Introduction to the mathematical theory of incompressible fluids

Paula Luna, Vittorio Baroncini, Filippo Giovagnini

February 2024
$1-26 / 02 / 2023$

1.1 Preliminary results and notation

Definition 1.1: Let us define the following operators:

$$
\mathbb{Q}:=-\nabla(-\Delta)^{-1} \operatorname{div},
$$

and:

$$
\mathbb{P}:=I d-\mathbb{Q} .
$$

Remark 1.2: We notice that, passing to the Fourier transform, we can write:

$$
\mathcal{F}(\mathbb{P} f)(\xi)=\hat{f}-\frac{1}{|\xi|^{2}}(\xi \cdot \hat{f}) \xi
$$

Remark 1.3: We also notice that, by Calderon-Zygmund theory we have:

$$
\mathbb{P}, \mathbb{Q}: \mathbb{L}^{p} \rightarrow \mathbb{L}^{p} \quad \text { for any } 1<p<\infty
$$

1.2 Conserved quantities

Let us consider the following problem:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u+\nabla \pi=0 \tag{1}\\
\operatorname{div} u=0
\end{array}\right.
$$

If we take the scalar product with respect to u we obtain:

$$
\int_{\mathbb{R}^{d}} u \cdot \partial_{t} u+\int_{\mathbb{R}^{d}} u \cdot(u \cdot \nabla) u+\int_{\mathbb{R}^{d}} u \cdot \nabla \pi=0
$$

but we notice that:

$$
\int_{\mathbb{R}^{d}} u \cdot(u \cdot \nabla) u=\sum_{j, k} \int_{\mathbb{R}^{d}} u^{j} \partial_{j} u^{k} u^{k}=\frac{1}{2} \sum_{j, k} \int_{\mathbb{R}^{d}} u^{j} \partial_{j}\left|u^{k}\right|^{2}=\frac{1}{2} \sum_{j} \int_{\mathbb{R}^{d}} u^{j} \partial_{j}|u|^{2}=\int_{\mathbb{R}^{d}} u \cdot \nabla|u|^{2} \underset{\operatorname{div} u=0}{=} 0
$$

Therefore we obtained that:

$$
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{d}}|u|^{2}=0
$$

1.3 Elements of Littlewood Paley theory

Remark 1.4: Let $\chi \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ such that:

$$
\left\{\begin{array}{l}
\chi=1 \text { on } B(0,1) \tag{2}\\
\chi=0 \text { outside } B(0,2)
\end{array}\right.
$$

then we define $\varphi(\xi)=\chi(\xi)-\chi(2 \chi)$ and for every $j \geq 0$ we define $\varphi_{j}(\xi)=\varphi$

