈ B ⇒ Ec ∈ B
(iii) given a countable collection G ⊆ B, there holds ∪G ∈ B.

Definition 10 (Length of collection, from (74.)). Given a collection A ⊆ P(R), we
define

FA = {B | (A ⊆ B) ∧ (B is a σ-algebra} ⊆P(P(R)).

We define B(A) := ∩FA.

Proposition 12 (From (74.)). B(A) is a σ-algebra.

Proof.

(i) For all B we have ∅ ∈ B ∈ FA. Then ∅ ∈ B(A)
(ii) E ∈ B(A) implies E ∈ B ∈ FA for every B. Then Ec ∈ B, hence Ec ∈ FA

(iii) let G ⊆ B(A) be a countable collection. Then, G ⊆ B for every B ∈ FA. Then
B ⊆ ∩FA.

�

Definition 11 (Length of collection, from (79.)). Given a countable collection of inter-
vals J , we define its length as L(J) :=

∑+∞
n=1 `(In), where In ∈ J .

Week 10, Lecture 1 - 2016, May 2

81. Monotonicity of the outer measure, page 31

82. the outer-measure of a countable set is zero, Example in page 31

83. given two bounded intervals I1, I2, `(I1 ∪ I2) ≤ `(I1) + `(I2)

84. Proposition 13

85. the outer measure of an interval is equal to its length, Theorem 3.

Proposition 13 (From (84.)). If [a, b] ⊆ ∪J there J is a disjoint collection of open
interval, then there exists I ∈ J such that [a, b] ⊆ I.

Proof. Suppose that there are two intervals I1 6= I2 such that a ∈ I1 and b ∈ I2. Without
loss of generality we can suppose that I1 is bounded from above, I2 is bounded from
below and sup(I1) = s ≤ S = inf(I2). Since all the intervals are open, s /∈ ∪J . Since
a ∈ I1, we have a < s. Since b ∈ I2, we also have s < b. Therefore, s ∈ [a, b] ⊆ ∪J gives
a contradiction. �

Theorem 3 (From (85.)). If A is an interval, then m∗(A) = `(A).

Proof. Firstly, we consider bounded intervals and, in particular, the closed bounded
interval [a, b]. For every natural number n, we have the collection

Jn := {(a− 1/2n, b+ 1/2n)}, [a, b] ⊆ ∪Jn.



Then m∗([a, b]) ≤ L(Jn) = b−a+1/n. The last inequality holds for every n ∈ N. Then
m∗([a, b]) ≤ b− a.

We prove the converse inequality. Given n ∈ N, there exists Jn such that [a, b] ⊆ Jn
and L(Jn) ≤ m∗(A) + 1/n. By the Heine-Borel’s theorem, there exists a finite subcover
J ′n. We claim that L(J ′n) ≥ b − a and prove the claim by induction on k := #J ′n. If
k = 1, then J ′n contains exactly one interval, namely, I = (c, d). Since [a, b] ⊆ (c, d) we
have

c < a ≤ b < d.

Then L(J ′n) = `(I) = d − c > b − c > b − a = `([a, b]). Now, we prove that k ⇒ k + 1.
We consider the two different cases:

First case. J ′n is a disjoint collection of open intervals. Then, by Proposition 13, there
exists I ∈ J ′n such that [a, b] ⊆ I. Then

`([a, b]) ≤ `(I) ≤ L(J ′n).

Second case. There are two intervals I ′, I ′′ ∈ J ′n such that I ′ 6= I ′′ and I ′ ∩ I ′′ 6= ∅.
Then we define Ĩ := I ′ ∪ I ′′ which is interval because the intersection is non-empty. We
define

J ′′n := J ′n ∪ {Ĩ} − {I ′, I ′′}
which is an open cover of [a, b] and #J ′′n = k. Then, by the inductive hypothesis,

b− a ≤ L(J ′′n) ≤ L(J ′n)

The second inequality follows from `(Ĩ) ≤ `(I ′) + `(I ′′). This settles the second case.
Finally,

b− a ≤ L(J ′n) ≤ L(Jn) ≤ m∗([a, b]) +
1

n
.

Taking the limit, we obtain b− a ≤ m∗([a, b]).
Other bounded intervals. Given n ≥ 1, we consider the set [a + 1/2n, b − 1/2n]. Then
(a, b) ⊇ [a+ 1/2n, b− 1/2n]. Since the outer measure is monotone, from the inclusions

[a, b] ⊇ [a, b), (a, b] ⊇ (a, b) ⊇ [a+ 1/2n, b− 1/2n].

We obtain

m∗([a, b]) ≥ m∗([a, b)),m∗((a, b]) ⊇ m∗((a, b)) ⊇ m∗([a+ 1/2n, b− 1/2n])

then
b− a ≥ m∗([a, b)),m∗((a, b]) ≥ m∗((a, b)) ≥ b− a− 1/n.

Taking the limit, we obtain

b− a = m∗([a, b)) = m∗((a, b]) = m∗((a, b))

which is equal to the length of each of those intervals.

Unbounded intervals. We use the monotonicity property of the outer-measure. From
the inclusions

[a,+∞) ⊇ (a,+∞) ⊇ (a, n]

we obtain thatm∗((a,+∞)) ≥ n−a for every n ∈ N. Thenm∗([a,+∞)) = m∗((a,+∞)) =
∞.

(−∞, b] ⊇ (−∞, b) ⊇ (−n, b].
Then m∗((−∞, b) ≥ b+ n. Then m∗((−∞, b)) = m∗((−∞, b]) =∞. Finally,

(∀n ∈ N) : R ⊇ (−n/2, n/2)⇒ m∗(R) ≥ n
which implies that m∗(R) =∞. �


