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Chapter 1

Recap of basic Measure Theory

The aim of this chapter is to recall briefly the basic notions of Measure Theory which
can be found in any book of Measure Theory (see, for instance, [4], [5], [6]).

1.1 Different notion of measures
Positive measures

Let be given a set X and a σ-algebraM in X.
Definition 1.1.1 (Positive measure). A positive measure µ over M is a function
µ :M→ [0,+∞] such that

• µ(∅) = 0,

• µ is σ-additive, that is, given (En)n a countable pairwise disjoint collection of sets
inM, then ∑

n

µ(En) = µ

(⋃
n

En

)
.

Definition 1.1.2 (Borel measure). Given a topological space X, we denote as B(X)
the σ-algebra of Borel sets; a positive measure µ over B(X) is said to be Borel.
Definition 1.1.3 (Support of a measure). Let µ be a Borel measure on a topological
space X. The support of µ is the closure of the set defined by the point x ∈ X s.t. x
has a fundamental system of neighbourhoods V (x) s.t. µ(U) > 0 for all U ∈ V (x). It is
usually denoted as supp(µ).
Remark 1.1.4. By definition 1.1.3, the support of a measure µ is always a closed subset
of X. However, if (X, d) is a metric space, for all x ∈ supp(µ) for all r > 0 there exists
a ball B(x, δ) s.t. 0 < δ < r and µ(B(x, r)) > 0.
Definition 1.1.5 (Locally finite measure). We say that a Borel measure µ on a
topological space X is locally finite if each point x ∈ X has an open neighbourhood
U(x) s.t. µ(U(x)) < +∞.
Remark 1.1.6. A locally finite Borel measure µ on a topological space X turns out to
be finite on compact sets.
Definition 1.1.7 (Radon measure). Given a topological space X and a Borel measure
µ on X, we say that µ is a Radon measure if it is locally finite and

µ(E) = sup{µ(K) | K ⊆ E,K compact} ∀E ∈ B(X).
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Chapter 1. Recap of basic Measure Theory

Radon-Nikodym decomposition

Definition 1.1.8 (Absolute continuity). Given µ, λ positive measures overM, we say
that λ is absolutely continuous with respect to µ if µ(A) = 0 implies that λ(A) = 0 for
all A ∈M. We write λ << µ.

Definition 1.1.9 (Mutual singularity). Given µ, λ positive measures overM, we say
that λ and µ are mutually singular if there exist A,B ∈M such that

• A ∩B = ∅, A ∪B = X,

• µ(A) = 0, λ(B) = 0.

We write µ ⊥ λ. We say that µ is concentrated in B and λ is concentrated in A.

Definition 1.1.10 (Mass of a measure). Given a positive measure µ onM, we denote
as

M(µ) = ‖µ‖1 := µ(X)

the mass of the measure µ.

Definition 1.1.11 (Restriction of a measure). Given a positive measure µ onM and
a set F ∈M, we denote as µxF the positive measure defined by

µxF (E) := µ(F ∩ E) ∀E ∈M.

Definition 1.1.12 (Measure defined by density). Given a measure µ overM and a
measurable function f : X→ [0,+∞], we denote as

f · µ(E) :=

ˆ
E

f dµ.

We say that f is the density of f · µ with respect to µ.

Remark 1.1.13. In the setting of 1.1.12, f · µ is a positive measure onM. Moreover,
f · µ is absolutely continuous with respect to µ. We also have that

‖f · µ‖1 =

ˆ
X
f dµ = ‖f‖L1(µ) .

Definition 1.1.14 (σ-finite measure). Given a measure µ overM, we say that µ is
σ-finite if there exists a countable family (En)n ⊆M such that

• µ(En) < +∞,

• X =
⋃
nEn.

Hence, the following fundamental result holds true.

Theorem 1.1.15 (Radon-Nikodym). Let µ, λ be σ-finite positive measures over M.
Then, there exist positive measures λa, λs overM such that

• λ = λa + λs;

• λa << µ and λs ⊥ µ.

The decomposition is unique; hence, λa is the absolutely continuous part of λ with respect
to µ and λs is the singular part of λ with respect to µ. Moreover λa = f ·µ for a suitable
measurable function f : X → [0,+∞]. f is unique up to µ-null sets and it is called
Radon-Nikodym derivative of λ with respect to µ.

Remark 1.1.16. In the following, we will prove further properties of the Radon-Nikodym
derivative.
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1.1. Different notion of measures

Approximation results Under very mild assumptions on the ambient space X, Borel
measures have strong approximation properties.

Theorem 1.1.17. Let X be a separable and locally compact metric space; let µ be a
positive Borel measure on X. Assume that µ is locally finite; then, µ is regular, that is
for all E ∈ B(X) there holds

µ(E) = sup{µ(K) | K ⊆ E,K compact}
= inf{µ(A) | E ⊆ A,A open}.

Vector-valued measures

Let X be a set,M be a σ-algebra on X and F be a Banach space.

Definition 1.1.18 (Vector-valued measure). A measure µ overM with values in F is
a function µ :M→ F such that

• µ(∅) = 0,

• for every countable and pairwise disjoint family (En)n ⊆M there holds

µ

(⋃
n

En

)
=
∑
n

µ(En),

where the sum makes sense in the Banach space F and the series is absolutely
convergent (i.e. it does not depend on the order).

Assume that X is a locally compact and separable metric space and F is a finite-
dimensional normed space. The following fundamental result hold true.

Theorem 1.1.19. Let λ be a Borel measure in X with values in F . Then, λ can be
canonically written as λ = f · µ, where

• µ is a Borel locally finite measure on X (indeed, µ is the total variation measure
of λ),

• f : X→ F is a function in L1(µ), that is

‖f‖L1(µ) :=

ˆ
X
|f | dµ < +∞,

• for all E ∈ B(X) we have that

λ(E) = f · µ(E) =

ˆ
E

f dµ,

where the integral makes sense component-wise.

Moreover, the decomposition is unique if we require that ‖f(x)‖ = 1 for µ-a.e. x ∈ X.

Definition 1.1.20. We defineM(X, F ) to be the set of the Borel F -valued measures
on X.
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Chapter 1. Recap of basic Measure Theory

Definition 1.1.21. Given λ ∈M(X, F ), we denote

M(λ) = ‖λ‖1 := ‖f‖L1(µ) ,

where µ and f are given by theorem 1.1.19. ‖λ‖1 is called the norm of total variation
of λ.

Remark 1.1.22. Definition 1.1.21 agrees with 1.1.10, which makes sense for positive
measures.

Theorem 1.1.23. The spaceM(X, F ) endowed with the norm of the total variation
(see 1.1.21) is a Banach space.

Remark 1.1.24. The case where F is an infinite dimensional Banach space in the theorem
1.1.19 is relevant but quite delicate.

Riesz’s representation theorem Let X be a locally compact separable metric space;
let F be a finite-dimensional normed space; let g be a function in ∈ C0(X;F ∗), that is
g : X→ F ∗ is continuous and for every ε > 0 there exists a compact set K ∈ X such
that ‖g(x)‖ ≤ ε for all x ∈ X \K. We denote as < ·, · > the duality pairing of F, F ∗.

Definition 1.1.25. Given a measure λ = f · µ ∈ M(X, F ) (where f, µ are given by
theorem 1.1.19), we define

Tλ(g) =

ˆ
X
< f(x), g(x) > dµ(x) :=

ˆ
X
g dλ ∀g ∈ C0(X, F ∗).

Proposition 1.1.26. The functional Tλ (see 1.1.25) is well defined, linear and bounded;
hence Tλ ∈ (C0(X, F ∗))∗.

Thus, the following fundamental theorem holds true.

Theorem 1.1.27 (Riesz). The map T :M(X;F )→ (C0(X, F ∗))∗ defined in 1.1.25 is
a surjective isometry of Banach spaces.

Remark 1.1.28. The proof of theorem 1.1.27 is quite hard; indeed, the surjectivity is
the non-trivial part.

The identification of M(X, F ) and (C0(X, F ∗))∗ induces a weak-* topology on
M(X, F ). However, this is the only relevant topology on measures (that induced by the
metric structure is too strong and basically useless). The weak-* topology inM(X, F )
is metrizable on bounded subsets ofM(X, F ).

Definition 1.1.29 (Convergence of measures). Given (λn)n ⊆ M(X, F ) and λ ∈
M(X, F ), we say that (λn)n converges to λ in the sense of measures if (Tλn)n converges
to Tλ as functionals in (C0(X, F ∗))∗, that is

lim
n→+∞

ˆ
X
g dλn =

ˆ
X
g dλ ∀g ∈ C0(X, F ∗).

Lemma 1.1.30 (Lower semicontinuity). If (λn)n is a sequence of measures inM(X, F )
that converges to a measure λ in the sense of measures, then it holds that

lim inf
n→+∞

‖λn‖1 ≥ ‖λ‖1 .
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1.1. Different notion of measures

Proof. It suffices to recall that norm is weakly-* lower semicontinuous.

Theorem 1.1.31 (Compactness of measures). Given a bounded sequence (λn)n ⊆
M(X, F ), up to subsequences, it converges in the sense of measures (see 1.1.29) to a
measure λ ∈M(X, F ).

Proof. It is an immediate consequence of Riesz’s theorem (see 1.1.27) and Banach-
Alaouglu theorem (that is bounded subset in the dual of a Banach space are relatively
compact with respect to the weak-* topology; in deed, they are sequentially compact).

In the following, we will only use the sequential weak-* topology dealing with
positive-valued measures and in the sequential version.

Proposition 1.1.32. Suppose X to be compact. Let (µn)n be a sequence of Borel,
positive finite measure. Assume (µn)n converges to a Borel positive finite measure µ.
Then, it holds that

lim inf
n→+∞

ˆ
X
g dµn ≥

ˆ
X
g dµ ∀g : X→ [0,+∞] lower semicontinuous.

In particular, we have that

• lim infn→+∞ µ(A) ≥ µ(A) ∀A ⊆ X open;

• lim supn→+∞ µn(C) ≤ µ(C) ∀C ⊆ X closed;

• limn→+∞ µn(E) = µ(E) ∀E ∈ B(X) s.t. µ(∂E) = 0.

Proof. The first statement is an immediate consequence of the fact that, given g a
lower-semicontinuous nonnegative function on X, there exists a monotone sequence of
continuous (in deed Lipschitz) and nonnegative functions (gn)n such that

g(x) = sup
n
gn(x) = lim

n→+∞
gn(x) ∀x ∈ X.

Recall that, since X is compact, then continuous functions are admissible test functions
in the weak-* convergence.

In particular, if A is an open set, then 1A is a nonnegative lower semicontinuous
function; hence, the previous argument applies.

For closed sets, apply the statement for open sets to the complementary of C and
notice that

lim
n→+∞

µn(X) = µ(X),

since 1X is an admissible test function (in deed, it is continuous and X is compact).
Thus, the last statement follows immediately from the previous ones and the

approximation result stated in 1.1.17.

We state the following result as a simple corollary of the previous statements. In
deed, it is a particular version of the more general Prokhorov’s theorem.

Corollary 1.1.33. Let (X, d) be a compact metric space and (µn)n be a sequence of
Borel probability measures in X. Up to subsequences, there exists a Borel probability
measure µ on X s.t. (µn)n converges to µ in the sense of measures.

Proof. Apply theorem 1.1.31 to get that (µn)n converges (up to subsequences) to a
measure µ in the sense of measure. Deduce that ‖µ‖1 ≤ 1. Test the weak convergence
with the constant function 1X to obtain that µ(X) = 1. Then, we have that ‖µ‖1 =
µ(X) = 1. Conclude that µ is a nonnegative measure.
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Chapter 1. Recap of basic Measure Theory

Outer measures

Let X be a set.

Definition 1.1.34 (Outer measure). An outer measure on X is a map µ : P(X) →
[0,+∞] with the following properties:

• µ(∅) = 0;

• µ is monotone, that is E ⊆ E ′ implies that µ(E) ≤ µ(E ′);

• µ is countably subadditive, that is for any countable family (En)n of subsets in X
(not necessarily disjoint), then

µ

(⋃
n

En

)
≤
∑
n

µ(En).

Definition 1.1.35 (µ-measurability). Given an outer measure µ on X, a set E ⊆ X is
µ-measurable (in the sense of Carathéodory) if

µ(F ) = µ(E ∩ F ) + µ(Ec ∩ F ) ∀F ⊆ X.

We denote asMµ the collection of the µ-measurable subsets of X.

Remark 1.1.36. Let µ be an outer measure on X. With the notation introduced in
1.1.11, E ⊆ X is µ-measurable if and only if

µ = µxE + µxEc.

Notice that the inequality
µ ≤ µxE + µxEc

holds for free by the subadditivity of outer measures.

Proposition 1.1.37. Let µ be an outer measure on X. The class Mµ of the µ-
measurable sets (see 1.1.35) is a σ-algebra and µ is a σ-additive measure onMµ.

Remark 1.1.38. The proof of proposition 1.1.37 is a long exercise.

Theorem 1.1.39 (Carathéodory). Let X be a metric space; let µ be an outer measure
on X additive on distant sets, that is

µ(E ∪ E ′) = µ(E) + µ(E ′) ∀E,E ′ ⊆ X s.t. dist(E,E ′) = inf
x∈E,x′∈E′

d(x, x′) > 0.

Then,Mµ contains Borel sets; in particular, µ restricts to a Borel measure on X.

Remark 1.1.40. The proof of theorem 1.1.39 is non-trivial.
Example 1.1.41. Consider the case where X is any set and µ is the outer measure on X
that counts points; it is immediate to check thatMµ = P(X). On the other hand, if µ
is the outer measure such that

µ(A) =

{
1 if A 6= ∅,
0 if A = ∅,

thenMµ = {0,X}.

6



1.1. Different notion of measures

Carathéodory construction Given a metric space X, we want to construct mean-
ingful outer measures on X which are additive on distant sets. So, we present the
Carathéodory construction of outer measures (at least in a simplified version that fits
our needs). Let X be a metric space; let F be a family of subsets of X such that ∅ ∈ F .

Definition 1.1.42 (Gauge function). We say that ρ : F → [0,+∞] is a gauge function
if ρ(∅) = 0.

Definition 1.1.43 (δ-covering). Given δ > 0, we say that (Ei)i ⊆ P(X) is a δ-covering
of E ⊆ X if (Ei)i covers E and diam(Ei) ≤ δ for all i.

Definition 1.1.44. Let ρ be a gauge function on F . Fix δ ∈ (0,+∞]. For every E ⊆ X,
we define

ψδ(E) := inf

{∑
i

ρ(Ei)

∣∣∣∣ (Ei)i ⊆ F is a δ-covering of E

}
,

with the assumption that inf(∅) = +∞. We define

ψ(E) := sup
δ>0

ψδ(E).

Remark 1.1.45. In 1.1.44, notice that if δ decreases then ψδ(E) increases; hence

ψ(E) = sup
δ>0

ψδ(E) = lim
δ→0

ψδ(E).

Proposition 1.1.46. Given ψδ and ψ as in 1.1.44, for all δ > 0 there holds that ψδ is
an outer measure which is additive on distant sets, that is

ψδ(E ∪ E ′) = ψδ(E) + ψδ(E
′) ∀E,E ′ ⊆ X s.t. dist(E,E ′) > 0.

Hence, the same holds true for ψ, that is ψ is an outer measure which is additive on
distant sets.

Remark 1.1.47. The proof of 1.1.46 follows straightforward from the definitions given.

Lebesgue measure in Rn The Carathéodory construction described above applies
in the particular case of the Lebesgue measure. Let X be Rn and F be the collection of
n-dimensional rectangles on Rn, that is

F := {R = I1 × · · · × In | Ii ⊆ R is a bounded interval}.

We define the gauge function

ρn(I1 × · · · × In) :=
n∏
i=1

(sup Ii − inf Ii).

Then, we define ψδ and ψ as in 1.1.44. ψ is the Lebesgue measure in Rn and it is usually
denoted as L n. In this specific case, it is easy to check that ψδ is independent from δ.
In deed, given δ > 0 and a bounded rectangle R, it is easy to decompose R in a finite
number of disjoint rectangles (Ri) s.t. diam(Ri) ≤ δ for all i and

ρn(R) =
∑
i

ρn(Ri).
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Chapter 1. Recap of basic Measure Theory

Hence, for the Lebesgue measure it holds that

ψδ = ψ∞ = ψ ∀δ > 0.

Lebesgue measure is additive on distant subsets; in particular, it restrict to a Borel
measure in Rn. It is easy to check that L n is locally finite; in particular, theorem 1.1.17
applies: for any Borel set E there holds that

L n(E) = sup{L n(K) | K ⊆ E,K compact}
= inf{L n(A) | E ⊆ A,A open},

or equivalently

∀ε > 0 ∃C closed , A open s.t. C ⊆ E ⊆ A and L n(A \ C) < ε.

It is possible to show that this approximation property holds for all the sets inML n (see
1.1.35). However, the collection of the Lebesgue-measurable sets in Rn is traditionally
defined by the property above; that is, we say that E ⊆ Rn is Lebesgue measurable if it
holds that

∀ε > 0 ∃C closed , A open s.t. C ⊆ E ⊆ A and λ(A \ C) < ε,

where λ is the function defined on open set as

λ(A) := sup

{∑
i

ρn(Ri)

∣∣∣∣ (Ri)i at most countable family of rectangles covering A

}
.

In deed, one can prove that E ∈Mµ if and only if E has the property that

∀ε > 0 ∃C closed , A open s.t. C ⊆ E ⊆ A and λ(A \ C) < ε.

1.2 Hausdorff measure
The Carathéodory construction gives rise to the Hausdorff measure. Let X be a metric
space; fix d ∈ [0,+∞). We define a gauge function ρd on F = P(X). If d 6= 0, for all
E ∈ P(X), we define

ρd(E) := diam(E)d;

if d = 0, we define

ρd(E) :=

{
1 if E 6= ∅,
0 if E = ∅.

Definition 1.2.1 (Hausdorff measure). With the notation introduced in 1.1.44, we set

Hd
δ(E) = cdψδ(E), Hd(E) = cdψ(E),

where cd > 0 is a normalization constant defined as

cd :=

{
αd
2d

if d ∈ N,
1 if d /∈ N

and αd = L d(B1), where B1 is the unit ball in Rd. Hd is called d-dimensional Hausdorff
measure in X.
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1.2. Hausdorff measure

Remark 1.2.2. The class F in the construction of Hd can be refined. In fact, Hd does
not change if we replace F = P(X) with the following subclasses:

• F = {closed sets}, because diam(E) = diam(E) for all E ⊆ X;

• F = {open sets}, because for all E ⊆ X for all ε > 0 there exists an open set A
s.t. E ⊆ A and diam(A) ≤ diam(E) + ε;

• if X is a normed space, we can consider F = {convex sets}, because diam(E) =
diam(Conv(E)) for all E ⊆ X (Conv(E) is the convex hull of E); moreover, we
can restrict F to be the collection of convex closed sets or convex open sets.

However, it is very important to notice that the value of Hd changes if we replace
F = P(X) with the collection of the balls in X. In this case, we obtain the so called
"spherical Hausdorff measure", denoted as Hd

S. In fact, we remark that in general a set
E is not contained in a ball with the same diameter (consider the case of a triangle in
R2). But, Hd

S agrees with Hd on d-dimensional surfaces of class C1 in Rm.
Remark 1.2.3. It follows a list of useful and easy remarks on Hausdorff measure.

• H0 is the measure that counts points; indeed, we have

H0
∞(E) =

{
0 if E = ∅,
1 if E 6= ∅.

• Given d > 0, Hd is called "d-dimensional measure" because it has the following
fundamental scaling property in the case X = Rn:

Hd(λE) = λdHd(E) ∀λ > 0, ∀E ∈ B(Rn).

This property is an immediate consequence of the fact that

(diam(λE))d = λd(diam(E))d ∀λ > 0 ∀E ⊆ Rn.

• If X,Y are metric spaces, d > 0 and f : X→ Y is a Lipschitz map, then

Hd(f(E)) ≤ Lip(f)dHd(E) ∀E ∈ B(X).

This follows immediately from the fact that

diam(f(E)) ≤ Lip(f)diam(E) ∀E ⊆ X.

In particular, if f is an isometry, then the Hausdorff measure is preserved by f ,
that is

Hd(f(E)) = Hd(E) ∀E ∈ B(X).

This is an immediate consequence of the property stated above, applied to
f : X→ f(X) and f−1 : f(X)→ X: both maps have Lipschitz constant 1.

Remark 1.2.4. We will show that in the case X = Rd, then Hd = Hd
δ = L d for all

δ ∈ (0,+∞]. In deed, this statement is delicate and requires covering theorems. We
point out that the choice of the normalization constant plays a fundamental role here
(and only here, to be honest). Notice also that both Hd and L d are translation invariant;
hence, a general statement on Haar measures (that will be given later on) implies that
Hd = cL d. However, the delicate part is to find the right constant c.
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Chapter 1. Recap of basic Measure Theory

Hausdorff dimension

Proposition 1.2.5. Take 0 ≤ d < d′ < +∞ and E ⊆ X. Then:

• Hd(E) < +∞ implies that Hd′(E) = 0;

• Hd′(E) > 0 implies that Hd(E) = +∞.

Proof. It immediately follows from the definition of Hausdorff measure.

Definition 1.2.6 (Hausdorff dimension). Given E ⊆ X, we define

dimH(E) := sup{d | Hd(E) = 0} = inf{d | Hd(E) = +∞}.

The number dimH(E) is the so-called Hausdorff dimension of E.

Remark 1.2.7. Notice that the definition 1.2.6 is well-posed due to 1.2.5. Moreover,
if d ∈ [0,+∞) is such that Hd(E) ∈ (0,+∞), then d = dimH(E). We remark that if
d = dimH(E), then Hd(E) can be 0 or +∞.

The Cantor set The following example is famous and significant; it will be useful in
the following.

Example 1.2.8. We define the Cantor set as

C :=
+∞⋂
n=0

Cn, Cn :=
2n⋃
i=1

In,i,

where In,i are closed intervals with length 1
3n
; in particular, C is a compact set. More

explicitly, we define
C0 = [0, 1],

C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
,

C2 =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
,

and so on... To be precise, at each level, we split each interval in three equal parts and
we remove the central ones (see 1.1).

We want to find the Hausdorff dimension d of C and compute Hd(C). It is very
remarkable that d is easy to guess. In deed, we have that

C =

(
C ∪

[
0,

1

3

])
∪
(
C ∪

[
2

3
, 1

])
=

1

3
C ∪

(
2

3
+

1

3
C

)
,

where the union is disjoint. Hence, we deduce that

Hd(C) = 2Hd

(
1

3
C

)
=

2

3d
Hd(C) ∀d ∈ (0,+∞).

Assuming that 0 < Hd(C) < +∞, we have that

1 =
2

3d
,
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1.2. Hausdorff measure

Figure 1.1: The first iterations of the construction of the Cantor set.

that is
d =

log 2

log 3
.

This argument could be made rigorous, if we prove that

0 < Hd(C) < +∞;

this assumption is very strong and it is the core of the matter: in deed, it implies
straightforward that dimH(C) = d. However, we define

d :=
log 2

log 3
.

Providing an upper bound for Hd(C) is easy, since it suffices to exhibit a covering of C.
Fix n ∈ N and consider the most natural covering, i.e.

{In,i | i = 1, . . . , 2n}.

We notice that this is a 3−n-covering of C. Hence, for δ ≥ 3−n, there holds that

Hd
δ(C) ≤

2n∑
i=1

(diam(In,i))
d =

2n

3nd
= 1.

Then, we find that
Hd(C) ≤ 1.

Providing a lower bound for Hd(C) is much more difficult because we have to deal
with an arbitrary covering of (Ei)i of C. Denote T := {In,i | n ∈ N, i = 1, . . . , 2n}; we
want to reduce to the case where (Ei)i is finite and made of elements of T . As we said
in 1.2.2, we can assume that (Ei)i is made of convex open sets, i.e. Ei is an interval.
Since C is compact and Hd

δ(C) is an infimum, we can assume that (Ei)i is finite. Since
diam(Ei) = diam(Ei), we can freely assume that each Ei is a closed interval. Since we
have to estimate an infimum, we can replace Ei with

Ẽi := [inf(Ei ∩ C), sup(Ei ∩ C)].
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Chapter 1. Recap of basic Measure Theory

Consider the largest intervals Ini,ji , Ili,pi ∈ T (eventually the same interval) s. t.

inf(EI ∩ C) ∈ Ini,ji ⊆ Ẽi ∩ C, sup(EI ∩ C) ∈ Ili,pi ⊆ Ẽi ∩ C.

Notice that, if Ini,ji = Ipi,li , then Ẽi coincide with Ini,ji ; hence Ẽi already belongs to T .
So, we can assume that Ini,ji 6= Ipi,li . Denote

Gi := Ẽi \ (Ini,ji ∪ Ili,pi);

by maximality, it is easy to see that Ẽi is made of the intervals Ini,ji , Gi, Ipi,li . Moreover,
by the construction of the Cantor set, it follows that

diam(Gi) ≥ max{diam(Ini,ji), diam(Ili,pi)}.

The first key step consists of the following inequalities:

(diam(Ẽi))
d = (diam(Ini,ji) + diam(Gi) + diam(Ili,pi))

d

≥
(

3

2
(diam(Ini,ji) + diam(Ili,pi))

)d
= 2

(
diam(Ini,ji)

2
+

diam(Ili,pi)

2

)d
≥ 2

[
(diam(Ini,ji))

d

2
+

(diam(Ili,pi))
d

2

]
= (diam(Ini,ji))

d + diam(Ili,pi))
d;

we have used that 3d = 2 and that the function ϕ(s) = sd is concave in (0,+∞) (because
0 < d < 1). This argument show that it is convenient to replace Ẽi with Ini,ji and Ipi,li .

Having said that, we can assume that (Ei)i is a finite covering of C made of elements
of T , that is Ei = INi,ki for some Ni, ki. Denote

N := max
i
Ni.

The second key step is the following: replacing INi,ki with the two intervals in which
it splits at the next level is "convenient" to compute Hd

δ . INi,ki belongs to the level i;
when passing to the level Ni + 1, it splits into two intervals INi+1,pi , INi+1,pi+1, for some
p. By the property of d, it follows that

(diam(INi,k))
d = (diam(INi+1,pi))

d + (diam(INi+1,pi+1))d.

Thus, we can split the intervals (INi,ki)i until we arrive at the level N . In other words,
we can assume that (Ei)i is a covering of C made by intervals at the level N ; hence, we
deduce that each interval at the level N must be taken (maybe more than once). In
conclusion, we have that

∑
i

(diam(Ei))
d ≥

2N∑
k=1

(diam(IN,k))
d = 2N

1

3Nd
= 1,

by the property of d.
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Chapter 2

Covering theorems

Covering theorems are fundamental tools in Geometric Measure Theory. For further
references, see [5] and [4]. The purpose of this chapter is the following: given a family
F of balls that covers a set E, we want to extract a "better" subcovering F ′. The
meaning of "better" varies; it could be one of the followings:

• F ′ is disjoint;

• the balls in F ′ do not overlap to much;

• given some measure µ and ε > 0, then∑
B∈F ′

µ(B) ≤ µ(E) + ε.

There are two families of results:

• Vitali-type covering theorems, that hold in every metric space X, but require
something about the measure, e.g. doubling properties;

• Besicovitch-type covering theorems, that holds only in Rn but for every measure
µ.

2.1 Vitali-type covering theorems

In the following, we will always assume X to be a locally compact, separable metric
space; every measure µ on X is implicitly assumed to be Borel and locally finite.

Definition 2.1.1 (Doubling properties). Let µ be a measure on X.

• µ has the doubling property (D.P.) if there exists M > 0 s. t.

µ(B(x, 2r)) ≤Mµ(B(x, r)) ∀r > 0, ∀x ∈ supp(µ).

• µ has the asymptotic doubling property (A.D.P.) if there holds that

lim sup
r→0

µ(B(x, 2r))

µ(B(x, r))
< +∞ ∀x ∈ supp(µ).
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Chapter 2. Covering theorems

Remark 2.1.2. The definition above can be equivalently stated with closed balls; the
number 2 can be replaced with any number λ > 1 (fixed). Moreover, if µ has the
doubling property, then every ball in X has finite measure: in deed, since µ is locally
finite, there exists a sufficiently small ball B(x, r) s.t. µ(B(x, r)) < +∞. The doubling
properties guarantees that µ(B(x,R)) < +∞ for all R > 0; in particular, every ball has
finite measure. Moreover, if there exists a ball with zero measure, than the same holds
for every ball, that is µ ≡ 0.

The following lemma holds in every metric space; indeed, it has nothing to do with
measures.

Lemma 2.1.3 (5r-Vitali’s lemma). Let F be a family of closed balls Bi = B(xi, ri) s.
t.

R := sup
i
ri < +∞.

There exists a subfamily G ⊆ F with the following properties:

• G is disjoint and, then, at most countable;

• define Ĝ := {B̂ | B ∈ G}, where

B̂(xi, ri) := B(xi, 5ri);

then, it holds that ⋃
B∈F

B ⊆
⋃
B∈G

B̂.

In particular, if F covers E, then Ĝ covers E and G is disjoint.

Proof. Divide F as follows:

F :=
∞⋃
n=0

Fn, Fn :=

{
B = B(xi, ri) ∈ F

∣∣∣∣ R

2n+1
< ri ≤

R

2n

}
.

Step 1: Take G0 a maximal disjoint subfamily of F0 (it clearly exists by the Zorn’s
lemma). We claim that ⋃

B∈F0

B ⊆
⋃
B∈G0

B̂.

In deed, if B ∈ F0 \G0, the maximality of G0 guarantees that there exists a ball B′ ∈ G0

s. t. B ∩B′ 6= ∅. We check that B ⊆ B̂′; denote

B = B(x, r), B′ = B(x′, r′), B̂′ = B(x′, 5r′).

Pick y ∈ B ∩B′; for all z ∈ B we have

d(x′, z) ≤ d(x′, y) + d(z, y) ≤ r′ + 2r ≤ 5r′,

since r, r′ ∈ (R/2, R], thus r ≤ 2r′.
Step 2: Take G1 a maximal subfamily of F1 which is disjoint and disjoint from

G0 (it exists by the Zorn’s lemma). Then, G0 ∪ G1 is clearly disjoint. Refreshing the
arguments given in the previous step, it is immediate to prove that⋃

B∈F1

B ⊆
⋃

B∈G0∪G1

B.
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2.1. Vitali-type covering theorems

Step 3: Assume that we have defined G0, . . . ,Gn s. t. G0 ∪ · · · ∪ Gn is disjoint and⋃
B∈F0∪···∪Fn

B ⊆
⋃

B∈G0∪···∪Gn

B̂;

inductively, we define Gn+1 as a maximal subfamily of Fn+1 which is disjoint and disjoint
from G0 ∪ · · · ∪ Gn. As above, one can check that G0 ∪ · · · ∪ Gn+1 is disjoint and that⋃

B∈F0∪···∪Fn+1

B ⊆
⋃

B∈G0∪···∪Gn+1

B̂.

In conclusion, the subfamily

G :=
∞⋃
n=0

Gn

has the desired properties.

Example 2.1.4. The case where F = {B(0, r) | r ∈ (0,+∞)} in Rd shows that the
assumption on the uniform boundedness of the radii of the balls in the lemma above
(see 2.1.3) cannot be dropped.

First Vitali’s covering theorem The definition below will play a fundamental role
in the following of the section.

Definition 2.1.5 (Fine covering). Let E ⊆ X and F be a family of closed balls with
the property that for all x ∈ E for all δ > 0 there exists a ball B ∈ F with radius at
most δ and s.t. x ∈ B. We say that F is a fine covering of E.

Lemma 2.1.6. Let µ be a locally finite, Borel measure on X with the doubling property
(M > 0 is the doubling constant in 2.1.1). Let E ⊆ X be a Borel set s.t. µ(E) < +∞;
let F be a fine covering of E (see 2.1.5). Then, there exists G ⊆ F disjoint and s.t.

µ

(
E ∩

⋃
B∈G

B

)
≥ 1

2M3
µ(E).

Proof. Without loss of generality, we can assume that E ⊆ supp(µ). Since µ(E) < +∞,
the approximation result on measures (see 1.1.17) guarantees that there exists an open
set A s.t. E ⊆ A and

µ(A \ E) ≤ µ(E)

2M3
.

Denote
F ′ := {B ∈ F | B ⊆ A, B has radius at most 1}.

We claim that F ′ is a covering of E (in deed, we check that F ′ is fine). Take x ∈ E;
since A is open, there exists 0 < δ < 1 s.t. x ∈ B(x, r) ⊆ A. Since F is a fine covering
of E, there exists a ball B(y, r) ∈ F s.t. x ∈ B(x, r) and r ≤ δ/10; in particular, we
have that

x ∈ B(y, r) ⊆ B(x, δ) ⊆ A;

thus B(y, r) ∈ F ′.
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Chapter 2. Covering theorems

We apply the lemma 2.1.3 to F ′ and we obtain G disjoint and such that Ĝ covers E.
Then, we have that

µ(E) ≤ µ

(⋃
B∈G

B̂

)
≤
∑
B∈G

µ(B̂) ≤M3
∑
B∈G

µ(B).

Thus, we obtain ∑
B∈G

µ(B) ≥ µ(E)

M3
.

In conclusion, we have that

µ

(
E ∩

⋃
B∈G

B

)
≥ µ

(⋃
B∈G

B

)
− µ(A \ E) ≥ µ(E)

M3
− µ(E)

2M3
=
µ(E)

2M3
.

Theorem 2.1.7 (Vitali’s covering theorem - 1). Let µ be a locally finite, Borel measure
on X with the doubling property (M > 0 is the doubling constant in 2.1.1). Let E ⊆ X
be a Borel set s.t. µ(E) < +∞; let F be a fine covering of E (see 2.1.5). Then, for all
ε > 0 there exists F ′ ⊆ F s.t.

• F ′ is disjoint and countable (at most);

• F ′ covers µ-a.a. of E;

•
∑

B∈F ′ µ(B) ≤ µ(E) + ε.

Proof. Without loss of generality, we can assume that E ⊆ supp(µ). Fix ε > 0 and
an open set A0 s.t. E ⊆ A0 and µ(A0) ≤ µ(E) + ε (such A0 exists thank to the
approximation result stated in 1.1.17).

Step 1: Define
F0 := {B ∈ F | B ⊆ A0}.

Since F is a fine covering of E, then F0 is still a fine covering of E (this can be checked
as shown in the proof of lemma 2.1.6). Lemma 2.1.6 guarantees that there exists
G0 ⊆ F0 disjoint and s.t.

µ

(
E ∩

⋃
B∈G0

B

)
≥ 1

2M3
µ(E).

We can choose G ′0 ⊆ G0 finite and s.t.

µ

E ∩ ⋃
B∈G′0

B

 ≥ 1

3M3
µ(E).

Thus, we obtain

µ

E \ ⋃
B∈G′0

B

 ≤ (1− 1

3M3

)
µ(E).
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2.1. Vitali-type covering theorems

Step 2: Define
E1 := E \

⋃
B∈G′0

B,

F1 :=

B ∈ F
∣∣∣∣ B ⊆ A0, B ∩

 ⋃
B̃∈G′0

B̃

 = ∅

 .

We claim that F1 is a fine covering of E1. Since G ′0 is finite and the balls are closed,
then

⋃
B̃∈G′0

B̃ is closed. Take x ∈ E1 and δ > 0; there exists 0 < r < δ s.t.

B(x, r) ∩

 ⋃
B̃∈G′0

B̃

 = ∅, B(x, r) ⊆ A0.

Since F is a fine covering of E, there exists B′ ∈ F s.t.

x ∈ B′ ⊆ B(x, r);

thus, B′ ∈ F1.
We can apply lemma 2.1.6 to F1 and E1; arguing as in the previous step, we obtain

G ′0 finite and disjoint s.t.

µ

E1 \
⋃
B∈G′1

B

 ≤ (1− 1

3M3

)
µ(E1) ≤

(
1− 1

3M3

)2

µ(E).

By construction, there holds that G ′1 is also disjoint from G ′0.
Step 3: We inductively define

En := En−1 \
⋃

B∈G′0∪···∪G′n−1

B;

arguing as in the previous step, we find G ′n finite, disjoint and disjoint from G ′0∪· · ·∪G ′n−1,
s.t.

⋃
B∈G′n

B ⊆ A0 and

µ

En \ ⋃
B∈G′n

B

 ≤ (1− 1

3M3

)n+1

µ(E).

Step 4: We define

F ′ :=
∞⋃
n=0

G ′n;

notice that F ′ is disjoint, countable and each ball in F ′ is contained in A0. Thus

∑
B∈F ′

µ(B) ≤ µ

( ⋃
B∈F ′

B

)
≤ µ(A0) ≤ µ(E) + ε.
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Chapter 2. Covering theorems

In conclusion, for all n ∈ N it holds that

µ

(
E \

⋃
B∈F ′

B

)
≤ µ

E \ ⋃
B∈G′0∪···∪G′n

B


= µ

E1 \
⋃

B∈G′1∪···∪G′n

B


= · · · = µ

En \ ⋃
B∈G′n

B


≤
(

1− 1

3M3

)n+1

µ(E).

Taking the limit as n→ +∞, we find that

µ

(
E \

⋃
B∈F ′

B

)
= 0.

Second Vitali’s covering theorem

Lemma 2.1.8. Let µ be a locally finite, Borel measure on X with the doubling property
(M > 0 is the doubling constant in 2.1.1). Let E0 ⊆ X be a Borel set s.t. µ(E0) = 0;
let F be a fine covering of E (see 2.1.5). Then, for all ε > 0 there exists F ′ ⊆ F (F ′ is
not necessarily disjoint) s.t.

• F ′ is at most countable,

• F ′ covers E0,

•
∑

B∈F ′ µ(B) < ε.

Proof. We can reduce to the case where E0 ⊆ supp(µ). In deed, X \ supp(µ) is a open
set and, since F is a fine covering, then E0 \ supp(µ) can be covered with at most
countably many balls in F (recall that X is separable, hence every covering admits a
countable or finite subcovering) contained in X\supp(µ). Those balls are not necessarily
disjoint and they have measure zero.

Hence, suppose that E0 ⊆ supp(µ). Given ε > 0, take an open set A s.t. E0 ⊆ A
and µ(A) ≤ ε/M3, where M > 0 is the doubling constant defined in 2.1.1 (such A exists
because of the approximation result stated in 1.1.17). Since F is a fine covering of E0,
then

F ′ := {B ∈ F | B ⊆ A, B has radius at most 1}
is still a covering of E0 (it can be checked as in the proof of lemma 2.1.6). Denote

F̌ ′ := {B̌ | B ∈ F ′},

where B̌(x, r) = B(x, r/5). We apply lemma 2.1.3 to F̌ ′ and we obtain G ⊆ F̌ ′ disjoint
s.t.

E0 ⊆
⋃
B∈G

B̂,
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2.1. Vitali-type covering theorems

since F ′ covers E0. It is immediate to see that Ĝ ⊆ F ′ ⊆ F and that

E0 ⊆
⋃
B∈Ĝ

B.

Since G is disjoint and X is a separable metric space, G is countable. As for the measure,
we have: ∑

B∈G

µ(B) = µ

(⋃
B∈G

B

)
≤ µ(A) ≤ ε

M3
;

then ∑
B∈Ĝ

µ(B) =
∑
B∈G

µ(B̂) ≤M3
∑
B∈G

µ(B) ≤ ε.

Theorem 2.1.9 (Vitali’s covering theorem - 2). Let µ be a locally finite, Borel measure
on X with the doubling property (M > 0 is the doubling constant in 2.1.1). Let E ⊆ X
be a Borel set s.t. µ(E) < +∞; let F be a fine covering of E (see 2.1.5). Then, for all
ε > 0 there exists F ′ ⊆ F s.t.

• F ′ is at most countable (not necessarily disjoint);

• F ′ covers E;

•
∑

B∈F ′ µ(B) ≤ µ(E) + ε.

Proof. Apply first Vitali’s covering theorem (see 2.1.7) to cover µ-a.a. of E; use lemma
2.1.8 to cover the remaining part.

We conclude with some remarks.

Remark 2.1.10. • For first Vitali’s covering theorem (see 2.1.7) to hold it is enough
that µ has the asymptotically doubling property (see 2.1.1).

• The previous statement can be adapted in the case where F is a family of open
balls. In particular, first Vitali’s theorem (see 2.1.7) holds if F is a family of open
balls s.t. µ(∂B) = 0 for all B ∈ F (it suffices to apply the theorem as stated in
2.1.7 to F = {B | B ∈ F}). Also second Vitali’s theorem (see 2.1.9) works for
such F . Recall that, if µ is a Borel measure which is finite on balls, for all x ∈ X
there holds that µ(∂B(x, r)) = 0 for all r > 0 except at most countably many
(depending from x).

• These theorems work for more general sets than just balls.

The Vitali’s covering theorems works for a larger class of measure. We state (without
proofs) a more general results, that we will invoke in the following chapters.

Theorem 2.1.11. Let µ be a locally finite, Borel measure on X with the doubling
property. Let F be a Borel set in X. Denote λ := µxF . Let E ⊆ X be a Borel set s.t.
λ(E) < +∞; let F be a fine covering of E (see 2.1.5). Then, the followings hold true:

• for all ε > 0 there exists F ′ ⊆ F s.t.

1. F ′ is disjoint and countable (at most);
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Chapter 2. Covering theorems

2. F ′ covers λ-a.a. of E;
3.
∑

B∈F ′ µ(B) ≤ λ(E) + ε.

• for all ε > 0 there exists F ′ ⊆ F s.t.

1. F ′ is at most countable (not necessarily disjoint);
2. F ′ covers E;
3.
∑

B∈F ′ µ(B) ≤ λ(E) + ε.

2.2 Besicovitch-type covering theorems
In this section, we work in Rd. We start with an elementary lemma.

Lemma 2.2.1. Let B1 = B(x1, r1), . . . , Bn = B(xn, rn) be balls in Rd s.t.

1. B1 ∩Bn 6= ∅ for all i < n,

2. ri ≥ rn/2 for all i < n,

3. xi /∈ Bj for all i 6= j < n.

Then, there exists N(d) ∈ N depending exclusively from d s.t. n ≤ N(d).

Remark 2.2.2. The proof of this lemma relies on "elementary" geometry; since it is
very technical, we will not give it. However, we just remark that the statement is very
reasonable. The first condition says that each ball touches Bn; the second condition
says that the balls B1, . . . Bn−1 are not too small with respect to Bn; the third condition
says that the balls do not overlap too much. The situation is resumed in figure 2.1.

First Besicovitch’s covering theorem

Lemma 2.2.3 (Besicovitch). Let F be a family of balls in Rd with bounded radii. Let
E be the set of the centers of the balls in F . Then, there exist G1, . . . ,GN ⊆ F s.t.

• each Gi is disjoint,

• G :=
⋃N
i=1 Gi covers E,

• N depends only on d (in deed, N is the integer given by lemma 2.2.1).

Proof. Step 1: First we consider the case where the balls in F have comparable radii,
that is for all B(xi, ri), B(xj, rj) ∈ F we have that ri ≤ 2rj. Given N = N(d) as in
lemma 2.2.1, take (G1, . . . ,GN) with the following properties:

• each Gi is a disjoint subfamily of F ;

• for all B = B(x, r) ∈ Gi, then x /∈ B′, where B′ is any ball of Gj, for all j 6= i;

• (G1, . . . ,GN) is maximal with respect to the partial order

(G ′1, . . . ,G ′N) ≤ (G1, . . . ,GN)

defined by
G ′i ⊆ Gi ∀i.
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2.2. Besicovitch-type covering theorems

Figure 2.1: The balls in Lemma 2.2.1.

The existence of such (G1, . . . ,GN) follows immediately by the Zorn’s lemma. Notice
that we allow some of the Gi to be empty. Now, take B̃ = B(x, r) ∈ F ; we claim that

x ∈
N⋃
i=1

( ⋃
B∈Gi

B

)
.

Suppose that GN = ∅. Assume by contradiction that

x /∈
N⋃
i=1

( ⋃
B∈Gi

B

)
;

thus, it holds that

(G1, . . . ,GN−1,GN) � (G1, . . . ,GN−1, {B̃});

however, (G1, . . . ,GN−1,GN) is maximal and this is a contradiction. Hence, we are left
with the case where any Gi is not empty. Still, assume by contradiction that

x /∈
N⋃
i=1

( ⋃
B∈Gi

B

)
;

then, by maximality, for all i there exists Bi ∈ Gi s.t. B ∩ Bi 6= ∅. Then, the family
{B1, . . . , BN , B} contradicts lemma 2.2.1.

Step 2: We consider the general case, where F = {B(xi, ri)}i and

R := sup
i
ri < +∞.
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Chapter 2. Covering theorems

We consider the decomposition

F =
∞⋃
n=0

Fn, Fn :=

{
B(xi, ri) ∈ F

∣∣∣∣ R

2n+1
< r ≤ R

2n

}
.

Now, we extract G0,1, . . . ,G0,N from F0 as in the previous step. Thus,
⋃N
i=1 G0,i covers

the set of the centers of the balls in F0.
Define

F ′1 :=

B(xi, ri) ∈ F1

∣∣∣∣ xi /∈ N⋃
i=1

⋃
B∈G0,i

B

 .

Extract G1,1, . . .G1,N from F ′1 as in the previous step, with the additional assumption
that G1,i is disjoint from G0,i for all i = 1, . . . , N . We claim that

⋃N
i=1 G0,i ∪ G1,i covers

the set of the centers of the balls in F0 ∪ F ′1. Notice that if B ∈ F0, then the center of
B is covered by

⋃N
i=1 G0,i. Let B ∈ F ′1; assume by contradiction that

x /∈
N⋃
i=1

⋃
B∈G0,i∪G1,i

B.

In particular, it follows that

x /∈
N⋃
i=1

⋃
B∈G1,i

B;

with the same arguments explained in the previous step, we can easily reduce to the case
in which each of the G1,i is not empty. Thus, for all i = 1, . . . , N there exists Bi ∈ G1,i

s.t. B ∩ Bi 6= ∅. Hence, the family (B1, . . . , BN , B) contradicts lemma 2.2.1. At this
point, it is immediate to see that

⋃N
i=1 G0,i ∪ G1,i covers the set of the centers of the

balls in F0 ∪F1. Also note that G0,i ∪ G1,i is a disjoint family of balls (by construction).
Step 3: By induction, we define Gn,1, . . . ,Gn,N s.t.

• G0,i ∪ · · · ∪ Gn,i is a disjoint family of balls in F ,

•
⋃N
i=1 G0,i ∪ · · · ∪ Gn,i covers the set of the centers of the balls in F0 ∪ · · · ∪ Fn.

Finally, we can define

Gi :=
∞⋃
n=0

Gn,i.

Notice that the balls in Gi are pairwise disjoint and
⋃N
i=1 Gi covers the set of the centers

of the balls in
⋃∞
n=0Fn = F .

Remark 2.2.4. Lemma 2.2.5 says that, given F a family of balls with bounded radii, we
can cover the set of the centers of these balls with at most N subfamilies Gi, s.t. each
Gi is disjoint.

Lemma 2.2.5. Let µ be a Borel, locally finite measure on Rd. Let E ⊆ Rd be a Borel
set s.t. µ(E) < +∞. Let F be a family of balls with bounded radii whose centers cover
E. Then, there exists G ⊆ F disjoint s.t.

µ

(
E ∩

(⋃
B∈G

B

))
≥ 1

N
µ(E),
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2.2. Besicovitch-type covering theorems

where N = N(d) > 0 is the integer given by lemma 2.2.1 (it only depends on the
dimension of the space d).

Proof. Apply lemma 2.2.3 to F and obtain G1, . . .GN ⊆ F s.t. each Gi is disjoint and

E ⊆
N⋃
i=1

⋃
B∈Gi

B.

Then, we have

µ(E) = µ

(
N⋃
i=1

(
E ∩

⋃
B∈Gi

B

))
≤

N∑
i=1

µ

(
E ∩

⋃
B∈Gi

B

)
.

Thus, there exists i0 s.t.

µ

E ∩
 ⋃
B∈Gi0

B

 ≥ 1

N
µ(E).

To conclude, simply denote G := Gi0 .

The definition below will play a fundamental role in the following results.

Definition 2.2.6 (Besicovitch’s covering). Let E ⊆ Rd; let F be a family of balls in
Rd s.t.

inf{r | B(x, r) ∈ F} = 0 ∀x ∈ E.
We say that F is a Besicovitch’s covering of E.

Remark 2.2.7. Note that every Besicovitch’s covering of E (see 2.2.6) is a fine covering
of E (see 2.1.5).

Theorem 2.2.8 (Besicovitch’s covering theorem - 1). Let µ be a Borel, locally finite
measure on Rd. Let E ⊆ Rd be a Borel set s.t. µ(E) < +∞. Let F be a family of
closed balls which is a Besicovitch’s covering of E (see 2.2.6). Then, for all ε > 0 there
exists F ′ ⊆ F s.t.

• F ′ is disjoint and at most countable,

• F ′ covers µ-a.a. of E,

•
∑

B∈F ′ µ(B) ≤ µ(E) + ε.

Proof. Fix ε > 0 and an open set A s.t. E ⊆ A and µ(A) ≤ µ(E) + ε (the existence of
such A is provided by the approximation result stated in 1.1.17).

Step 1: Define

F0 := {B = B(x, r) ∈ F | B ⊆ A, r ≤ 1}.

Since F is a Besicovitch’s covering of E, then the same holds for F0. Given N = N(d)
as in lemma 2.2.1, choose G0 ⊆ F0 as in lemma 2.2.5: more precisely, G0 is disjoint and
s.t.

µ

(
E ∩

⋃
B∈G0

B

)
≥ µ(E)

N
.
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We can take G ′0 ⊆ G0 finite s.t.

µ

E ∩ ⋃
B∈G′0

B

 ≥ µ(E)

2N
.

Thus, we have that

µ

E \ ⋃
B∈G′0

B

 ≤ (1− 1

2N

)
µ(E).

Step 2: Set
E1 := E \

⋃
B∈G′0

B

and

F1 :=

B ∈ F0

∣∣∣∣ B ∩ ⋃
B′∈G′0

B′ = ∅

 .

Since G ′0 is finite, then
⋃
B′∈G′0

B′ is closed; hence, it is immediate to show that F1 is a
Besicovitch’s covering of E1. As in the previous step, take G ′1 ⊆ F1 finite and disjoint
s.t.

µ

E1 \
⋃
B∈G′1

B

 ≤ (1− 1

2N

)
µ(E1) ≤

(
1− 1

2N

)2

µ(E).

Since
E1 \

⋃
B∈G′1

= E \
⋃

B∈G′0∪G′1

B,

we have that

µ

E \ ⋃
B∈G′0∪G′1

B

 ≤ (1− 1

2N

)2

µ(E).

Notice that G ′0 ∪ G ′1 is disjoint.
Step 3: Inductively, we define G ′0, . . . ,G ′n s.t.

1. each G ′i is finite and disjoint,

2.
⋃n
i=0 G ′i is finite and disjoint,

3. there holds that

µ

E \ ⋃
B∈G′0∪···∪G′n

B

 ≤ (1− 1

2N

)n+1

µ(E).

Thus, if we define F ′ :=
⋃∞
n=0 G ′n, the conclusion follows immediately.
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2.3. L d vs Hd in Rd

Second Besicovitch’s covering theorem

Lemma 2.2.9. Let µ be a Borel, locally finite measure on Rd. Let E0 ⊆ Rd be a Borel
set s.t. µ(E0) = 0. Let F be a family of closed balls which is a Besicovitch’s covering of
E0 (see 2.2.6). Then, for all ε > 0 there exists G ⊆ F (not necessarily disjoint) s.t.

• G is at most countable,

• G covers E0,

•
∑

B∈G µ(B) ≤ ε.

Proof. Fix ε > 0 and choose an open set A s.t. E0 ⊆ A and µ(A) ≤ ε/N , where N is the
integer given by lemma 2.2.1 (the existence of such A is provided by the approximation
result stated in 1.1.17). Define

F ′ := {B = B(x, r) ∈ F | B ⊆ A, r ≤ 1}.

Notice that F ′ is still a Besicovitch’s covering of E0. We can use lemma 2.2.3 to find
G1, . . . ,GN disjoint s.t. G :=

⋃N
i=1 Gi covers E0. Then, we have that

∑
B∈Gi

µ(B) = µ

( ⋃
B∈Gi

B

)
≤ µ(A) ≤ ε

N
;

thus ∑
B∈G

µ(B) ≤ N
ε

N
= ε.

Theorem 2.2.10 (Besicovitch’s covering theorem - 2). Let µ be a Borel, locally finite
measure on Rd. Let E ⊆ Rd be a Borel set s.t. µ(E) < +∞. Let F be a family of
closed balls which is a Besicovitch’s covering of E (see 2.2.6). Then, for all ε > 0 there
exists F ′ ⊆ F (not necessarily disjoint) s.t.

• F ′ is at most countable;

• F ′ covers E;

•
∑

B∈F ′ µ(B) ≤ µ(E) + ε.

Proof. Cover µ-a.a. of E using the first Besicovitch’s covering theorem (see 2.2.8); then,
use the lemma above (see 2.2.9) to cover the remaining part (which is µ-null).

2.3 L d vs Hd in Rd

Covering theorems are very powerful tools in Geometric Measure Theory that have a
huge variety of applications. Here, as an example, we show that the Lebesgue measure
and the d-dimensional Hausdorff measure agree in Rd. In particular, we prove that
Hd = Hd

δ = L d in Rd for all δ > 0. The inequality L d ≥ Hd
δ is a straightforward

application of covering theorems.
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Chapter 2. Covering theorems

Proposition 2.3.1. Given δ > 0 and E ⊆ Rd a Borel set, then Hd
δ(E) ≤ L d(E). In

particular, it holds that Hd(E) ≤ L d(E).

Proof. If L d(E) = +∞, there is nothing to prove. So, we can assume that L d(E) is
finite. Given ε > 0, we can use second Besicovitch’s covering theorem (see 2.2.10) to
find a countable family F = (Bi)i of balls with radii bounded from above by δ s.t.

• E ⊆
⋃
iBi,

•
∑

i L
d(Bi) ≤ L d(E) + ε.

Denote αd the volume of the unit ball in Rd and recall the definition of Hausdorff
measure (see 1.2.1). Thus

ε+ L d(E) ≥
∑
i

L d(Bi) ≥
∑
i

αd
2d

(diam(Bi))
d ≥ cd

∑
i

(diam(Bi))
d ≥ Hd

δ(E).

Since ε > 0 is arbitrary, we obtain that L d(E) ≥ Hd
δ(E). Taking the supremum with

respect to δ > 0, we conclude the proof.

Remark 2.3.2. For the reverse inequality, it is enough to show that Hd
∞ ≥ L d. If we

prove this claim, we conclude that

L d ≥ Hd ≥ Hd
δ ≥ Hd

∞ ≥ L d ∀δ ∈ (0,+∞],

that is Hd = L d.

The proof of the claim above is based on the isodiametric inequality, which relies on
the Steiner symmetrization. We briefly estabilish this usefull tools.

Definition 2.3.3 (Steiner symmetrization). Given E ⊆ Rd Borel and an hyperplane
V ⊆ Rd, the Steiner symmetrization of E with respect to V is the set E ′ defined by

E ′ := {(x′, x′′) ∈ V × V ⊥ | |x′′| ≤ h(x′)},

where
h(x′) :=

1

2
L 1(Ex′), Ex′ := (x′ + V ⊥) ∩ E.

Remark 2.3.4. In other words, the Steiner symmetrization of E with respect to the
hyperplane V (see 2.3.3) is the set E ′ where all the sections of E made by segments
parallel to V ⊥ have been centered with respect to V (see, for instance, figure 2.2).

The following properties follows straightforward from definition 2.3.3.

Lemma 2.3.5. Given E ⊆ Rd Borel and an hyperplane V ⊆ Rd, denote E ′ the Steiner
symmetrization of E with respect to V (see 2.3.3). Then, the followings hold true:

1. E ′ is Lebesgue measurable and L d(E) = L d(E ′);

2. diam(E ′) ≤ diam(E).
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2.3. L d vs Hd in Rd

Figure 2.2: In red the set E and in green the set E ′, which is the Steiner symmetric of
E with respect to the axis y = 0 in R2.

Proof. The first statement is an immediate consequence of Fubini’s theorem.
As for the second statement, we can assume that E is bounded (otherwise, diam(E) =

+∞ and there is nothing to prove). Under this assumption, clearly E ′ is bounded too.
Denote by PV : Rd → V the orthogonal projection to V . Given ε > 0, there exist
x1, x2 ∈ E ′ s.t.

(diam(E ′))2 ≤ |x1 − x2|2 + ε.

Without loss of generality, we can assume that x1, x2 are "extremal" points in E ′, in
the sense that x1 = (x′1, h(x′1)), x2 = (x′2,−h(x′2)) ∈ PV (E)× V ⊥. Thus

(diam(E ′))2 ≤ |x1 − x2|2 + ε = |x′1 − x′2|
2

+ |h(x′1) + h(x′2)|2 + ε.

Note that

h(x′1) + h(x′2) ≤ 1

2

(
supEx′1 − inf Ex′1

)
+

1

2

(
supEx′2 − inf Ex′2

)
=

1

2

(
supEx′1 − inf Ex′2

)
+

1

2

(
supEx′2 − inf Ex′1

)
≤ max

{
supEx′1 − inf Ex′2 ; supEx′2 − inf Ex′1

}
.

Choose x′′1 ∈ Ex′1 , x
′′
2 ∈ Ex′2 s.t.(

max
{

supEx′1 − inf Ex′2 ; supEx′2 − inf Ex′1
})2 ≤ |x′′1 − x′′2|

2
+ ε.

Denote x̃1 = (x′1, x
′′
1) and x̃2 = (x′2, x

′′
2); thus, we obtain that

(diam(E ′))2 ≤ |x′1 − x′2|
2

+
(
max

{
supEx′1 − inf Ex′2 ; supEx′2 − inf Ex′1

})2

≤ |x′1 − x′2|
2

+ |x′′1 − x′′2|
2

+ 2ε

= |x̃1 − x̃2|2 + 2ε

≤ (diam(E))2 + 2ε.

Since ε > 0 is arbitrary, the conclusion follows immediately.

Remark 2.3.6. Pick V1, V2 two orthogonal hyperplanes in Rd. Let E ⊆ Rd be Borel.
Denote by E ′ the Steiner symmetrization of E with respect to V1 and E ′′ the Steiner
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Chapter 2. Covering theorems

symmetrization of E ′ with respect to V2. It is immediate to see that the two Steiner
symmetrizations commute (it is crucial that V1, V2 are orthogonal hyperplanes). More-
over, since Steiner symmetric with respect to V implies symmetric with respect to V ,
then E ′′ is symmetric with respect to V1 and V2. So, if we pick V1, . . . , Vd orthogonal
hyperplanes in Rd, the set E(d) given by d Steiner symmetrizations of E (with respect
to those hyperplanes) will be symmetric with respect to V1, . . . , Vd. In particular, E(d)

will contain the origin and it will be symmetric with respect to the origin. Moreover,
lemma 2.3.5 guarantees that diam(E(d)) ≤ diam(E) and L d(E(d)) = L d(E).

Now, we are ready to state and prove the isodiametric inequality.

Theorem 2.3.7 (Isodiametric inequality). For every E ⊆ Rd Borel there holds that

L d(E) ≤ αd
2d

(diam(E))d.

In other words, the ball has the largest volume among the Borel sets with prescribed
diameter.

Proof. Let E(d) be the Steiner symmetrization of E with respect to the coordinate
hyperplanes. As explained in 2.3.6, E(d) contains the origin. Thus, we have that

E(d) ⊆ B

(
0,

diam(E(d))

2

)
= B.

Since diam(E) ≥ diam(E(d)) = diam(B), we deduce that

αd
(
diam(E)

2

)d
≥ αd

(
diam(B)

2

)d
= L d(B) ≥ L d(E(d)) = L d(E).

Finally, we can show the inequality Hd
∞ ≥ L d.

Theorem 2.3.8. Given E ⊆ Rd Borel, then Hd
∞(E) ≥ L d(E).

Proof. Take (Ei)i a covering of E; by the isodiametric inequality (see 2.3.7), it follows
that

αd
2d

∑
i

(diam(Ei))
d ≥

∑
i

L d(Ei) ≥ L d(E).

To conclude, take the infimum with respect to the coverings of E.
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Chapter 3

Densities of sets

In the following chapter, we assume X to be a locally compact, separable metric space
(or X = Rd). The following results can be found in [5], [4] and [1], [3] (as for the fractals
construction).

3.1 Density of a set with respect to a measure
Definition 3.1.1 (Density of a set). Let µ be a Borel locally finite measure on X. Take
x ∈ supp(µ). We define the upper density of E at x with respect to µ as

Θ∗µ(E, x) := lim sup
r→0

µ(E ∩B(x, r))

µ(B(x, r))
;

we define the lower density of E at x with respect to µ as

Θ∗µ(E, x) := lim inf
r→0

µ(E ∩B(x, r))

µ(B(x, r))
.

We say that E admits density at x with respect to µ if the lower density and the upper
density defined above coincide. In this case, we write

Θµ(E, x) := Θ∗µ(E, x) = Θ∗µ(E, x).

Theorem 3.1.2. Let E ⊆ X be a Borel set; let µ be a Borel locally finite measure on
X. Assume that one of the followings assumptions hold true:

1. X = Rd;

2. µ is doubling.

Then, Θµ(E, x) exists at µ-a.e. x ∈ X (see 3.1.1) and there holds that

Θµ(E, x) = lim
r→0

µ(E ∩B(x, r))

µ(B(x, r))
=

{
1 for µ-a.e x ∈ E,
0 for µ-a.e x ∈ Ec.

Proof. Step 1: We show that for µ-a.e. x /∈ E, then Θµ(E, x) exists and it is 0. Given
δ > 0, define

Eδ := {x /∈ E | Θ∗µ(E, x) > δ}.
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We claim that µ(Eδ) = 0; if we show this property for all δ > 0, we conclude that
Θµ(E, x) exists and it is zero at µ-a.e. x ∈ Ec. Set λ := µxE and define

F := {B(x, r) | x ∈ Eδ, r ≤ 1, µ(E ∩B(x, r)) ≥ δµ(B(x, r))}
= {B(x, r) | x ∈ Eδ, r ≤ 1, λ(B(x, r)) ≥ δµ(B(x, r))}

Assume that X = Rd; then, it is immediate to see that F is a Besicovitch’s covering
of Eδ (see 2.2.6) and λ is a Borel locally finite measure on Rd. Since λ(Eδ) = 0 (λ is
concentrated on E and Eδ ⊆ Ec), given ε > 0, second Besicovitch’s covering theorem
(see 2.2.10) guarantees that there exists G ⊆ F s.t. G covers Eδ and

∑
B∈G λ(B) ≤ ε.

Thus, we have
ε ≥

∑
B∈G

λ(B) ≥ δ
∑
B∈G

µ(B) ≥ δµ(Eδ).

It follows that
µ(Eδ) ≤

ε

δ
∀ε > 0;

we conclude that µ(Eδ) = 0.
If X is an arbitrary locally compact separable metric space and µ is doubling, the

proof is absolutely the same, except that we need to use Vitali’s covering theorems. In
particular, F is a fine covering of Eδ (see 2.1.5). Thus, apply theorem 2.1.11 (with the
measure λ = µxE, the covering F and the set Eδ). Then, we conclude as in the case
in which X = Rd.

Step 2: The fact that Θµ(E, x) exists and it is 1 µ-a.e. in E follows from the
previous step applied to Ec and the fact that

Θ∗µ(Ec, x) = 1−Θ∗µ(E, x)

for all x ∈ supp(µ).

3.2 d-dimensional density
Definition 3.2.1 (d-dimensional density). Given a Borel set E ⊆ X, d ∈ (0,+∞) and
x ∈ X, we define the upper d-dimensional density of E at x as

Θ∗d(E, x) := lim sup
r→0

Hd(E ∩B(x, r))

αdrd
,

where αd = 2d if d is not integer, otherwise αd is the volume of the unit ball in Rd,
namely it is the same constant in the construction of the Hausdorff measure (see 1.2.1).
We define the lower d-dimensional density of E at x as

Θ∗d(E, x) := lim inf
r→0

Hd(E ∩B(x, r))

αdrd
.

Remark 3.2.2. In the following, we will provide estimates for the upper d-dimensional
density; we will never deal with the lower d-dimensional density. However, we mention
that there exists a Borel set in Rm and d ∈ (0,+∞) s.t. 0 < Hd(E) < +∞ and
Θ∗d(E, x) = 0 for Hd-a.e. x ∈ E.

Theorem 3.2.3. Define E ⊆ X be a Borel set. Assume that Hd(E) < +∞ for some
d ∈ (0,+∞). Then, the followings hold true:
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3.2. d-dimensional density

• Θ∗d(E, x) = 0 for Hd-a.e. x /∈ E;

• Θ∗d(E, x) ≥ 1
2d

for Hd-a.e. x ∈ E;

• if X = Rm, then Θ∗d(E, x) ≤ 1 for Hd-a.e. x ∈ E;

• if X is any locally compact, separable metric space, then Θ∗d(E, x) ≤ 5d for Hd-a.e.
x ∈ E.

Proof. Let µ := HdxE; since Hd(E) < +∞, then µ is a finite measure.
Step 1: We prove the first statement. Given δ > 0, we define

Eδ := {x /∈ E | Θ∗d(E, x) > δ}.

If we show that Hd(Eδ) = 0 for every δ > 0, then we immediately conclude that
Θ∗d(E, x) = 0 for Hd-a.e. x /∈ E. Since Eδ ∩E = ∅, then µ(Eδ) = 0. Fix ε > 0 and pick
an open set A s.t. Eδ ⊆ A and µ(A) ≤ ε (the existence of such an open set is provided
by the approximation result of measures stated in 1.1.17). Fix ρ > 0 and define

F := {B(x, r) | x ∈ Eδ, r ≤ ρ, B(x, r) ⊆ A, Hd(E ∩B(x, r)) ≥ δαdr
d}

= {B(x, r) | x ∈ Eδ, r ≤ ρ, B(x, r) ⊆ A, µ(B(x, r)) ≥ δαdr
d}.

Clearly, F is a covering of Eδ. We can apply the Vitali’s 5r-lemma (see 2.1.3); thus, we
find G ⊆ F countable and disjoint s.t. Ĝ covers Eδ. Hence, we have

ε ≥ µ(A) ≥ µ

(⋃
B∈G

B

)
=
∑
B∈G

µ(B) ≥ δ
αd
2d

∑
B∈G

(diam(B))d

≥ δ
αd

2d5d

∑
B∈G

(diam(B̂))d ≥ δ
1

5d
Hd

10ρ(Eδ),

where the last inequality follows from the fact that Ĝ is a 10ρ-covering of Eδ. We
deduce that

Hd
10ρ(Eδ) ≤ ε

5d

δ
.

Since ε is arbitrary, we conclude that Hd
10ρ(Eδ) = 0; taking the supremum with respect

to ρ, we obtain that Hd(Eδ) = 0.
Step 2: We prove the second statement. Given λ < 1

2d
and r0 > 0, we define

Eλ,r0 := {x ∈ E | Hd(E ∩B(x, r)) ≤ λαdr
d ∀r ≤ r0}

= {x ∈ E | µ(B(x, r)) ≤ λαdr
d ∀r ≤ r0}

We claim that Hd(Eλ,r0) = 0; then, we deduce that Hd(Eλ) = 0 for all λ < 1
2d
, where

Eλ := {x ∈ E | Θ∗d(E, x) < λ}.

This is enough to conclude that Θ∗d(E, x) ≥ 1
2d

for Hd-a.e. x ∈ E.
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Fix λ < 1
2d

and r0 > 0; denote Eλ,r0 = Ẽ. Take δ ≤ r0; by the definition of Hd
δ (see

1.2.1), it follows that for all ε > 0 there exists (Ei)i a δ-covering of Ẽ s.t.

αd
2d

∑
i

(diam(Ei))
d ≤ Hd

δ(Ẽ) + ε.

For all i, define ri := diam(Ei) ≤ δ and choose xi ∈ Ei ∩ Ẽ (if the intersection is empty,
then we can remove Ei). Then, Ei ⊆ B(xi, ri); hence, we obtain

Hd(Ẽ) + ε ≥ Hd
δ(Ẽ) + ε ≥ αd

2d

∑
i

(diam(Ei))
d

=
αd
2d

∑
i

rdi ≥
1

λ2d

∑
i

µ(B(xi, ri))

≥ 1

λ2d
µ(Ẽ) =

1

λ2d
Hd(Ẽ).

To resume, we have shown that

1

λ2d
Hd(Ẽ) ≤ Hd(Ẽ) + ε.

Since ε is arbitrary, we obtain that

1

λ2d
Hd(Ẽ) ≤ Hd(Ẽ).

Since Hd(Ẽ) ≤ Hd(E) < +∞ and 1
λ2d

< 1, we conclude that Hd(Ẽ) = 0.
Step 3: We prove the third statement. Assume X = Rm. Given m > 1 we define

Em := {x ∈ E | Θ∗d(E, x) > m}.

We claim that Hd(Em) = 0; hence, we deduce that Θ∗d(E, x) ≤ 1 for Hd-a.e. x ∈ E.
Fix δ > 0 and define

F := {B(x, r) | x ∈ Em, r ≤ δ, Hd(E ∩B(x, r)) ≥ mαdr
d}

= {B(x, r) | x ∈ Em, r ≤ δ, µ(B(x, r)) ≥ mαdr
d}.

Clearly, F is a Besicovitch covering of Em (see 2.2.6); second Besicovitch’s covering
theorem (see 2.2.10) guarantees that for all ε > 0 there exists G ⊆ F s.t. G covers Em
and there holds that ∑

B∈G

µ(B) ≤ µ(Em) + ε.

Then, we have that

Hd(Em) + ε = µ(Em) + ε ≥
∑
B∈G

µ(B)

≥
∑
B∈G

mαdr
d = m

αd
2d

∑
B∈G

(diam(B))d

≥ mHd
2δ(Em).

To resume, we have that
mHd

2δ(Em) ≤ Hd(Em) + ε.
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3.2. d-dimensional density

Taking the supremum with respect to δ, we obtain that

mHd(Em) ≤ Hd(Em) + ε;

since ε > 0 is arbitrary, we have that

mHd(Em) ≤ Hd(Em).

Since Hd(Em) ≤ Hd(E) < +∞ and m > 1, it follows that Hd(Em) = 0.
Step 4: We prove the forth statement. Consider the case of any locally compact,

separable metric space X. Given m > 5d, we define

Em := {x ∈ E | Θ∗d(E, x) > m}.

We claim that Hd(Em) = 0; hence, we deduce that Θ∗d(E, x) ≤ 5d for Hd-a.e. x ∈ E.
Fix ε > 0 and pick an open set A s.t. Em ⊆ A and µ(A) ≤ µ(Em) + ε (the existence of
such an open set is provided by the approximation result of measures stated in 1.1.17).
Fix δ > 0 and define

F := {B(x, r) | x ∈ Em, r ≤ δ, B(x, r) ⊆ A, Hd(E ∩B(x, r)) ≥ mαdr
d}

= {B(x, r) | x ∈ Em, r ≤ δ, B(x, r) ⊆ A, µ(B(x, r)) ≥ mαdr
d}.

Clearly, F is a covering of Em. We can apply the Vitali’s 5r-lemma (see 2.1.3); thus,
we find G ⊆ F countable and disjoint s.t. Ĝ covers Em. Hence, we have

ε+Hd(Em) = ε+ µ(Em) ≥ µ(A)

≥ µ

(⋃
B∈G

B

)
=
∑
B∈G

µ(B)

≥ m
αd
2d

∑
B∈G

(diam(B))d

≥ mδ
αd

2d5d

∑
B∈G

(diam(B̂))d

≥ m

5d
Hd

10δ(Em),

where the last inequality follows from the fact that Ĝ is a 10δ-covering of Em. To
resume, we have that

m

5d
Hd

10δ(Em) ≤ ε+Hd(Em).

Taking the supremum with respect to δ, we obtain that

m

5d
Hd(Em) ≤ ε+Hd(Em).

Then, we deduce that
m

5d
Hd(Em) ≤ Hd(Em).

Since Hd(Em) ≤ Hd(E) < +∞ and m
5d
> 1, it follows that Hd(Em) = 0.

We can generalize the definition of d-dimensional upper density of a set (see 3.2.1)
in the following sense.
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Chapter 3. Densities of sets

Definition 3.2.4 (d-dimensional upper density of a measure). Given a locally finite
Borel measure µ, x ∈ X and d ∈ (0,+∞) we define the d-dimensional upper density of
µ at x as follows:

Θ∗d(µ, x) := lim sup
r→0

µ(B(x, r))

αdrd
,

where αd is as in definition 3.2.1.

Remark 3.2.5. Clearly, definitions 3.2.1 and 3.2.4 agrees if µ = HdxE, for a Borel set
E ⊆ X.

Theorem 3.2.3 can be generalized as follows.

Theorem 3.2.6. Let d ∈ (0,+∞). If µ = ρ ·Hd, with ρ ∈ L1
loc(X,Hd), then there holds

that
1

2d
ρ(x) ≤ Θ∗d(µ, x) ≤ Cdρ(x) for Hd-a.e. x ∈ X,

where Cd is a constant that depends only on d. Moreover, for Hd-a.e. x ∈ X s.t.
ρ(x) > 0 there holds

0 < Θ∗d(µ, x) < +∞;

in particular, this holds for µ-a.e. x ∈ X.

Theorem above 3.2.6 can be reversed.

Theorem 3.2.7. Let µ be a locally finite measure Borel measure on X and d ∈ (0,+∞).
Assume that Θ∗d(µ, x) < +∞ for µ-a.e. x ∈ X; then µ is absolutely continuous with
respect to Hd.

Theorem 3.2.8. Let µ be a locally finite measure Borel measure on X and d ∈ (0,+∞).
Assume that Θ∗d(µ, x) > 0 for µ-a.e. x ∈ X. Then, there exists a Borel set E which is
σ-finite with respect to Hd and s.t. µ is supported on E.

If we put together the theorems above, we obtain the following result.

Theorem 3.2.9. Let µ be a locally finite Borel measure on X and d ∈ (0,+∞). Assume
that 0 < Θ∗d(µ, x) < +∞ for Hd-a.e. x ∈ X. Then, there exists ρ ∈ L1

loc(X,Hd) s.t.
µ = ρ · Hd. Moreover, for Hd-a.e. x ∈ X there holds that

1

Cd
Θ∗d(µ, x) ≤ ρ(x) ≤ 2dΘ∗d(µ, x).

Proof. The statement is an immediate corollary of 3.2.8, 3.2.9, Radon-Nykodim theorem
(see 1.1.15), which requires σ-finiteness, and 3.2.7.

3.2.1 On the Radon-Nykodim derivative

The notion of d-dimensional density has a wide number of applications. Here, we
provide one of them.

Lemma 3.2.10. Let µ, λ be finite, Borel measures on X; assume X = Rn or µ to be
doubling or µ = µ′xF , where µ′ is doubling and F ⊆ X is Borel. If λ ⊥ µ, then for
µ-a.e. x ∈ X there holds that

dλ

dµ
(x) := lim

r→0

λ(B(x, r))

µ(B(x, r))
= 0.
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3.2. d-dimensional density

Proof. Since µ ⊥ λ, there exists a Borel set S s.t. µ(X \ S) = 0 and λ(S) = 0. Without
loss of generality, we can assume that S ⊆ supp(µ). Thus, for µ-a.e. x ∈ S, we can well
define the quantity

dλ

dµ
(x) := lim sup

r→0

λ(B(x, r))

µ(B(x, r))
.

Given m > 0, define

Em :=

{
x ∈ S

∣∣∣∣ dλdµ(x) > m

}
.

If we show that µ(Em) = 0 for all m > 0, we conclude that for µ-a.e. x ∈ F there holds

dλ

dµ
(x) = lim sup

r→0

λ(B(x, r))

µ(B(x, r))
= 0;

hence, the conclusion follows immediately. Fix m > 0; for all ε > 0 there exists an open
set A s.t. Em ⊆ A and λ(A) ≤ ε, since Em ⊆ F and λ(Em) = 0 (the approximation
theorem 1.1.17 provides the existence of such an open set). Consider the family

F := {B(x, r) | r ≤ 1, B(x, r) ⊆ A, λ(B(x, r)) ≥ mµ(B(x, r))}.

Assume that X = Rn. Then, F is clearly a Besicovitch covering of Em (see 2.2.6). Then,
first Besicovitch’s covering theorem (see 2.2.10) provides the existence of a disjoint
subfamily G ⊆ F that covers µ-a.a. of Em. Thus, we have

µ(Em) ≤
∑
B∈G

µ(B) ≤ 1

m

∑
B∈G

λ(B) =
1

m
λ

(⋃
B∈G

B

)
≤ λ(A)

m
≤ ε

m
.

Since ε is arbitrary, we deduce that µ(Em) = 0.
The case of X locally compact, separable metric space and µ doubling is completely

similar. It suffices to notice that F is a fine covering of Em (see 2.1.5) and then use
first Vitali’s covering theorem (see 2.1.9).

The case of µ = µ′xF (µ′ doubling and F ⊆ X Borel) is completely similar. It
suffices to use the Vitali’s covering theorem in the more general version stated in
2.1.11.

Definition 3.2.11 (Approximate Lp-continuity). Let µ be locally finite Borel measure
on a locally compact and separable metric space X; let f be a Borel function in Lp(X, µ)
for some p ∈ [1,+∞). We say that x ∈ supp(µ) is a point of Lp approximate continuity
for f if the following holds true:

lim
r→0

 
B(x,r)

|f(x)− f(x)|p dµ(x) = 0.

Theorem 3.2.12. Let µ be locally finite Borel measure on a locally compact and
separable metric space X; let f be a Borel function in Lp(X, µ) for some p ∈ [1,+∞).
Assume µ doubling of X = Rn. Then µ-a.e. x ∈ X is a point of Lp approximate
continuity for f (see 3.2.11).

Proof. Fix ε > 0; Lusin’s theorem provides the existence of a continuous function f̃ and
a closed set E s.t. µ(Ec) ≤ ε and f = f̃ on E. We claim that µ-a.e. x ∈ E is a point
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Chapter 3. Densities of sets

of Lp-approximate continuity for f . Since ε is arbitrary, this is enough to conclude.
Denote λ := |f |p µxEc, µ̃ := µxE. Fix x ∈ supp(µ) ∩ E; denote Br := B(x, r). Thus

 
Br

|f − f(x)|p dµ =
1

µ(Br)

ˆ
Br∩E

|f − f(x)|p dµ+
1

µ(Br)

ˆ
Br\E

|f − f(x)|p dµ

=
1

µ(Br)

ˆ
Br∩E

∣∣∣f̃ − f̃(x)
∣∣∣p dµ+

1

µ(Br)

ˆ
Br\E

|f − f(x)|p dµ

≤
(

sup
Br

f̃ − inf
Br
f̃

)p
+

2p−1

µ(Br)

ˆ
Br\E

(|f(x)|p + |f |p) dµ

≤
(

sup
Br

f̃ − inf
Br
f̃

)p
+ 2p−1 |f(x)|p µ(Br \ E)

µ(Br)
+ 2p−1λ(Br)

µ(Br)
.

At this point, we have three addenda and we can estimate each of them separately.

• Since f̃ is continuous, we have that

lim
r→0

(
sup
Br

f̃ − inf
Br
f̃

)p
= 0.

• Assume that f(x) is a real number (recall that f is finite at µ-a.e. x ∈ X, since
f ∈ Lp(X, µ)). Theorem 3.1.2 guarantees that

lim
r→0

µ(Br \ E)

µ(Br)
= Θµ(Ec, x) = 0

for µ-a.e. x ∈ X. Then, we conclude that

lim
r→0
|f(x)|p µ(Br \ E)

µ(Br)
= 0 for µ-a.e. x ∈ E.

• As for the last addendum, we have that

λ(Br)

µ(Br)
=
λ(Br)

µ̃(Br)

µ(Br ∩ E)

µ(Br)
≤ λ(Br)

µ̃(Br)
.

Since λ ⊥ µ̃, the lemma 3.2.10 guarantees that

lim sup
r→0

λ(Br)

µ̃(Br)
= 0 for µ̃-a.e. x ∈ E.

This is enough to conclude.

Corollary 3.2.13. Let µ be a locally finite Borel measure on a locally compact and
separable metric space X; let f be a Borel function in Lp(X, µ) for some p ∈ [1,+∞).
Assume µ doubling of X = Rn. Then, the following holds for µ-a.e. x ∈ X:

lim
r→0

 
B(x,r)

f(y) dµ(y) = f(x).

Proof. It is an immediate consequence of theorem see 3.2.12, the Jensen’s inequality
and the locally finiteness of µ.
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3.3. Self-similar fractals

Corollary 3.2.14. Let µ, λ be locally finite Borel measures on a locally compact and
separable metric space X; assume µ doubling or X = Rn. Let us consider the decom-
position of λ with respect to µ given by theorem 1.1.15 λ = f · µ + λs, where f is a
nonnegative function in L1

loc(X, µ) and λs is the singular part of λ with respect to µ.
Then, the following holds true:

f(x) = lim
r→0

λ(B(x, r))

µ(B(x, r))
= lim

r→0

f · µ(B(x, r))

µ(B(x, r))
for µ-a.e. x ∈ X.

Proof. Since λs ⊥ µ, lemma 3.2.10 guarantees that

dλs
dµ

(x) := lim
r→0

λs(B(x, r))

µ(B(x, r))
= 0 for µ-a.e. x ∈ X.

By corollary 3.2.13, we obtain that

d(f · µ)

dµ
(x) = lim

r→0

1

µ(B(x, r))

ˆ
B(x,r)

f dµ = f(x) for µ-a.e. x ∈ X.

Then, we immediately conclude that

dλ

dµ
(x) =

d(f · µ)

dµ
(x) = f(x) for µ-a.e. x ∈ X.

3.3 Self-similar fractals
We conclude this chapter on densities with the beautiful construction of self-similar
fractals according to Hutchinson. As we will see, the main theorem will be an elegant
application of the results established on the d-dimensional density.

Definition 3.3.1 (Contractive similarity). Take b ∈ Rn, λ ∈ (0, 1) and R ∈ O(n); we
say that the map Φ : Rn → Rn defined by

Φ(x) = b+ λR(x)

is a contractive similarity. λ is known as scaling coefficient.

Definition 3.3.2 (Self-similar fractal). Given a set E ⊆ Rn, we say that E is a self-
similar fractal (according to Hutchinson) if there exist Φ1, . . . ,ΦN contractive similarities
(see 3.3.1) s.t.

E =
N⋃
i=1

Φi(E).

Example 3.3.3. The Cantor set C defined in 1.2.8 is a self-similar fractal. The contractive
similarities are

Φ1(x) =
1

3
x, Φ2(x) =

2

3
+

1

3
x.

As in the example of the Cantor set, it is easy to guess the Hausdorff dimension of
a self-similar fractal.
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Lemma 3.3.4. Let E ⊆ Rn be a self-similar fractal and let Φ1, . . . ,Φn contractive
similarities such that

E =
N⋃
i=1

Φi(E),

with scaling coefficients λ1, . . . , λN ∈ (0, 1) (see 3.3.1 and 3.3.2). Assume that the Φi(E)
are pairwise disjoint and that there exists d ∈ (0,+∞) s.t. 0 < Hd(E) < +∞. Then, d
is the unique solution of the equation

1 =
N∑
i=1

λdi . (3.1)

Proof. First, we notice that equation (3.1) has a unique solution. In deed, the function

ρ(d) :=
N∑
i=1

λdi

is well defined, positive and convex in (0,+∞). Moreover, we have that

lim
d→+∞

ρ(d) = 0, lim
d→0

ρ(d) = N > 1.

Since λi ∈ (0, 1), the condition N = 1 is not compatible with the definition of self-similar
fractal (see 3.3.2). Then, equation (3.1) has a unique solution in (0,+∞).

Let d ∈ (0,+∞) be as in the assumption. Since E is disjoint union of the Φi(E),
then we have

Hd(E) =
N∑
i=1

Hd(Φi(E)) =
N∑
i=1

λdiHd(E);

since 0 < Hd(E) < +∞, we conclude that d is the unique solution of (3.1).

The issue of lemma 3.3.4 is that we should know that 0 < Hd(E) < +∞. The
following theorem solves this problem; however, we recall some fundamental preliminary
notions.

Definition 3.3.5 (Hausdorff distance). Let (X, d) be a metric space; given C1, C2

compact non-empty sets in X, we define the Hausdorff distance between C1 and C2 as

dH(C1, C2) := inf{r > 0 | C1 ⊆ Ur(C2) C2 ⊆ Ur(C1)},

where Ur(C) := {x ∈ X | dist(x,C) < r}.

Remark 3.3.6. In other words, the Hausdorff distance between two compact sets (see
3.3.5) says how much it is necessary to enlarge each of them to include the other.

The following classical theorem hold true.

Theorem 3.3.7. Let (X, d) be a metric space; let X̃ be the collection of non-empty
compact sets in X.

• The Hausdorff distance is a distance on X̃.

• If (X, d) is complete, then so is (X̃, dH).
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3.3. Self-similar fractals

• If (X, d) is compact, then so is (X̃, dH).

Theorem 3.3.8 (Hutchinson). Let be given Φ1, . . . ,ΦN contractive similarities of Rn
(see 3.3.1) with scaling factors λ1, . . . , λn. Let d be the unique solution of (3.1). Then,
the followings hold true:

• there exists a unique compact set C ⊆ Rn s.t. C =
⋃N
i=1 Φi(C);

• Hd(C) < +∞;

• assume that the "open set condition" hold true (there exists an open bounded set
V ⊆ Rn s.t. Φi(V ) ⊆ V for all i and the Φi(V ) are pairwise disjoint). Then
Hd(C) > 0.

Proof. We define
λmax := max

i=1,...,N
λi < 1.

λmin := min
i=1,...,N

λi > 0.

Step 1: Let X be the space of compact non-empty sets in Rn endowed with the
Hausdorff distance dH . Let Φ : X→ X be the map given by

Φ(E) :=
n⋃
i=1

Φi(E).

Theorem 3.3.7 guarantees that (X, dH) is a complete metric space. We claim that Φ is
a contraction of (X, dH); then, Φ admits a unique fixed point C ∈ X. In other words,
there exists a unique compact set C s.t. C = Φ(C) =

⋃N
i=1 Φi(C). Take E,E ′ compact

non-empty sets in Rn. Using only the definition of the Hausdorff distance as an infimum
and the fact that Φi(·) = xi + λiRi(·) where Ri ∈ O(n), we obtain

dH(Φ(E),Φ(E ′)) = dH

(
N⋃
i=1

Φi(E),
N⋃
i=1

Φi(E
′)

)
≤ sup

i=1,...,N
dH(Φi(E),Φi(E

′))

= sup
i=1,...,N

λidH(E,E ′)

= λmaxdH(E,E ′).

Since λmax < 1, we conclude that Φ is a contraction.
Step 2: Providing an estimate from above for the Hausdorff measure is easy, since

it suffices to work with a specific covering. Notice that

C =
N⋃
i1=1

Φi1(C) =
N⋃
i=1

Φi1

(
N⋃
i2=1

Φi2(C)

)
=

N⋃
i1,i2=1

Φi1 ◦ Φi2(C).

We want to iterate this argument; we define I := {1, . . . , N} and for all m ∈ N we
denote i = (i1, . . . , im) a multi-index in Im. We also denote Φi := Φi1 ◦ · · · ◦ Φim and
λi := λi1 · · ·λim . It is immediate to see that Φi is a contractive similarity of scaling
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factor λi. For simplicity, we define Ci := Φi(C). With this notation, for all n ∈ N, we
have that

C =
⋃
i∈Im

Φi(C) =
⋃
i∈Im

Ci.

Note that
diam(Ci) = λidiam(C) ≤ λmmaxdiam(C).

Since λmax < 1, given δ > 0, there exists m ∈ N s.t. λmmaxdiam(C) < δ; hence, for all
i ∈ Im, there holds that diam(Ci) ≤ δ. In particular, (Ci)i∈Im is a δ-covering of C. Let
d be as in the assumptions; we deduce that

Hd
δ(C) ≤ cd

∑
i∈Im

diam(Ci)
d ≤ cd

∑
i∈Im

λdi

 (diam(C))d

= cd

(
N∑
i=1

λdi

)m

(diam(C))d = cd(diam(C))d.

Taking the supremum with respect to δ, we obtain that Hd(C) ≤ cd(diam(C))d < +∞.
Step 3: In some sense, providing an estimate from below for Hd(C) is much harder,

since we have to consider any covering of C. However, we follow a different way. We
construct a probability measure µ on C s.t. Θ∗d(µ, x) < +∞ for all x ∈ C. As stated
in theorem 3.2.7, this implies that µ << Hd; since µ(C) = 1 > 0, we deduce that
Hd(C) > 0. Instead of the "open set condition", we assume the following slightly
stronger condition: there exists a bounded open set V ⊆ Rn s.t. Φi(V ) ⊆ V for all i
and Φi(V ) are pairwise disjoint. We claim that this condition (the closures of Φi(V )
are disjoint) implies that Φi(C) are pairwise disjoint. In deed, it is enough to show that
C ⊆ V (recall that Φi(V ) are disjoint). Let Φ : X→ X be the contraction defined in
the first step, where X is the collection of non-empty compact sets in Rn. We define
X̃ as the collection of non-empty compact sets in V . Since Φ(V ) ⊆ V , we have that
Φ(V ) = Φ(V ) ⊆ V . In other words, Φ restricts to a contraction of X̃. Since V is
compact, theorem 3.3.7 guarantees that X̃ endowed with the Hausdorff distance is a
compact metric space. Then, Φ has a fixed point C̃ in X̃. Clearly, C̃ is also a fixed
point of Φ in X; thus, C̃ = C, which means that C ⊆ V .

At this point, we have that Φi(C) are pairwise disjoint. Since C is closed, then
Φi(C) is closed; moreover, Φi(C) is open in C, since we have

C \ Φi(C) =
N⋃

j 6=i,j=1

Φj(C).

With the notation introduced in the second step, we can similarly show that (Φi(C))i∈Im
is a disjoint partition of C and Φi(C) is open and closed in C for all i ∈ Im for all
m ∈ N. Having said that, our aim is to construct a probability measures µ on C s.t.

µ(C) = 1, µ(Φi(C)) = λdi , . . . , µ(Φi(C)) = λdi ∀m ∈ N ∀i ∈ Im.

We construct such a probability measure as weak limit of the following sequence of
probability measure on C. Take x any point in C and set

µ0 := δx, µ1 :=
N∑
i=1

λdi δΦi(x), . . . , µm :=
∑
i∈Im

λdi δΦi(x) ∀m ∈ N.
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We claim that µm(Ci) = λdi for all m′ ≤ m for all i ∈ Im′ . Given m,m′, i as above,
notice that

Φi(C) =
⋃

j∈Im−m′
Φ(i,j)(C),

where (i, j) is the concatenation of two multi-indixes. Moreover, the union is disjoint.
Thus, we have

µm(Φi(C)) =
∑

j∈Im−m′
µm(Φ(i,j)(C)) =

∑
j∈Im−m′

λdiλ
d
j

= λdi
∑

j∈Im−m′
λdj = λdi

(
N∑
j=1

λdj

)m−m′

= λdi .

The existence of a probability measure µ with the required properties follows immediately
from the compactness theorem 1.1.33; since C is compact, up to subsequences, (µn)n
converges in the sense of measures to a probability measure µ in C, that is

lim
n→+∞

ˆ
C

f dµn =

ˆ
C

f dµ ∀f ∈ C(C).

Since Φi(C) is open and closed in C, 1Φi(C) is an admissible test function. Hence, we
have that

λdi = lim
n→+∞

µn(Φi(C)) = µ(Φi(C)).

To conclude, we show that Θ∗d(µ, x) < +∞ for all x ∈ C. Fix x ∈ C; there exists i ∈ IN
s.t. x ∈ Φim

(C) for all m ∈ N, where im = (i1, . . . , im) is the truncation of i. Fix δ > 0
s.t.

• δ < mini=1,...,N diam(Φi(V )),

• δ ≤ dist(Φi(V ),Φj(V )) for all i 6= j

We remark that the second condition can be fulfilled, since we are assuming that Φi(V )
are disjoint closed sets. Given r > 0, choose m ∈ N s.t.

δλim+1
< r ≤ δλim .

Such m exists, since λim ≤ λmmax that goes to 0 as m → ∞. By the choice of m, it
follows that B(x, r) ∩ C ⊆ Cim ; thus, we have

µ(B(x, r)) ≤ µ(Φim
(C)) = λdim .

Moreover, we have
r ≥ δλim+1

= δλimλim+1 .

Hence, we obtain that

µ(B(x, r))

rd
≤

λdim
δdλdimλim+1

=
1

δdλdim+1

≤ 1

δdλdmin
.

We deduce that
Θ∗d(µ, x) ≤ 1

cdδdλdmin
< +∞.

Then, the proof is concluded.
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Chapter 3. Densities of sets

Figure 3.1: The first iterations in the construction of the Von Koch curve.

We conclude this section with some famous examples of self-similar fractals.

Example 3.3.9. The Cantor set described in 1.2.8 is a self-similar fractal in R, obtained by
two self-similarities of scaling factor 1

3
; since theorem 3.3.8 applies, we prove immediately

that its Hausdorff dimension is log(2)
log(3)

.

Example 3.3.10. The Von Koch curve is the self-similar fractal in R2 obtained by four
self-similarities of scaling factor 1

3
, as explained in figure 3.1. Moreover, theorem 3.3.8

applies and we obtain that the Von Koch curve has Hausdorff dimension equal to log(4)
log(3)

.

Example 3.3.11. The Cantor dust is the self-similar fractal in R2 obtained by four self-
similarities of scaling factor 1

4
, as explained in figure 3.2. Since theorem 3.3.8 applies,

we get that the Hausdorff dimension of this set is 1. Similarly, for any λ ∈ (0, 1/2), one
can consider the self-similar fractal Kλ in R2 obtained by four self-similarities of scaling
factor λ (in other words, at the first step, we have four squares of side-length λ; at the
second step, we have sixteen squares of side-length λ2 and so on). By theorem 3.3.8, we
can easily compute that

dimH(Kλ) =

∣∣∣∣ log(4)

log(λ)

∣∣∣∣ .
Example 3.3.12. The Sierpisky triangle is the self-similar fractal in R2 obtained by
three self-similarities of scaling factor 1

3
, as explained in figure 3.3. Since theorem 3.3.8

applies, we get that its Hausdorff dimension is 1.
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Figure 3.2: The first iterations in the construction of the Cantor dust.

Figure 3.3: The first iterations in the construction of the Sierpisky triangle.
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Chapter 4

Haar measures

In this chapter we consider a topological group G acting on a topological space X. Haar
measures are the natural measures to consider in some contexts (see [7]).

4.1 Construction

Definition 4.1.1 (Action). An action of G on X is a continuous map T : G× X→ X
s.t.

Ty(Ty′x) = Tyy′x ∀y, y′ ∈ G ∀x ∈ X.

To be precise, T is a left action of G on X. The following theory can be also stated
for right actions, being completely similar.

Example 4.1.2. A topological group G acts on itself by left-multiplication, that is
T : G × G → G is given by Tg(g′) = gg′.

Definition 4.1.3 (Translation of a measure). Given a Borel measure µ on X and y ∈ G,
we define the Borel measure Tyµ as

Tyµ(E) := µ(TyE) ∀E ∈ B(X).

Definition 4.1.4 (Left-invariant measure). A Borel measure µ on X is said to be
left-invariant if µ(E) = µ(Ty(E)) for all y ∈ G for all E ∈ B(X).

In some sense, a left-invariant measure is the natural measure to put on a topological
space X, provided a group G acting on X. At this stage it is interesting to studying
existence and uniqueness of these measures. We will show the existence of an invariant
measure in a topological group G acting on itself (under some additional assumptions),
provided some compactness properties of G. In the general setting of a group G acting
on a topological space X, the compactness of G and X is not sufficient to provide the
existence of an invariant measure, as we sketch in the following example.

Example 4.1.5. Consider the topological space X = P1R and G the group of the
projectivies on P1R. One can show the following results:

• since the translation group is included in G, the only possible invariant measure
is the Lebesgue measure L 1;

• on the other hand, L 1 is not invariant under homothety.

44



4.1. Construction

Thus, one could conclude that there are no G-invariant measures.

Example 4.1.6. • Recall that Rn is a topological group with the sum. Since the
Lebesgue measure is translation invariant, it is an invariant measure on Rn in the
sense of definition 4.1.4.

• Recall that S1 ⊆ C∗ is a topological group with the complex multiplication. The
measure H1 on S1 is rotation invariant; hence, it is an invariant measure in the
sense of definition 4.1.4.

• Similarly, H3 on S3 is an invariant measure in the sense of definition 4.1.4, where
S3 is a topological group as a subset of H∗ (with the multiplication of quaternions).

We state and show some lemmas that goes in the direction of proving existence and
uniqueness of invariant measures. Then, we give the general statements.

In the proof of the following lemmas, we will use the theorems established in 1.1,
adapted in the context of locally compact Hausdorff spaces. They still hold true, without
modifications.

Lemma 4.1.7. Assume that X is compact, G is compact and commutative. Then, there
exists a G-invariant probability measure µ on X.

Proof. Denote by P(X) the set of Borel probability measures on X. Given F ⊆ G, we
define

PF := {µ ∈ P(X) | Tyµ = µ ∀y ∈ F}.

We want to show that PG is non-empty.
Step 1: We claim that PF is closed with respect to the convergence of measure.

Given (µn)n a sequence in PF that converges to µ in the sense of measures, we claim
that µ is in PF. We already know (see 1.1.33) that µ is a Borel probability measure
on X. Take y ∈ F and ν ∈ PF; it is easy to check the following "change of variable"
formula: ˆ

X
g dTyν =

ˆ
X
Ty−1g dν ∀g ∈ L1(X, ν)

It is immediate if g = 1A; by linearity, we obtain the formula for step functions; by
Beppo Levi theorem, we deduce the formula for non-negative functions; then, it is
immediate to extend at L1(X, ν) functions.

Fix y ∈ F and g ∈ C(X) a test function. There holds
ˆ
X
g dµ = lim

n→+∞

ˆ
X
g dµn = lim

n→+∞

ˆ
X
g dTyµn

= lim
n→+∞

ˆ
X
Ty−1g dµn =

ˆ
X
Ty−1g dµ

=

ˆ
X
g dTyµ.

By Riesz’s representation theorem (see 1.1.27), we conclude that µ = Tyµ; thus µ ∈ PF.
Step 2: We claim that for all y ∈ G, then P{y} is non-empty. Take µ0 any Borel

probability measure on X. Given n ∈ N, we define

µn :=
1

n+ 1

n∑
m=0

(Ty)mµ0 =
n∑

m=0

Tmyµ0.
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Chapter 4. Haar measures

Up to subsequences, theorem 1.1.33 guarantees the existence of a Borel probability
measure µ on X s.t. (µn)n converges to µ in the sense of measures. We claim that
Tyµ = µ. In deed, we have

‖Tyµn − µn‖1 =
1

n+ 1

∥∥T(n+1)yµ0 − µ0

∥∥
1
≤ 2

n+ 1
.

Notice that Tyµn converges to Tyµ in the sense of measures, as one can easily check.
Then, by 1.1.30 we infer that

‖Tyµ− µ‖1 ≤ lim inf
n→+∞

‖Tyµn − µn‖1 ≤ lim
n→+∞

2

n+ 1
= 0.

Then, we deduce that Tyµ = µ.
Step 3: We claim that if PF 6= ∅, then PF∪{y} 6= ∅ for all y ∈ G. This can be proved

as in the previous step. Take y ∈ G and µ0 ∈ PF 6= ∅. Given n ∈ N, define

µn :=
1

n+ 1

n∑
m=0

(Ty)mµ0 =
n∑

m=0

Tmyµ0.

Since G is commutative, (µn)n is a sequence in PF. Up to subsequences, theorem 1.1.33
guarantees the existence on a Borel probability measure µ on X s.t. (µn)n converges to
µ in the sense of measures. Since PF is closed, then µ ∈ PF. We claim that Tyµ = µ.
This can be checked as in the previous step. Then, we conclude that µ ∈ PF∪{y}.

Step 4: The previous steps implies that PF 6= ∅ whenever F is a finite set. Notice
that

PG =
⋂
y∈G

P{y};

moreover, we have shown that P{y} has the finite intersection property; since G is
compact, we deduce that ⋂

y∈G

P{y} 6= ∅.

Lemma 4.1.8. Assume that G is locally compact and commutative; let µ1, µ2 invariant
measures on G. Then µ1 = λµ2 for some λ ≥ 0.

Proof. Take a function g ∈ Cc(G) s.t.
´
G g dµ1 = 1. Denote

λ :=

ˆ
G
g(−x) dµ2.

Take a test function f ∈ C0(G); the invariant property of µ1, µ2 (that justify the "change
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4.1. Construction

of variable") and the Fubini’s theorem guarantee that

ˆ
G
f(x) dµ2(x) =

ˆ
G

(ˆ
G
g(y) dµ1(y)

)
f(x) dµ2(x)

=

ˆ
G

(ˆ
G
g(y)f(x+ y) dµ1(y)

)
dµ2(x)

=

ˆ
G

(ˆ
G
g(y − x)f(y) dµ1(y)

)
dµ2(x)

=

ˆ
G

(ˆ
G
g(y − x)f(y) dµ2(x)

)
dµ1(y)

=

ˆ
G

(ˆ
G
g(y − x) dµ2(x)

)
f(y) dµ1(y)

=

ˆ
G

(ˆ
G
g(−x) dµ2(x)

)
f(y) dµ1(y)

= λ

ˆ
G
f(y) dµ1(y).

Then, by Riesz’s representation theorem (see 1.1.27), we conclude that µ2 = λµ1. We
remark that the locally compactness assumption is needed for the Riesz’s representation
theorem; the role of the commutativity of G is hidden in the computation above.

Lemmas 4.1.7 and 4.1.8 give partial proofs of the general theorems stated below.

Theorem 4.1.9. If G is a compact group (not necessarily commutative), there exists a
unique left-invariant probability measure.

If G is a locally compact group (not necessarily commutative), there exists a left-
invariant measures, which is unique up to a constant.

Definition 4.1.10 (Haar measure). The left invariant measures on G provided by the
theorem 4.1.9 are called Haar measures.

In the setting of a group G (not necessarily commutative) acting on a topological
space X, stronger assumptions are needed to guarantee the existence of invariant
measure.

Theorem 4.1.11. There exists a G-invariant probability measure µ on X in the fol-
lowing cases:

• G commutative and compact, X compact;

• G compact, X = G/H, where H is a closed subgroup of G. In this case, µ is also
unique;

• G is compact and satisfies the so called "Weyl condition".

We will not explain what is the "Weyl condition", because we will never use it in
this context.
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Chapter 4. Haar measures

Integal-geometric measure (Favard)

We skecth how to apply the theorem 4.1.9 to define the integral-geometric measure.
Let Gr(m,n) be the Grassmannian of the n-dimensional plane in Rm. We can

identify Gr(m,n) as the quotient

O(m)

O(n)×O(m− n)
,

where O(n)×O(m− n) the a closed subgroup of O(n) given by the orthogonal matrix
in O(m) of the form (

A 0
0 B

)
∼ (A,B) ∈ O(n)×O(m− n).

Theorem 4.1.11 provides the existence of a unique probability measure µ on Gr(m,n),
which is O(m)-invariant.

Definition 4.1.12 (Integral-geometric measure). The n-dimensional integral-geometric
measure (of parameter 1) in Rm is defined as

Im1 (E) := cn,m

ˆ
V ∈Gr(m,n)

(ˆ
y∈V

#(p−1
V (y) ∩ E) dHn(y)

)
dµ(V ),

where cn,m is a normalization constant, pV is the orthogonal projection to V and µ is
the invariant measure on Gr(m,n).

It can be proved that Im1 is invariant under affine isometries and agrees with Hn on
every V ∈ Gr(m,n); in deed, it agrees with Hn on every C1-surface of dimension n in
Rm.
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Chapter 5

Lipschitz maps

In this chapter, we deal with Lipschitz maps. For further references, see [4] and [5].

5.1 Definition and main properties
Definition 5.1.1 (Lipschitz map). Let X,Y be metric spaces; a map f : X → Y is
Lipschitz if there exists L > 0 s.t.

dY(f(x1), f(x2)) ≤ LdX(x1, x2) ∀x1, x2 ∈ X. (5.1)

The Lipschitz constant is defined as

Lip(f) := inf{L > 0 | (5.1) holds}.

Remark 5.1.2. The infimum that defines the Lipschitz constant is actually a minimum.

Compactness properties

Lipschitz maps have good compactness properties. The statement below is a particular
instance of the Ascoli-Arzelà theorem.

Theorem 5.1.3. Let (fn)n be a sequence of Lipschitz functions defined on a metric
space X with values in another metric space Y. Assume that

• X is compact,

• supn Lip(fn) < +∞,

• for all x ∈ X the set {fn(x) | n ∈ N} is relatively compact in Y.

Then, up to subsequences, (fn)n converges uniformly to a Lipschitz map f s.t.

Lip(f) ≤ lim inf
n→+∞

Lip(fn).

Extension properties

We briefly mention some of the extension properties of the Lipschitz maps.

Lemma 5.1.4 (McShane). Let X be a metric space and E ⊆ X any subset. Let
f : E → R be a Lipschitz function. There exists f̃ : X → R s.t. f̃ and f agree on E
and Lip(f̃) = Lip(f).
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Chapter 5. Lipschitz maps

Proof. It is enough to define f̃ as the lower affine envelope of f , that is

f̃(x) := inf
y∈E
{f(y) + Lip(f)d(x, y)}.

The function f̃ : X → R is well defined and Lip(f̃) ≤ Lip(f), since it is pointwise
infimum of a family of Lip(f)-Lipschitz functions. Moreover, f̃ agrees on f in E. Then
Lip(f̃) ≥ Lip(f).

Remark 5.1.5. In the proof of McShane lemma (see 5.1.4), also the upper affine envelope
works

f̃(y) := sup
y∈E
{f(y)− Lip(f)d(x, y)}.

We also remark that McShane lemma provides an extension f̃ for maps f : E → Rn.
In this case, there holds Lip(f̃) < +∞; since we work componentwise, it is not
guaranteed that Lip(f) = Lip(f̃). This statement can be proved, but it is much harder
than the McShane lemma.

Theorem 5.1.6 (Kirszbraun). If X,Y are Hilbert spaces, E ⊆ X and f : E → Y is a
Lipschitz map, then there exists an extension f̃ : X→ Y s.t. Lip(f) = Lip(f̃).

Remark 5.1.7. The extension provided by Kirszbraun theorem (see 5.1.6) may not be
the affine one.
Remark 5.1.8. The assumptions of theorem 5.1.6 on X,Y cannot be dropped. The
identity map from S1 to S1 cannot be extended to a continuous map from R2 to S1,
since topological obstructions occur.

Differentiability properties

Lipschitz maps have good properties of differentiability, which makes a huge difference
from continuous (and even Hölder continuous) maps.

Theorem 5.1.9. Consider f : Rn → Rm.

• If f is Lipschitz, then f ∈ W 1,∞
loc (Rn,Rm).

• If n < p < +∞ and f ∈ W 1,p
loc (Rn,Rm) ∩ C(Rn,Rm), then f is differentiable

at almost every point x ∈ Rn. Moreover, the gradient of f agrees with the
distributional gradient a.e.; hence, we use ∇f to denote both.

Proof. Step 1: The proof of the first statement is based on the technique of the
difference quotient. Pick h ∈ R, h 6= 0 and ei the i-th element of the canonical basis of
Rn. We denote the difference quotient

Dh
i f(x) :=

f(x+ hei)− f(x)

h
.

Since f is Lipschitz, then the sequence (Dh
i f)h is uniformly bounded in Rn; hence, up

to subsequence, it converges to a function gi weakly* in L∞(Rn,Rm). We claim that gi
is the i-th distributional derivative of f . Given a test function ϕ ∈ C∞c (Rn,Rm), the
discrete integration by parts formula guarantees that

ˆ
Rn
ϕ(x)Dh

i f(x) dx = −
ˆ
Rn
f(x)D−hi ϕ(x) dx.
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From the weak* convergence, it follows that

lim
h→0

ˆ
Rn
ϕ(x)Dh

i f(x) dx =

ˆ
Rn
ϕ(x)gi(x) dx.

Since ϕ ∈ C∞c (Rn,Rm), the sequence (D−hi ϕ)h converges to ∂iϕ uniformly in Rn;
moreover, f ∈ L∞loc(Rn,Rm). Thus, we have

lim
h→0

ˆ
Rn
f(x)D−hi ϕ(x) dx =

ˆ
Rn
∂iϕ(x)f(x) dx.

In other words, gi = ∂if in distributional sense.
Step 2: The second statement relies on the classical theory of Sobolev spaces. Let

∇f be the distributional gradient of f . Fix a ball B(x, r) ⊆ Rn. Since p > n we can
choose the continuous representative of f ∈ W 1,p

loc (Rn,Rm). Sobolev embedding (p > n)
and Poincarè-Wirtinger inequality imply that

sup
x∈B(x,r)

∣∣∣∣f(x)−
 
B(x,r)

f(y) dy

∣∣∣∣ ≤ C(x, r, p, n,m)

∥∥∥∥f −  
B(x,r)

f(y) dy

∥∥∥∥
W 1,p(B(x,r))

≤ C(x, r, p, n,m)

(ˆ
B(x,r)

|∇f(y)|p dy
) 1

p

≤ C(x, r, p, n,m)

( 
B(x,r)

|∇f(y)|p dy
) 1

p

By a translation argument, we deduce that the constant C is independent of x; by a
rescaling argument, it is easy to see that C scales linearly with respect to r, that is
C(x, r, p, n,m) = rC(p, n,m). Thus, we obtain that

sup
x,y∈B(x,r)

|f(x)− f(y)| ≤ rC(p, n,m)

( 
B(x,r)

|∇f(y)|p dy
) 1

p

.

In particular, we deduce that for all x, h ∈ Rn there holds

|f(x+ h)− f(x)| ≤ C(p, n,m) |h|
( 

B(x,|h|)
|∇f(y)|p dy

) 1
p

. (5.2)

If we apply the inequality (5.2) with g(x) := f(x)−∇f(x)x, we obtain

|f(x+ h)− f(x)−∇f(x)x| ≤ C(p, n,m) |h|
( 

B(x,|h|)
|∇f(y)−∇f(x)|p dy

) 1
p

,

(5.3)
that is

|f(x+ h)− f(x)−∇f(x)x|
|h|

≤ C(p, n,m)

( 
B(x,|h|)

|∇f(y)−∇f(x)|p dy
) 1

p

, (5.4)

Take a point x of Lp-approximate continuity for ∇f (see 3.2.11); deduce that the right
hand side in (5.4) goes to 0 as |h| goes to 0. Then, f is classically differentiable at
every point x of Lp-approximate continuity; moreover, the classical gradient agrees
in these points with the distributional gradient. To conclude, we recall that ∇f is
Lp-approximate continuous at a.e. x ∈ Rn (see 3.2.12).
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As a corollary, we obtain the following famous theorem.

Theorem 5.1.10 (Rademacher). Let f : Rn → Rm be a Lipschitz map. Then f is
differentiable at a.e. x ∈ Rn.

Proof. It is a direct application of theorem 5.1.9.

Lusin properties

Lipschitz functions have good Lusin properties, in a sense that will be clear later.

Lemma 5.1.11. Let Ω ⊆ Rn be an open set, K ⊆ Ω be a compact set and f, g : Ω→ R
a.e. differentiable in K. Assume that f = g a.e. in K. Then ∇f = ∇g a.e. in K.

Proof. By taking the difference, it is equivalent to show that f : Ω→ R a.e. differentiable
in K s.t. f = 0 a.e. in K implies that ∇f = 0 a.e. on K. Take x ∈ K s.t. f(x) = 0,
f is differentiable at x and ΘL n(K, x) = 1. The assumptions and theorem 3.1.2
guarantee that the set of the point x ∈ K with the property required has full measure
L n. Fix i ∈ {1, . . . , n}. Since ΘL d(K, x) = 1, it is easy to see that there exists a
sequence (xn)n ⊆ K s.t. f(xn) = 0, xn 6= x and xn−x

|xn−x| goes to the i-th element of the
canonical basis of Rn. The first properties are easy to fulfill; the last can be proved by
contradiction, looking at the definition of upper density (see 3.2.4) and using the fact
that ΘL n(K, x) = 1.

By the differentiability at x, it follows that

0 = lim
n→+∞

|f(xn)− f(x)−∇f(x)(xn − x)|
||xn − x||

= lim
n→+∞

|∇f(x)(xn − x)|
|xn − x|

= |∇f(x)ei| .

Thus, we conclude that ∇f(x) = 0.

Theorem 5.1.12. Let Ω be a bounded open set in Rn; let f : Ω→ R continuous and
a.e. differentiable in Ω with gradient ∇f . Then, for all ε > 0 there exists a compact set
K ⊆ Ω and a function g : Rn → R of class C1 with the following properties:

• L n(Ω \K) ≤ ε;

• f = g on K and ∇f = ∇g a.e. on K;

• Lip(g) ≤ Lip(f) (eventually Lip(f) ∈ [0,+∞]).

Proof. We sketch the proof. Let D the set of points x ∈ Ω s.t. f is differentiable at x;
that is

lim
|h|→0

|f(x+ h)− f(x)−∇f(x)h|
|h|

= 0 ∀x ∈ D. (5.5)

Clearly, D has full measure L n in Ω. Fix ε > 0; by Severini-Egorov theorem, we can
find a compact K ⊆ D s.t. L n(D \K) ≤ ε and the convergence in (5.5) is uniform
with respect to x ∈ K. By Lusin theorem, up to shrink K, we can assume that ∇f is
continuous on K, that is

f(x+ h) = f(x) +∇f(x)h+Rx(h),

where the reminder Rx(h) is s.t. |Rx(h)| ≤ |h|ω(|h|) and ω is independent on x ∈ K
(this follows from the uniform continuity in K). By Whitney’s extension theorem, f|K
can be extended to a map g : Rn → R. Hence, lemma 5.1.11 implies that ∇f = ∇g a.e.
in K; moreover, if f is Lipschitz, then we can also obtain Lip(g) ≤ Lip(f).

52



5.2. Area formula

5.2 Area formula
We state many version of the area formula: the first is the simplest to prove, the last is
the most general and it is usually applied.

5.2.1 Hausdorff measure on regular surfaces in Rm

The first version of the area formula has a strong relation with the Hausdorff measure
on regular surfaces in Rm. Thus, we need the following characterization.

Definition 5.2.1 (Isometry defect). Take U ⊆ Rm and f : U → Rn a map. Given
δ > 0, we say that f has isometry defect at most δ if it holds that

1

1 + δ
|x− x′| ≤ |f(x)− f(x′)| ≤ (1 + δ) |x− x′| ∀x, x′ ∈ U.

Remark 5.2.2. In some sense, a map with isometry defect at most δ > 0 (see 5.2.1)
differs from an isometry of a factor 1 + δ. We also notice that such a map is injective.

The following results are the fundamental steps toward the area formula.

Theorem 5.2.3. Fix an integer d; let Σ be a d-dimensional surface of class C1 in Rm;
let λ be a measure on Σ with the following property: for all ε > 0 there exists δ > 0 such
that for all map f : U → Rd (where U is any open set in Σ) of class C1 with isometry
defect at most δ (see 5.2.1), then it holds that

1

1 + ε
λ(E) ≤ L d(f(E)) ≤ (1 + ε)λ(E) ∀E ⊆ U Borel.

Then, λ is unique.

Proof. Take λ, λ′ measures on Σ as above. Given a Borel set E ⊆ S, we claim that
λ(E) = λ′(E). Fix ε > 0 and take δ > 0 corresponding to ε in the assumptions. Since
Σ is a C1 d-dimensional surface, we can cover Σ with a countable (at most) family of
open sets Ui s.t. there exist maps fi : Ui → Rd with isometry defect at most δ. Hence,
we can write

E =
⋃
i

Ei

where the union is disjoint and Ei ⊆ Ui is Borel. The assumptions on λ, λ′ guarantee
that

1

1 + ε
L d(fi(Ei)) ≤ λ(Ei), λ′(Ei) ≤ (1 + ε) L d(fi(Ei)) ∀i.

Hence, we deduce that

1

(1 + ε)2
λ(Ei) ≤ λ′(Ei) ≤ (1 + ε)2λ(Ei) ∀i;

thus, summing over i, we have that

1

(1 + ε)2
λ(E) ≤ λ′(E) ≤ (1 + ε)2λ(E).

If λ(E) = +∞ or λ′(E) = +∞, we immediately obtain that λ(E) = λ(E ′) = +∞.
Hence, we can assume that either λ(E) and λ′(E) are finite. Thus, the conclusion
follows immediately taking the limit as ε→ 0.
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Proposition 5.2.4. Let Σ be a d-dimensional surface of class C1 in Rm. The measure
HdxΣ has the property assumed in theorem 5.2.3.

Proof. Fix δ > 0; take U ⊆ Σ open and f : U → Rd a map with isometry defect at
most δ (see 5.2.1). Notice that f : U → f(U) and f−1 : f(U)→ U are (1 + δ)-Lipschitz
(and well defined). Take E ⊆ U Borel set. Thanks to 1.2.3, 2.3.1 and 2.3.8, we deduce
that

L d(f(E)) = Hd(f(E)) ≤ (1 + δ)dHd(E);

Hd(E) = Hd(f−1(f(E))) ≤ (1 + δ)dHd(f(E)) = (1 + δ)d L d(f(E)).

Thus, we have that

1

(1 + δ)d
Hd(E) ≤ L d(f(E)) ≤ (1 + δ)dHd(E).

So, it suffices to choose ε > 0 s.t. (1 + δ)d = 1 + ε.

Definition 5.2.5 (Jacobian of a parametrization). Let Σ be a d-dimensional surface
of class C1 in Rn and Φ : Ω→ Σ be a local parameterization of Σ, where Ω is an open
set in Rd and Φ ∈ C1(Ω,Rn). For all x ∈ Ω, denote

dΦx : Rd → TanΦ(x)Σ

the differential of Φ at x. We define the jacobian of Φ at x as

JΦ(x) := |det(dΦx)| .

Remark 5.2.6. The definition 5.2.5 is clearly well posed in the sense that it does not
depend on the choice of the basis used to represent the linear map dΦx.

Proposition 5.2.7. Let Σ be a d-dimensional surface of class C1 in Rn and Φ : Ω→ Σ
be a local parameterization of Σ, where Ω is an open set in Rd and Φ ∈ C1(Ω,Rn). For
all x ∈ Ω, denote ∇Φ(x) the n× d matrix which represents dΦx as a linear map from
Rd to Rn with respect to the canonical basis. In other words, we have

(∇Φ(x))i,j =
∂Φi

∂xj
(x).

Then, the following holds:

JΦ(x) =
√

det((∇Φ(x))T · ∇Φ(x)) =

√ ∑
d×d minor of ∇Φ(x)

det(M)2.

Proof. Let M be the d× d matrix that represents dΦx : Rd → TanΦ(x)Σ with respect
to orthonormal basis. There exists an n × d matrix R s.t. ∇Φ(x) = R · M and
RT ×R = Idd×d. Hence, we have that

det((∇Φ(x))T · ∇Φ(x))) = det((RM)T · (RM)) = det(MT · (RTR) ·M)

= det(MT ·M) = (det(M))2.

The identity √
det((∇Φ(x))T · ∇Φ(x)) =

√ ∑
d×d minor of ∇Φ(x)

det(M)2

follows from the Cauchy-Binet formula (see 7.2.8).
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Now we are in the position to state prove the first version of the area formula.

Theorem 5.2.8 (Area formula - 1). Let Σ be a d-dimensional surface of class C1 in
Rn and Φ : Ω→ Σ be a global parameterization of Σ, where Ω is an open set in Rd and
Φ ∈ C1(Ω,Rn). For all Borel set F ⊆ Σ there holds

Hd(F ) =

ˆ
Φ−1(F )

JΦ(x) dx, (5.6)

where the jacobian JΦ is defined as in 5.2.5. In other words, the Hausdorff dimension
on Σ is the d-dimensional volume.

Proof. Notice that (5.6) can be stated equivalently as follows:

HdxΣ = Φ#(JΦ ·L dxΩ), (5.7)

where Φ# is the push-forward according to Φ. Define

λ := Φ#(Jϕ ·L dxΩ);

thanks to the characterization of the Hausdorff dimension on regular surfaces (see 5.2.3
and 5.2.4), formula (5.7) follows if we show that λ has the property stated in theorem
5.2.3.

Fix δ > 0; we claim that there exists ε > 0 s.t. for all f : U → Rd of class C1 with
isometry defect (see 5.2.1) at most δ (U is any open set in Σ) there holds

1

1 + ε
λ(E) ≤ L d(f(E)) ≤ (1 + ε)λ(E) ∀E ⊆ U Borel.

Denote Ũ := Φ−1(U) and g := f ◦ Φ : Ũ → Rd. Notice that Ũ is an open set in Rd and
g ∈ C1(Ũ ,Rd). Using the definition of differential (for instance, via curves) it is easy to
check that

1

1 + δ
|h| ≤ |dfy(h)| ≤ (1 + δ) |h| ∀y ∈ Σ ∀h ∈ TanyΣ.

Thus, we have
(1 + δ)−d ≤ |det(dfy)| ≤ (1 + δ)d ∀y ∈ Σ.

By the chain rule it follows that

(1 + δ)−dJΦ(x) ≤ |det(dgx)| ≤ (1 + δ)dJΦ(x) ∀x ∈ Ũ .

Since g ∈ C1(Ũ ,Rd) and Ũ is an open set in Rd, we have that

|det(dgx)| = |det(∇g(x))| ∀x ∈ Ũ ,

where (∇g(x))i,j = ∂gi
∂xj

(x). Then, given E ⊆ U Borel and defined Ẽ := Φ−1(E), by the
change of variable formula in multiple integrals, we have that

L d(f(E)) = L d(g(Ẽ)) =

ˆ
Ẽ

|det(∇g(x))| dx.

In conclusion, we have thatˆ
Ẽ

(1 + δ)−dJΦ(x) dx ≤
ˆ
Ẽ

|det(∇g(x))| dx ≤
ˆ
Ẽ

(1 + δ)dJΦ(x) dx,

that is
(1 + δ)−dλ(E) ≤ L d(f(E)) ≤ (1 + δ)dλ(E).

In conclusion, it suffices to choose ε > 0 s.t. (1 + δ)d = 1 + ε.
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Chapter 5. Lipschitz maps

5.2.2 Area formula for Lipschitz maps

We state further versions of the area formula, which are more general than the one
stated in 5.2.8. As for the proof, we will not give them in full details.

Definition 5.2.9 (Jacobian of a Lipschitz map). Let f : Ω→ Rn be a Lipschitz map
defined in an open set Ω ⊆ Rd. Let x ∈ Ω be a point where f is differentiable (recall
that this happens L d-a.e. in Ω as stated in 5.1.9); we denote as dfx : Rd → Rn the
differential of f at x. We define

Jf(x) :=

{
0 if rk(dfx) < d,√

det((∇f(x))T · ∇f(x)) if rk(dfx) = d.

Theorem 5.2.10 (Area formula - 2). Given f : Ω→ Rn a Lipschitz map (Ω ⊆ Rd is
an open set), then for all F ⊆ Rn Borel, there holds that

ˆ
F

#f−1(y) dHd(y) =

ˆ
f−1(F )

Jf(x) dx, (5.8)

where JΦ(x) is the jacobian of a Lipschitz map defined in 5.2.9.

Remark 5.2.11. The function #f−1(·) : F → N ∪ {∞} in (5.8) turns out to be Borel.
The left hand side in (5.8) is the so called Hd measure of F counted with multiplicity.

We state a more general version of the area formula, which implies 5.2.10.

Theorem 5.2.12 (Area formula - 3). Given f : Ω→ Rn a Lipschitz map (Ω ⊆ Rd is
an open set), then for all E ⊆ Ω Borel, there holds that

ˆ
f(E)

#(f−1(y) ∩ E) dHd(y) =

ˆ
E

Jf(x) dx, (5.9)

where Jf(x) is the jacobian of a Lipschitz map defined in 5.2.9.

Remark 5.2.13. The function #(f−1(·)∩E) : f(E)→ N∪{∞} in (5.9) is not necessarily
Borel, but agrees Hd-a.e. with a Borel one. The left hand side in (5.8) is the so called
Hd measure of f(E) counted with multiplicity.

Here, we prove 5.2.10 provided 5.2.12.

Proof. Given F ⊆ Rn Borel, choosing E := f−1(E) (which is a Borel set in Ω), (5.8) is
an immediate consequence of (5.9).

Having said that, we prove 5.2.12.

Proof. Step 1: We claim that formula (5.9) holds true if f ∈ C1(Ω) and Jf(x) 6= 0
for all x ∈ Ω (i.e. dfx has rank d at every x ∈ Ω). In this case, we can cover Ω with
open sets (not necessarily disjoint) Ωi s.t. f restrict to a parameterization in Ωi. Take
E ⊆ Ω a Borel set and split E as disjoint union of Borel sets (Ei)i s.t. Ei ⊆ Ωi. Call
fi := f|Ωi , Σi := f(Ωi) and Fi := fi(Ei) = f(Ei). Note that Fi is Borel; moreover, the
map #(f−1(·) ∩ E) : f(E)→ N ∪ {∞} is Borel. In deed, we have that

#(f−1(y) ∩ E) =
∑
i

1Fi(y).
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5.2. Area formula

Then, we can apply 5.2.8 to fi and Σi to deduce that

Hd(fi(Ei)) =

ˆ
Ei

Jfi(x) dx =

ˆ
Ei

Jf(x) dx.

If we sum with respect to i we deduce that
ˆ
f(E)

#(f−1(y) ∩ E) dHd(y) =

ˆ
f(E)

∑
i

1fi(Ei)(y) dHd(y)

=
∑
i

Hd(fi(Ei))

=
∑
i

ˆ
Ei

Jf(x) dx

=

ˆ
E

Jf(x) dx.

Step 2: We claim that if f ∈ C1(Ω) and Jf(x) = 0 for all x ∈ Ω (i.e. dfx has
rank at most d − 1 at every x ∈ Ω), then Hd(f(E)) = 0. In this case, the function
#(f−1(·) ∩ E)→ N ∪ {∞} is not necessarily Borel; however, it can be integrated over
f(E), since Hd(f(E)) = 0. In particular, formula (5.9) holds true. We can easily
reduce to the case in which E is bounded and ∇f is bounded in E (otherwise split E
in countably many pieces of finite L d measure in which ∇f is bounded). Given ε > 0,
define gε : Ω→ Rd × Rn s.t.

gε(x) = (εx, f(x)).

Let p : Rd × Rn → Rn the projection onto the last n coordinates. Then, we have
f = p ◦ gε. Since the differential of gε as maximal rank (i.e. d) at every x ∈ Ω and p is
a 1-Lipschitz map, we can use 5.2.8 and the property stated in 1.2.3. Thus, we obtain

Hd(f(E)) = Hd(p(gε(E))) ≤ Hd(gε(E)) =

ˆ
E

Jgε(x) dx.

Since L d(E) < +∞, it suffices to show that Jgε is uniformly bounded in x and that
Jgε(x)→ 0 for every x ∈ E. Then, by the dominated convergence theorem, we obtain
that

Hd(f(E)) ≤ lim
ε→0

ˆ
E

Jgε(x) dx = 0.

Recall that

∇gε(x) =

(
εIdd×d
∇f(x)

)
.

Then, we have that

Jgε(x) =
√

det((∇gε(x))T · ∇gε(x))

=
√

det(ε2Idd×d + (∇f(x))T · ∇f(x)).

In particular, we deduce that Jgε(x) is uniformly bounded for x ∈ E and ε ∈ (0, 1);
moreover, for all x ∈ E we have that

lim
ε→0

Jgε(x) =
√

det((∇f(x))T · ∇f(x)) = Jf(x) = 0.
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Chapter 5. Lipschitz maps

Step 3: We claim that (5.9) holds true if f is any map in C1(Ω,Rn). Split Ω in
Ω0 ∪ Ω1, where

Ω0 := {x ∈ Ω | Jf(x) = 0}, Ω1 := {x ∈ Ω | Jf(x) 6= 0}.

Then, we can split E as

E = (E ∩ Ω0) ∪ (E ∩ Ω1).

Notice that for all y ∈ f(E) there holds

#(f−1(y) ∩ E) = #(f−1(y) ∩ E ∩ Ω0) + #(f−1(y) ∩ E ∩ Ω1).

If y ∈ f(E) \ f(E ∩ Ω0), then we have

#(f−1(y) ∩ E) = #(f−1(y) ∩ E ∩ Ω1).

Hence, the function #(f−1(·) ∩ E) : f(E) \ f(E ∩ Ω0) → N ∪ {∞} is Borel. Since
Hd(f(E ∩ Ω0)) = 0, we deduce that the function #(f−1(·) ∩ E) : f(E) → N ∪ {∞}
agrees up to an Hd-null set with a Borel one; hence, it can be integrated (even if it is
not necessarily Borel). Applying the first two steps, we have that

ˆ
f(E)

#(f−1(y) ∩ E) dHd(y) =

ˆ
f(E∩Ω1)

#(f−1(y) ∩ E) dHd(y)

=

ˆ
f(E∩Ω1)

#(f−1(y) ∩ E ∩ Ω1) dHd(y) +

ˆ
f(E∩Ω1)

#(f−1(y) ∩ E ∩ Ω0) dHd(y)

=

ˆ
E∩Ω1

Jf(x) dx+

ˆ
f(E∩Ω1)∩f(Ω0)

#(f−1(y) ∩ E ∩ Ω0) dHd(y)

=

ˆ
E∩Ω1

Jf(x) dx

=

ˆ
E

Jf(x) dx.

Step 4: If f is Lipschitz and L d(E) = 0, we already know that Hd(f(E)) = 0. To
conclude, we only sketch the general case. By Lusin property of Lipschitz maps (see
5.1.12), we can find maps fn ∈ C1(Ω,Rn) and compact sets Kn ⊆ Ω with the following
properties:

• fn = f for L d-a.e. x ∈ Kn;

• Jfn = Jf for L d-a.e. x ∈ Kn;

• L d(Ω \Kn)→ 0.

Then, we split E as disjoint union of En, where En ⊆ Kn for n ≥ 1 and L d(E0) = 0.
The previous step guarantees that (5.9) holds for En for all n ≥ 1; moreover, we have
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already remarked that (5.9) holds for E0. Then, we have

ˆ
f(E)

#(f−1(y) ∩ E) dHd(y) =
∞∑
n=0

ˆ
fn(En)

#(f−1
n (y) ∩ En) dHd(y)

=
∞∑
n=0

ˆ
En

Jfn(x) dx

=
∞∑
n=0

ˆ
En

Jf(x) dx

=

ˆ
E

Jf(x) dx.

Corollary 5.2.14 (Area formula - 4). Let Ω ⊆ Rd be an open set, f : Ω → Rn be a
Lipschitz map and h : Ω→ [0,+∞] be a Borel map. Then, there holds

ˆ
f(Ω)

 ∑
x∈f−1(y)

h(x)

 dHd(y) =

ˆ
Ω

h(x)Jf(x) dx. (5.10)

Proof. We only sketch the proof of the statement above. If h = 1E, for some Borel set
E ⊆ Ω, then (5.10) reduces to (5.9); by linearity, (5.10) holds true for nonnegative step
functions. By approximation (Beppo Levi’s theorem is needed), we obtain (5.10) for
nonnegative Borel functions.
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Chapter 6

Rectifiable sets

This chapter deals with rectifiable sets (see [4], [5] and [2]). Let (X, d) be a metric space.

6.1 Definition and main properties
Definition 6.1.1 (Rectifiable set). Given d ∈ N, a set E ⊆ X is d-rectifiable if it can
be decomposed as countable union of Borel sets Ei, namely E =

⋃∞
i=0 Ei, where

1. Hd(E0) = 0,

2. for all i ≥ 1, we have that Ei = f(Fi) where Fi ⊆ Rd is a Borel set and fi : Fi → X
is a Lipschitz map.

If the metric space X is Rn, we can equivalently define rectifiable sets with regular
maps, as stated below. We will not prove this results.

Proposition 6.1.2. Assume X = Rn. The second condition in 6.1.1 can be replaced
with one of the followings:

2’ Ei ⊆ f(Ai), where Ai ⊆ Rd is an open set and fi ∈ C1(Ai,Rn);

2” Ei ⊆ fi(Ai), where Ai ⊆ Rd is an open set and fi ∈ C1(Ai,Rn) is a regular
parameterization;

2”’ Ei ⊆ Σi, where Σi is a d-dimensional surface of class C1 in Rn.

The proof, which will be omitted, is based on the following lemma.

Lemma 6.1.3. If F ⊆ Rd is a Borel set and f : F → Rn is a Lipschitz map, then f(F )
can be written as f(F ) =

⋃∞
n=0En, where Hd(E0) = 0 and En ⊆ fn(An) for all n ≥ 1,

with An ⊆ Rd open set and fn ∈ C1(An,Rn).

Proof. We only sketch the proof. Kirszbraun theorem (see 5.1.6) or McSchane lemma
(see 5.1.4) provide a Lipschitz extension of f to a Rd. By Lusin property of Lipschitz
maps (see 5.1.12), there exist maps fn ∈ C1(Rd,Rn) and compact sets Kn s.t. f = fn
on Kn and

⋃
nKn covers a.a. of Rd. Having said that, we define En = fn(Kn) for all

n ≥ 1 and E0 = f (F \
⋃
nKn). Since f is Lipschitz, we have that

Hd

(
f

(
F \

⋃
n

Kn

))
≤ Lip(f) L d

(
F \

⋃
n

Kn

)
= 0.
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Definition 6.1.4 (Purely unrectifiable set). Given d ∈ N, a set E ⊆ X is d-purely
unrectifiable if Hd(E ∩ f(F )) = 0 for all map f : F → X Lipschitz, where F ⊆ Rd is a
Borel set.

As in the case of rectifiable sets (see 6.1.2), if X = Rn there are equivalent definitions
for purely unrectifiable sets. We will not prove this result.

Proposition 6.1.5. Let E ⊆ Rn be a Borel set. The followings are equivalent:

• E is d-purely unrectifiable in the sense of definition 6.1.4, i.e. for all f : F → Rn
Lipschitz (F ⊆ Rd is a Borel set), there holds

Hd(E ∩ f(F )) = 0;

• for every map f ∈ C1(Rd,Rn) there holds

Hd(E ∩ f(Rd)) = 0;

• for every regular parameterization f ∈ C1(A,Rn) (A ⊆ Rd is an open set) there
holds

Hd(E ∩ f(A)) = 0;

• for every Σ d-dimensional surface of class C1 in Rn there holds

Hd(E ∩ Σ) = 0.

Remark 6.1.6. • If E is d-rectifiable, then dimH(E) ≤ d, because E is Hd σ-finite.

• If Hd(E) = 0, then E is clearly d-rectifiable and d-purely unrectifiable. On
the other hand, assume that E is d-rectifiable and d-purely unrectifiable. By
rectifiability, write E =

⋃∞
n=0En, where Hd(E0) = 0 and En is the image of a

Lipschitz map defined on a Borel subset of Rd for all n ≥ 1; since E is purely
unrectifiable, then Hd(En) = 0 for all n ≥ 1. Then, Hd(E) = 0.

• Hd(E) = 0 does not imply that E can be covered by countably many Lipschitz
images of sets in Rd. In deed, there exists K ⊆ R2 compact s.t. dimHK = 0
(which implies that H1(K) = 0) that cannot be covered by countably many
Lipschitz images of R. Hence, it is interesting to characterize the compact sets
K ⊆ R2 that can be covered by a Lipschitz curve of finite length. This is known
as "travelling salesman problem" (due to P.Jones). In other words, the set E0 in
the definition of rectifiability (see 6.1.1) cannot be removed.

• We cannot replace surfaces of class C1 in the definition of rectifiability (see 6.1.2)
with surfaces of class C2 or even C1,α for some α > 0. In fact, C1 functions
do not have Lusin properties with functions of class C1,α, with α > 0. In deed,
there exists f ∈ C1([0, 1]) s.t. for all α > 0 for all g ∈ C1,α([0, 1]) there holds
L 1({x | f(x) = g(x)}) = 0.

Here we provide a useful criterion to establish unrectifiability; we only sketch the
proof.

Lemma 6.1.7. Given E ⊆ R2 with projections E1, E2 on the axis, if L 1(E1) =
L 1(E2) = 0, then E is 1-purely unrectifiable.
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Chapter 6. Rectifiable sets

Proof. Given a curve Σ in R2 of class C1, we have to show that H1(E ∩Σ) = 0. First of
all, suppose that Σ is the graph of a C1 function g : I → R, where I ⊆ R is an interval.
In other words, we have that

Σ = {(x1, g(x1)) | x1 ∈ I}.

We have that
H1(E ∩ Σ) =

ˆ
E1∩I

√
1 + g′(x)2 dx = 0,

since L 1(E1) = 0. Similarly, if Σ is the image of a C1 function of the second variable,
we obtain Hd(E ∩ Σ) = 0. To conclude, we recall that every curve Σ of class C1

can be covered by countably many pieces of C1 graphs (in the first or in the second
variable).

Remark 6.1.8. The criterion given in 6.1.7 can be generalized to the case of d-purely
unrectifiable sets in Rn. However, it is enough to understand that the property of
rectifiability is not related to the Hausdorff dimension, as shown in the example below.
In deed, for all d ∈ (0, 2) there exists a compact set K ⊆ R2 s.t. dimH(K) = d and K
is 1-purely unrectifiable.

Example 6.1.9. Given λ ∈
(
0, 1

2

)
, consider the self-similar fractal Kλ associated to the

four similarities with scaling factor λ, as described in 3.3.11. Recall that d = dimH(Kλ)
is s.t. 4λd = 1; hence, d = log 4

log λ
, which can be any number in (0, 2). Clearly, Kλ has

projections on the coordinate axis that are L 1-null. Hence, by lemma 6.1.7, Kλ is
1-purely unrectifiable.

Example 6.1.10. It can be shown that the Von Koch curve (see 3.3.10) is 1-purely
unrectifiable, but the previous lemma does not apply.

The following criterion holds true; we only sketch the proof.

Proposition 6.1.11. If E ⊆ Rn is an Hd σ-finite Borel set, then it can be decomposed
as E = Er ∪ Epu, where

• Er is d-rectifiable,

• Epu is d-purely unrectifiable.

The decomposition is unique up to Hd-null sets.

Proof. Let F := {F ⊆ E | F is d-rectifiable}. F is closed under countable union; it
can be proved that F has an element Er which maximizes Hd. Then, it can be checked
that E \ Er is d-purely unrectifiable.

6.2 Tangent space to rectifiable sets

6.2.1 Weak tangent bundle

We want to provide a definition of tangent bundle for rectifiable sets. In the following,
denote by Gr(n, d) the Grassmannian of the d-dimensional hyperplanes in Rn.
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Definition 6.2.1 (Weak tangent bundle). Given a set E ⊆ Rn Borel, we say that
V : E → Gr(n, d) is a weak tangent bundle to E if the following holds true: for
all Σ d-dimensional surface of class C1 in Rn, there holds TanxΣ = V (x) for Hd-a.e.
x ∈ Σ ∩ E.

We start with a fundamental remark.
Remark 6.2.2. Given Σ, Σ′ d-dimensional surfaces of class C1 in Rn, then TanxΣ =
TanxΣ′ for Hd-a.e. x ∈ Σ∩Σ′. This follows from the fact that, given f, g : Rd → Rm of
class C1, then ∇f(x) = ∇g(x) for L d-a.e. x ∈ Rd s.t. f(x) = g(x) (in deed, this is a
consequence of the Sard’s lemma). In other words, the classical tangent bundle to a C1

surface is also a weak tangent bundle, which is unique in this case.

Proposition 6.2.3. If E is a d-rectifiable set in Rn, then E admits a weak tangent
bundle V : E → Gr(n, d) (see 6.2.1), which is unique up to Hd null sets.

Proof. We can write E =
⋃∞
n=0En, where the union is disjoint, E0 is Hd null and for

all i ≥ 1 there holds Ei ⊆ Σi, where Σi is a d-dimensional surface of class C1 in Rn. We
set

V (x) :=

{
TanxΣi if x ∈ Ei, i ≥ 1

any V ∈ Gr(n, d) if x ∈ E0.

Take Σ a d-dimensional surface of class C1 in Rn. Given i ≥ 1, as remarked in 6.2.2,
we have that TanxΣ = TanxΣi = V (x) for Hd-a.e. x ∈ Ei ∩ Σ. Then, we obtain that
TanxΣ = V (x) for Hd-a.e. x ∈ Σ ∩E. In other words, we have shown that V is a weak
tangent bundle to E. In deed, this argument also shows that V is unique up to Hd null
sets; in particular, V does not depend on the decomposition of E chosen, up to Hd null
sets.

Definition 6.2.4. Given E ⊆ Rn a d-rectifiable set, we denote as TanwE the weak
tangent bundle to E provided by the proposition 6.2.3.

6.2.2 Approximate tangent space

We have shown that any d-rectifiable sets E has a weak tangent bundle, which is well
defined and unique up to Hd-null sets. If E is also Hd-locally finite, than we have
stronger tangential properties. We introduce the notion of a approximate tangent space,
which is bases on a blow-up procedure.

Definition 6.2.5 (Approximate tangent space). Take V ∈ Gr(n, d) and E ⊆ Rn Borel
and Hd locally finite. For all x ∈ E for all r > 0, we denote

Ex,r :=
1

r
(E − x).

Given x ∈ E, we say that V is an approximate tangent space to E at x if HdxEx,r ∗⇀
HdxV locally in the sense of measures as r → 0, that is

lim
r→0

ˆ
Ex,r

g(y) dHd(y) =

ˆ
V

g(y) dHd(y) ∀g ∈ Cc(Rn).

Remark 6.2.6. In the framework of the definition 6.2.5, if E admits an approximate
tangent space V at x, then V is unique. In deed, HdxV is uniquely determined, since
it is a weak-* limit of measures. Then, we denote V as TanaxE.
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Chapter 6. Rectifiable sets

Here we show that the notion of approximate tangent space agrees with the classical
one in the setting of C1 submanifold of Rn; this result will be useful to extend the
notion of approximate tangent space to rectifiable sets.

Lemma 6.2.7. Let Σ be k-submanifold of Rn of class C1 (without boundary). For all
x ∈ Σ, we have

Hkx
(

Σ− x
r

)
∗
⇀ HkxTanxΣ as r ↓ 0.

Proof. Fix x ∈ Σ. We denote as Bk
δ the k-dimensional ball centered at the origin in Rk

of radius δ. We can reduce to the following case:

• x = 0;

• TanxΣ = Span(e1, . . . , ek) = Rk, where Rn = Rk × Rn−k;

• there exist δ > 0 and a C1 map Φ : Bk
δ → Bn−k

δ s.t. Σ∩ (Bk
δ ×Bn−k

δ ) is the graph
of Φ, that is

Σ ∩ (Bk
δ ×Bn−k

δ ) = {(x,Φ(x)) ∈ Rk × Rn−k | x ∈ Bk
δ }.

Let g be a test function in Cc(Rn); we have to check that

lim
r→0

ˆ
Σ/r

g(y) dHk(y) =

ˆ
Rk
g(x, 0) dx

Notice that Σ/r can be parameterized in Bδ/r ×Bn−k
δ/r as follows:

Σ/r ∩ (Bk
δ/r ×Bn−k

δ/r ) =

{(
z,

Φ(rz)

r

)
∈ Rk × Rn−k

∣∣∣∣ z ∈ Bk
δ/r

}
.

Since we are interested in the limiting behaviour as r approaches 0, there exists η > 0
s.t. for all r ∈ (0, η) there holds

supp(g) ⊆ Bk
δ/r ×Bn−k

δ/r .

Given x ∈ Bk
δ , denote by JΦ(x) the jacobian determinant of Φ; by the area formula

(see 5.2.14), for r ∈ (0, η) there holds
ˆ

Σ/r

g(y) dHk(y) =

ˆ
Bk
δ/r

g

(
z,

Φ(zr)

r

)√
1 + JΦ(rz) dx.

Under our assumptions, notice that the map Φ as differential dΦ that vanishes at zero;
hence, JΦ(0) = 0. As r ↓ 0, for all z ∈ Rk, there holds that

lim
r→0

Φ(zr)

r
= dΦ0(z) = 0.

Since Φ is a map of class C1, we have that

lim
r→0

JΦ(rz) = 0.
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6.2. Tangent space to rectifiable sets

It is easy to show that the pointwise limit above are are uniformly bounded with respect
to r ∈ (0, η) and z in any compact set of Rk. Then, by the dominated convergence
theorem, we deduce that

lim
r→0

ˆ
Bk
δ/r

g

(
z,

Φ(zr)

r

)√
1 + JΦ(rz) dx =

ˆ
Rk
g(x, 0) dx.

Proposition 6.2.8. If E ⊆ Rn is d-rectifiable and Hd locally finite, then for Hd-a.e.
x ∈ E we have that TanwxE is the approximate tangent space.

Proof. We can write E =
⋃∞
n=0En, where the union is disjoint, E0 is Hd null and for

all i ≥ 1 there holds Ei ⊆ Σi, where Σi is a d-dimensional surface of class C1 in Rn.
We fix i ≥ 1 and we claim that HdxEx,r → HdxTanxΣi for Hd-a.e. x ∈ Ei. This is
enough to conclude, since TanxΣi = TanwxE for Hd-a.e. x ∈ Ei.

Notice that
Ex,r = (Σi)x,r \ (Σi \ E)x,r ∪ (E \ Σi)x,r,

which implies that

HdxEEx,r = Hdx(Σi)x,r −Hdx(Σi \ E)x,r +Hdx(E \ Σi)x,r.

We have three addenda and we can study separately their limiting behaviour as r → 0.

• We have already shown in lemma 6.2.7 that Hdx(Σi)x,r
∗
⇀ HdxTanxΣi locally

in the sense of measures for all x ∈ Σi.

• We claim that for Hd-a.e. x ∈ Ei there holds that Hdx(Σi \ E)x,r
∗
⇀ 0 locally

in the sense of measure. Fix R > 0 and x ∈ Ei s.t. Θ∗d(Σi \ E, x) exists and it
is 0. By theorem 3.2.3, we know that the required properties occur for Hd-a.e.
x /∈ Σi \ E, that is for Hd-a.e. x ∈ Ei. We have that

lim
r→0
Hdx(Σi\E)x,r(BR) = lim

r→0

Hd((Σi \ E) ∩B(x, rR))

rd
= αdR

dΘ∗d(Σi\E, x) = 0.

We deduce that Hdx(Σi \ E)x,r → 0 strongly in any ball for Hd-a.e. x ∈ Ei; in
particular, the convergence is locally in the sense of measures for Hd-a.e. x ∈ Ei.

• Similarly, it can be checked that Hdx(E \Σi)x,r → 0 as r → 0 locally in the sense
of measures for Hd-a.e. x ∈ Ei (recall that (E \ Σi) ∩ Ei = ∅).

Corollary 6.2.9. If E ⊆ Rn is d-rectifiable and Hd locally finite, then for Hd-a.e.
x ∈ E we have that Θd(E, x) exists and equals 1.

Proof. Take x ∈ E s.t. E admits an approximate tangent plane at x. Notice that

HdxTanaxE(∂B1) = 0;

then, by the weak-* convergence, it follows that

1 = lim
r→0
HdEx,r(B1) = lim

r→0

Hd(E ∩B(x, r))

αdrd
= Θd(E, x).
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Chapter 6. Rectifiable sets

Figure 6.1: The cone C(x, V, α) is highlighted in yellow.

The notation established below will be very useful in the following of the chapter.

Definition 6.2.10 (Cone). Given x ∈ Rn, V ∈ Gr(n, d) and α ∈
(
0, π

2

)
, we set

C(x, V, α) := x+ {y ∈ Rn | dist(x, V ) ≤ |y| sinα}.

We can refine the result given in 6.2.9.

Corollary 6.2.11. Fix α ∈
(
0, π

2

)
; take E ⊆ Rn a d-rectifiable set which is Hd locally

finite. Let x ∈ E s.t. E admits an approximate tangent plane at x (see 6.2). Then, for
Hd-a.e. x ∈ E the followings hold true:

lim
r→0

Hd(E ∩B(x, r) ∩ C(x,TanaxE,α))

αdrd
= 1;

lim
r→0

Hd(E ∩B(x, r) ∩ C(x,TanaxE,α)c)

rd
= 0.

In particular, these facts holds for Hd-a.e. x ∈ E.

Proof. As for the first statement, using the scaling and translation properties of the
Hausdorff measure, we obtain that

1

rd
Hd(E ∩B(x, r) ∩ C(x,TanaxEα)) = Hd(Ex,r ∩B1 ∩ C(0,TanaxE,α))

= HdxEx,r(B1 ∩ C(0,TanaxE,α))

Notice that ∂(B1∩C(0,TanaxE,α))∩TanaxE is the union of the origin and the intersection
of a d-dimensional plane with a (n−1)-dimensional sphere, that is a (d−1)-dimensional
sphere. In particular, it is an Hd null set. Having said that

HdxTanaxE (∂(B1 ∩ C(0,TanaxE,α))) = 0,
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6.2. Tangent space to rectifiable sets

Figure 6.2: We are interested in computing the d-dimensional Hausdorff measure, scaled
by the factor αdrd of the red part of the set E.

by the weak-* convergence, we deduce that

lim
r→0

1

rd
Hd(E ∩B(x, r) ∩ C(x,TanaxEα)) = lim

r→0
HdxEx,r(B1 ∩ C(0,TanaxE,α))

= HdxTanaxE (B1 ∩ C(0,TanaxE,α))

= Hd(B1 ∩ TanaxE)

= αd.

The second statement can be proved with a similar argument.

Remark 6.2.12. An heuristic consequence of corollary 6.2.11 is that cusps and boundary
points can occur only for Hd null sets of points in a d-rectifiable set. In other words,
these behaviour are not generic. For instance, assume that E is a 1-rectifiable set in R2

which has a cusp at the point x (see figure 6.3). Then, one can compute that

H1xEx,r → 2H1xS
weakly-* as r goes to 0, where Tanx(E) is that we expect to be the tangent plane to E
at x and S is half of the translated plane.

An example of boundary point is given in figure 6.4. In this case, we have that the
weak-* limit of the scaled measure is H1xS, where S is as before.

Remark 6.2.13. We provide an example of a 1-rectifiable set E in R2 which is H1 finite
and s.t. for H1-a.e. x ∈ E there holds

H1(E ∩B(x, r) ∩ C(x,TanaxE,α)c) > 0 ∀r > 0 ∀α ∈
(

0,
π

2

)
.

Let (xn)n be a dense sequence in R2, (rn)n be a sequence of radii s.t.
∑

n rn < +∞ and
(en)n be a sequence of unit vectors in R2. For all n we set In to be the segment joining
the points xn − rnen and xn + rnen. Then

E :=
⋃
n

In
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Chapter 6. Rectifiable sets

Figure 6.3: In red the support of the weak-* limit of the scaled HdxE measure in a
cusp point.

Figure 6.4: In red the support of the weak-* limit of the scaled HdxE measure in a
boundary point.
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6.3. Rectifiability criteria

Figure 6.5: The cones C(x, V, α) and C(x′, V, α) are respectively in red and in blue.

is 1-rectifiable and H1 finite. Fix n ∈ N; for H1-a.e. x ∈ In, there holds that TanwxE =
Span(en). Notice also that supp(H1xE) = R2. Since B(x, r) ∩ C(x,TanaxE,α)c has
non empty interior part for all r > 0 for all α ∈

(
0, π

2

)
, we deduce that

H1(E ∩B(x, r) ∩ C(x,TanaxE,α)) = H1xE(B(x, r) ∩ C(x,TanaxE,α)) > 0.

However, arguing as in the proof of corollary 6.2.11, it can be checked that for all n ∈ N
for H1-a.e. x ∈ In there holds

lim
r→0

H1xE(B(x, r)) \ In
r

= 0.

6.3 Rectifiability criteria
We introduce some useful rectifiability criteria. We will also state (without proof) some
famous results. The first rectifiability criterion is based on the following lemma.

Lemma 6.3.1. Let F be a set in Rn s.t. there exist V ∈ Gr(n, d) and α ∈
(
0, π

2

)
with

the following property: for all x ∈ F there holds F ⊆ C(x, V, α). Then F is included on
the graph of a Lipschitz map g : V → V ⊥ s.t. Lip(g) ≤ tan(α) (see figure 6.5).

Proof. Notice that F is the graph of a map g : πV (F )→ V ⊥, where πv : Rn → V is the
orthogonal projection with respect to V . In deed, the assumptions guarantee that for all
x ∈ F we have F ∩ π−1

V (x) = {x}; this argument provides the existence of such a map
g. Moreover, g is Lipschitz: in fact, given x, x′ ∈ F there holds that x′ ∈ C(x, F, α).
Hence, we have

|x− x′| ≤ tan(α) |πV (x)− πV (x′)| ,
that is g is tan(α)-Lipschitz. At this point, Kirszbraun theorem (see 5.1.6) provides a
tan(α)-Lipschitz extension of g to the vector space V with values in V ⊥.

Proposition 6.3.2. Let d be an integer. Let E ⊆ Rn be a Borel set s.t. for all x ∈ E
there exist V (x) ∈ Gr(n, d), α(x) ∈

(
0, π

2

)
and a radius r(x) > 0 s.t.

E ∩B(x, r(x)) ⊆ C(x, V (x), α(x)).

Then E is contained in a countable union of Lipschitz graphs. In particular, if the
assumptions hold for Hd-a.e. x ∈ E, then E is rectifiable.
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Chapter 6. Rectifiable sets

Proof. We want to write E as countable union of subsets that fulfil the assumptions of
lemma 6.3.1. For all α ∈

(
0, π

2

)
, for all V ∈ Gr(n, d), for all r > 0, define

Eα,V,r := {x ∈ E | E ∩B(x, r) ⊆ C(x, V, α)}.

Take a set Q ⊆ Rn s.t. diam(Q) ≤ r
2
; then, Eα,V,r ∩Q satisfies the assumption of lemma

6.3.1. In deed, for all x ∈ Eα,V,r ∩ Q there holds Eα,V,r ⊆ E and Q ⊆ B(x, r); hence,
we have that

Eα,V,r ∩Q ⊆ E ∩B(x, r) ⊆ C(x, V, α).

So, we infer that Eα,V,r ∩Q is included in the graph of a Lipschitz map from V with
values in V ⊥. At this point, for all N define GN to be a finite family of d-dimensional
planes in Rn s.t. every V ∈ Gr(n, d) is contained in C

(
0, V , 1

2N

)
for some V ∈ GN ; for

all r > 0 let Fr be a countable decomposition of Rn in cubes of diameter r
2
. Then, we

can write
E =

⋃
n∈N

⋃
V ∈Gn

⋃
m∈N

⋃
Q∈F 1

m

Eπ
2
− 1
n
,V, 1

m
∩Q.

Since the union is countable, we deduce that E is contained in the union of Lipschitz
graphs.

We provide another criterion of rectifiability, which is based on the following definition
and lemma.

Definition 6.3.3 (Approximate tangent cone). Let E ⊆ Rn be a Borel set; given
x ∈ E, V ∈ Gr(n, d) and α ∈

(
0, π

2

)
, we say that the cone C(x, V, α) is approximately

tangent to E at x if the following holds:

lim
r→0

Hd(E ∩B(x, r) ∩ C(x, V, α)c)

rd
= 0.

Lemma 6.3.4. Let E ⊆ Rn be a Borel set; let d be a positive integer. Fix α ∈
(
0, π

2

)
,

V ∈ Gr(n, d), δ > 0 and r0 > 0. Set

α′ :=
1

2

(π
2

+ α
)
, δ′ := δ

(
sin(α′ − α)

3

)d
.

Define Eα,V,δ,r0 to be the set of all x ∈ E s.t.

• Hd(E ∩B(x, r)) ≥ δrd for all r ≤ r0;

• Hd(E ∩B(x, r) ∩ C(x, V, α)c) ≤ δ′rd for all r ≤ r0.

Assume that F ⊆ Eα,V,δ,r0 and diam(F ) ≤ r0
2
. Then F is contained in the graph of a

Lipschitz map g : V → V ⊥ s.t. Lip(g) ≤ tan(α′).

Proof. It suffices to show that for all x, x′ ∈ F , then x′ ∈ C(x, V, α′). Then, we
conclude as in the proof of lemma 6.3.1. Fix x, x′ ∈ F and assume by contradiction
that x′ /∈ C(x, V, α′). The geometric construction is resumed in figure 6.6. Denote

r := 2 |x′ − x| .
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6.3. Rectifiability criteria

Figure 6.6: The geometric construction of lemma 6.3.4.

Set ρ to be the distance between x′ and C(x, V, α), that is

ρ := |x′ − x| sin(α′ − α) =
r

2
sin(α′ − α).

Since diam(F ) ≤ r0
2
, then r ≤ r0; moreover, we have that ρ < r

2
. Notice that

B(x′, ρ) ⊆ B
(
x,
r

2
+ ρ
)
⊆ B(x, r), B(x′, ρ) ∩ C(x, V, α) = ∅.

To resume, there holds
B(x′, ρ) ⊆ B(x, r) \ C(x, V, α).

So, by the assumptions, since r ≤ r0 we have that

δ′rd ≥ Hd(E ∩Br(x) ∩ C(x, V, α)c)

≥ Hd(E ∩Bρ(x
′))

≥ δρd

= δ

(
sin(α′ − α)

2

)d
rd.

In conclusion, we have that

δ

(
sin(α′ − α)

3

)d
= δ′ ≥ δ

(
sin(α′ − α)

2

)d
,

which is a contradiction.
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Theorem 6.3.5. Let E ⊆ Rn be a Borel set; let d be a positive integer. Assume that
at every x ∈ E there holds:

• E admits an approximately tangent cone C(x, V (x), α(x)), where V (x) ∈ Gr(n, d)
and α(x) ∈

(
0, π

2

)
;

• Θ∗d(E, x) > 0.

Then E is contained in a countable union of d-dimensional Lipschitz graphs. In partic-
ular, if the assumptions holds for Hd-a.e. x ∈ E, then E is d-rectifiable.

Proof. We write E as countable union of subsets that satisfies the assumptions of lemma
6.3.1. More precisely, for all r0 > 0, let Fr0 be a countable family of cubes that cover
Rn with diameter less than or equal to r0

2
. For all m ∈ N, let Gm be a finite family of

planes in Gr(n, d) s.t. for all V ′ ∈ Gr(n, d) there exists V ∈ Gm s.t. V ′ ⊆ C
(
0, V, 1

m

)
.

For all V ∈ Gr(n, d), for all α ∈
(
0, π

2

)
, for all r, δ > 0, define Eα,V,δ,r0 to be the set of

all x ∈ E s.t.

• Hd(E ∩B(x, r)) ≥ δrd for all r ≤ r0;

• Hd(E ∩B(x, r) ∩ C(x, V, α)c) ≤ δ′rd for all r ≤ r0.

If we show that
E =

⋃
m∈N

⋃
m′∈N

⋃
V ∈Gm

⋃
Q∈F 1

m

Eπ
2
− 1
m
,V, 1

m
, 1
m′
∩Q,

then we conclude immediately by lemma 6.3.4 and the fact that the union is countable.
Take x ∈ E; we show that there exist m,m′ ∈ N and V ∈ Gm s.t.

x ∈ Eπ
2
− 1
m
,V, 1

m
, 1
m′
∩Qx,

where Qx is a cube in F 1
m′

that contains x. Choose m ∈ N s.t.

Θ∗d(E, x) >
1

m
, α(x) ≤ π

2
− 2

m
.

In particular, there are m′ ∈ N and V ∈ Gm s.t.

V (x) ⊆ C

(
0, V,

1

m

)
,

Hd(E ∩B(x, r)) ≥ rd

m
∀r ≤ 1

m′
.

We deduce that
C(x, V (x), α(x)) ⊆ C

(
x, V,

π

2
− 1

m

)
.

By definition of approximate tangent cone, we deduce that

lim
r→0

Hd(E ∩B(x, r) ∩ C
(
x, V, π

2
− 1

m

)
rd

= 0.

In particular, up to replace m′ with a larger one, we can assume that

Hd

(
E ∩B(x, r) ∩ C

(
x, V,

π

2
− 1

m

)c)
≤ δ′rd,

where δ′ is defined as in lemma 6.3.4, by δ = 1
m
. This concludes the proof.
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Remark 6.3.6. For all n, d ∈ N there exists a compact set K ⊆ Rn s.t. Hd(K) > 0
but Θ∗d(K, x) = 0 for Hd-a.e. x ∈ K and K is not d-rectifiable. This means that the
assumption on the lower d-dimensional density in theorem 6.3.5 cannot be removed for
free.

The following theorem holds true; we omit the proof, which is not hard.

Theorem 6.3.7. Assume that E ⊆ Rn is Borel, Hd locally finite and for Hd-a.e. x ∈ E
there exists V (x) ∈ Gr(n, d) s.t. C(x, V (x), α) is an approximate tangent cone to E at
x for all α ∈

(
0, π

2

)
. Then, E is d-rectifiable.

It is also possible to characterize d-rectifiable sets in terms of projections. It can
be checked that, if E is d-rectifiable in Rn, then Hd(πV (E)) > 0 for a.e. V ∈ Gr(n, d)
with respect to the Haar measure on the Grassmannians (where πV is the orthogonal
projection to V ). The implication can be reversed in some sense; however, it is very
hard to prove.

Theorem 6.3.8 (Besicovitch-Federer). If E ⊆ Rn is Hd finite and d-purely unrectifiable,
then Hd(πV (E)) = 0 for a.e. V ∈ Gr(n, d).

In the general setting of metric spaces, it is possible to characterize 1-dimensional
sets in the following sense. We omit the proof.

Theorem 6.3.9. Let X be a metric space; let K ⊆ X be compact, connected and s.t.
H1(K) < +∞. Then, K can be covered by a single path γ : [0, 1]→ X which is Lipschitz
continuous. In particular, K is 1-rectifiable.

Remark 6.3.10. In the framework of theorem 6.3.9, tangent lines are tangent to K in
the classical sense, not only in the weak sense.

It is possible to characterize rectifiability in terms of density. We have already shown
that d-rectifiable sets in Rn which are Hd locally finite have d-dimensional density 1
at Hd-a.e. point in E (see 6.2.9). Conversely, the following statement holds true. It is
very hard to prove.

Theorem 6.3.11 (Besicovitch, Marstrand-Mattila, Preiss). If E is Hd locally finite
and Θd(E, x) exists, it is finite and positive for Hd-a.e. x ∈ E, then d is a natural
number and E is d-rectifiable.

6.4 Rademacher theorem and area formula for recti-
fiable sets

In this final section, we only sketch some very useful and general tools.

Theorem 6.4.1 (Rademacher). Let E ⊆ Rm be a d-rectifiable set; let f : Rm → Rn be
a Lipschitz function. Then, for Hd-a.e. x ∈ E f is tangentially differentiable at x, that
is there exists a linear map T : Twx E → Rn s.t.

f(x+ h) = f(x) + T (h) + o(|h|) ∀h ∈ Twx E, as |h| → 0.

In particular, T depends only on the restriction of f to E and it is unique. It is denoted
by dTanfx.
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Remark 6.4.2. In the framework of theorem 6.4.1, for Hd-a.e. x ∈ E we can define the
tangential jacobian of f at x, that is

JTanf(x) :=
∣∣det(dTanfx)

∣∣ .
Thus, the area formula holds true.

Theorem 6.4.3 (Area formula - 5). Let E ⊆ Rm be a d-rectifiable set; let f : Rm → Rn
be a Lipschitz function. Then, there holds

ˆ
f(E)

#(f−1(y) ∩ E) dHd(y) =

ˆ
E

JTanf(x) d Hd(x)

and the integrals are well defined.
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Chapter 7

The Plateau’s problem and the
Theory of Currents

The aim of this chapter is to introduce the Plateau’s problem, briefly describe some of
the possible approaches to the solution and give an overview on the theory of Currents,
which can be used to solve this problem. We will define currents to be the dual of
differential forms; so, we start with a review of basic multilinear algebra. One of the
most complete presentation of the theory of Currents can be found in [2].

7.1 The Plateau’s problem

The Plateau’s problem can be stated as follows: given a curve Γ in the R3, we want
to find a surface Σ with minimal area that spans Γ. More precisely, we want to prove
the existence of such a minimal surface. The same problem can be stated in general
dimension and codimension.

The first difficulty is that we need to answer these questions.

• What is a "surface" Σ?

• What is the "area of a surface"?

• What is the meaning of "Σ spans Γ"?

The different answers give rise to many approaches toward the solutions of the Plateau’s
problem. For instance, if we restrict to regular object, the answers are clear in any
dimension and codimension:

• a surface Σ is a d-dimensional submanifold in Rn of class C1;

• the area of Σ is the d-dimensional volume, namely Hd(Σ);

• if the boundary of Σ is Γ (that is a (d − 1)-submanifold), then we say that Σ
spans Γ.

To prove the existence, the strategy relies on the so-called Direct Method: we need
compactness and lower semicontinuity results. However, the class of regular objects
is not the right framework to establish these results; then, the Direct Method does
not apply and it is difficult to prove existence; furthermore, the surface with a given
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boundary that minimizes the area may be not regular. Moreover, there are also
modelling reasons to consider more general objects.

We need to find

• a compactification of the collection of the surfaces,

• a lower semicontinuous extension of the area functional,

• an extension of the notion of boundary, which is stable.

These ingredients are enough to prove the existence of the solution of the Plateau’s
problem among these generalized objects. The theory of Currents provides these tools,
giving a possible approach to this problem. Then, one would like to prove the regularity
of the minimizers; there is a huge theory in this direction, which is very hard and not
fully established. However, the one based on Currents is not the only possible approach
to the Plateau’s problem. Here, we briefly describe some of the others.

We remark that usually the term "minimal surface" means a surface with vanishing
mean curvature, which is the Euler-Lagrange equation associated to the area functional.
However, in the following, we will always refer to "minimal surface" as a minimizer of
the area functional (in a given class of competitors).

7.1.1 A purely set-theoretic approach

We start describing a simplified version of the Plateau’s problem, the so-called Steiner’s
problem. Given a finite set Γ in Rn, we want to find a connected compact set Σ with
minimal length (namely, H1 measure) that contains Γ. This problem can be solved via
Direct Method. One consider the collection

X := {Σ ⊆ Rn | Γ ⊆ Σ, Σ is connected and compact }.

We can endow the space X with the Hausdorff distance; we mention the following result.

Theorem 7.1.1 (Golab’s theorem). H1 is lower semicontinuous on the space X .

By mean of the Golab’s theorem, one can prove the existence of minimizers in this
framework. We notice that in the Golab’s theorem we need to deal with connected sets.
In deed, for any n ∈ N, one can consider the set En ⊆ [0, 1] defined as

En :=

{
k

n

∣∣∣∣ k ∈ {0, . . . , n}} .
It is immediate to check that the sequence {En}n∈N converges to the segment [0, 1]
with respect to the Hausdorff distance. However, H1(En) = 0 for any n ∈ N and
H1([0, 1]) = 1; so, the lower semicontinuity with respect to the Hausdorff distance fails.
We also remark that the Golab’s theorem has no equivalent in higher dimension; then,
this approach cannot immediately extended to general dimension and codimension.

An attempt of extension of this purely set-theoretic approach can be the following.
Given a curve Γ, we consider the collection of compact sets Σ that contain Γ and such
that Γ can be retracted to a point in Σ. Under some reasonable assumptions, this class
is compact with respect to the Hausdorff distance; however, the lower semicontinuity of
the area functional fails. For instance, if Γ is a circle in R3, the minimizer of the area
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functional is the disk that spans Γ. However, by adding tiny tentacles to the disk, one
can build a sequence of sets with "almost" the same area of the disk that converges in
Hausdorff distance to wild closed set with arbitrarily large 2-dimensional area.

To conclude, we mention the fact that this purely set-theoretic approach was followed
in 1960s by Reifenberg. Variants of this approach were proposed after 2000 by Harrison
and De Lellis, Ghiraldin, Maggi.

7.1.2 A parametric approach

Fix a model surface D in Rd, γ : ∂D → Rn and define Γ := γ(∂D). Given a map
Φ : D → Rn, we denote by Σ := Φ(D). In this framework, we say that Σ spans Γ if the
boundary condition Φ = γ on ∂D holds. If Φ is injective and regular, the area formula
(see 5.2.14) yields that

Hd(Σ) =

ˆ
D

JΦ(s) ds;

if Φ is not regular, multiplicities have to be taken into account. However, one can try
to minimize the integral functional

F (Φ) :=

ˆ
D

JΦ(s) ds

on some Sobolev space, for instance W 1,2
γ (D,Rn) (the space of W 1,2 functions from

D to Rn with trace γ on ∂D). We also mention the fact that the lagrangian of the
functional F is policonvex; therefore, F is weakly lower semicontinuous on W 1,2

γ (D,Rn).
However, since the functional F is invariant under reparameterization, then it lacks of
coercivity. More precisely, by the change of variable formula, it is immediate to see that

F (Φ ◦ σ) = F (Φ)

for any σ : D → D diffeomorphism. Assume that there is a minimizer. Then, one
can reparameterize this map to construct a sequence of maps in W 1,2

γ (D,Rn) with the
same energy that weakly converges to maps that has anything to do with the minimizer
(for instance a constant map). In other words, the problem of this approach is that
we cannot prove in general the compactness of minimizing sequences. However, in
dimension 1 and 2 there are shortcuts.

The 1-dimensional case

In dimension 1, it is natural to assume that the reference domain D is the segment
[0, 1]. Then, we have to minimize the functional

F (Φ) =

ˆ 1

0

|Φ′(s)| ds

among the maps Φ ∈ W 1,2((0, 1),Rn) with a prescribed boundary datum. Since this
problem is trivial, one can add a constraint on the ambient space; for instance, we one
can restrict to the Φ that take values in a given submanifold M in Rn. However, since
F lacks of coercivity, we introduce the functional

E(Φ) :=

ˆ 1

0

|Φ′(s)|2 ds

on the space W 1,2
γ (D,M). The following result holds true; the proof is very easy.
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Proposition 7.1.2. Let Φ in W 1,2
γ (D,M) be a minimizer for E; then Φ is also a

minimizer for F in W 1,2
γ (D,M) and |Φ′| is constant.

Proof. Given ϕ ∈ W 1,2(D,Rn), there exists a reparameterization ϕ̃ := ϕ ◦ σ with
constant speed (namely |ϕ′| is constant). Here, σ : [0, 1]→ [0, 1] is a diffeomorphism of
class C1 that sends 0 in 0 and 1 in 1. Then, we have that

E(ϕ) = E(ϕ̃).

Moreover, by the Hölder’s inequality, we deduce that

E(ϕ) =

ˆ 1

0

|ϕ′(s)|2 ds ≥
(ˆ 1

0

|ϕ′(s)| ds
)2

= F (Φ)2,

with equality that holds if and only if |ϕ′| is constant. Therefore, given Φ a minimizer
for E and ϕ any other competitor, let ϕ̃ be the repapameterization of ϕ at constant
speed. To be precise, all these maps are in the space W 1,2

γ (D,M). Therefore, we have
that

F (ϕ)2 = F (ϕ̃)2 = E(ϕ̃) ≥ E(Φ) ≥ F (Φ)2.

Hence, Φ is a minimizer for F in the desired space. Moreover, if we take ϕ = Φ, we
deduce that E(Φ) = F (Φ)2; so, we infer that |Φ|′ is constant.

This result allows us to minimize the functional E, which has good lower semicontinu-
ity and compactness property. In some sense, we are choosing a specific parameterization
for each map.

The 2-dimensional case

In dimension 2, it is natural to assume that the reference domain D is the closed unit
disk. If we restrict to maps from the disk to R3, a similar trick works. Indeed, given a
map ϕ ∈ W 1,2

γ (D,R3), we have that

F (ϕ) =

ˆ
D

JΦ(s) ds =

ˆ
D

∣∣∣∣∂ϕ(s)

∂s1

× ∂ϕ(s)

∂s2

∣∣∣∣ ds.
For such maps, we can define the functional

E(ϕ) :=

ˆ
D

1

2
|∇ϕ(s)|2 ds.

The minimization of the functional E on the space W 1,2
γ (D,R3) relies on the basic

theory of Sobolev spaces; as before, we can show that the minimizers for E in the space
W 1,2
γ (D,R3) are also minimizer for F in the same space and some additional property

holds.

Proposition 7.1.3. Let Φ be a minimizer for E in the space W 1,2
γ (D,R3). Then, Φ

minimizes F in the same space and the differential of Φ is a conformal map at almost
every point, namely the partial derivatives of Φ are orthogonal almost everywhere.
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Proof. Given any map ϕ ∈ W 1,2
γ (D,R3), there holds that

E(ϕ) =

ˆ
D

1

2

(∣∣∣∣∂ϕ(s)

∂s1

∣∣∣∣2 +

∣∣∣∣∂ϕ(s)

∂s2

∣∣∣∣2
)

ds

≥
ˆ
D

∣∣∣∣∂ϕ(s)

∂s1

∣∣∣∣ ∣∣∣∣∂ϕ(s)

∂s2

∣∣∣∣ ds
≥
ˆ
D

∣∣∣∣∂ϕ(s)

∂s1

× ∂ϕ(s)

∂s2

∣∣∣∣ ds
= F (Φ).

Moreover, the equality holds if and only if the two partial derivatives are orthogonal at
almost every s ∈ D.

By the Lichtenstein’s theorem, we deduce that for any map ϕ : D → Rn there
exists a reparameterization ϕ̃ := ϕ ◦ σ such that ϕ̃ is conformal; then, we obtain that
E(ϕ̃) = F (ϕ̃). Here σ : D → D is not necessary the identity on ∂D, but it restricts
to a bijection of ∂D. Then, the proof can be concluded as in the case of proposition
7.1.2.

This parametric approach was developed by Douglas and Radó in the 1930s; it works
only in dimension 2 because of lack of conformal parameterization in higher dimension.

7.1.3 A measure theoretic/distributional approach

This approach is based on the definition of generalized surfaces with good compactness
and lower semicontinuity properties. This construction is based on the measure theory
and it reminds the definition of Sobolev functions (or distributions). The first step in
this direction was made by De Giorgi in late 1950s, with the introduction of Sets of
Finite Perimeter. This notion generalizes that of oriented surface in Rn of codimension
1. In late 1960s, Federer and Fleming introduced the theory of Integral Currents: this
notion generalizes that of oriented surface in Rn of arbitrary codimension. We will
describe in further details this constructions and show the existence of the solution of
the Plateau’s problem in this framework.

7.1.4 Some regularity issues

As mentioned before, the regularity theory for minimal surfaces is a big issue. However,
there are famous cases in which the Plateau’s problem has no solution in the class of
C1 surfaces. We briefly describe some of these examples.
Example 7.1.4. In R4 = R2 × R2, we consider the set

Γ := (S1 × {0}) ∪ ({0} × S1).

Heuristically, the solution of the Plateau’s problem is the set

Σ := (D2 × {0}) ∪ ({0} ×D2),

where D2 is the unit closed disk in R2. More precisely, one can show the following
statement: if {Σn}n∈N is a minimizing sequence of oriented surfaces of class C1 in R4,
namely ∂Σn = Γ for any n ∈ N and

H2(Σn)→ inf{H2(Σ̃) | Σ̃ is a C1 oriented surface and ∂Σ̃ = Γ},
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then Σn → Σ in Hausdorff distance (up to subsequences). However, Σ is not regular at
the point (0, 0) ∈ R2 × R2.

Example 7.1.5. In R4 = C× C, we consider the curve

Γ := {(w3, w2) | w ∈ S1 ∈ C}.

Notice that Γ is a smooth curve with no self-intersections. Not surprisingly, the solution
of the Plateau’s problem with boundary datum Γ is given by

Σ := {(w3, w2) | w ∈ D2 ∈ C},

where D2 is the closed unit disk in C. As before, one can check that any minimizing
sequence of oriented surfaces of class C1 with boundary Γ has a subsequence that
converges to Σ with respect to the Hausdorff distance. Since Σ is not regular at the
origin, we deduce that the Plateau’s problem has no solution in the class of C1 surfaces.

Example 7.1.6. As in the example 7.1.5, we can consider R2m = Cm; then, we take a
regular domain D in Ck, an open neighbourhood U of D and an holomorphic map
f : U → Cm. We define

Γ := {f(s) | s ∈ ∂D}.

If f is injective on ∂D and ∇f(s) has complex rank k at every s ∈ ∂D, then Γ is a
regular surface of dimension 2k − 1 in R2m = Cm. By means of Kälher’s forms and
Wirtinger’s inequality, it is possible to prove that the solution of the Plateau’s problem
(in the same sense explained in 7.1.4) is given by the surface

Σ := {f(s) | s ∈ D}.

However, Σ is not singular at all points f(s) such that the complex rank of ∇f(s)
strictly less that k.

Example 7.1.7. In R2m = Rm × Rm define the set

Γ := {(x, y) | |x| = |y| = 1} = Sm−1 × Sm−1.

Notice that Γ is an analytic surface of dimension 2m − 2 in Rm. If m ≥ 4, one can
prove that the solution of the Plateau’s problem is given by

Σ := {(x, y) | |x| = |y| ≤ 1},

with the same meaning of 7.1.4. This fact was proved by Bombieri, De Giorgi, Giusti; a
simpler and more recent proof is due to De Phlippis, Paolini. The set Σ is singular at
(0, 0) at is known as Simon’s cone.

As for positive results of regularity, the followings hold true:

• in codimension 1 the singular set of the solution of the Plateau’s problem (with
any regular boundary datum) has codimension at most 7 in the surface (proved
by several authors in the 1960-1970s);

• if the ambient space is Rn and the codimension is between 2 and n− 2 (included),
then the singular set has codimension at most 2 in the surface (proved by several
authors in 1970-2010s).
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7.2 Basics of multilinear algebra

7.2.1 The space of k-covectors

In the following, let V be a real vector space and V∗ its dual. We also denote Sn the
group of the permutation of {1, . . . , n}; given σ ∈ Sn, we denote sgn(σ) the sign of the
permutation σ.

Definition 7.2.1 (k-covector). A k-linear alternating form (or k-covector) on V is a
multilinear function α : Vk → R with the following property: for all v1, . . . , vk ∈ V for
all permutation σ, there holds

α(vσ(1), . . . , vσ(k)) = sgn(σ)α(v1, . . . , vk).

The space of k-covector is denoted by Λk(V). If k = 0, we set Λ0(V) := R (viewed as
constant functions).

Remark 7.2.2. There follow a list of immediate remarks.

• By definition, Λ1(V) = V∗.

• Λk(V) is a linear space.

• In definition 7.2.1, it is equivalent to say that α change sign when swapping vi
and vj for i 6= j.

• Given α ∈ Λk(V), if v1, . . . , vk are linearly dependent, then α(v1, . . . , vk) = 0.

• If k > dim(V), then Λk(V) = {0}.

• If k = dim(V), then dim(Λk(V)) = 1; in particular, Λk(V) is the line spanned by
the covector defined by the determinant of a k × k matrix.

Definition 7.2.3 (Exterior product). Let α ∈ Λh(V) and β ∈ Λk(V) be covectors. We
define α ∧ β to be the element of Λh+k given by

α ∧ β(v1, . . . , vh+k) =
∑

σ∈Sh+k

sgn(σ)α(vσ(1), . . . , vσ(h))β(vσ(h+1), . . . , vσ(h+k))).

If h = 0, then α ∈ R and we define

α ∧ β = α · β ∈ Λk(V).

Remark 7.2.4. ∧ is linear in each factor, associative and anticommutative, that is, if
α ∈ Λh(V) and β ∈ Λk(V), then

α ∧ β = (−1)hkβ ∧ α.

In particular, if h is odd, then α ∧ α = 0.

From now on, suppose that V is a finite dimensional vector space. Set n = dim(V);
let {e1, . . . , en} be a basis of V and let {e∗1, . . . , e∗n} be the corresponding dual basis of
V∗; more explicitly, we have that e∗i (ej) = δi,j . In other words, e∗i is the linear functional
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that compute the i-th coordinate of a vector v with respect to the basis {e1, . . . , en}.
We introduce the following notation for multi-indices:

i := (i1, . . . , ik) ∈ {1, . . . , n}k;

In,k := {i | 1 ≤ i1 < · · · < ik ≤ n}.

For all i ∈ In,k, we set
e∗i := e∗i1 ∧ · · · ∧ e

∗
ik
.

We denote
ei := (ei1 , . . . , eik) ∈ Vk;

given i, j ∈ In,k we set

δi,j :=
k∏

h=1

δih,jh .

Given M an n× k matrix, we denote as Mi the k× k minor given by the rows i1, . . . , ik.
We want to show that every k-covector can be written as linear combination of

{ei | i ∈ In,k}. The proof of this fact relies on the following lemmas.

Lemma 7.2.5. Take v1, . . . , vk ∈ V; let M be the n× k matrix whose j-th column is
given by the coordinates of vj with respect to the basis {e1, . . . , en}. Then, for all i ∈ In,k
there holds that

e∗i (v1, . . . , vk) = det(Mi).

In particular, for all j ∈ In,k there holds

e∗i (ej) = δi,j.

Proof. The proof can be fixed by induction on k and it is based on the expansion of
the determinant.

Lemma 7.2.6. Let α be a k-covector s.t. α(e∗i ) = 0 for all i ∈ In,k; then α = 0.

Proof. The proof is an immediate consequence of the fact that α is multilinear and
every v ∈ Vk can be written as linear combination of {ei | i ∈ In,k}.

We are now in the position of proving the following result.

Theorem 7.2.7. Let 0 < k ≤ n be a natural number. The set {e∗i | i ∈ In,k} is a basis
of Λk(V). In particular, for all α ∈ Λk(V) there holds

α =
∑
i∈In,k

αie
∗
i ,

where αi = α(ei). Moreover, we have that

dim(Λk(V)) = #In,k =

(
n

k

)
.
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Proof. Step 1: {e∗i | i ∈ In,k} is a linearly independent set of k-covectors. In deed, take
a vanishing linear combination ∑

i∈In,k

αie
∗
i = 0.

Evaluating at ej, where j ∈ In,k, and applying lemma 7.2.5, we obtain that∑
i∈In,k

αiδi,j = 0,

that is αj = 0.
Step 2: We claim that for all α ∈ Λk(V) there holds

α =
∑
i∈In,k

α(ei)e
∗
i .

Consider
β := α−

∑
i∈In,k

α(ei)e
∗
i .

Notice that β ∈ Λk(V) and β(ej) = 0 for all j ∈ In,k. We apply lemma 7.2.6 to conclude
that β = 0.

The special case of Rn

If V = Rn, let {e1, . . . , en} be the canonical basis. We denote as {dx1, . . . , dxn} the
dual basis, which agrees with the notation for differential in the following sense. We
call (x1, . . . , xn) the coordinate functions; notice that the differential of xi agrees with
e∗i as linear maps on Rn; so, the notation e∗i = dxi is consistent.

Theorem 7.2.8 (Cauchy-Binet formula). Given A,B n× k matrix, with 1 ≤ k ≤ n,
then

det(AT ·B) =
∑
i∈In,k

det(Ai) · det(Bi).

In particular, we have
det(AT · A) =

∑
i∈In,k

(det(Ai))
2.

Proof. Fix A an n× k matrix; given v1, . . . , vk ∈ Rn, we define

α(v1, . . . , vk) := det(AT · V ),

where V is the n× k matrix whose j-th column is the vector vj . It is easy to check that
α is multilinear and alternating; hence, by theorem 7.2.7, we can write

α =
∑
i∈In,k

α(ei)e
∗
i .

For every i ∈ In,k, set Ei to be the n× k matrix whose j-th column is eij . Given V an
n× k matrix, let vj be the j-column of V . Then, by the computation above and lemma
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7.2.5, we deduce that

det(AT · V ) = α(v1, . . . , vk)∑
i∈In,k

α(ei)e
∗
i (v1, . . . , vk)

=
∑
i∈In,k

det(At · Ei) det(Vi)

=
∑
i∈In,k

det(Ai) det(Vi).

Then, the proof is concluded.

7.2.2 Simple k-vectors

Definition 7.2.9 (Simple k-vector). Let k be a positive integer. Given (v1, . . . , vk),
(ṽ1, . . . , ṽk) ∈ Vk, we say that they are equivalent if

α(v1, . . . , vk) = α(ṽ1, . . . , ṽk) ∀α ∈ Λk(V)

and we write (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk). Since ∼ is an equivalence relation on Vk, we
define the quotient set to be the collection of simple k-vectors. We use the notation
[v1, . . . , vk] for equivalence classes (later, those will be denoted as v1 ∧ · · · ∧ vk).

Remark 7.2.10. If V is endowed with a topology, then Λk(V) inherits the quotient
topology. However, Λk(V) is not a vector space (in general); this is the reason to
introduce general k-vectors.

The following is the fundamental result about simple k-vectors. It has an interesting
geometric meaning.

Proposition 7.2.11. 1. (v1, . . . , vk) ∼ (0, . . . , 0) if and only if v1, . . . , vk are linearly
dependent.

2. If (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) � (0, . . . , 0), then

Span(v1, . . . , vk) = Span(ṽ1, . . . , ṽk)

and the change of basis matrix M has determinant 1 (recall that M is s.t. ṽi =∑
jMi,jvj for all i).

3. Conversely, if (v1, . . . , vk) and (ṽ1, . . . , ṽk) span the same subspace W and the
change of basis matrix M has determinant 1, then (v1, . . . , vk) is equivalent to
(ṽ1, . . . , ṽk).

Proof. Step 1: If v1, . . . , vk are linearly dependent, for all α ∈ Λk(V) there holds

α(v1, . . . , vk) = 0;

hence, (v1, . . . , vk) ∼ (0, . . . , 0). Conversely, assume that v1, . . . , vk are linearly inde-
pendent; we claim that there exists α ∈ Λk(V) s.t. α(v1, . . . , vk) 6= 0. This is enough
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to conclude that (v1, . . . , vk) � (0, . . . , 0). In deed, complete {v1, . . . , vk} to a basis
{v1, . . . , vn} of V; let {v∗1, . . . , v∗n} be the dual basis. Set

α := v∗1 ∧ · · · ∧ v∗k.

If we apply lemma 7.2.5, we obtain that

α(v1, . . . , vk) = det(Id) = 1.

Step 2: Take (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) � 0 and assume by contradiction that
v1, . . . , vk and ṽ1, . . . , ṽk do not span the same space. Then, in the construction of
vk+1, . . . , vn above, we can assume that vk+1 = ṽj0 for some j0 ∈ {1, . . . , k} (ṽ1, . . . , ṽk
are linearly independent; in particular, ṽi 6= 0 for all i); for simplicity, suppose that
j0 = 1. Let α be the k-covector defined above. Let Q be the n× k matrix whose j-th
column is given by the coefficients of ṽ1 with respect to the basis {v1, . . . , vn}. By
lemma 7.2.5, there holds

α(ṽ1, . . . , ṽk) = det(Q(1,...,k)) = 0,

since the first column of M is (0, . . . , 0). Recall that α(v1, . . . , vk) = 1 6= 0; so, we find
a contradiction.

At this point, let M be the change of basis matrix from (v1, . . . , vk) to (ṽ1, . . . , ṽk)
(it makes sense, because they space the same subspace). Let α be as above; if we
complete {v1, . . . , vk} to a basis {v1, . . . , vn} of V and denote as Q the n × k matrix
whose j-column has the component of ṽj with respect to the basis {v1, . . . , vn}, we
conclude that Q is of the following type:

Q =

(
M
0

)
.

By lemma 7.2.5, we have that

1 = α(v1, . . . , vk) = α(ṽ1, . . . , ṽk) = det(Q(1,...,k)) = det(M).

Step 3: Conversely, assume that (v1, . . . , vk) and (ṽ1, . . . , ṽk) span the same subspace
W and the change of basis matrix M has determinant 1. Let α ∈ Λk(V) be as above.
Then, by lemma 7.2.5, we have

α(v1, . . . , vk) = 1 = det(M) = α(ṽ1, . . . , ṽk).

Pick β ∈ Λk(V); notice that the restriction of β toW k is a multiple to the restriction of α
to W k (in deed, Λk(W ) is a linear space of dimension 1). It follows that β(v1, . . . , vk) =
β(ṽ1, . . . , ṽk).

Orientation of a vector space vs simple k-vectors

From now on, we assume that V is endowed with a scalar product, so that we can define
the Hausdorff measure.

Definition 7.2.12. Given v1, . . . , vk ∈ V, let R(v1, . . . , vk) be the rectangle spanned
by v1, . . . , vk, that is

R(v1, . . . , vk) :=

{
k∑
j=1

λjvj

∣∣∣∣ λj ∈ [0, 1]

}
.
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Remark 7.2.13. Take (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) � (0, . . . , 0); set

W := Span(v1, . . . , vk) = Span(ṽ1, . . . , ṽk)

and T : W → W the linear map s.t. T (vj) = T (ṽj) for all j. Notice that the matrix
associated to T with respect to the basis {v1, . . . , vk} is the usual change of basis matrix
between {v1, . . . , vk} and {ṽ1, . . . , ṽk}, that we denote as M ; we have shown in 7.2.11
that det(M) = 1. Then, by the area formula stated in 5.2.14, which can be applied
because W endowed with the scalar product is isometric to Rk with the euclidean scalar
product and then the Hausdorff measure is preserved, there holds

Hk(R(ṽ1, . . . , ṽk)) = Hk(T (R(v1, . . . , vk)))

= |det(M)|Hk(R(v1, . . . , vk))

= JT · Hk(R(v1, . . . , vk))

= Hk(R(v1, . . . , vk)).

Definition 7.2.14 (Norm of k-vector). We define the norm of a k-vector [v1, . . . , vk] as

|[v1, . . . , vk]| := Hk(R(v1, . . . , vk)),

where the definition is well posed as explained in 7.2.13.

The reason to call the quantity defined in 7.2.14 "norm" will be clear later.

Definition 7.2.15 (Orientation of a vector space). An orientation of V is an equivalence
class of basis with respect to the equivalence relation ≈ s.t. (v1, . . . , vn) ≈ (ṽ1, . . . , ṽn)
if the change of basis matrix has positive determinant. We say that a basis of V is
oriented (or positive) if it belongs to the chosen class of equivalence.

Remark 7.2.16. Notice that ∼ is finer that ≈ (see 7.2.9 and 7.2.15).

Definition 7.2.17 (Oriented Grassmannian). We denote as Gror(V, k) the Grassman-
niann of the k-dimensional oriented subspace of V.

Proposition 7.2.18. Consider the map Ψ which associates to a simple unitary k-vector
[v1, . . . , vk] the k-dimensional subspace Span(v1, . . . , vk) oriented by (v1, . . . , vk). This
map is well defined and it is a bijection.

Proof. The map Ψ is well posed, because of proposition 7.2.11, namely it is independent
of the representative chosen in a class of equivalence.

We show that Ψ is surjective. Pick W ∈ Gror(V, k) and an oriented basis of W ;
up to normalization, we can suppose that Hk(R(v1, . . . , vk)) = 1 (notice that, given
λ > 0, then {λv1, v2, . . . , vn} is a basis of W equivalent to {v1, . . . , vn}). Hence, W is
the image of [v1, . . . , vk] through the map Ψ.

We prove that Ψ is injective. Assume that

W := Span(v1, . . . , vk) = Span(ṽ1, . . . , ṽk) := W̃

and the change of basis matrix M has positive determinant, that is W = W̃ as oriented
subspaces. Assume also that [v1, . . . , vk] and [ṽ1, . . . , ṽk] are unitary. If we show that
det(M) = 1, we conclude that (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk). As explained in 7.2.13, we
can compute

1 = Hk(R(ṽ1, . . . , ṽk)) = |det(M)|Hk(R(v1, . . . , vk)) = det(M).
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7.2.3 Differential forms on open sets of Rn

Let Ω ⊆ Rn be an open set.

Definition 7.2.19 (k-form). A k-form ω on Ω is a section of the k-alternating tensor
bundle of Ω. We set Λk(Ω) to be the set of k-forms in Ω.

Since we are in Rn, the definition 7.2.19 (which holds for abstract manifolds) can be
restated in a much more concrete way. We will always use the following facts.
Remark 7.2.20. A k-form in Rn is nothing but a map ω : Ω→ Λk(Rn); in other words,
ω(x) is a k-alternating multilinear map from Rn to R for all x ∈ Ω. Let {e1, . . . , en} be
the canonical basis of Rn and let {dx1, . . . , dxn} be the dual basis. For all i ∈ In,k, we
denote

dxi := dxi1 ∧ · · · ∧ dxik ;
we have shown in 7.2.7 that {dxi | i ∈ In,k} is a basis of Λk(Rn). Hence, we can write ω
in coordinates as

ω =
∑
i∈In,k

ωidxi,

where ωi : Ω→ R is the function s.t. ωi(x) denotes the component of ω(x) with respect
to dxi. In 7.2.7 we have also shown that

ωi(x) = ω(x)(ei).

We say that Ω is Ch-regular if all the coefficients ωi are of class Ch. We define the
support of ω as the closure of the set in which ω vanishes.

Definition 7.2.21 (Exterior derivative). Let ω be a k-form in Ω of class C1. For all
j ∈ {1, . . . , n} we set

∂ω

∂xj
(x) :=

∑
i∈In,k

∂ωi
∂xj

(x) dxi.

Then, we define the exterior derivative of ω as the (k + 1)-form given by

dω(x) :=
n∑
j=1

dxj ∧
∂ω

∂xj
(x).

Remark 7.2.22. Given ω ∈ Λk(Ω), we can write more explicitly the exterior derivative
dω. Recall that ωi is a C1 function on Ω, which can be interpreted as a 0-form in Ω.
Definition 7.2.21 makes sense also for 0-forms; thus, we have that

dωi(x) =
n∑
j=1

∂ωi
∂xj

(x) dxj;

in other words, dωi(x) is the differential of ωi at x (they agree as linear maps from Rn
to R). Hence, we have

dω(x) =
n∑
j=1

dxj ∧
∂ω

∂xj
(x)

=
n∑
j=1

∑
i∈In,k

∂ωi(x)

∂xj
(x) dxj ∧ dxi

=
n∑
j=1

dωi(x) ∧ dxi.
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Remark 7.2.23. We remark that the exterior derivative can be also defined in an intrinsic
way; this definition would work for abstract manifold. However, this is not relevant in
this context.

Proposition 7.2.24. Let k ≥ 2 and ω a k-form with coefficient of class C2. Then
d2ω = 0.

Proof. By definition of 7.2.21 and the fact that ∧ is anticommutative, we deduce that

d2ω = d

(
n∑
j=1

dxj ∧
∂ω

∂xj

)

=
∑

1≤l<j≤n

dxl ∧ dxj ∧
∂

∂xl

(
∂ω

∂xj

)
+ dxj ∧ dxl ∧

∂

∂xj

(
∂ω

∂xl

)
= 0,

since dxj ∧ dxl = −dxl ∧ dxj and ∂
∂xj

(
∂ω
∂xl

)
= ∂

∂xl

(
∂ω
∂xj

)
.

Orientation of a surface

We introduce a notion of orientation of surface, which can be proved to be equivalent to
the classical one (choice of an atlas whose transition maps have differential that preserves
the orientation or Rd). Let Σ be a k-dimensional submanifold in Rn (eventually with
boundary) of class C1.

Remark 7.2.25. Being the quotient space of a vector space, the set of the simple k-vector
is naturally endowed with a topology.

Definition 7.2.26 (Orientation of a surface). An orientation of Σ is a continuous map
τ defined on Σ with valued in the set of simple k-vectors (see 7.2.25) s.t. τ(x) is unitary
and it spans TanxΣ for all x ∈ Σ.

The boundary of Σ is a (k − 1)-submanifold; in Σ is oriented, then ∂Σ inherits an
orientation from that defined on Σ. In can be checked that the definition below agree
with the classical one (outward first).

Definition 7.2.27 (Orientation of the boundary). If Σ is oriented by τ , we orient ∂Σ
by τ ′ s.t. for all x ∈ ∂Σ there holds

[η(x), τ ′1(x), . . . , τ ′k−1(x)] = [τ1(x), . . . , τk(x)],

where η is the outward unit normal.

Integration of k-forms

Let Σ be an oriented k-submanifold (eventually with boundary) of class C1 in Rn.

Definition 7.2.28 (Integration of a k-form). Assume that Σ is oriented by τ (see
7.2.26). Let ω be a k-form defined on Rn with continuous coefficients. Assume that
either Σ is compact or ω has compact support and Σ is closed. We define

ˆ
Σ

ω :=

ˆ
Σ

< ω(x), τ(x) > dHk(x),
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where < ω(x), τ(x) > denotes the action of ω(x) ∈ Λk(Rn) on τ(x), which is a simple
k-vector. In other words, < ω(x), τ(x) > is the value of ω(x) applied to τ(x) (it is well
defined, namely it is independent on the representative of τ(x)).

Remark 7.2.29. In the framework of 7.2.28, notice that the integral is well defined.
Moreover, let D ⊆ Rk be an open set and Φ : D → Σ a parameterization of Σ s.t.[

∂Φ

∂s1

(s), . . . ,
∂Φ

∂sk
(s)

]
= [τ1(Φ(s)), . . . , τk(Φ(x))] ∀s ∈ D.

By proposition 7.2.18, it follows that

1 = Hk

(
R

(
∂Φ

∂s1

(s), . . . ,
∂Φ

∂sk
(s)

))
= det(JΦ(s)).

By the area formula (see 5.2.14), we obtain
ˆ

Σ

ω =

ˆ
Σ

< ω(x), τ(x) > dHk(x)

=

ˆ
D

< ω(Φ(s)),
∂Φ

∂s1

(s), . . . ,
∂Φ

∂sk
(s) > |JΦ(s)| ds

=

ˆ
D

< ω(Φ(s)),
∂Φ

∂s1

(s), . . . ,
∂Φ

∂sk
(s) > ds.

One of the main reason to integrate k-forms is the Stokes’ theorem, which can be
interpreted as an integration by parts formula.

Theorem 7.2.30 (Stokes). Let Σ be a compact, oriented, k-dimensional submanifold
of Rn of class C1; let ω be a (k − 1)-form of class C1 in Rn. Then

ˆ
∂Σ

ω =

ˆ
Σ

dω.

The same holds true if Σ is oriented, closed and ω is C1 with compact support.

7.2.4 The space of general k-vectors

Given a finite-dimensional vector space V , we construct the vector space of general
k-vectors on V, whose dual is Λk(V), so that simple k-vectors are naturally embedded
in this space. We always rely on the canonical identification V∗∗ = V.

Definition 7.2.31 (General k-vector). The space of k-vectors on V is defined as

Λk(V) := Λk(V∗).

Remark 7.2.32. By definition 7.2.31, we have the followings:

• Λ0(V) = R;

• Λ1(V) = V∗∗ = V;

• the wedge product ∧ : Λh(V) × Λk(V) → Λh+k(V) is defined (see 7.2.3); ∧ is
bilinear, associative and anticommutative (see 7.2.4).
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Moreover, given a basis {e1, . . . , en} of V, we write

ei := ei1 ∧ · · · ∧ eih ∈ Λk(V).

To be precise, we see eij as the element of V∗∗ given by the computation of element in
V∗ at the vector eij ∈ V. So, we should write

e∗∗i = e∗∗i1 ∧ · · · ∧ e
∗∗
ih
∈ Λk(V),

but we will avoid this useless notation. We have shown in 7.2.7 that {ei | i ∈ In,k} is a
basis of Λk(V).

Definition 7.2.33 (Duality pairing). We define the duality pairing of Λk(V) and Λk(V)
as the bilinear form < ·, · >: Λk(V)× Λk(V)→ R by setting

< e∗i , ej >:= δi,j.

Remark 7.2.34. In the framework of definition 7.2.33, for all w ∈ Λk(V) the quantities
{< e∗i , w > | i ∈ In,k} are the coordinates of w with respect to the dual basis associated
to {ei | i ∈ In,k}, which turns out to be {e∗i | i ∈ In,k}.

Furthermore, we can easily check that < ·, · > gives an isomorphism between Λk(V)
and (Λk(V))∗. In deed, for all α ∈ Λk(V), consider the map Tα : Λk(V)→ R defined by

Tα(β) :=< β, α > .

Then, Tα is an element of Λk(V)∗; in other words, the map T : Λk(V) → Λk(V)∗ is
well defined. Moreover, T is injective, that is, if α ∈ Λk(V) is s.t. < β, α >= 0 for all
β ∈ Λk(V), then α = 0. In deed, for such α there holds < ei∗ , α >= 0 for all i ∈ In,k.
If we write α as linear combination of ei and recall the fact that < e∗i , ej >= δi,j, we
conclude that α = 0. Since Λk(V) and Λk(V)∗ have the same dimension, we conclude
that T is a linear isomorphism.

Moreover, since < ·, · > is bilinear, {e∗i | i ∈ In,k} is a basis of Λk(V) and {ei | i ∈
{1, . . . , n}} is a basis of V, it immediately follows that

< α, v1 ∧ · · · ∧ vk >= α(v1, . . . , vk)

for all α ∈ Λk(V) for all v1, . . . , vk ∈ V. To be precise, we should write

< α, v∗∗1 ∧ · · · ∧ v∗∗k >= α(v1, . . . , vk),

where v∗∗i and vi are element of V∗∗ and V respectively, which corresponds via the
canonical isomorphism between V∗∗ and V. We will avoid this notation.

We have also shown that the duality pairing does not depend on the choice of
the basis of V. It is interesting to notice that the definition of the duality pairing on
Λk(V)× Λk(V) as

< α, v1 ∧ · · · ∧ vk >:= α(v1, . . . , vk)

is not well posed (without extending by bilinearity), because there are elements in Λk(V)
which are not of the form v1 ∧ · · · ∧ vk. For instance, if the dimension of V is at least 4
and e1, e2, e3, e4 are linearly independent, then

e1 ∧ e2 + e3 ∧ e4

cannot be written as v1 ∧ v2, as one can easily check. Furthermore, it is obvious that
1-vectors are all simple. It can also be checked (but it is not so immediate) that
(n− 1)-vectors are all simple. Moreover, there holds that k-vectors are never all simple
for 1 < k < n− 1.
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Corollary 7.2.35. Simple k-vectors can be naturally embedded in Λk(V) simply by
identifying [v1, . . . , vk] with v1 ∧ · · · ∧ vk. In deed, given v1, . . . , vk, ṽ1, . . . , ṽk ∈ V, there
holds that (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) if an only if v1 ∧ · · · ∧ vk = ṽ1 ∧ · · · ∧ ṽk.

Proof. We have that (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) if an only if

α(v1, . . . , vk) = α(ṽ1, . . . , ṽk) ∀α ∈ Λk(V).

This means that

< α, v1 ∧ · · · ∧ vk >=< α, ṽ1 ∧ · · · ∧ ṽk >;

this can happens if and only if v1 ∧ · · · ∧ vk = ṽ1 ∧ · · · ∧ ṽk.

Remark 7.2.36. By corollary 7.2.35, we identify [v1, . . . , vk] with v1 ∧ · · · ∧ vk and the
notation [v1, . . . , vk] disappears.

Assume now that V is endowed with a scalar product; then we can endow Λk(V)
and Λk(V) with scalar product s.t. {e∗i | i ∈ In,k} and {ei | i ∈ In,k} are orthonormal
basis (we will only use the norm associated to this products on Λk(V)).

Definition 7.2.37 (Euclidean norm). Given w ∈ Λk(V) we have that

w =
∑
i∈In,k

wiei,

where wi =< e∗i , w >. Then, the norm of w associated to the scalar product on Λk(V)
is given by

|w| :=
√∑

i∈In,k

w2
i .

Proposition 7.2.38. The euclidean norm of a simple k-vector defined in 7.2.37 agrees
with the norm of simple k-vectors defined in 7.2.14. More precisely, given v1∧ · · · ∧ vk ∈
Λk(V) there holds

|v1 ∧ · · · ∧ vk| = Hk(R(v1, . . . , vk)).

Proof. Without loss of generaly, we can assume that v1 . . . , vk are linearly independent.
Denote by W the n× k matrix whose j-th column contains the coordinates of vj with
respect to the basis {e1, . . . , en}. Define T : Rk → V the linear map the sends the i-th
element of the canonical basis (denoted by êi) of Rn in vi. Denote by JT the jacobian
determinant of T at any point (it is constant, since T is linear). Using the property of
the duality pairing, lemma 7.2.5, the Cauchy-Binet formula (see 7.2.8) and the area
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formula (see 5.2.14, 7.2.13 and 5.2.7), we have that

|v1 ∧ · · · ∧ vk| =
√∑

i∈In,k

(< e∗i , v1 ∧ · · · ∧ vk >)2

=

√∑
i∈In,k

(e∗i (v1, . . . vk))2

=

√∑
i∈In,k

(det(Wi))2

=
√

det(W T ·W )

= JT

= JT · Hk(R(ê1, . . . , êk))

= Hk(T (R(ê1, . . . , êk)))

= Hk(R(v1, . . . , vk)).

There are tow natural choices of norms on Λk(V). The first is the euclidean norm
|·| defined in 7.2.37; the second is the mass norm, defined below.

Definition 7.2.39 (Mass norm). The mass norm is the largest norm Φ in Λk(V) s.t.

Φ(v1 ∧ · · · ∧ vk) = |v1 ∧ · · · ∧ vk| ∀v1, . . . , vk ∈ V.

Remark 7.2.40. Clearly, mass norm and euclidean norm agree on simple k-vectors.
Moreover, it can be checked that the mass norm is the convex envelope of the restriction
of the euclidean norm to simple k-vectors, that is

Φ(w) = inf

{∑
i

ti |wi|
∣∣∣∣ w =

∑
i

tiwi is convex combination of simple k- vectors

}
.

Definition 7.2.41 (Comass norm). The dual norm Φ∗ induced by the mass norm is
called comass norm, that is

Φ∗(α) = sup{< α,w > | Φ(w) ≤ 1} ∀α ∈ Λk(V).

Remark 7.2.42. It can be checked that

Φ∗(α) = sup{< α, v1 ∧ · · · ∧ vk > | |v1 ∧ · · · ∧ vk| ≤ 1}
= sup{α(v1, . . . , vk) | Hk(R(v1, . . . , vk)) ≤ 1}

for all α ∈ Λk(V).

We point out that there are only few results where it is possible to see the difference
between euclidean norm and mass/comass norm. In the following, we will use the
notation |·| also for mass and comass norm.
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Remark 7.2.43. Given α ∈ Λk(V) and β ∈ Λk(V), if we deal with mass and comass
norm, then by definition 7.2.39 and 7.2.41 it follows that

|< α, β >| ≤ |α| |β| .

However, the same inequality holds true also when dealing with euclidean norms (see
7.2.37). In deed, we have

|< α, β >| =

∣∣∣∣∣∑
i

αiβi

∣∣∣∣∣ ≤
√∑

i

α2
i ·
√∑

i

β2
i = |α| |β| .

7.3 Theory of currents (De Rham)
The approach in definition of currents is very similar to that of distributions. Our
purpose is to introduce currents as the dual space of differential forms. Then we show
how to use currents to solve the Plateau’s problem.

7.3.1 Definition

We start with a basic remark.
Remark 7.3.1. Let Σ be a closed, oriented, k-dimensional surface of class C1 in Rn.
Then, we define the following linear functional on the space of continuous and compactly
supported forms:

TΣ(ω) :=

ˆ
Σ

ω.

• It is easy to show that TΣ is uniquely determined by Σ, namely Σ 6= Σ′ implies
that TΣ 6= TΣ′ .

• We can rewrite Stokes’ theorem (see 7.2.30) as follows:

T∂Σ(ω) = TΣ(dω),

where ω is a (k − 1)-form on Rn with coefficients in C1
c (Rn).

• There holds that

Hk(Σ) = sup{TΣ(ω) | ω ∈ C∞c (Rn), |ω(x)| ≤ 1 ∀x ∈ Rn},

where |·| is either the mass/comass norm or the euclidean norm; the key step is
explained in 7.2.43. In deed, given ω as above, we have that

Tσ(ω) =

ˆ
Σ

ω

=

ˆ
Σ

< ω(x), τ(x) > dHk(x)

≤
ˆ

Σ

|ω(x)| |τ(x)| dHk(x)

≤
ˆ

Σ

1 dHk(x)

= Hk(Σ).
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Moreover, the mass norm and the euclidean norm of of τ(x) are both 1, since
τ(x) is a k-simple unitary vector and then proposition 7.2.38. Notice that the
inequality above are optimized by ω s.t.

< ω(x), τ(x) >= 1 ∀x ∈ Σ;

such ω exists and it is continuous. By approximation, the supremum can be
achieved with compactly supported smooth k-forms.

In order to define currents as the dual of differential forms, we have to introduce a
topology.

Definition 7.3.2. Denote by Dk(Rn) the space of k-forms on Rn smooth, compactly
supported. Given K ⊆ Rn compact, we denote by

Dk(K) := {ω ∈ Dk(Rn) | supp(ω) ⊆ K}.

Remark 7.3.3. Given K ⊆ Rn compact, it can be checked that Dk(K) is a Fréchet space
with the seminorms

‖ω‖Ch(K) :=
∑
i∈In,k

‖ωi‖Ch(K)
=
∑
i∈In,k

∑
|j|≤k

∥∥Dj(ωi)
∥∥
L∞(K)

for all h ∈ N.

Definition 7.3.4. We endow Dk(Rn) with the smallest (weakest) topology s.t. the
inclusion map i : Dk(K) ↪→ Dk(Rn) is continuous for all K ⊆ Rn, the so called "direct
limit" topology.

Remark 7.3.5. The topology defined in 7.3.4 is so weak that every reasonable operation
is continuous with respect to this topology.

Definition 7.3.6 (k-current). The space of k-currents in Rn is defined as the dual
space of Dk(Rn) with respect to the direct limit topology (see 7.3.4) and it is denoted
as Dk(Rn) = (Dk(Rn))∗.

Remark 7.3.7. We just mention the fact that the entire space Rn can be replaced either
with an open set in Rn or a Riemannian manifold.

Definition 7.3.8 (Boundary of a current). Give T ∈ Dk(Rn), we define the boundary
of T as the (k − 1)-current defined as

< ∂T , ω >:=< T, dω > .

In other words, ∂ is the adjoint operator of d.

Remark 7.3.9. The functional ∂T defined in 7.3.8 is certainly well defined and linear.
To be precise, one should also check that ∂T is continuous with respect to the topology
introduced on Dk−1(Rn).

Remark 7.3.10. The counterpart of the fact that d2 = 0 (see 7.2.24), is that ∂2T = 0
for all T ∈ Dk(Rn), provided k ≥ 2.
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Definition 7.3.11 (Mass of a current). Given T ∈ Dk(Rn), we define the mass of T as

M(T ) := sup{< T, ω > | ω ∈ Dk(Rn), |ω(x)| ≤ 1 ∀x ∈ Rn},

where |ω(x)| is the comass norm of ω(x).

Remark 7.3.12. With the notation introduced, if Σ is a k-dimensional closed, oriented
surface of class C1 in Rn, we have shown in 7.3.1 that

∂TΣ = T∂Σ,

M(TΣ) = Hk(Σ).

Being a dual space, Dk(Rn) can be endowed with the weak-* topology induced by
the duality with Dk(Rn).

Definition 7.3.13 (Convergence of currents). Given a sequence of k-currents (Tn)n
and a k-current T , we say that (Tn)n converges to T in the sense of currents if the
sequence converges to T with respect to the weak-* topology, that is

lim
n→+∞

< Tn, ω >=< T, ω > ∀T ∈ Dk(Rn).

Proposition 7.3.14. Let (Tn)n be a sequence of k-currents that converges to a k-
currents T as in 7.3.13. Then, the followings hold true:

• (∂Tn)n converges to ∂T in the sense of currents;

• M(T ) ≤ lim infn→+∞M(Tn).

Proof. Step 1: Given ω ∈ Dk−1(Rn), recall that dω ∈ Dk(Rn); by definition 7.3.13, we
can infer

lim
n→+∞

< ∂Tn, ω >= lim
n→+∞

< Tn, dω >=< T, dω >=< ∂T , ω > .

Step 2: Take ω ∈ Dk(Rn) s.t. |ω(x)| ≤ 1 for all x ∈ Rn (we use the comass norm).
Then, we have

lim inf
n→+∞

M(Tn) ≥ lim inf
n→+∞

< Tn, ω >=< T, ω > .

Taking the supremum with respect to ω ∈ Dk(Rn) s.t. |ω(x)| ≤ 1 for all x ∈ Rn, we
conclude that

lim inf
n→+∞

M(Tn) ≥M(T ).

7.3.2 Significant subclasses of currents

Currents with finite mass

Definition 7.3.15 (Currents with finite mass). We say that a k-current T has finite
mass if M(T ) < +∞.
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Remark 7.3.16. Given T ∈ Dk(Rn) with finite mass, by definition of mass, we obtain

|< T, ω >| ≤M(T ) ‖ω‖L∞ ∀ω ∈ Dk(Rn),

where ‖ω‖L∞ is computed with the comass norm. Hence, T can be extended by density
to a linear continuous functional defined on the k-forms ω ∈ C0(Rn,Λk(Rn)). By the
Riesz’s representation theorem (see 1.1.27), we infer that T can be represented by
integration with respect to a measure with values in Λk(Rn)∗ = Λk(Rn). Thus, there
exists a positive, Borel, finite measure µ on Rn and a vector field τ : Rn → Λk(Rn) in
L1(Rd, µ) unitary (in mass norm) and s.t.

< T, ω >=

ˆ
Rn
< ω(x), τ(x) > dµ(x).

Then, it can be checked that

M(T ) = sup{< T, ω > | ω ∈ Dk(Rn), ‖ω‖L∞ ≤ 1}
= sup{< T, ω > | ω ∈ C0(Rn,Λk(Rn)), ‖ω‖L∞ ≤ 1}

=

ˆ
Rn
|τ(x)| dµ(x)

= µ(Rn),

where |τ(x)| is the mass norm and ‖ω‖L∞ is computed with the comass norm. To be
precise, one should check the two inequalities, but this can be done as in 7.3.1. Thus,
we write T = τ · µ.

Remark 7.3.17. If Σ is a compact, oriented, k-dimensional surface in Rn of class C1,
then the current TΣ defined in 7.3.1 can be represented as

TΣ = τΣ · HkxΣ,

where τΣ is the orientation of Σ. Moreover, we have that

M(TΣ) = Hk(Σ) < +∞.

Currents with finite mass have good compactness properties.

Proposition 7.3.18. Let (Tn)n be a sequence of k-currents with finite mass s.t.

sup
n
M(Tn) < +∞;

then, up to subsequences, (Tn)n converges to a k-current T in the sense of currents;
moreover, there holds

M(T ) ≤ lim inf
n→+∞

M(Tn).

In particular, T is a k-current of finite mass.

Proof. Since Dk(Rn) is the dual space of Dk(Rn) and M is the dual norm, Banach-
Alaoglu theorem applies. So, we obtain the compactness result. The lower semicontinuity
of the mass has been shown in 7.3.14.
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Normal currents

Definition 7.3.19 (Normal current). If k ≥ 1, we say that a k-current T is normal if
both T, ∂T have finite mass. If k = 0, a 0-current is normal if it has finite mass.

Remark 7.3.20. Given a normal k-current T , we can represent T = τ ·µ and ∂T = τ ′ ·µ′,
with the notation introduced in 7.3.16.

Normal currents have good compactness properties.

Proposition 7.3.21. Let (Tn)n be a sequence of normal k-currents s.t.

sup
n
M(Tn) + sup

n
M(∂Tn) < +∞.

Then, up to subsequences, (Tn)n converges to a k-current T in the sense of currents;
moreover, there holds

M(T ) ≤ lim inf
n→+∞

M(Tn),

M(∂T ) ≤ lim inf
n→+∞

M(∂Tn).

In particular, T is a normal k-current.

Proof. The proof is an immediate consequence of 7.3.18 and 7.3.14.

Having said that, we can easily solve the Plateau’s problem in the class on normal
currents. In deed, this is not satisfactory, because this class is definitely too large.

Corollary 7.3.22 (Plateau’s problem in normal currents). Fix T0 a normal k-current.
Then, the minimum problem

min{M(T ) | T is normal and ∂T = ∂T0}

admits a solution.

Proof. The functional M is lower semicontinuous and coercive in the class of normal
currents (see 7.3.14 and 7.3.21) with respect to convergence of currents.

We give some examples of normal (and not) currents.

Example 7.3.23. Let Σ be a compact, oriented, k-dimensional surface of class C1 in Rn.
Then, the k-current TΣ defined in 7.3.1 is a normal current. In deed, we have

TΣ = τΣ · HkxΣ, ∂TΣ = T∂Σ = τ ′∂Σ · Hk−1x∂Σ,

where τΣ is the orientation on Σ and τ ′∂Σ is the orientation of ∂Σ as a boundary of the
surface Σ oriented by τ . Thus, we have

M(TΣ) = Hk(Σ), M(∂TΣ) = Hk−1(∂Σ).

Example 7.3.24. In R2 consider the rectangle R := [−1, 1] × [0, 1], the measure µ :=
L 2xR and the constant vector field e1 := (1, 0). Then, T := e1 ·µ is a normal 1-current.
Define I± := {±1} × [0, 1] (see figure 7.1); we claim that

∂T = H1xI+ −H1xI− = τ ′ · µ′,
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Figure 7.1: The 1-current associated to the rectangle with vector field e1.

where µ′ = H1x(I+ ∪ I−) and

τ ′(x) :=

{
1 x ∈ I+,

−1 x ∈ I−;

thus, we have that M(∂T ) = 2. In deed, this can be proved by a straightforward
computation. Take Φ ∈ D0(R2), that is Φ ∈ C∞c (R2); by definition, we have

< ∂T ,Φ > =< T, dΦ >

=

ˆ
R2

< dΦ(x), e1 > dL 2xR

=

ˆ
R

< dΦ(x), e1 > dL 2(x)

=

ˆ
R

∂Φ

∂x1

(x1, x2) dx1dx2

=

ˆ 1

0

(ˆ 1

−1

∂Φ

∂x1

(x1, x2) dx1

)
dx2

=

ˆ 1

0

[Φ(1, x2)− Φ(−1, x2)] dx2

=

ˆ
R2

< τ ′,Φ > dµ′.

The computation above can be resumed as follows: given t ∈ [0, 1], set It := [−1, 1]×{t}
oriented by e1. Let Tt := TIt be the 1-current associated to It. By Fubini’s theorem, we
can check that

T =

ˆ 1

0

Tt dt, ∂T =

ˆ 1

0

∂Tt dt,

that is

< T, ω >=

ˆ 1

0

< Tt, ω > dt, < ∂T , ω >=

ˆ 1

0

< ∂Tt, ω > dt
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Figure 7.2: The 1-current associated to the parallelogram with vector field e1.

for all admissible test forms ω. However, it is immediate to see that

∂Tt = δ(1,t) − δ(−1,t).

Then, we conclude that

∂T =

ˆ 1

0

[δ(1,t) − δ(−1, t)] dt = H1xI+ −H1xI−.
In deed, to check the details, one should repeat word by word the computation above.
To resume, in some sense, the idea is to "slice" the current along parallel sections and
then summing them up by integration.

Example 7.3.25. Let R be the rectangle in R2 of vertices (−1, 0), (1, 0), (0, 1), (2, 1); set
µ := L 2xR and e1 := (1, 0). Define T := e1 · µ (see figure 7.2). As in 7.3.24, we claim
that T is a normal current and

∂T = H1xI+ −H1xI− = τ ′xµ′,
where

I± := {(±1 + t, t) | t ∈ [0, 1]},
µ′ := H1x(I+ ∪ I−),

τ ′(x) :=

{
1 x ∈ I+,

−1 x ∈ I−.
The computation is completely similar to that shown in 7.3.24.

Example 7.3.26. Let T be the 1-current on R given by T := e1 · δ0, where e1 is the
standard orientation of R, namely e1 = 1 (see figure 7.3). Then ∂T is not represented
by a measure; in other words, T is not a normal current. In deed, given Φ ∈ D0(R),
that is Φ ∈ C∞c (R), there holds

< ∂T ,Φ >=< T, dΦ >=

ˆ
R
< dΦ(x), e > dδ0 = Φ′(0).

It follows that

M(∂T ) = sup{Φ′(0) | |Φ| ≤ 1, Φ ∈ C∞c (R)} = +∞.

Then, ∂T is not bounded with respect to the C0 norm; equivalently, ∂T cannot be
represented by a measure.
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Figure 7.3: The 1-current associated to the point 0 in R with vector field e1.

Figure 7.4: The 1 current in R2 associated to a vertical segment with horizontal vector
field.

Example 7.3.27. In R2 consider the 1-currents T1 := e1 · δ0 and T2 := e1 · H1xI, where
e1 := (1, 0) and I := {0} × I (see 7.4). Arguing as in 7.3.26, it is immediate to show
that M(∂Ti) = +∞ for i = 1, 2; hence, T1, T2 are not normal currents. In deed, given
Φ ∈ C∞c (R2), we have that

< ∂T1,Φ >=< T1, dΦ >=
∂Φ

∂x1

(0);

then, we deduce that

M(∂T1) = sup

{
∂Φ

∂x1

(0)

∣∣∣∣ |Φ| ≤ 1, Φ ∈ C∞c (R2)

}
= +∞.

Similarly, we have that

< ∂T2,Φ >=< T2, dΦ >=

ˆ
I

< dΦ, e1 > dH1 =

ˆ 1

0

∂Φ

∂x1

(0, t) dt.

Hence, we have that

M(∂T2) = sup

{ˆ 1

0

∂Φ

∂x1

(0, t) dt

∣∣∣∣ |Φ| ≤ 1, Φ ∈ C∞c (R2)

}
= +∞.

The previous example is a particular instance of the following fact (that can be
fixed): given the 1-current T := τ · H1xI, where I is the support of a C1 curve in Rn
and τ is a continuous vector field on I, if M(∂T ) < +∞, then τ is tangent to I. This
suggests that normal currents are geometrically relevant, while currents with finite mass
are not.
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Rectifiable currents

Definition 7.3.28 (Orientation of a rectifiable set). Let E be a k-dimensional rectifiable
set in Rn; τ is an orientation of E if τ : E → Λk(Rd) is s.t. τ(x) is an orientation of
TanwxE for Hk-a.e. x ∈ E; in other words, τ(x) = τ1(x)∧· · ·∧τk(x) is simple, |τ(x)| = 1
and

Span(τ(x)) := Span(τ1(x), . . . , τk(x)) = TanwxE

for Hk-a.e. x ∈ E.

Definition 7.3.29 (Rectifiable current). Given E, τ as above, let m ∈ L1(Rn,HkxE)
be "multiplicity ". We set T := [E, τ,m] be the k-current defined as follows:

< T, ω >:=

ˆ
E

< ω(x), τ(x) > m(x) dHk(x) ∀ω ∈ Dk(Rn),

or equivalently T = τm · HkxE. We say that T is a k-rectifiable current. Moreover, if
m takes values in Z, we say that T has integral multiplicity.

Remark 7.3.30. A 0-rectifiable current with integral multiplicity is nothing else that

T =
N∑
i=1

miδxi

for some finite integers mi and some points xi ∈ Rn. In deed, a function m ∈ L1(H0xE)
with values in Z is a function that attains a finite number of values in a finite number
of points and it vanishes elsewhere.

Remark 7.3.31. If T := [E, τ,m] is a k-rectifiable current, then

M(T ) = ‖m‖L1(HkxE) .

In deed, using the mass and comass norm, we have that

M(T ) = sup

{ˆ
E

< ω(x), τ(x) > m(x) dHk(x)

∣∣∣∣ |ω| ≤ 1, ω ∈ Dk(Rn)

}
≤ sup

{ˆ
E

|< ω(x), τ(x) >| |m(x)| dHk(x)

∣∣∣∣ |ω| ≤ 1, ω ∈ Dk(Rn)

}
≤ sup

{ˆ
E

|ω(x)| |τ(x)| |m(x)| dHk(x)

∣∣∣∣ |ω| ≤ 1, ω ∈ Dk(Rn)

}
≤
ˆ
E

|m(x)| dHk(x).

Recall that the mass norm of the simple k-vectors agree with their euclidean norm;
hence, τ(x) has unitary mass norm Hk-a.e. in E. The reverse inequality can be proved
by approximation (see 7.3.16).

Remark 7.3.32. Given T a k-rectifiable current, then E, τ,m in the representation of T
(see 7.3.29) are not uniquely determined: for instance, one can switch τ,m with −τ,−m.
It is possible to show that, if we require in addition that m ≥ 0 for Hk-a.e. x ∈ E, then
E, τ,m are uniquely determined (up to Hk-null sets).

101



Chapter 7. The Plateau’s problem and the Theory of Currents

Figure 7.5: The 1-current associated to a regular curve with discontinuous orientation.

Figure 7.6: The 2-current on the Möebius strip associated to a discontinuous orientation
in I.

Example 7.3.33. Given x0, x1 ∈ Rn, let E be a C1 curve in Rn joining x0, x1. Take
x2 ∈ E, x2 6= x0, x1 and define as orientation τ of E discontinuous in x2 (see figure 7.5).
Then, T := [E, τ, 1] is an 1-rectifiable current with integral multiplicity. By testing with
0-forms (i.e. smooth functions), it is immediate to compute that

∂T = 2δx2 − δx0 − δx1 ,

up to sign. Similarly, it can be computed the boundary of T = [E, τ,m] where E is an
oriented curve of class C1 (piecewise).

Example 7.3.34. Let S be the Möebius strip in R3; we can choose an orientation τ
which is discontinuous along a vertical segment I (see figure 7.6); denote T := [T, S, 1]
the 2-rectifiable current. Then, it is possible to compute that

∂T = 2H2xI.

Integral currents

Definition 7.3.35 (Integral current). If k ≥ 1, we say that T is an integral k-current
if both T and ∂T are rectifiable currents with integral multiplicity, thus we have

T = [E, τ,m], ∂T = [E ′, τ ′,m′].

If k = 0, T is a 0-integral current if it is rectifiable with integral multiplicity, that is

T =
N∑
i=1

miδxi
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for some finite mi ∈ Z and xi ∈ Rn (see 7.3.30).

Example 7.3.36. Let Σ be a k-dimensional compact oriented surface in Rn of class C1;
then, Hk(S) < +∞ and Hk−1(∂Σ) < +∞. Assume that Σ is oriented by τΣ. Then,
the k-current TΣ defined in 7.3.1 is rectifiable with integral multiplicity; in deed, there
holds TΣ = [Σ, τΣ, 1]. Moreover, ∂TΣ is still rectifiable with integral multiplicity. In
deed, we have

∂TΣ = T∂Σ = [∂Σ, τ∂Σ, 1],

where τ∂Σ is the orientation of ∂Σ induced by the orientation τΣ of Σ.

7.3.3 Federer-Fleming theorem

We state without proof one of the fundamental results in the theory of integral currents.

Theorem 7.3.37 (Federer-Fleming compactness). Let (Tn)n be a sequence of integral
k-currents in Rn, with 0 ≤ k ≤ n. Assume that

sup
n
M(Tn) + sup

n
M(∂Tn) < +∞.

Then, up to subsequences, (Tn)n converges in the sense of currents to an integral
k-current T .

As a bonus, we then get the solution of the Plateau’s problem in the class integral
currents. In deed, the assumptions in Federer-Fleming theorem are the natural ones for
application to the Plateau’s problem.

Corollary 7.3.38. Let T0 be an integral k-current in Rn; then, the minimum problem

min{M(T ) | T is integral, ∂T = ∂T0}

has a solution.

Proof. The functional M(T ) is lower semicontinuous with respect to the weak-* con-
vergence (as shown in 7.3.14); by Federer-Fleming theorem (see 7.3.37), we infer that
the class of integral currents with given boundary is closed under weak-* convergence.
Moreover, the functional M is coercive in the defined class.

Remark 7.3.39. The proof of Federer-Fleming’s theorem is very hard. Under the
assumption

sup
n
M(Tn) + sup

n
M(∂Tn) < +∞,

we already know that (Tn)n converges up to subsequences to a normal current T : this
is the soft statement proved in 7.3.21, which relies on the compactness of bounded
sets with respect to the weak-* topology. The hard part in Federer-Fleming theorem
is to show that T is an integral current. In fact, the Federer-Fleming compactness
theorem is also called Federer-Fleming closure theorem. We also mention the fact that
there are no counterparts of theorem 7.3.37 for rectifiable sets or rectifiable measure;
so, Federer-Fleming theorem is something very specific of currents.

The following examples show that the assumptions in Federer-Fleming theorem are
all needed.
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Figure 7.7: A sequence of integral 1-current with multiplicity 1 that converges to an
integral 1-current with multiplicity 2.

Figure 7.8: A solution of the Plauteau’s problem with multiplicity different that 1.

Example 7.3.40. Theorem 7.3.37 does not hold if we work in the class of integral currents
with multiplicity 1. In deed, consider e1 := (1, 0) in R2 and for all n ∈ N the segments

En := [0, 1]× ({0, 2−n}).

Define the integral 1-current
Tn := [En, e1, 1],

as pictured in figure 7.7. It is immediate to see that

∂Tn = δ(1,2−n) + δ(1,0) − δ(0,2−n) − δ(0,0).

So, we have that
M(Tn) = 2, M(∂Tn) = 4 ∀n ∈ N.

(Tn)n is a family of integral 1-currents with multiplicity 1; moreover, a simple computa-
tion shows that (Tn)n converges in the sense of currents to the integral 1-current

T := [[0, 1]× {0}, e1, 2].

Example 7.3.41. It can happens that solutions of the Plateau’s problem may have
multiplicity different from 1. For instance, consider the following cases.
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Figure 7.9: A solution of the Plauteau’s problem with multiplicity different that 1.

• It the line, let xi = (i, 0) for i = 0, 1, 2, 3. Let T0 be an integral 1-current with
boundary

∂T0 = δx4 + δx3 − δx2 − δx1 .

Heuristically, the solution of the Plateau’s problem with boundary datum ∂T0

should be the integral 1-current

T := [[0, 3]× {0}, e1,m],

where e1 := (1, 0) and m is the multiplicity s.t.

m(x, 0) =

{
1 if x ∈ [0, 1] ∪ [2, 3],

2 if x ∈ [1, 2].

The situation is pictured in figure 7.8; this heuristic argument can be made precise.

• In the plane, consider the circumferences C1, C2 of center 0 and radii 1, 2, respec-
tively; assume that C1, C2 are oriented counterclockwise. Let T0 be an integral
1-current in R2 s.t.

∂T0 = [C1 ∪ C2, τ
+, 1],

where τ+ denotes the counterclockwise orientation of both C1, C2. Heuristically,
the solution of the Plateau’s problem with boundary datum T0 should be integral
1-current

T := [D, e,m],

where D is the disc of radius 2 centered at the origin in the plane, e is the standard
orientation of the plane and m is the multiplicity s.t.

m(x) =

{
2 if |x| ≤ 1,

1 if 1 < |x| ≤ 2.
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Figure 7.10: The set En, highlighted in blue, gives a sequence of integral 1-currents
that converges to a non-rectifiable 1-current.

The situation is pictured in figure 7.9; as in the previous case, this heuristic
argument can be made precise.

Example 7.3.42. In the plane, consider the square Q := [0, 1]2; for all n ∈ N divide Q in
n2 squares of side-length 1

n
; in each of these small squares, pick an horizontal segment

on length 1
n2 ; set En to be the union of these n2 segments. Let Tn be the integral

1-current in R2 given by
Tn := [En, e1, 1],

where e1 := (1, 0). The situation is resumed in figure 7.10. It is immediate to compute
that

M(Tn) = 1, M(∂Tn) = 2n2 ∀n ∈ N.
Moreover, a straightforward computation shows that (Tn)n converges in the sense of
currents to the 1-current T := e1 ·L 2xQ. However, T is not a rectifiable 1-current.
This example shows that the assumption

sup
n
M(∂Tn) < +∞

in theorem 7.3.37 is really needed.

Example 7.3.43. In the plane, consider the square Q := [0, 1]2; for all n ∈ N divide Q in
n horizontal stripes of thickness 1

n
and take an horizontal segment of length 1 in each

of these stripes. Call En the union of these n segments. For all n ∈ N, let Tn be the
integral current defined by

Tn :=

[
En, e1,

1

n

]
,

where e1 := (1, 0), as pictured in figure 7.11. A simple computation shows that

M(Tn) = 1, M(∂Tn) = 2 ∀n ∈ N.
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Figure 7.11: The set En, highlighted in blue, gives a sequence of 1-currents with
non-integral multiplicity that converges to a non-rectifiable 1-current.

Moreover, as in the example 7.3.42, it is possible to show that (Tn)n converges in the
sense of currents to the 1-current T := e1 ·L 2xQ, which is not a rectifiable 1-current.
Hence, the assumption of integral multiplicity in theorem 7.3.37 is really needed.

Example 7.3.44. In the plane, consider the square Q := [0, 1]2; for all n ∈ N divide Q in
n2 squares of side-length 1

n
; in each of this small squares, pick a circle Di,n of radius

1
2n2 ; set En to be the union of the n2 circumferences given by ∂Di,n for i = 1, . . . , n2.
Let Tn be the integral 1-current in R2 given by

Tn := [En, τ, 1],

where τ is the unitary vector field that denotes the fact that each circumferences is
oriented counterclockwise (see figure 7.12). It is immediate to compute that

M(Tn) = π, M(∂Tn) = 0 ∀n ∈ N.

In deed, by Stokes’ theorem, there holds that ∂Tn = 0 for all n ∈ N. In particular,
Federer-Fleming theorem applies. However, we can show with a straightforward compu-
tation that (Tn)n converges to 0 in the sense of currents. In deed, given ω ∈ D1(R2),
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Figure 7.12: The set En, highlighted in blue, gives a sequence of integral 1-currents
that converges to the current that vanishes identically.

we can apply Stokes’ theorem (see 7.2.30) to obtain

|< Tn, ω >| =

∣∣∣∣∣
n2∑
i=1

ˆ
∂Di,n

< ω(x), τ(x) > dH1(x)

∣∣∣∣∣
=

∣∣∣∣∣
n2∑
i=1

ˆ
∂Di,n

ω

∣∣∣∣∣
=

=

∣∣∣∣∣
n2∑
i=1

ˆ
Di,n

dω

∣∣∣∣∣
≤

n2∑
i=1

ˆ
Di,n

|dω| dH2

≤ ‖ω‖C1
n2H2

(
B 1

2n2

)
= ‖ω‖C1

π

4n2
.

Taking the limit as n → +∞, we conclude that (Tn)n converges to 0 in the sense of
currents.

Here, we state without proof another fundamental result in the theory of Currents.

Theorem 7.3.45 (Boundary rectifiability). Let T be a rectifiable current with integral
multiplicity s.t. M(∂T ) is finite. Then, ∂T is rectifiable with integral multiplicity. In
particular, T is an integral current.
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Remark 7.3.46. The proof of theorem 7.3.45 is very hard. Moreover, the assumption
M(∂T ) < +∞ is not trivial, in the sense that there exists a rectifiable current T with
integral multiplicity s.t. M(∂T ) = +∞. For instance, consider in R the 1-current
defined by

T := [E, e, 1],

where e is the standard orientation or R (namely e = 1) and

E :=
⋃
n∈N

[
1

2 · 4n
,

1

4n

]
.

Then, T is 1-rectifiable, but M(∂T ) = +∞.

Having in mind boundary rectifiability theorem (see 7.3.45), Federer-Fleming theorem
(see 7.3.37) can be restated as follows.

Theorem 7.3.47. Let (Tn)n be a sequence of rectifiable k-currents in Rn, with 0 ≤ k ≤
n. Assume that

sup
n
M(Tn) + sup

n
M(∂Tn) < +∞.

Then, up to subsequences, (Tn)n converges to an integral k-current T in the sense of
currents.

A significant improvement of the Federer-Fleming theorem is the following result,
which is very hard to prove.

Theorem 7.3.48 (Ambrosio-Kirchneim, Jerrard). Let (Tn) be a sequence of rectifiable
k-currents in Rn with multiplicities (mn). Assume that

inf
n
|mn| ≥ δ > 0, sup

n
M(Tn) +M(∂Tn) < +∞.

Then, up to subsequences, (Tn)n converges in the sense of currents to a rectifiable
k-current T with multiplicity m s.t. |m| ≥ δ.

7.3.4 Approximation of currents

Definition 7.3.49 (k-polyhedral current). A k-polyhedral current (or chain) in Rn is
a current of the form

T :=
N∑
i=1

[Si, τi,mi],

where

• Si is a k-dimensional simplex in Rn,

• τi is a constant orientation of Si,

• mi is a constant multiplicity in R or in Z.

If the multiplicities take values in Z or R we say that T is a real or integral polyhedral
chain.

The following statement holds true; the proof is hard.
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Theorem 7.3.50. If T is an integral current in Rd, then there exists a sequence (Tn)n
of integral polyhedral chains s.t.

• Tn
∗
⇀ T and ∂Tn

∗
⇀ ∂T in the sense of currents,

• M(Tn)→M(T ) and M(∂Tn)→M(∂T ).

If T is only a normal current, the same holds with (Tn)n a sequence of real polyhedral
chains.

Remark 7.3.51. In the theorem 7.3.50 (when dealing with normal currents) it is crucial
that M is defined with mass and comass norm for k-vectors and k-covectors (non with
the euclidean norm). For example, if T = τ ·L nx[0, 1]n and τ is a constant, non-simple
k-vector (2 ≤ k ≤ n− 2), to construct τ by hands, we need to write τ =

∑
λiτi, where

τi are simple and |τ | ≈
∑
λi |τi|.

Remark 7.3.52. In this theory, the notion of mass generalizes the volume with multiplicity
of polyhedral chains, which is not the volume.

Remark 7.3.53. The approximation result 7.3.50 can be improved in many ways: for
instance, if ∂T = 0, we can additionally require that ∂Tn = 0 for all n. In general, we
can also require that Tn is cobordant to T , that is Tn − T is the boundary of a current
U .
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