
SYLLABUS OF THE COURSE ”SET THEORY”, SPRING 2016

2016 February 29, Week 1 - Lecture 1

1. Sentences, Definition 1.1, page 23

2. logical connectives:

2.1. negation: ¬ (1) of Definition 1.3, page 23

2.2. conjunction: ∧, (2) of Definition 1.3, page 24

2.3. disjunction: ∨, (3) of Definition 1.3, page 24

2.4. implication: ⇒, (4) of Definition 1.3, page 24

2.5. ⇔, (5) of Definition 1.3, page 25

3. laws with connectives:

3.1. Double Negation, (3) of Theorem 1.5, page 25

3.2. Contrapositive Law, (4) of Theorem 1.5, page 25

3.3. Distributive Laws, (5) of Theorem 1.9, page 29

3.4. DeMorgan’s Laws, Theorem 1.10, page 29.

2016 March 3, Week 1 - Lecture 2

4. Virtual infinite: finite sets exist

5. actual infinite: the set of natural numbers N exists

6. the Class Construction Axiom 1

7. the set kN, Definition 1

8. the symbols ∀, ∃, page 8

9. notation: if A is an infinite set, then #A = ∞ or #A ≥ ω

10. two remarks:

10.1. every set x is an element of {x}

10.2. given two sets x, y either x ∈ y or x ∈ y

11. an example of set T such that T ∈ T , Example 1

12. an example of set H such that H /∈ H , Example 2

Date: 2016, June 2.
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Axiom 1 (Class Construction Axiom of Georg Cantor, from (6.)). Given a sentence
p(x) there exists a set S such that x ∈ S if and only p(x) holds is true.

Definition 1 (The set kN, from (7.)). The set kN is the set of all the elements n such
that the statement qk(n) : ∃m s.t. n = km is true.

Example 1 (A set T ∈ T , from (11.)). There exists a set T such that T ∈ T . We
consider the sentence p(A) : #A = ∞. From the Class Construction Axiom 1 there
exists the set T = {A | p(A)}. Since the set kN is infinite,

(∀k ∈ N) kN ∈ T.

Therefore, #T = ∞, hence T ∈ T .

Example 2 (A set H /∈ H , from (12.)). We consider the sentence q(A) : #A is finite.
There exists a set H such that H ∈ H . From the Class Construction Axiom 1 there
exists the set H = {A | q(A)}. For every natural number n, {n} ∈ H . Then H is not
finite, hence H /∈ H .

2016 March 7, Week 2 - Lecture 1

13. The Russell paradox, Paradox 1

14. subclasses, Definition 1.10, page 25

15. equality between classes, (1) of Definition 1.14, page 32

16. union and intersection of classes, (1), (2) of Definition 1.18, page 36

17. difference between sets A−B, (7) of Definition 1.18, page 37

18. distributive laws, (9) of Theorem 1.21, page 41.

2016 March 10, Week 2 - Lecture 2

19. sets and proper classes, page 32

20. the Extent Axiom A1, page

21. an example where A1 does not hold, Example 3

22. the Class Construction Axiom A2, page 34

23. classes which derive from A2:

23.1. intersection A ∩B, Definition 1.18, page 36

23.2. union A ∪B, Definition 1.18, page 36

23.3. complement A′, Definition 1.18, page 37

23.4. difference A−B := A ∩B′, Example at page 34

23.5. emptyclass, ∅, Definition 1.18, page 37

23.6. singletons, {a}, (1) of Definition 1.24, page 45

23.7. universal class, U , Definition 1.18, page 37

23.8. pairs, {a, b}, (2) of Definition 1.24, page 45

24. an example where A2 does not hold, Example 4

25. for every class A, there holds ∅ ⊆ A ⊆ U Theorem 1.17, page 29.

Paradox 1 (The Russell Paradox, from (13.)). We define the statement

(1) p(x) : x /∈ x.

By the CCA, there exists a set R such that x ∈ R ⇔ p(x). Or, using different notation,

(2) R = {x | p(x)}.

Given two sets A,B, either A ∈ B or A /∈ B. Then R ∈ R or R /∈ R. Suppose
that R ∈ R. By (2), R ∈ R ⇒ p(R). By (1), p(R) ⇒ R /∈ R. Then, we obtain a
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contradiction. We consider the second case, R /∈ R. By (1), R /∈ R ⇒ p(R). By (2),
p(R) ⇒ R ∈ R, which gives a contradiction, again. In conclusion, the sentence R ∈ R
is neither true or false, which is a paradox.

Example 3 (A1 does not hold, from (21.)). In the example

C D
C 1 1
D 0 0

C = {C} and D = {D}. Therefore, C and D have the same elements. Then C = D.
However, C ∈ C but D /∈ C.

Example 4 (A2 does not hold, from (24.)). In the example

A B C
A 1 0 0
B 1 1 0
C 0 1 0

are three sets A,B,C and no proper classes. A1 is satisfied. However, A2 is not satisfied.
In fact, A = {A,B} and B = {B,C} but the intersection A ∩ B = {B} does not exist.
Also, the Universal Class U = {A,B,C} does not exist.

Week 3 - Lecture 1, 2016, March 14

26. A function f : A → B is a relation satisfying

(∀x ∈ A)∃y ∈ B s.t. x ∼f y(F1)

(x ∼f y1) ∧ (x ∼f y2) ⇒ y1 = y2(F2)

27. range of f , ran(f): y ∈ ran(f) ⇔ ∃x ∈ A s.t. f(x) = y

28. injective functions (INJ): f(x1) = f(x2) ⇒ x1 = x2

29. surjective functions (SURJ): (∀y ∈ B)∃x s.t. f(x) = y

30. bijective functions (BIJ): injective and surjective

31. examples of functions

31.1. f : N → N, f(n) = n+ 1

31.2. identity function: idA : A → A, f(x) = x

31.3. the restriction, Definition 2

31.4. extension, Definition 3

31.5. characteristic function, χB, Definition 4

31.5.1. if χB is not SURJ, then either B = A or B = ∅, Example 5

31.5.2. if #A = 2×#B = 2, then χB is injective, Example 6

32. if f is bijective, there exists g such that f ◦ g = idA and g ◦ f = idB

33. inverse function

34. equipotent classes, Definition 6

35. direct image, Definition 5

36. inverse image, Definition 5

37. f̌(f̄(C)) 6= C, Example 7.
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2016, March 17 - Week 3, Lecture 2

38. Union of two functions, Definition 7

39. the constant function cb, (2) of Example 2.13, page 73

40. when A and B are finite classes #A = n and #B = m

40.1. ∃f : A → B SURJ ⇔ n ≥ m

40.2. ∃g : A → B INJ ⇔ n ≤ m

40.3. ∃h : A → B BIJ ⇔ n = m

41. Bernstein’s Lemma, Lemma 1

42. ordered pairs, (3) of Definition 1.24

43. cartesian product, (4) of Definition 1.24

44. graph of a function, Definition 8

45. the Pair Axiom, Axiom 3, page 61.

Definition 2 (Restriction, from (31.3.)). Given two functions f : A → B and g : C → B
such that C ⊆ A, g is a restriction of f is f(c) = g(c) for every c ∈ C.

Definition 3 (Extension, from (31.4.)). Given two functions f : A → B and g : C → B
such that C ⊆ A, f is an extension of g if and only if f(c) = g(c) for every c ∈ C.

Definition 4 (Characteristic Function, from (31.5.)). Given a subclass B ⊆ A, the
characteristic function of B, in notation χB : A → {0, 1}, is defined as

χB(x) :=

®

1 if x ∈ B

0 if x /∈ B.

Example 5 (From (31.5.1.)). If χB is not surjective, then either 0 /∈ ran(χB) or 1 /∈
ran(χB). If 0 /∈ ran(χB), then B = A. If 1 /∈ ran(χB), then B = ∅.

Example 6 (From (31.5.2.)). Suppose that #A = 2 and #B = 1. Let x1, x2 ∈ A
such that χB(x1) = χB(x2) and x1 6= x2. Then Only one between x1 and x2 belongs
to B, because #B = 1. Therefore, if x1 belongs to B, then x2 does not belong to
B. Then χB(x1) = 1 6= χB(x2) = 0. Similarly, if x1 /∈ B and x2 ∈ B, we obtain
χB(x1) = 0 6= χB(x2) = 1.

Definition 5 (Direct and inverse image, from (35.) and (36.)). Given two classes C ⊆ A
and D ⊆ B, we define

f̄(C) := {y ∈ B | ∃x ∈ C s.t. f(x) = y}

f̌(D) := {x ∈ A | f(x) ∈ D}.

Given two functions f : A → B and g : C → B such that C ⊆ A, f is an extension of g
if and only if f(c) = g(c) for every c ∈ C.

Definition 6 (From (34.)). Two classes A,B are equipotent if there exists f : A → B
bijective. On this case, we use the notation A ≈ B. Equivalently, we say that ”the
cardinality of #A” is equal to ”the cardinality of B” and the notation #A = #B is also
used.

Example 7 (From (37.)). We consider the function with domain A := {x1, x2, x3}, in
B := {y1, y2}, defined as f(x1) = f(x2) = y1 and f(x3) = y2. We set C := {x2}. Then
f̄(C) = {y1} and f̌(f̄(C)) = {x1, x2} 6= {x2} = C.

Definition 7 (Union of two functions, from (38.)). If f : B → A and g : C → A are two
functions and B ∩ C = ∅ then

f ∪ g(x) :=

®

f(x) if x ∈ B

g(x) if x ∈ C
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is a function.

Lemma 1 (Bernstein’s Lemma, from (41.)). If there exists an injective function f : A →
B and an injective function g : B → A, then there exists a bijective function h : A → B.
That is A ≈ B.

Definition 8 (Graph of a function, from (44.)). Given a function f : A → B its graph
is the class

graph(f) := {(x, y) ∈ A×B | y = f(x)}.

Week 4 - Lecture 1, 2016, March 21

46. If (a, b) = (c, d), then a = c and b = d, Theorem 1.26, page 46

47. Exercise 1

48. if A2 and A3 holds, given two sets x, y, the class (x, y) exists, Remark 1

49. graphs, (1) of Definition 1.30, page 50

50. domain and range of a graph, (4) of Definition 1.30, page 50 and 51

51. inverse graph, (2) of Definition 1.30, page 50

51.1. (G−1)−1 = G, (2) in Theorem 1.32, page 51

51.2. dom(G) = ran(G−1), (1) in Theorem 1.33, page 52

51.3. ran(G) = dom(G−1), (2) Theorem 1.33, page 52

52. composite graph, (3) Definition 1.30, page 50

52.1. (G ◦H)−1 = H−1 ◦G−1, (3) in Theorem 1.32, page 51

53. Example 8.

Remark 1 (Ordered pairs exist, from (48.)). Given two sets x, y the ordered pair (x, y)
exists. In fact, by the Class Construction Axiom (A2), there are the classes {x} and
{x, y}. By A3, {x} and {x, y} are sets. By A2, again, there exists the class {{x}, {x, y}}.

Exercise 1 (From (47.)). Given two sets a 6= b, the class {{a, b}} is not an ordered
pair. On the contrary, there are x, y sets such that

{{a, b}} = {{x}, {x, y}}.

The left class is a singleton while the right one is a pair. Then

{a, b} = {x} = {x, y} ⇒ a = b ⇔ ¬(a 6= b).

Example 8 (From (53.)). In the following example we want to recognize sets, proper
classes, the universal class, pairs, ordered pairs and graphs

a b c U
a 1 1 0 1
b 0 1 1 1
c 0 0 0 1
U 0 0 0 0

Sets: a, b, c
proper classes: U
Universal Class: U
pairs: a, b, c
ordered pairs: a = (a, a), b = (a, b)
U × U : b
graphs: a, b, c.

The Pair Axiom holds, because all the pairs are also sets. The Class Construction
Axiom does not hold, because, for instance, ∅ does not exist. Or, we can argue like this:
a and b are sets, so, if A2 holds, by Remark 1, (b, a) should exist. But it does not.

By definition, graphs are subclasses of U ×U = U×U . In turn U×U = {(a, a), (a, b)} =
{a, b} = b. Subclasses of b are a, b, c. Here we also observe that

b = {(a, a), (a, b)}, b−1 = {(a, a)}
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because (b, a) does not exist. If we take the inverse graph one more time (b−1)−1 =
{(a, a)} = a 6= b. Therefore, here we have a clear example of how a simple property as
(G−1)−1 fails if A3 and A2 are not satisfied at the same time.

Week 4 - Lecture 2, 2016, March 24

54. Solutions of the exercises of week three

55. functions, (1) of Definition 2.3

56. if dom(f) = dom(g) then f ⊆ g ⇒ f = g, Theorem 2.10, page 71

57. composition of two functions is a function, Theorem 2.16, page 76.

Week 5 - Lecture 1, 2016, March 28

58. Remarks about the assignments:

58.1. g ◦ f = idA does not imply f bijective, Remark 2

58.2. B 6= ∅ does not imply A−B 6= A, Remark 3

59. examples of functions

59.1. idA, (1) of Example 2.13, page 72

59.2. characteristic functions χB, (4) of Example 2.13, page 73

60. injective and surjective functions, Definition 2.11, page 71

61. definitions equivalent to bijective functions, Theorem 1.

Remark 2 (From (58.1.)). We define f : A := {0, 1} → B := {a, b, c} as f(0) = a and
f(1) = b. We define : B → A as g(a) = 0 and g(b) = 1. Then g ◦ f = idA, but f is not
surjective.

Remark 3 (From (58.2.)). We define A := {0, 1} and B = {2}. Then B 6= ∅ but
A−B = A. If C = {1}, then A− C = {0} 6= A.

Theorem 1 (From (61.)). Given a function f : A → B, the following statements are
equivalent:

(a) f is bijective
(b) f is invertible
(c) (f−1 ◦ f = idA) ∧ (f ◦ f−1 = idB)
(d) ∃g : B → A s.t. (f ◦ g = idB) ∧ (g ◦ f = idA).

Proof. (a) ⇒ (b). Suppose that f is bijective. Then

dom(f) = A and ran(f) = B ⇒ dom(f−1) = B and ran(f−1) = A.

We prove F2:

(y1, x), (y2, x) ∈ f−1 ⇒ (x, y1), (x, y2) ∈ f ⇒ y1 = y2

because f is injective. Then f−1 : B → A is a function.

(b) ⇒ (c). Since f−1 is a function, both compositions are functions. From (56.), it is
enough to show that

f−1 ◦ f ⊆ idA

because dom(f−1 ◦ f) = dom(f) = A, by (57.). If (x, z) ∈ f−1 ◦ f there exists y such
that

(x, y) ∈ f ⇒ (y, x) ∈ f−1, (y, z) ∈ f−1.

By F2, x = z. Thus (x, z) ∈ idA.

Now, we prove that

f ◦ f−1 ⊆ idB.
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Given (z, x) ∈ f ◦ f−1, there exists y such that

(z, y) ∈ f−1 ⇒ (y, z) ∈ f

(y, x) ∈ f.

By F2, x = z. Then (z, x) ∈ idB.

(c) ⇒ (d). It follows by setting g := f−1.

(d) ⇒ (a). Firstly, we show that

g ◦ f = idA ⇒ f INJ.

Given x1, x2 ∈ A and y ∈ B such that

(x1, y), (x2, y) ∈ f.

Since

B = dom(idB) = dom(f ◦ g) ⊆ dom(g),

y belongs to dom(g). Then, there exists z ∈ A such that (y, z) ∈ g. Then

(x1, z), (x2, z) ∈ g ◦ f ⇒ x1 = x2 = z.

We show that f ◦ g = idB implies that f is surjective. In fact,

B = ran(f ◦ g) ⊆ ran(f).

�

Week 5 - Lecture 2, 2016, March 31

62. Exercise using A2 and A3: if there are two sets, there exists a third set, Exercise 2

63. f : A → B INJ if and only (∀y ∈ B)f̌({y}) is a singleton, Proposition 1

64. generalized unions and intersections, (2) of Definition 1.39, page 55

64.1. singletons: ∪{A} = ∩{A} = A

64.2. Exercise 6, page 59

64.3. Remark: ∪A and ∩A are not defined when A = ∅

65. subsets, Definition 1.46, page 61

66. the subsets Axiom, Axiom 4, page 61

66.1. Example 9

66.2. if A is a set and B is a class, then A ∩B is a set, Consequence 1

66.3. if C ⊆ D and C is a proper class, then D is a proper classes, Consequence 2

66.4. if A2 holds, then U is a proper class, Consequence 3 (check Remark 1.47, page 61)

66.5. if A2 holds, then ∅ is a set, Consequence 4

67. the Union Axiom, Axiom 5, page 61, Example 10

67.1. if A2, A3 and A5 hold, union of sets is a set, (2) of Theorem 1.48, page 62.

Exercise 2 (From (62.)). If A2 and A3 hold, and there are two sets, then there are
infinitely many sets.

Solution. Let x, y be two sets such that x 6= y. By A2 and A3, the classes

a := {x}, b := {y}, c := {x, y}

exist and are set. Moreover, if any of these sets are equal to each other, we obtain
x = y. �

Proposition 1 (A2, from (63.)). Given f : A → B, f is injective if and only if for every
y ∈ B, the class f̌({y}) is a singleton or the empty class.
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Proof. Suppose that f is injective and that f̌({y}) 6= ∅. Let x1, x2 be elements of
f̌({y}) 6= ∅. Then f(x1), f(x2) ∈ {y}. Then f(x1) = y = f(x2). Conversely, we can
prove that f is injective. Let x1, x2 ∈ A such that y := f(x1) = f(x2). Then

x1 ∈ f̌({y}), x2 ∈ f̌({y}) ⇒ f̌({y}) 6= ∅.

From the assumptions, f̌({y}) is empty or is a singleton. Since it is non-empty, it must
be a singleton. Then x1 = x2. �

Example 9 (From (66.1.)). In the following example Axiom 4 is not satisfied

x A
x 1 0
A 0 0

Sets: x
proper classes: A
x ⊆ A

Consequence 1 (From (66.2.)). If A is a set and B is a class, then A ∩B is a set.

Proof. A ∩B ⊆ A. By A4, B is a set. �

Consequence 2 (From (66.3.)). If C ⊆ D and C is a proper class, then D is a proper
class.

Proof. On the contrary, D is a set. Then, by A4, C is a set. But C is a proper class. �

Consequence 4 (From (66.5.)). If the empty class exists, and there exists a set, then
∅ is a set.

Proof. Let A be a set. Then ∅ ⊆ A. By A4, ∅ is a set. �

Example 10 (From (67.)). In the following example the union of two sets exists, but
it is not a set

x y U

x 1 0 1
y 0 0 1
U 0 0 0

Sets: x, y
proper classes: U

x ∪ y = U

Week 6 - Lecture 1, 2016, April 4

68. The Power Set, P(A) or 2A, Definition 1.50, page 62

69. the Power Set Axiom, Axiom 6, page 62

70. Exercise 3

71. equivalence relations, (1), (3) and (4) of Definition 3.2, page 96

Exercise 3 (From (70.)). In the example,

∈ x y z t U
x 0 0 0 1 1
y 0 0 1 0 1
z 0 1 0 0 1
t 1 1 0 0 0
U 0 0 0 0 0

Sets: x, y, z, t
Proper Classes: U
Pairs: x, y, z, t
Ordered pairs: x = (x, x) and t = (t, t).

∄U = {x, y, z, t}, ∄z × z, ∄U × U = {x, t}.

Axioms: if it is red, it is not satisfied. If it is blue, it is satisfied

A2: ∄U

A3: all the pairs are sets
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A4:

subsets of x: x (it is a set)
subsets of y: y, t (they are sets)
subsets of z: z (it is a set)
subsets of t: t (it is a set)

A5:

∪x = t, ∪y = z ∪ t = {x, y}, ∪z = y, ∪t = x.

A6:

2x = {x, ∅} = {x} = t which is a set
2y = {∅, {z}, {t}, y}= { , , x, y} which does not exist
2z = {∅, z} = { , z} which does not exist
2t = {t, ∅} = {t, . . . } = {t} = x

Week 6 - Lecture 2, 2016, April 7

72. An example of equivalence relation,

(n,m) ∼ (h, k) ⇔ n+ k = m+ h

Example 11

73. equivalence classes, (2) of Definition 3.7, page 100

74. the quotient set, (3) of Definition 3.7, page 101

75. properties of the equivalence relation and the quotient set, Proposition 2

76. graphs are not functions, Exercise 4

77. order relations, (9) of Definition 3.2, page 96.

Example 11 (From (72.)). In A = N×N we consider the equivalence relation

(n,m) ∼ (h, k) ⇔ n+ k = m+ h.

We prove that this is an equivalence relation.

(R).

(n,m) ∼ (n,m) ⇔ n+m = m+ n.

Then the reflexive property follows from the fact that the sum is commutative.

(S).

(n,m) ∼ (h, k) ⇒ n+ k = m+ h ⇒ h+m = n+ k ⇒ (h, k) ∼ (n,m).

(T). Suppose that

(n,m) ∼ (h, k) ∧ (h, k) ∼ (a, b).

Then

n+ k = m+ h, h+ b = k + a.

We want to prove that (n,m) ∼ (a, b). That is, n+ b = m+ a. We have

(n+ b) + h = n+ (h+ b) = n+ (k + a)

= (n+ k) + a = (m+ h) + a = (m+ a) + h

which implies n+ b = m+ a.

Proposition 2. Given an equivalence relation (A,G) the following properties hold:

(i) for every x ∈ A, x ∈ Gx

(ii) given x, y ∈ A, there holds

(Gx ∩Gy 6= ∅) ⇒ (Gx = Gy).

(iii) ∪(A/G) = A.
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Proof.

(i). Let x ∈ A. Since G is reflexive, (x, x) ∈ G. Then x ∈ Gx.

(ii). Let x and y be such that z ∈ Gx ∩Gy 6= ∅. Let w ∈ Gx. Since G is symmetric,

(w, x) ∈ G ⇒ (x,w) ∈ G.

Since z ∈ Rx, we have (x, z) ∈ G. The relation G is transitive. Then

(w, x) ∈ G ∧ (x, z) ∈ G ⇒ (w, z) ∈ G.

Since z ∈ Gy , we have (y, z) ∈ G. From (S), we have (z, y) ∈ G. Then

(w, z) ∈ G ∧ (z, y) ∈ G ⇒ (w, y) ∈ G.

Then w ∈ Gy. By switching the role of x and y, we obtain the reversed inclusion
Gy ⊆ Gx. Then Gx = Gy .

(iii). If x ∈ A, from (i) we have x ∈ Gx. By definition of quotient set, Gx ∈ A/G. Then

x ∈ Gx ∈ A/G

gives x ∈ ∪(A/G). Conversely, if x ∈ A/G, there exists H ∈ A/G such that x ∈ H .
Since H is an equivalence class, there exists y ∈ A such that H = Gy. Because Gy ⊆ A,
we can conclude that x ∈ A. �

Exercise 4 (From (76.)). Let f : A → A be a function. As a function, it is also a
graph. In general, a function is not an equivalence relation unless f = idA. In fact, let
(x, y) ∈ f . Since x ∈ A, and f is an equivalence relation, (x, x) ∈ f . By property F2,
(x, y), (x, x) ∈ f implies x = y.

Week 7 - Lecture 1, 2016, April 11

78. Examples of order relations

78.1. N with nRm ⇔ n | m

78.2. if A is a class, x ≤ y ⇔ x ⊆ y

79. comparable elements, (1) of Definition 4.6, page 117

80. fully ordered classes (FOC), (2) of Definition 4.6, page 117

81. chains, (2) of Definition 4.6, page 117

82. representation of the order relations

R1 := {(0, 0), (1, 1), (2, 2), (0, 1), (0, 2)}, A = {0, 1, 2}

R2 := idB ∪ {(0, 1), (1, 2), (0, 2), (0, 3), (1, 3)}, B = {0, 1, 2, 3}

83. maximal chains, Definition 9.

Definition 9 (Maximal Chains, from (83.)). Given a partially ordered class (A,≤) a
subclass C ⊆ A is a maximal chain if it is a chain and for every chain D there holds

C ⊆ D ⇒ C = D.

Week 7 - Lecture 2016, April 14

84. The Hausdörff’s Maximum Principle, Theorem 5.18, page 166

85. exercises from the past midterms and finals, Exercises 5-9

Exercise 5. Let (N,≤) be the order relation defined as x ≤ y : ∃k s.t. y = kx. Prove
that there exists a maximal chain.
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Proof. A maximal chain is given by M := {2n | n ≥ 0}. In fact, let D be a chain such
that M ⊆ D. We prove that D = M . Let d ∈ D. There exists are two non-negative
integers a, b such that

2a ≤ d < 2b

Since 2a, 2b ∈ D, the element d is comparable to both of them. Then

2a | d | 2b.

Then, there are ka and kb such that

2b = kad, d = ka2
a.

Then

2b = k × 2a, k := kakb.

Then k = 2b−a. Since ka and kb are natural numbers, they are powers of 2. Since
d = ka2

a, the element d is also a power of 2. Then d ∈ M . �

Exercise 6. For each of the following statements mark whether is true or false.

(i) A is a set if and only if there exists x such that x ∈ A
(ii) A is a proper class if and only if for every b ∈ A there holds b 6= A
(iii) x is a set if x 6= ∅ and there exists B such that x ∈ B
(iv) x is a set if and only if x ∩ A is a set for every class A.

Solution.

(i). Both implications are false. The left implication is false. If A is set, by A2 and
A4, and Consequence 1, ∅ is a set. However, there is no x such that x ∈ A; the right
implication is false as well. For instance, from A2, A4 and Consequence 3, U is a proper
class, and it is non-empty because ∅ ∈ U .

(ii). False. The left implication is true: if A is a proper class it is different from every
set (including the sets which are elements of A), by A1. The right implication is false:
for instance, if ∅ is a set, then 1 := {∅} is a set, by A3, but is different from all its
elements.

(iii). False. The right implication is true. The left implication is false: for instance,
consider the ∅.

(iv). True. If x is a set, and A is a class, then x∩A is a set, by A2, A4 and Consequence 1
x ∩ A is a set. The converse implication is also true: if x ∩ A is a set for every class A,
then x ∩ A is a set if A = x. Then x ∩ x = x is a set. �

Exercise 7 (A1-A6). Let D be the class defined with the Class Construction Axiom

y ∈ D ⇔ ∃x(y = {x}).

Show that D is a proper class.

Proof. We argue by contradiction. Suppose that D is a set. Then, by A5, ∪D is a set.
However, we can show that ∪D = U . In fact, given x ∈ U , the singleton {x} exists by
A2. By A3, {x} is a set. Then {x} ∈ D. If we set y := {x}, then

x ∈ y ∈ D ⇒ x ∈ ∪D.

By A5, ∪D should be a set. But it is equal to U . Then, by A1, U should be a set as
well, giving a contradiction with Consequence 3. �

Exercise 8. True or false? explain!

(1) A2 is equivalent to: ∃∅,U
(2) for every classes X,A, either X ∈ A or X ∈ A′

(3) 1 ∈ 0 ⇒ U is a set
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(4) let G,H ⊆ A×B graphs. Then G ⊆ H ⇒ H−1 ⊆ G−1

Solution.

(1) False. Certainly A2 implies the existence of ∅ and U . But the converse is not true.
This is an example

∈ x y U

x 0 0 0
y 0 1 1
U 0 0 1

There exists ∅ = x and U . However, there is no {x}.
(2) False. If X is a proper class, it does not satisfy it.
(3) True. Because 1 ∈ 0 is false.
(4) False. For instance, if there are at least two sets x, y, we can define.

G = {(x, x)}, H = U × U .

Of course G ⊆ H . However, G−1 = G and H−1 = H . And H ⊆ G is not true,
because (x, y) ∈ H and (x, y) /∈ G.

�

Exercise 9. The following graph represents an order relation

0

1

2

43

5

6

7

8

Find the maximal chains.

Solutions. The maximal chains are

{0, 1, 2, 3}, {0, 1, 2, 4}, {5, 6, 7, 4}, {5, 6, 7, 8}.

�

Week 8 - Lecture 1, 2016, April 18

86. Exercises 10-14

Exercise 10 (A1 + A2 + A3). Given A,B be two non-empty classes. Prove that
∪(∪A ×B) = A ∪B.

Solution. Let a ∈ A and b ∈ B two elements. By A2 and A3, the ordered pair (a, b)
exists. Then {a, b} ∈ (a, b) ∈ A×B. Then {a, b} ∈ ∪A×B. Then

a, b ∈ {a, b} ∈ ∪A×B.

Therefore, a, b ∈ ∪(∪A×B). Then A∪B ⊆ ∪(∪A×B). We prove the converse inclusion.
Suppose that x ∈ ∪(∪A ×B). Then there exists y ∈ ∪A×B such that

x ∈ y ∈ ∪A×B.
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Then, there exists z such that x ∈ y ∈ z ∈ A × B. Then, there are a and b such that
z = (a, b). Then x ∈ y ∈ (a, b). This means that y = {a} or y = {a, b}. If y = {a}, then
x = a ∈ A ⊆ A ∪B. If y = {a, b}, then (x = a) ∨ (x = b) which means x ∈ A ∪B. �

Exercise 11. Let B 6= ∅ be a proper class. Show that B ×B is a proper class.

Solution. Since B 6= ∅, there exists b ∈ B. Then (b, b) ∈ B ×B, so B ×B is non-empty
and it is possible to consider ∪B × B. Since (b, b) ∈ B × B, we have {b} ∈ ∪B × B.
Therefore, ∪B ×B is non-empty and it is possible to define ∪(∪B ×B).

We argue by contradiction. Suppose that B×B is a set. Then, by A5, ∪B×B is a set.
Again, by A5, ∪(∪B × B) is a set. Finally, by Exercise 10, ∪(∪B × B) = B ∪ B = B
and we obtain that B is a set and, thus, a contradiction. �

Exercise 12. Let (A,≤) be a partially ordered class. We consider the relation:

xGy ⇔ x is comparable to y.

Check whether G is symmetric, reflexive and transitive.

Solution.

(R). G is reflexive: xGx if and only if x is comparable to x. Which is true, because
x = x (therefore x ≤ x).

(S). G is symmetric: if xGy, then x is comparable to y, that is (x ≤ y)∨ (y ≤ x), which
is equivalent to (y ≤ x) ∨ (x ≤ y).

(R). G is not transitive: there could be x, y, z such that x is comparable to y, y is
comparable to z, but x is not comparable to z, as the next example shows:

b

b

bx

y

z

Formally, we are considering the order relation

A = {x, y, z}, R = idA ∪ {(x, y), (x, z)}.

�

Exercise 13 (A1 + A2 + A3). Given a class A 6= ∅, we define the order relation

B1 ≤ B2 ⇔ B1 ⊆ B2

for every B1, B2 ∈ P(A). Suppose that (P(A),≤) is a fully-ordered class. Show that
A is a set.

Solution. We can prove that A is a singleton. By A3, A is a set. Let x, y ∈ A be
two elements. From A2, {x} and {y} exist. From A3, {x} and {y} are sets. Then
{x}, {y} ∈ P(A). Since P(A) is a fully ordered class, {x} is comparable to {y}. Then

({x} ⊆ {y}) ∨ ({y} ⊆ {x}).

In both cases, x = y. Since A is non-empty, A is a singleton. Then A is a set. �

Exercise 14. In the example
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∈ x y z T U
x 0 0 0 1 0
y 0 1 1 0 0
z 1 0 1 1 0
T 0 0 0 0 0
U 0 0 0 0 0

find sets, proper classes, singletons, pairs, ordered pairs. Moreover, determine whether
each of the following classes exists and to which of the classes x, y, z, T, U they corre-
spond:

z × x, y × z, (y × z)× T, y × (z × T )

P(x), P(y), P(z), P(T )

∪x, ∩T

idz : z → z

a bijective function from x to y

a bijective function from y to x.

Solution.

Sets: x, y, z

proper classes: T, U

pairs: x, y, z, T

ordered pairs: y = (y, y), z = (y, z), T = (z, y).

Now we look at the products:

z × x = x, y × z = z, (y × z)× T = z × T = x, y × (z × T ) = y × x = x.

We look at the power sets:

∄P(x) = {x}, P(y) = y

∄P(z) = {{y}, {z}, {y, z}}= {x, y, z}, ∄P(T ) = {x}.

Therefore, the Power Axiom is satisfied. Because, for every set A, either P(A) does
not exist or P(A) is a set. We have

∪x = z, ∩T = x ∩ z = x.

Functions. The identity idz exists, but it is not a function. In fact, idz = {(y, y), (z, z)} =
{y} = y, but dom(idz) = {y} = {y, z}. Because x and y are singletons, there is (at
most) one function from x to y, namely

f := {(z, y)} = {T } = ∅ = U.

So, f is not a function from x to y. However, there is one bijective function from y to
x which is g := {(y, z)} = {z} = x. Then x : y → x is a bijective function. Therefore,
¬(x ≈ y) but y ≈ x. �

2016, April 25 - Week 9, Lecture 1

87. Solutions of the exercises of the midterm exam

88. if A,B are sets, then A×B is a set, Theorem 1.54, page 63

89. given a graph f ⊆ A×B, satisfying F2, f : dom(f) → B is a function.
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2016, April 28 - Week 9, Lecture 2

90. #A ≤ #B: there exists f : A → B injective

91. #B ≥ #A: there exists g : B → A surjective

92. if #A ≤ #B, then #B ≥ #A, Theorem 2.24, page 80

93. Choice Function, Definition 5.3, page 156.

2016, May 2 - Week 10, Lecture 1

94. The Choice Axiom (A8), Axiom 8, page 158

95. an application: if B is a set, #B ≥ #A then #A ≤ #B, Theorem 5.9, page 160

96. A8 is equivalent to the Hausdörff Maximum Principle Theorem 5.26, page 171

97. solution of the Exercise 15 (Homeoworks Week 7).

Exercise 15 (From (97.)). Prove that N ≈ N× {0, 1}.

A bijective function is defined as

g(n) :=

®
(

n
2
, 0
)

if n ∈ 2N
(

n−1
2

, 1
)

if n ∈ 2N− 1.

2016, May 9 - Week 11, Lecture 1

98. Given two sets A,B, then #A ≤ #B or #B ≤ #A

Theorem 2 (A1-A6+HMP). Given two non-empty sets A,B, either #A ≤ #B or
#B ≤ #A.

Proof. We define the S the class of the injective functions f such that dom(f) ⊆ A and
ran(f) ⊆ B. Since A and B are sets, A × B is a set. Since we f ⊆ A × B, we have
f ∈ P(A×B). By A6 and A4, S is a set. In S we define the order relation

f ≤ g ⇔ f ⊆ g.

By the Hausdörff Maximum Principle, there exists a maximal chain C. We set h := ∪C.
Clearly,

(3) (∀f ∈ C)f ⊆ h.

We claim that

(i) h is an injective function
(ii) dom(h) = A or ran(h) = B.

(i). Let (a, b1), (a, b2) be two elements of h. Then there exist f1, f2, such that

(a, b1) ∈ f1 ∈ C, (a, b2) ∈ f2 ∈ C.

Since C is a chain, the elements f1, f2 are comparable. Then f1 ⊆ f2 or f2 ⊆ f1. On
the first case, we have

(a, b1), (a, b2) ∈ f1.

Since f1 is a function, we obtain b1 = b2. We prove that h is injective. Given
(a1, b), (a2, b) ∈ h, there are f1, f2, such that

(a1, b) ∈ f1 ∈ C, (a2, b) ∈ f2 ∈ C.

Since C is a chain, the elements f1, f2 are comparable. Then f1 ⊆ f2 or f2 ⊆ f1. On
the first case, we have

(a1, b), (a2, b) ∈ f1.

Since f1 is injective, a function, we obtain a1 = a2.
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(ii). Suppose that dom(f) 6= A and ran(f) 6= B. Then there are a∗ ∈ A − dom(f) and
b∗ ∈ B − ran(f). We define

(4) h∗ := h ∪ {(a∗, b∗)} ) h.

which is injective function. From (3) and the inclusion above, D := C ∪{h∗} is a chain.
Since C is a maximal chain, D = C. Then h∗ ∈ D. From (3), we obtain h∗ ⊆ h which
contradicts (4).

Now, if dom(h) = A, then h : A → B is an injective function and #A ≤ #B.

We look at the case ran(h) = B. If dom(h) = A, then h is bijective and #A = #B.
Suppose that dom(h) ( A. Since B 6= ∅, there exists b0 ∈ B. We define

h0 := h ∪ {(x, b0) | x ∈ A− dom(h)}.

Then dom(h0) = A and ran(h0) = B. So, h0 : A → B is surjective, then #A ≥ #B. By
Theorem 5.9 (page 160 of the textbook), #B ≤ #A, which concludes the proof. �

2016, May 12 - Week 11, Lecture 2

99. Successor of a set, Definition 6.1, page 174

100. Successor sets, Definition 6.3, page 175

101. Axiom of Infinity, Axiom 9, page 175

102. definition of ω, Definition 10

103. ω is a successor set, Proposition 3

104. definition of N, Definition 6.6, page 176

105. if y ∈ ω, then y+ 6= 0, Theorem 6.7, page 176

106. Finite Mathematical Induction, Theorem 6,8, page 176

107. transitive sets, Definition 6.10, page 176

108. every y ∈ ω is a transitive set, Lemma 6.11, page 177

109. given y, z ∈ ω, if y+ = z+, then y = z, Theorem 6.12, page 177

110. homeworks: prove that P(U ) = U .

Definition 10 (From (102.)). We set

G := {Y | Y is a successor set}.

By Axiom 9, G 6= ∅. Therefore, we can define ω := ∩G.

Proposition 3 (From (103.)). ω is a successor set.

Proof. ω is a set, because ω ⊆ X and X is a set (A4). Clearly 0 ∈ ω because 0 ∈ Y for
every Y ∈ G. Now, suppose that y ∈ ω. Then y ∈ Y for every Y ∈ G. Since Y is a
successor set, y+ ∈ Y for every Y ∈ G. Then y+ ∈ ∩G = ω. �

2016, May 16 - Week 12, Lecture 1

111. The order relation in ω: n ≤ m if n ∈ m or n = m, Theorem 6.28, page 187

112. least elements, (4) of Definition 4.18, page 126

113. minimal elements, (2) of Definition 4.18, page 126

114. Well-ordered classes (WOC), Definition 4.50, page 142

115. WOC ⇒ FOC, Remark 4.51, page 142.

2016, May 19 - Week 12, Lecture 2

116. Solutions of the exercises 2, 5 of Week 7 and exercises 1, 2, 3, 4 and 5 of Week 9.
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2016, May 20 - Week 12, Lecture 3

117. If n < m, then n+ ≤ m, Lemma 6.30, page 188

118. (ω,≤) is well-ordered, Theorem 6.31, page 188

119. the notation #A < #B: there is no surjective function from A to B

120. finite sets, (1) of Definition 7.23, page 202

121. infinite sets, (2) of Definition 7.23, page 202

122. countable sets (or denumerable sets), A is countable if #A ≤ #ω

123. N×N is countable.

124. R is not countable, Theorem 7.4, page 196

125. solution of the exercise 6 of Week 9.

2016, May 23 - Week 13, Lecture 1

126. Solution of the Exercise 16 and Exercise 17

127. ∪n ⊆ n, Proposition 4

128. ∪n ∈ ω for every n ∈ ω, Proposition 5

129. ∪(n+) = n, Proposition 6

Exercise 16 (From (126.)). P(U ) = U .

Solution. P(U ) ⊆ U because every class is a subclass of U . We prove the converse
inclusion: if B ∈ U , then B is a set. Since every class is a subclass of U , we have

B is a set and B ⊆ U

which means B ∈ P(U ). �

Exercise 17 (From (126.)). Find a maximal chain in (P(N),⊆).

Proof. We define Nk := {1, 2, . . . , k} for every k ∈ N. C := {∅,Nk,N | 1 ≤ k}. Clearly,
any two sets in C are comparable to each other, then it is a chain. We prove that it is
a maximal chain. Let D be a chain such that C ⊆ D . We prove that D ⊆ C . Suppose
A is in D . Then, we have two cases:

(1). Nk ⊆ A for every k ≥ 1. This implies A = N. Then A ∈ C .

(2). There exists k0 such that ¬(Nk0
⊆ A). Since D is a chain, there holds A ( Nk0

.
Then A is a finite set. If A = ∅, then A ∈ C . If A 6= ∅ then we define k1 := #A. We
claim that A = Nk1

. In fact, A is comparable to Nk1
. Then, for instance A ⊆ Nk1

.
However #A = #(Nk1

) implies A = Nk1
. Then A ∈ C . �

Proposition 4 (From (127.)). For every n ∈ ω − {0} there holds ∪n ⊆ n

Solution. If x ∈ ∪n, there exists y such that x ∈ y ∈ n. Since n is transitive, x ∈ y ⊆ n
which implies x ∈ n. �

Proposition 5 (From (128.)). For every n ∈ ω − {0}, there holds ∪n ∈ ω.

Solution. We define L := {n ∈ ω − {0} | ∪n ∈ ω}. We prove that L = ω. Since 0 ∈ L,
we only need to prove that n ∈ L ⇒ n+ ∈ L. If n = 0, then n+ = 1 and ∪(n+) = 0 ∈ ω.
Now, suppose that n 6= 0. Then

∪(n+) = ∪(n ∪ {n}) = (∪n) ∪ n ⊆ n ∈ ω.

The last inclusion follows from Proposition 4. The last membership relation follows
from the simple n ∈ ω. �

Proposition 6 (From (129.)). For every n ∈ ω there holds ∪(n+) = n.
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Solution. In fact, ∪(n+) = ∪(n ∪ {n}) = (∪n) ∪ n = n. The last equality follows from
Proposition 4. �

2016, May 26 - Week 13, Lecture 2

130. For every n ∈ ω − {0} there holds (∪n)+ = n, Proposition 7

131. if n ≈ m then n = m, Proposition 8

132. A < 2A, Theorem 7.5, page 196

133. definition of cardinals, Definition 8.2, page 213

134. sum of cardinals, Definition 8.5, page 214

135. products of cardinals, Definition 8.5, page 214.

Proposition 7 (From (130.)). For every n ∈ ω − {0} there holds (∪n)+ = n, Proposi-
tion 7.

Solution. We use the Induction Principle. We define

L := {n ∈ ω − {0} | (∪n)+ = n}.

Clearly, 0 ∈ L. Suppose that n ∈ L. Then n+ 6= 0. From Proposition 6, (∪n+)+ =
n+. �

Proposition 8 (From (131.)). If n ≈ m then n = m.

Proof. We use the induction and define

L := {n ∈ ω − {0} | ∀m(n ≈ m ⇒ n = m)} ∪ {0}.

Clearly, 0 ∈ L. Suppose that n ∈ L. We wish to prove that

∀m(n+ ≈ m ⇒ n+ = m).

Suppose that n+ ≈ m. Then n ≈ ∪m. From Proposition 5, ∪m ∈ ω. Since n ∈ L then
n = ∪m. Then n+ = (∪m)+. From Proposition 6, n+ = m. �

2016, May 30 - Week 14, Lecture 1

136. If f : A → B is bijective and C ⊆ A, then A− C ≈ B − f̄(C), Proposition 9

137. given a class A and a, b ∈ A, then A− {a} ≈ B − {b}, Proposition 10

138. if n,m ∈ ω, then n ≈ m, then n = m, Proposition 11

139. if C ≈ C′, D ≈ D′ and
C ∩D = C′ ∩D′ = ∅

then C ∪D ≈ C′ ∪D′, Proposition 12

140. if C ≈ C′ and D ≈ D′, then C ×D ≈ C′ ×D′, Proposition 13

141. exponentiation of cardinals, Definition 8.8, page 215

142. the Bernstein’s Lemma, Theorem 8.14, page 219

143. Exercise 18,

144. Exercise 19.

Proposition 9 (From 136.). If f : A → B is bijective and C ⊆ A, then A−C ≈ B−f̄(C)

Proof. We consider the restriction of f to the subclass A−C. We show that f̄(A−C) ⊆
B − f̄(C). In fact, given y ∈ f̄(A−C), there exists x ∈ A−C such that f(x) = y. We
claim that y /∈ f̄(C). Otherwise, there exists x′ ∈ C such that f(x′) = y. Since x /∈ C
we have x′ 6= x but f(x) = f(x′). However, this contradicts the fact that f is injective.
Then

f : A− C → B − f̄(C)
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is a function. We prove that f is surjective. In fact, given y ∈ B − f̄(C), there exists
x ∈ A such that f(x) = y. Since y /∈ f̄(C), clearly, x /∈ C. Then x ∈ A− C. �

Proposition 10 (From 137.). Given a class A and a, b ∈ A, then A− {a} ≈ B − {b}.

Proof. A bijective function is given by g := {(x, x) | x /∈ {a, b}} ∪ {(b, a)}. �

Proposition 11 (From 138.). Given n,m ∈ ω − {0}, there holds n ≈ m ⇒ n = m.

Proof. We use the induction. We define

L := {n ∈ ω − {0} | n ≈ m ⇒ n = m} ∪ {0}.

Clearly, 0 ∈ L. Suppose that n ∈ L and n+ ≈ m. We want to prove that n+ = m. Then
there exists a bijective function f : n+ → m. We define a := f(n). By Proposition 9,
applied with C = {n}, we have n+ − {n} ≈ m − {a}. By Proposition 10, m − {a} ≈
m− {∪m}. Then

n+ − {n} ≈ m− {∪m}.

Since n /∈ n, the left set is equal to n. From Proposition 7, the right set is equal to
∪m. Therefore, n ≈ ∪m. Since n ∈ L, we have n = ∪m. Then (n)+ = (∪m)+. By
Proposition 7, (∪m)+ = m. �

Proposition 12 (From 139.). If C ≈ C′, D ≈ D′ and C ∩ D = C′ ∩ D′ = ∅, then
C ∪D ≈ C′ ∪D′.

Proof. Let f : C → C′ and g : D → D′ be two bijective functions. Then h := f ∪ g : C ∪
D → C′ ∪D′ is a bijective function. �

Proposition 13 (From 140.). If C ≈ C′ and D ≈ D′, then C ×D ≈ C′ ×D′.

Proof. Let f : C → C′ and g : D → D′ be two bijective functions. Then h(c, d) =
(f(c), g(d)) is a bijective function from C ×D to C′ ×D′. �

Exercise 18 (From 143.). There is no set y such that y+ = {2}.

Solution. On the contrary, we have y ∈ y+ = {2}. Then y ∈ {2} implies y = 2. This
implies 2+ = {0, 1, 2} = {2} which implies 0 = 1 = 2, which is not possible because
0 = ∅ and 2 6= ∅. �

Exercise 19 (From 144.). There exists a proper class A such that A 6= U and

(i) 0 ∈ A

(ii) y ∈ A ⇒ y+ ∈ A .

Solution. For instance, there is A := U − {{2}}. Clearly, 0 ∈ A , so (i) is satisfied.
Suppose that y ∈ A . By Exercise 19, it is not possible that y+ = {2}. That is
y+ ∈ A . �

2016, May 30 - Week 14, Lecture 2

145. Exercises 20, 21, 22, 23, 24, 25, 26, 27, 28.

Exercise 20. Is it true that for every class A , there holds A ⊆ ∪A ? Is it true that
for every class A , there holds ∪A ⊆ A ?

Proof. Both inclusion are false, and there is a counterexample for both. Consider A :=
{1}. Then ∪A = 1. Clearly, {1} * 1 = {0}, because 0 6= 1. Similarly, {0} * {1} for
the same reason. �

Exercise 21. ω /∈ ω.



Proof. If ω ∈ ω, then n := ω is a natural number. Thus, n ∈ n, which is not possible. �

Exercise 22. There is no set A such that A+ = ω.

Proof. No, there is not. Otherwise, A ∪ {A} = ω gives A ∈ ω. Since ω is a successor
set, A+ ∈ ω. Then ω ∈ ω, which contradicts Exercise 21. �

Exercise 23. Let B be a proper class. Show that B ×B is a proper class.

Proof. We argue by contradiction. Suppose that B×B is a set. By Exercise 1 of Week
Seven, ∪(∪B ×B) = B ∪B = B. By A5, ∪(∪B ×B) is a set. Then B is a set, and we
obtain a contradiction. �

Exercise 24. If A−B ≈ B −A, then A ≈ B

Proof. Let f be a bijective function from A−B to B−A. We define g := f ∪ idA∩B. �

Exercise 25. Let C ⊆ A and D ⊆ B such that A ≈ B and C ≈ D. Is it true that
A− C ≈ B −D?

Proof. It is false. For instance, consider A := ω, C = 2ω, B = ω and D = ω − {0}.
Then

A = B, C = 2ω ≈ ω ≈ ω − {0} = D.

However, A− C = 2ω − 1 is not equipotent to B −D = {0}. �

Exercise 26. For each of the following statements say whether it is true or false.

(i) A = {x |∃y(y+ = x)} is a successor class

(ii) B = {y | y is transitive} is a successor class.

Proof. A is not a successor class, because 0 /∈ A; B is a successor class. In fact, 0 ∈ B.
Morevoer, if y is transitive, then we can show that y+ is transitive. In fact, given x ∈ y+,
either x ∈ y, implying x ⊆ y ⊆ y+, because y is transitive, or x = y ⊆ y+. �

Exercise 27. Show that (ω × ω)× ω ≈ ω.

We apply the relation ω × ω ≈ ω two times:

(ω × ω)× ω ≈ ω ≈ (ω)× ω ≈ ω.

Exercise 28. If A is not finite, then ω ≤ A.

Proof. We consider the class

S := {f ⊆ ω ×A | dom(f) ∈ ω and f INJ}.

From Exercise 6 of Week 9, S is a set. We consider the order relation f ≤ g : f ⊆ g.
By the Hausdörff Maximum Principle, there exists a maximal chain C ⊆ S. We define
f∗ := ∪C .

f∗ ⊆ ω × A is an injective function. We claim that dom(f∗) = ω. On the contrary,
dom(f∗) ( ω. We set

B := {m ∈ ω | m /∈ dom(f∗)}.

We set n := min(B). Then dom(f∗) = min(B). Moreover, there exists a ∈ A− ran(f∗).
Otherwise f∗ : n → A would be bijective and A ≈ n which contradicts the assumption
that A is not finite. Then, we define

f∗∗ := f∗ ∪ {(n, a)}

which is injective. Then D := C ∪ {f∗∗} ) C contradicts the fact that C is a maximal
chain.

Then dom(f∗) = ω. Then f∗ : ω → A is an injective function. �
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