Capitolo VI:

Esempi famosi

Giulio Del Corso

Sfera Sⁿ:

Varietà n-dimensionale senza bordo.

n-varietà:

Significa che ogni punto ha un intorno localmente omeomorfo ad \mathbb{R}^n .

T2

Connessa

Connessa per archi

Semplicemente connessa

Compatta

Localmente compatta (In quanto localmente omeomorfa ad uno spazio euclideo)

E' uno Spazio di Tychonoff ed uno Spazio di Baire (segue da T2 e Localmente compatto)

Osservazione S^2 :

La sfera di Riemann è la più semplice superficie di Riemann compatta ed è dunque utile per definire le funzioni meromorfe.

Osservazione su S^3 :

La congettura di Poincaré afferma che ogni 3-varietà semplicemente connessa, compatta e senza bordo (Chiusa) è omeomorfa ad S^3 .

Generalizzazione ad S^n :

Ogni varietà chiusa n-dimensionale omotopicamente equivalente alla sfera S^n è ad essa omeomorfa.

Gruppo fondamentale:

$$\pi_1(S^1) = \mathbb{Z}$$

$$\pi_1(S^n) = e ; n \ge 2$$

Piano Proiettivo $\mathbb{P}^n(\mathbb{R})$:

T2

Compatto

Connesso

Osservazione $\mathbb{P}^1(\mathbb{R})$:

E' omeomorfa ad S^1

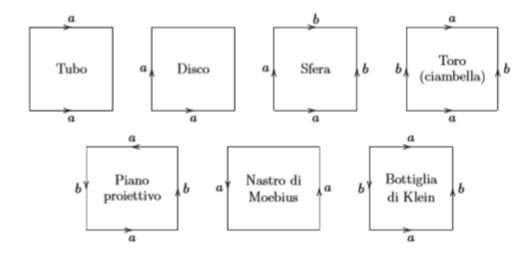
Osservazione $\mathbb{P}^2(\mathbb{R})$:

2-Varietà

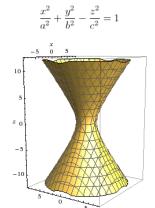
Localmente omeomorfo ad $\ensuremath{\mathbb{R}}^2$

Rivestimento universale:

Mappa da $S^2 \to \mathbb{P}^2(\mathbb{R})$ con relazione antipodale.

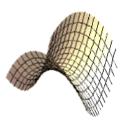

Gruppi fondamentale:

$$\pi_1\big(\mathbb{P}^1(\mathbb{R})\big)=\mathbb{Z}$$

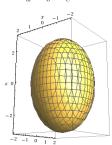

$$\pi_1(\mathbb{P}^n(\mathbb{R})) = \mathbb{Z}_2$$
; $n \ge 2$

$$\pi_1(\mathbb{P}^n(\mathbb{C})) = e$$

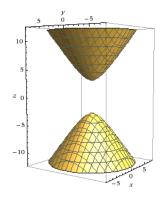
Sartoria topologica:



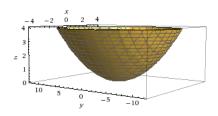
Funzioni in \mathbb{R}^3 : Iperboloide iperbolico:


Paraboloide iperbolico:

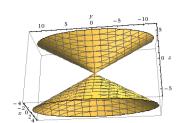
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0$$


Ellissoide reale:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$


Iperboloide ellittico:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$


Paraboloide ellittico:

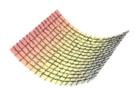
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$$

Cono reale:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Cilindro iperbolico:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$


Cilindro ellittico:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Cilindro parabolico:

$$x^2 + 2ay$$

