SOLUTIONS OF THE EXERCISES OF WEEK ONE

Exercise 1. Find the generalized union and intersection of the collection

$$G := \left\{ [0, 1 + 1/n) \mid n \ge 1 \right\}.$$

Solution. We define $G_n := [0, 1 + 1/n)$.

(i). Union. There holds

$$\cup G = [0, 2).$$

In fact, from $G_n \subseteq [0,2)$ for every $n \ge 1$, it follows that

$$\cup G \subseteq [0,2).$$

Moreover, since $[0,2) \in G$, there also holds $[0,2) \subseteq G$.

(ii). Intersection. We have

$$\cap G = [0,1].$$

In fact, for every n,

$$[0,1] \subseteq G_n$$

then $[0,1] \subseteq \cap G$. Now, let $x \in \cap G$; then, there exists G_n such that

$$x \in G_n$$

which implies that $0 \le x$. We claim that $x \le 1$. Suppose that x > 1. Then, there exists *m* such that

$$\frac{1}{m} < x - 1$$

Then $x \notin G_m$ which contradicts $x \in \cap G$.

Exercise 2. Show that the following inclusion

$$(A-B) \cap (A-C) \subseteq A - (B \cup C)$$

holds (start with the usual sentence "Let $x \in ...$ ").

Solution. We have the following chain of implications:

$$\begin{aligned} x \in (A - B) \cap (A - C) \Rightarrow x \in (A - B) \land x \in (A - C) \\ \Rightarrow x \in (A \land x \notin B) \land (x \in A \land x \notin C) \\ \Rightarrow x \in A \land x \notin B \land x \notin C \Rightarrow x \in A \land x \notin (B \cup C) \\ \Rightarrow x \in A - (B \cup C). \end{aligned}$$

Then $(A - B) \cap (A - C) \subseteq A - (B \cup C)$.

Date: 2014, March 23.

Exercise 3. Let R be the following equivalence relation in **N**

$$nRm \Leftrightarrow 2 \mid n-m^1$$
.

What is #(N/R)?

Solution. We denote with R_k the equivalence class of $k \in \mathbb{N}$. If k is even, then there exists $m \in \mathbb{N}$ such that

k = 2m.

Then

$$k-2 = 2m-2 = 2(m-1) \Rightarrow k \sim 2 \Rightarrow k \in \mathbb{R}_2$$

Then, $R_2 = R_k$ because two equivalence class are either disjoint of equal. If k is odd, then there exists $m \in \mathbf{N}$ such that

k = 2m - 1.

Then

$$k-1 = 2m-2 = 2(m-1) \Rightarrow k \sim 2 \Rightarrow k \in R_1$$

Then, $R_1 = R_k$. Clearly, $R_1 \neq R_2$ because, otherwise we would have $R_1 = R_2$, whence $2 \in R_1$ and

$$2 - 1 = 2m$$

which is false. Thus,

$$\mathbf{N}/R = \{R_1, R_2\}$$

and #(N/R) = 2.

Exercise 4. Let P be the power set of the set of real numbers. We have the following function

$$f: P \to P, \quad f(A) = A \cap [0,1]$$

Is *f* injective? is *f* surjective?

Solution. The function is not injective. For instance,

$$f({3}) = {3} \cap [0,1] = \emptyset, \quad f({2}) = {2} \cap [0,1] = \emptyset.$$

f is not surjective either. In fact,

$$f(A) = A \cap [0,1] \subseteq [0,1].$$

Then, if $x \notin [0, 1]$, there is no set *A* such that

$$A \cap [0,1] = \{x\}.$$

¹given $n \in \mathbf{N}$, the notation $2 \mid n$ means that there exists $a \in \mathbf{Z}$ such that n = 2a