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Notation

• N = {0; 1; 2; . . . } is the set of the natural numbers;

• N∗ = {1; 2; . . . };

• R is the set of the real numbers;

• L is the one-dimensional Lebesgue measure in [0, 1];

• L2 stands for L2((0, 1)), unless otherwise specified;

• L1 stands for L1((0, 1)), unless otherwise specified;

• W 1;1 stands for W 1;1((0, 1)), unless otherwise specified;

• C0 stands for C0([0, 1]), unless otherwise specified;

• C∞c ((0, 1)) is the set of the smooth function supported in a compact subset in
(0, 1);

• card is the cardinality of a set.
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Introduction and motivations

The Mumford-Shah functional is the prototype of free discontinuity problem. It was
introduced by David Mumford and Jayant Shah in 1989 to face up to the problem of
the image segmentation. However, the one-dimensional version of the Mumford-Shah
functional models the problem of the signal segmentation. Let h be a signal; we are
looking for a signal u which is a "regular approximation" of h.

Figure 1: Example of the original signal and the segmented signal

We can identify signals with real-valued functions in [0, 1]. Let h : [0, 1]→ R be a
function; we can introduce the Mumford-Shah functional

E (u) :=

∫ 1

0

(u− h)2 dx+

∫ 1

0

(u̇)2 dx+
∑
x∈S(u)

1,

where u̇ is the derivative of u (opportunely defined) and S (u) is the set of the disconti-
nuities of u.

•
∫ 1

0

(h− u)2 dx is the fidelity term: the less it is, the closer to h it is the approxi-

mation.

•
∫ 1

0

(u̇)2 dx is the volume term: the less is it, the more regular it is the approxima-

tion.
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Chapter 0. Introduction and motivations

•
∑
x∈S(u)

1 counts the jumps of the function u.

Obviously, each term has minimum 0. However, we are interested in minimizing their
sum; in other words, we are looking for the best compromise among the three terms,
namely a function u that is quite "close" to h, enough "regular" and with a reasonable
quantity of discontinuity points.

This thesis deals with a more general problem. Let ϕ, ψ be nonnegative functions in
R. Similarly, we define the generalized Mumford-Shah functional

Eϕ;ψ(u) :=

∫ 1

0

(u− h)2 dx+

∫ 1

0

ϕ(u̇) dx+
∑
x∈S(u)

ψ(∆u (x)) (0.1)

where ∆u (x) is the height of the jump of u in x. What makes this functional more
general is that the function ψ gives each jump a weight depending on its height. We
suppose that ϕ is convex, even, lower semicontinuous and ϕ(0) = 0; we assume that ψ
is even, lower semicontinuous, globally subadditive and ψ(0) = 0. We also assume that

lim inf
θ→0

ψ(θ)

|θ|
= lim inf

θ→+∞

ϕ(θ)

|θ|
= +∞.

The first part of this thesis is dedicated to well define the functional Eϕ;ψ and show
that it admits minimum. We point out in which sense u is "regular" and it is a "suitable
approximation" of h. Formally, we introduce the space of the Special Functions of
Bounded Variation (SBV) as a subset of L2. Although this definition is exquisitely
one-dimensional, a function u in SBV can be decomposed in u = w + v, where w is in
W 1;1 (it is the absolutely continuous part of u) and v is such that

v :=
∑
x∈S(u)

∆u (x)1[x,1]

(it is the jump part). We assume that the S (u) is a set in (0, 1) at most countable and
it is formed by pairwise disjoint points. We also assume that the series that defines u is
totally convergent. So, if h is a function in L2, we can well define Eϕ;ψ as in (0.1).

The existence of the minimum for the generalized Mumford-Shah functional can be
obtained as a consequence of the direct method. So, we need compactness and lower
semicontinuity theorems for Eϕ;ψ. Since the generalized Mumford-Shah functional is not
convex, these results do not follow immediately from the classical calculus of variations.

In the second part of the thesis we show how to approximate the minimum of Eϕ;ψ.
We introduce a discrete approximation of Eϕ;ψ in the sense of the Γ-convergence and
we conclude that the minimum of Eϕ;ψ can be obtained as limit of the sequence of
the minimizers of the approximating problems. Since Eϕ;ψ is defined in an infinite-
dimensional space and the approximating problems are defined in Rn (n is growing),
the simplification is absolutely relevant.

The third part of the thesis is dedicated to the regularity of the principal part of the
generalized Mumford-Shah functional. We defineMSϕ;ψ : SBV → [0,+∞] such that

MSϕ;ψ(u) :=

∫ 1

0

ϕ(u̇) dx+
∑
x∈S(u)

ψ(∆u (x))

iv



We introduce the descending metric slope of a functional: in some sense, it is very
similar to the norm of the gradient for a differentiable function defined in Rn. If (X; d)
is a metric space, F : X → [0,+∞] is a functional and x0 is a point in X such that
F (x0) is a real number, the descending metric slope of F in x0 measures how much it is
possible to decrease the value of the functional with respect to the distance from x0.
We want to compute the descending metric slope of the functionalMSϕ;ψ. We consider
a function u0 in SBV such that the slope ofMSϕ;ψ in u0 is finite. We find out that
the set of the discontinuities of u0 is finite, u0 is quite regular and there are Neumann
boundary conditions that force the values of the height of the jump to be in a very
special set. We also give a lower bound for the slope.

Surprisingly enough, these conditions turn out to be sufficient. If u0 is a function in
SBV with all the properties described, then the slope ofMSϕ;ψ in u0 is finite. We give
an upper bound for the slope that coincides with the lower bound in most cases.

v





Chapter 1

A preparatory problem

We define the generalized Dirichlet functional. So, we introduce the definition of convex
conjugate and we make a step toward the definition of the Orlicz spaces. These notions
turn out to be very useful to show that the generalized Dirichlet functional is lower
semicontinuous and there are some properties of compactness.

1.1 Convex conjugate

Definition 1.1.1 (Young function).
Let ϕ : R→ R be a superlinear function, i. e.

lim inf
|x|→+∞

ϕ(x)

|x|
= +∞.

Let us assume that ϕ is even, convex and such that ϕ(0) = 0. We say that ϕ is a Young
function.

Definition 1.1.2 (Convex conjugate).
Let ϕ be a Young function as in definition 1.1.1. For all real numbers m, q we denote
rm;q the straight line of equation y = mx− q. If m is any real number, we define

Aϕ(m) := {q ∈ R | ∀x ∈ R rm,q(x) ≤ ϕ(x)}.

We also define ϕ∗(m) := inf Aϕ(m). The function ϕ∗ is also known as the convex
conjugate of ϕ.

Remark 1.1.3. Thanks to the growth properties of ϕ, if m is any real number, then
Aϕ(m) is non-empty. Hence, the function ϕ∗ is well defined.

Remark 1.1.4. We remark that the definitions of Young function and convex conjugate
can be given in a more general context (see [7]). However, definitions 1.1.1 and 1.1.2
are sufficient for our purpose.

Lemma 1.1.5. Let ϕ be a Young function as in definition 1.1.1; let m be a real number.
If we define ϕ∗(m) as in 1.1.2, then ϕ∗(m) is in Aϕ(m); in particular, for all x,m in
R the following inequality hold true:

ϕ(x) + ϕ∗(m) ≥ mx. (1.1)

1



Chapter 1. A preparatory problem

Proof. It’s easy to see that

(ϕ∗(m),+∞) ⊆ Aϕ(m) ⊆ [ϕ∗(m),+∞).

Let us assume that there exists x in R such that ϕ(x) < rm;ϕ∗(m); then, there exists a
positive real number ε such that

ϕ(x) + ε < rm;ϕ∗(m)(x).

In other words, we have that

ϕ(x) < rm;ϕ∗(m)+ε(x).

So, ϕ∗(m) + ε does not belong to Aϕ(m). In particular, we obtain that Aϕ(m) is
completely contained in [ϕ∗(m) + ε,+∞), that is absurd because ϕ∗(m) is the infimum
of Aϕ(m).

Theorem 1.1.6. Let ϕ be a Young function as in 1.1.1. Let ϕ∗ be the convex conjugate
as in 1.1.2. Then ϕ∗ is a Young function.

Proof. Since ϕ is even, it’s easy to see that ϕ∗ is even and ϕ∗(0) = 0.
We claim that ϕ∗ is a convex function. Let m1,m2 be real numbers; let t be in [0, 1].

Thanks to lemma 1.1.5, for all x in R the following inequalities hold true:

tm1x− tϕ∗(m1) ≤ tϕ(x),

(1− t)m2x− (1− t)ϕ∗(m2) ≤ (1− t)ϕ(x).

Joining the inequalities, we have that

x[tm1 + (1− t)m2]− [tϕ∗(m1) + (1− t)ϕ∗(m2)] ≤ ϕ(x).

By definition 1.1.2, tϕ∗(m1) + (1− t)ϕ∗(m2) is in Aϕ(tm1 + (1− t)m2); in particular,
we have that

tϕ∗(m1) + (1− t)ϕ∗(m2) ≥ ϕ∗(tm1 + (1− t)m2).

We claim that ϕ∗ is a superlinear function. Let x be a positive real number; thanks
to (1.1), if m is a positive real number, we have that

ϕ∗(m)

m
≥ x− ϕ(x)

m
.

In particular, for all x in (0,+∞) we have that

lim inf
m→+∞

ϕ∗(m)

m
≥ x− lim sup

m→+∞

ϕ(x)

m
= x.

As ϕ∗ is even, we have that

lim inf
|m|→+∞

ϕ∗(m)

|m|
= +∞.

2



1.1. Convex conjugate

Figure 1.1: The Young function ϕ(x) = 3
10
x2 and the straight line y = 1

2
x− 1

Example 1.1.7. Let p be a real number in (1,+∞); let us consider the Young function

ϕp(x) :=
|x|p

p
.

Let q be the conjugate index of p, i. e. q is in (1,+∞) and such that

1

q
= 1− 1

p
.

We claim that ϕ∗p is equal to ϕq. We can assume x,m are positive real number. If we
ask the straight line of equation y = mx − ϕ∗p(m) to be tangent to ϕ(x), we have to
solve the following system: 

mx− ϕ∗p(m) =
xp

p
;

pxp−1

p
= m.

Hence, if m is a positive real number, we obtain that

ϕ∗p(m) =
mq

q
.

We have shown that ϕ∗p = ϕq. If we rewrite (1.1), we notice that for all x,m in R it
holds that

mx ≤ |x|
p

p
+
|m|q

q
,

which is the classical Young’s inequality.

Remark 1.1.8. The example 1.1.7 explains why we refer to (1.1) as generalized Young’s
inequality.

3



Chapter 1. A preparatory problem

1.2 Luxemburg norm

Definition 1.2.1 (Luxemburg norm).
Let ϕ be a Young function as in 1.1.1. Let M be a positive real number. For all
measurable function f : [0, 1]→ R we define

‖f‖ϕ;M := inf

{
b > 0

∣∣∣∣ ∫ 1

0

ϕ

(
f(x)

b

)
dx ≤M

}
,

assuming that inf {∅} is equal to +∞.

Example 1.2.2. Let p be a real number in (1,+∞); let us fixM = 1. We show that
the Young function ϕp introduced in (1.1.7) defines the Lp norm. For all measurable
function f : [0, 1]→ R the following identities hold true:

p
1
p ‖f‖ϕp;1 = p

1
p inf

{
b > 0

∣∣∣∣ ∫ 1

0

1

p

∣∣∣∣f(x)

b

∣∣∣∣p dx ≤ 1

}
= p

1
p inf

{
b > 0

∣∣∣∣ 1

p

∫ 1

0

|f(x)|p dx ≤ bp
}

=


(∫ 1

0

|f(x)|p dx
) 1

p

if f ∈ Lp,

p
1
p inf {∅} = +∞ if f /∈ Lp.

Remark 1.2.3. It’s easy to see that if f, g : [0, 1]→ R are measurable functions coinciding
almost everywhere, then ‖f‖ϕ;M = ‖g‖ϕ,M. In particular, it is well defined ‖[f ]‖ϕ;M ,
where [f ] is a class of functions coinciding almost everywhere. It can be shown that
‖·‖ϕ;M is a norm on the set of the measurable functions with the relation that identifies
functions coinciding almost everywhere. In particular, ‖·‖ϕ;M is homogeneous and
triangular inequality holds. Indeed, we won’t show these facts: the interested reader
can see [7].

Lemma 1.2.4. Let ϕ be a Young function as in 1.1.1; letM be a positive real number.
Let f : [0, 1]→ R be a measurable function. Then ‖f‖ϕ;M = 0 if and only if f(x) = 0
for almost every x in [0, 1].

Proof. Let us assume that f(x) = 0 for almost every x in [0, 1]. If b is any positive real
number, we have that ∫ 1

0

ϕ

(
f(x)

b

)
dx = 0 ≤M.

By definition 1.2.1, it holds that ‖f‖ϕ;M ≤ b; so we can conclude that ‖f‖ϕ;M = 0.
By definition 1.2.1, it holds that ‖f‖ϕ;M = 0 if and only if for all positive real

number a it holds that ∫ 1

0

ϕ (af(x)) dx ≤M.

For all positive integer n, we define the measurable set

Bn := f−1

((
−∞,− 1

n0

]
∪
[

1

n0

,+∞
))

.

4



1.2. Luxemburg norm

If we show that for all n in N it holds that L (Bn) = 0, then the conclusion is
immediate. By contradiction, let us assume that there exists a natural number n0

such that L (Bn0) > 0. Under the growth hypothesis of ϕ, there exists a positive real
number a0 such that for all a greater than a0 it holds that

ϕ

(
a

n0

)
>

M

L (Bn0)
.

Hence, if a is greater than a0, then∫ 1

0

ϕ (af(x)) dx ≥
∫ 1

0

ϕ

(
a

n0

)
1Bn0

(x) dx = L (Bn0)ϕ

(
a

n0

)
>M.

So, the absurd follows immediately.

Lemma 1.2.5. Let ϕ be a Young function as in 1.1.1; letM be a positive real number.
Let f : [0, 1]→ R be a measurable function such that ‖f‖ϕ;M is in (0,+∞). Then, the
infimum in the definition 1.2.1 is actually a minimum.

Proof. Obviously, it is enough to show that∫ 1

0

ϕ

(
f(x)

‖f‖ϕ;M

)
dx ≤M.

Let {bn}n∈N be a sequence of positive real number with the following properties:

• if n is any natural number, then
∫ 1

0

ϕ

(
f(x)

bn

)
dx ≤M;

• the sequence is monotonically decreasing and the infimum is ‖f‖ϕ;M.

We notice that
{
ϕ
(
f
bn

)}
n∈N

is a sequence of measurable nonnegative functions that

converges toward ϕ
(

f
‖f‖ϕ;M

)
pointwise for almost every x in [0, 1]. Under our assumption

on {bn}n∈N, we notice that for almost every x in [0, 1] for all n in N it holds that

ϕ

(
f(x)

bn

)
≤ ϕ

(
f(x)

bn+1

)
.

Thanks to Beppo Levi’s theorem, we have that∫ 1

0

ϕ

(
f

‖f‖ϕ;M

)
dx = lim

n→+∞

∫ 1

0

ϕ

(
f

bn

)
dx ≤M.

Let ϕ be a Young function as in 1.1.1; let ϕ∗ be the convex conjugate as in 1.1.2.
We have shown in 1.1.6 that ϕ∗ is a Young function. Hence, for all positive real number
M, we can consider ‖·‖ϕ;M and ‖·‖ϕ∗;M: the next statement ties them up.

5



Chapter 1. A preparatory problem

Proposition 1.2.6 (Generalized Hölder’s inequality).
Let ϕ be a Young function as in 1.1.1; let ϕ∗ be the convex conjugate as in 1.1.2; let
M be a positive real number. Let f, g : [0, 1] → R be measurable functions such that
‖f‖ϕ;M and ‖g‖ϕ∗;M are real numbers. The following inequality holds true:∫ 1

0

|f(x)g(x)| dx ≤ 2M‖f‖ϕ;M ‖g‖ϕ∗;M .

Proof. If ‖f‖ϕ;M = 0 or ‖g‖ϕ∗;M = 0 the conclusion is an immediate consequence of
lemma 1.2.4.

Let us assume that both ‖f‖ϕ;M and ‖g‖ϕ∗;M are positive real numbers. Thanks to
1.1, for almost every x in [0, 1] it holds that

|f(x)|
‖f‖ϕ;M

|g(x)|
‖g‖ϕ∗;M

≤ ϕ

(
|f(x)|
‖f‖ϕ;M

)
+ ϕ∗

(
|g(x)|
‖g‖ϕ∗;M

)
.

We integrate and we have that∫ 1

0

|f(x)|
‖f‖ϕ;M

|g(x)|
‖g‖ϕ∗;M

dx ≤
∫ 1

0

ϕ

(
|f(x)|
‖f‖ϕ;M

)
dx+

∫ 1

0

ϕ∗

(
|g(x)|
‖g‖ϕ∗;M

)
dx.

Thanks to lemma 1.2.5, the right hand side is lower that 2M and the proposition is
completely proved.

1.3 Generalized Dirichlet functional in W 1;1

Definition 1.3.1 (Generalized Dirichlet functional in W 1;1).
Let ϕ be a Young function as in 1.1.1. We define Dϕ : L2 → [0,+∞] such that

Dϕ(u) :=


∫ 1

0

ϕ(
.
u) dx if u ∈ W 1;1;

+∞ if u ∈ L2 \W 1;1.

We refer to Dϕ as the generalized Dirichlet functional in W 1;1.

Proposition 1.3.2. Let ϕ be a Young function as in 1.1.1. Let us define Dϕ as in
1.3.1. Let α, β be real numbers. Let us denote

Xα;β :=
{
u ∈ W 1;1 | u(0) = α, u(1) = β

}
.

Then, the straight line that joins (0;α), (1; β) is a minimum point for Dϕ in Xα;β. We
say that it minimizes the functional with Dirichlet boundary conditions.

Proof. Let u be any function in Xα;β. We denote as u0 the straight line that joins
(0;α), (1; β). Let us denote v := u− u0. We notice that .

u0(x) = β − α for all x in [0, 1].
Since ϕ is a convex function and u̇0 is constant, there exists a real number µ such that
for almost every x in [0, 1] it holds that

ϕ(
.
u0(x) +

.
v(x)) ≥ µ

.
v(x) + ϕ(

.
u0(x)).

6



1.3. Generalized Dirichlet functional in W 1;1

If we integrate, we obtain that

Dϕ(w) =

∫ 1

0

ϕ(
.
u0(x) +

.
v(x)) dx ≥ µ

∫ 1

0

.
v(x) dx+

∫ 1

0

ϕ(
.
u0(x)) dx.

Since v is in W 1;1 and v(0) = v(1) = 0, it’s easy to see that∫ 1

0

.
v(x) dx = v(1)− v(0) = 0.

So, we have that

Dϕ(w) ≥
∫ 1

0

ϕ(
.
u0(x)) dx = Dϕ(u0).

1.3.1 Compactness of the generalized Dirichlet functional

We state a compactness theorem for the generalized Dirichlet functional. The proof is a
consequence of the theory developed in the previous section and the Dunford-Pettis
theorem.

Lemma 1.3.3. Let ϕ be a Young function as in 1.1.1; let M be any positive real
number. For all ε in (0,+∞) there exists a positive real number δ with the following
property: if C is a measurable set in [0, 1] such that L (C) < δ, then ‖1C‖ϕ;M ≤ ε.

Proof. Let ε be a positive real number. It’s easy to see that there exists a real number
k greater that 1 such that ϕ

(
k
ε

)
is greater than 0. If we define

δ :=
M
ϕ
(
k
ε

) ,
we claim that δ satisfies all the requests. Let C be a measurable set in [0, 1] such that
L (C) < δ. If L (C) is equal to 0 the conclusion is trivial; hence, we can assume that
L (C) is in (0, δ). By definition of δ, k, C, we notice that

ϕ

(
k

ε

)
=
M
δ
≤ M

L (C)
.

By definition 1.2.1, we have that

‖1C‖ϕ;M = inf

{
b > 0

∣∣∣∣ ∫ 1

0

ϕ

(
1C(t)

b

)
dt ≤M

}
= inf

{
b > 0

∣∣∣∣ ϕ(1

b

)
L (C) ≤M

}
= inf

{
b > 0

∣∣∣∣ ϕ(1

b

)
≤ M

L (C)

}
≤ ε

k
≤ ε.

7



Chapter 1. A preparatory problem

Theorem 1.3.4. Let ϕ be a Young function as in 1.1.1. Let us define Dϕ as in 1.3.1.
Let M, ε be positive real numbers. There exists a positive real number δ with the
following property: if x, y are in [0, 1] and |x− y| ≤ δ, if w is a real-valued function that
belongs to W 1,1 such that Dϕ(w) ≤M, if we consider the continuous representative, it
holds that |w(x)− w(y)| < ε.

Proof. LetM, ε be positive real numbers. Let us define the convex conjugate ϕ∗ as in
1.1.2. We recall that ϕ∗ is a Young function (see 1.1.6). Thanks to lemma 1.3.3, there
exists a positive real number δ such that if x, y are in [0, 1] and |x− y| ≤ δ, then it
holds that ∥∥1(x,y)

∥∥
ϕ∗;M ≤

ε

2M
. (1.2)

We claim that δ satisfies all the request. Let w be a function in W 1;1 such that
Dϕ(w) <M. Let x, y be in [0, 1] such that |x− y| < δ. It is not restrictive to assume
that x < y; we also denote as w the continuous representative. Since Dϕ(w) is lower
thanM, by definition 1.2.1 it immediately follows that

‖ .w‖ϕ;M ≤ 1. (1.3)

If we join 1.2.6, (1.2) and (1.3), we obtain that

|w(x)− w(y)| ≤
∫ y

x

|ẇ(t)| dt =

∫ 1

0

|ẇ(t)|1(x,y)(t) dt

≤ 2M‖ẇ‖ϕ;M

∥∥1(x,y)

∥∥
ϕ∗;M ≤ ε.

Corollary 1.3.5. Let ϕ be a Young function as in 1.1.1; let us define the generalized
Dirichlet functional as in 1.3.1. Let M be a positive real number; let {wn}n∈N be a
sequence of functions in W 1,1 ∩ C0 such that Dϕ(wn) ≤ M for all n in N. Then,
{wn}n∈N is a equi-uniformly continuous sequence of functions. Moreover, let us assume
that there exists a positive real number R such that for all n in N there exists xn in
[0, 1] such that |wn(xn)| ≤ R; then {wn}n∈N is a equi-bounded sequence of functions. In
particular, there exists w∞ in C0 and a subsequence {wnk}k∈N that converges uniformly
toward w∞.

Proof. The first statement is an immediate consequence of theorem 1.3.4.
Let {xn}n∈N be a sequence in [0, 1]. Let R,M be positive real numbers as in the

hypothesis; let ε be equal to 1. Let δ > 0 be given by the theorem 1.3.4, with ε,M as
declared. There exists a finite sequence

0 = y0 < y1 < · · · < yp < yp+1 = 1

such that for all integer i in {0; . . . ; p} we have that |yi − yi+1| < δ. Let n be a natural
number: there exists in in {0; . . . ; p} such that xn is in [yin , yin+1]. Let x be any point in
[0, 1]: there exists ix in {0; . . . ; p} such that x is in [yix , yix+1]. Without loss of generality,
we can assume that ix ≤ in; thanks to triangular inequality, we have that

|wn(x)| ≤ |wn(x)− wn(xn)|+ |wn(xn)|

≤ |wn(xn)|+ |wn(x)− wn(yix)|+
in−1∑
j=ix

|wn(yj)− wn(yj+1)|

≤ M+ p+ 2.
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1.3. Generalized Dirichlet functional in W 1;1

As for the last statement, it is an immediate consequence of the Ascoli-Arzelà’s
theorem.

Definition 1.3.6 (Uniformly integration).
Let F be a set in L1. We say that F is uniformly integrable if to ε in (0,+∞) there
corresponds a positive real number δ with the following property: if C is any measurable
set in [0, 1] such that L (C) ≤ δ, for all f in F it holds that∫

C

|f(x)| dx ≤ ε.

Theorem 1.3.7 (Dunford-Pettis theorem in (0, 1)).
Let {wn}n∈N be a sequence of functions in L1. Let us denote F := {wn | n ∈ N}. Those
facts are equivalent:

• F is uniformly integrable as in 1.3.6;

• there exists a subsequence {wnk}k∈N and a function w∞ such that {wnk}k∈N con-
verges L1-weakly toward w∞.

Proof. As for the proof, see [2].

Proposition 1.3.8. Let ϕ be a Young function as in 1.1.1. Let us define Dϕ as in 1.3.1.
LetM be a positive real number; let us consider a sequence of functions {wn}n∈N in W 1;1

such that for all n in N it holds that Dϕ(wn) ≤ M. If we define F := { .wn | n ∈ N},
then F is uniformly integrable as in 1.3.6.

Proof. Thanks to the growth hypothesis on ϕ, there exists a positive real number B
such that for all x in R it holds that ϕ(x) ≥ |x| − B. Then, for all n in N for almost
every x in [0, 1] it holds that

| .wn(x)| ≤ |ϕ(
.
wn(x))|+B. (1.4)

Let ε be a positive real number. Thanks to lemma 1.3.3, there exists δ in (0,+∞)
with the following property: if C is measurable set in [0, 1] such that L (C) < δ, then
it holds that

‖1C‖ϕ∗;M <
ε

4M
. (1.5)

We immediately notice that it is not restrictive to assume that δ < ε
2B

. By definition
1.2.1, for all n in N we have that

‖ .wn‖ϕ;M ≤ 1. (1.6)

If we join the generalized Hölder’s inequality (see 1.2.6), (1.4), (1.5) and (1.6), for all n
in N the following inequalities hold true:∫

C

| .wn(x)| dx ≤
∫
C

[ϕ(
.
wn(x)) +B] dx

=

∫
C

ϕ(
.
wn(x)) dx+BL (C)

≤
∫ 1

0

ϕ(
.
wn(x))1C(x) dx+

ε

2

≤ 2M‖ .wn‖ϕ;M ‖1C‖ϕ∗;M +
ε

2

≤ ε

2
+
ε

2
= ε.
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Theorem 1.3.9 (Compactness theorem for the generalized Dirichlet functional).
Let ϕ be a Young function as in 1.1.1; let us define Dϕ as in 1.3.1. LetM be a positive
real number. Let us consider a sequence of functions {wn}n∈N in W 1;1 ∩ C0([0, 1]) such
that for all n in N it holds that Dϕ(wn) ≤ M. Let us assume that there exists a real
number R and a sequence {xn}n∈N in [0, 1] such that |wn(xn)| ≤ R for all n in N. Then,
there exists a subsequence {wnk}k∈N and a function w∞ with the following properties:

• {wnk}k∈N converges uniformly toward w∞;

• w∞ is in W 1;1 and { .wnk}k∈N converges L1-weakly toward
.
w∞.

Proof. Thanks to the Dunford-Pettis theorem (see 1.3.7), there exists a subsequence
{wnk}k∈N and a function v∞ in L1 such that { .wnk}k∈N converges L1-weakly toward v∞.
Thanks to corollary 1.3.4, up to further subsequences, not relabelled, we can assume
that there exists a function w∞ such that {wnk}k∈N converges uniformly in [0, 1] toward
w∞. We claim that w∞ is in W 1;1 and .

w∞ is equal to v∞. By definition of weak
derivative, for all k in N for all ρ in C∞c ((0, 1)), it holds that∫ 1

0

wnk(x)ϕ′(x) dx = −
∫ 1

0

.
wnk(x)ϕ(x) dx.

Thanks to the uniform convergence, we have that

lim
k→+∞

∫ 1

0

wnk(x)ϕ′(x) dx =

∫ 1

0

w∞(x)ϕ′(x) dx.

By definition of L1-weak convergence, we have that

lim
k→+∞

∫ 1

0

.
wnk(x)ϕ(x) dx =

∫ 1

0

v∞(x)ϕ′(x) dx.

This is enough to state that w∞ is in W 1;1((0, 1)) ∩ C0 and .
w∞ = v∞.

1.3.2 Lower semicontinuity of the generalized Dirichlet func-
tional

We state a lower semicontinuity theorem for the generalized Dirichlet functional. The
proof is a consequence of the Hahn-Banach separation theorem.

Theorem 1.3.10. Let V be a normed vector space. Let Υ : V→ [0,+∞] be a convex,
lower semicontinuous map. Let w∞ be in V; let {wn}n∈N be a sequence in V that
converges weakly in V toward w∞. Then, it holds that

lim inf
n→+∞

Υ(wn) ≥ Υ(w∞).

Proof. As for the proof, it is a consequence of the Hahn-Banach separation theorem
(see [2]).

Theorem 1.3.11. Let ϕ be a Young function as in 1.1.1. Let us define the generalized
Dirichlet functional Dϕ as in 1.3.1. Then, Dϕ is lower semicontinuous.
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1.3. Generalized Dirichlet functional in W 1;1

Proof. Let us define Υ : L1 → [0,+∞] such that

Υ(w) :=

∫ 1

0

ϕ(w) dx.

Since ϕ is a convex function, it’s immediate to see that Υ is a convex functional. We
claim that it is lower semicontinuous. Let w∞ be a function in L1; let {wn}n∈N be a
sequence in L1 that converges toward w∞ with respect to L1 norm. Up to subsequences,
not relabelled, we can assume that {wn}n∈N converges pointwise toward w∞ for almost
every x in (0, 1). Since ϕ is a continuous nonnegative function, the following inequality
is a consequence of the Fatou’s lemma:

lim inf
n→+∞

∫ 1

0

ϕ(wn) dx ≥
∫ 1

0

ϕ(w∞) dx.

Thanks to theorem 1.3.10, if w∞ is a function in W 1;1 and {wn}n∈N is a sequence in
W 1;1 such that { .wn}n∈N converges L1-weakly toward .

w∞, it holds that

lim inf
n→+∞

∫ 1

0

ϕ(
.
wn) dx ≥

∫ 1

0

ϕ(
.
w∞) dx.

In conclusion, let us consider a function w∞ in L2 and a sequence {wn}n∈N in L2 that
converges toward w∞ with respect to L2 norm. We claim that

lim inf
n→+∞

Dϕ(wn) ≥ Dϕ(w∞).

If the left hand side is +∞, the conclusion is trivial. Let us assume that there exists a
real numberM such that the left hand side is equal toM; up to subsequences, not
relabelled, we can assume that

• the inferior limit is actually a limit;

• Dϕ(wn) <M+ 1 for all n in N;

• the sequence {wn}n∈N converges pointwise toward w∞ for almost every x in (0, 1).

Thanks to the compactness theorem for the generalized Dirichlet functional (see 1.3.9),
there exists another subsequence, not relabelled, such that { .wn} converges L1-weakly
toward .

w∞. Therefore, we can conclude that

Dϕ(w∞) ≤ lim inf
n→+∞

Dϕ(wn).
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Chapter 2

An example of free discontinuity
problem

2.1 Generalized Mumford-Shah functional in PJ
We introduce the space of the Pure Jump Functions (PJ ); we define the generalized
Mumford-Shah functional in PJ ; we state and prove a lower semicontinuity theorem
and some compactness result.

2.1.1 The space of functions PJ
Definition 2.1.1 (Limit in measure theory).
Let F be a class of functions in L2 coinciding almost everywhere; let x0 be any point in
[0, 1). Let g be any representative of F . Let us assume that there exists a real number
l with the following property: to a positive real number ε there corresponds a positive
real number δ such that (x0, x0 + δ) is contained in [0, 1] and it holds that

L ({x ∈ (x0, x0 + δ) | |g(x)− l| ≤ ε}) = δ.

We say that l is the right limit for F as x approaches x0; it is denoted as F (x0)+.
Similarly, if x0 is in (0, 1], we define the left limit for F as x approaches x0; it is

denoted as F (x0)−.

Remark 2.1.2. It’s easy to see that definition 2.1.1 does not depend on the specific
representative of F chosen. Hence, it is well posed.

Remark 2.1.3. By definition 2.1.1, it immediately follows that the algebraic properties
and the uniqueness of measure theory right limit and left limit still hold true.

Definition 2.1.4 (Jump in measure theory).
Let F be a class of functions in L2 coinciding almost everywhere. Let x0 be any point
in (0, 1). Let us assume that the right limit F (x0)+ and the left limit F (x0)− are well
defined as in 2.1.1. We define the jump of F in x0 as

∆F (x0) := F (x0)+ −F (x0)−.

Definition 2.1.5 (Essential discontinuity).
Let F be a class of functions in L2 coinciding almost everywhere such that ∆F (x)
is well defined for all x in (0, 1) as in 2.1.4. Let x0 be a point in (0, 1). We say that

12



2.1. Generalized Mumford-Shah functional in PJ

F is continuous in x0 if and only if ∆F (x0) = 0. We define the set of the essential
discontinuities as

S (F ) := {x ∈ (0, 1) | ∆F (x) 6= 0} .

Definition 2.1.6 (PJ ).
Let F be a class of function in L2 coinciding almost everywhere such that ∆F (x) is
well defined for all x in (0, 1) as in 2.1.4. We define S (F ) as in 2.1.5. Let us assume
that

• S (F ) is at most countable;

•
∑

x∈S(F )

|∆F (x)| < +∞;

• F (0)+ is well defined as in 2.1.1 and it is a real number.

Hence, we can well define f : [0, 1]→ R as follows:

f := F (0)+ +
∑

y∈S(F )

∆F (y)1[y,1].

We say that F is in PJ (Pure Jump Functions) if and only if f belongs to F . We
refer to f as the canonical representative of F .

Remark 2.1.7. By definition 2.1.6, it’s immediate to see that PJ is a vector space. Let
F ,G be in PJ . We denote as f, g the canonical representatives respectively of F and
G as in 2.1.6, i. e.

f := F (0)+ +
∑

y∈S(F )

∆F (y)1[y,1],

g := G (0)+ +
∑

y∈S(G )

∆G (y)1[y,1].

Obviously, f + g is in F + G . We also notice that

S (F + G ) ⊆ S (F ) ∪ S (G )

and the inclusion can be strict. We also notice that F is completely determined by the
continuous representative f . In fact, if f and g coincides for almost every x in [0, 1],
then F and G coincide in L2; if we assume that F = G in L2, by definition 2.1.6, we
have that f(x) = g(x) for all x in [0, 1]. Having said that, we can identify F with its
canonical representative f ; we denote F (x0)+ as f(x0)+, F (x0)− as f(x0)−, ∆F (x0)
as ∆f (x0) and S (F ) as S (f).

We introduce the following decomposition, that will be very useful later.

Definition 2.1.8 (i-jump set and band).
Let f be in PJ as specified in 2.1.7; let x be in S (f). For all positive integer i we
define the i-jump set as follows:

S (f)i :=

{
x ∈ S (f)

∣∣∣∣ |∆f (x)| ∈
(

1

i
,

1

i− 1

]}
,

13



Chapter 2. An example of free discontinuity problem

assuming that 1
0

= +∞. We also define the i-band of f as follows:

f i :=
∑

x∈S(f)i

∆f (x)1[x,1],

assuming that f i := 0 if S (f)i = ∅. In particular, it holds that

f = f(0) +

(∑
i≥1

f i

)
. (2.1)

Remark 2.1.9. Let f be in PJ . By definition 2.1.6, the series that defines f converges
totally; hence, for all i in N∗ we have that S (f)i is a finite set.

2.1.2 Weak formulation in PJ
Definition 2.1.10 (Incremental ratio in 0).
Let ψ : R→ R be an even function; let θ be a positive real number. We define

Γψ(θ) :=
ψ(θ)

|θ|
.

Definition 2.1.11 (Weight function).
Let ψ : R → [0,+∞) be an even, lower semicontinuous function with the following
properties:

• ψ(θ) = 0 if and only if θ = 0;

• lim inf
θ→0+

Γψ(θ) = +∞;

• it is globally subadditive, namely if a, b are real numbers then

ψ(a+ b) ≤ ψ(a) + ψ(b);

• lim inf
θ→+∞

ψ(θ) > 0.

We say that ψ is a weight function.

Definition 2.1.12. Let ψ be a weight function as in definition 2.1.11; let a be a positive
real number. We define

Iψ(a) := inf {ψ(x) | x ∈ [a,+∞)} .

Remark 2.1.13. If ψ is weight function as in definition 2.1.11 and a is a positive real
number, then Iψ(a) is greater than 0. By contradiction, let us assume that there exists
a positive real number a0 such that Iψ(a0) = 0; by definition of infimum, there exists a
sequence {xn}n∈N in [a0,+∞) such that

lim
n→+∞

ψ(xn) = Iψ(a0) = 0.
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2.1. Generalized Mumford-Shah functional in PJ

Up to subsequences, not relabelled, we can assume that there exists x0 in [a0,+∞] such
that {xn}n∈N converges toward x0. Let us assume that x0 is a real number; since ψ is
lower semicontinuous, we have that

ψ(x0) ≤ lim inf
n→+∞

ψ(xn) = 0,

that is against the fact that ψ(t) = 0 if and only if t = 0. If x0 is equal to +∞, we have
that

lim inf
t→+∞

ψ(t) = 0,

that contradicts the definition of ψ.

Figure 2.1: The weight function ψ(x) =
√
|x|

Definition 2.1.14 (Generalized Mumford-Shah functional in PJ ).
Let ψ be a weight function as in 2.1.11. We define the generalized Mumford-Shah
functional in PJ MSψ : L2 → [0,+∞] such that

MSψ(U ) :=


∑

x∈S(U )

ψ(∆U (x)) if U ∈ PJ ,

+∞ if U ∈ L2 \ PJ .

If the right hand side series does not converge, we putMSψ(U ) := +∞, obviously.

Lemma 2.1.15. Let U be in PJ ; let u be its canonical representative as in definition
2.1.6, i. e.

u :=

 ∑
y∈S(U )

∆U (y)1[y,1]

+ U (0)+.

Let I be a set at most countable; let {xi}i∈I be a sequence in [0, 1]; let {hi}i∈I be a
sequence in [0,+∞) such that ∑

i∈I

∣∣hi∣∣ < +∞.
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Chapter 2. An example of free discontinuity problem

Then, we can well define the function

ω :=
∑
i∈I

hi1[xi,1].

Let us assume that ω(x) = u(x) for almost every x in (0, 1). In particular, ω is a
representative of u. Let ψ be a weight function as in 2.1.11; we define MSψ as in
2.1.14. We claim that

MSψ(u) ≤
∑
i∈I

ψ(hi).

In other words, the canonical representative is the minimal one with respect to the
generalized Mumford-Shah functional among all the other representatives of U .

Proof. Step 1: For all i, j in I , we say that i is equivalent to j if and only xi = xj

and we write i ∼ j. Since ∼ is an equivalence relation, it provides a set J at most
countable and a partition of I into disjoint equivalence classes, namely

{I j | j ∈J }.

For all j in J , we define
lj :=

∑
i∈I j

hi;

if i is any element in I , we can also well define yj := xi. It’s immediate to see that for
all x in (0, 1) it holds that

ω(x) =
∑
j∈J

lj1[yj ,1](x).

We notice that it’s not restrictive to make the following assumption:

• J is contained in N;

• lj 6= 0 for all j in J ;

• yj 6= 1 for all j in J .

Step 2: Let x0 be any point in [0, 1). We claim that

ω(x0) = lim
x→x+0

ω(x).

Let ε be any positive real number. For all n in N we define Jn := J ∩ (n,+∞). Since∑
j∈J

∣∣lj∣∣ < +∞, we can well define

jε := min

n0 ∈J

∣∣∣∣ ∑
j∈Jn0

∣∣lj∣∣ ≤ ε

.
There exists a positive real number δ such that (x0, x0 + δ) is completely contained in
[0, 1] and if j is an integer in J ∩ {1; . . . ; jε}, then yj does not belong to (x0, x0 + δ).
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2.1. Generalized Mumford-Shah functional in PJ

Hence, if x is in (x0, x0 + δ), the following inequalities hold true:

|ω(x)− ω(x0)| =

∣∣∣∣∣∣
∑
j∈J

lj1[yj ,1](x)

−
∑
j∈J

lj1[yj ,1](x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈J

lj
(
1[yj ,1](x)− 1[yj ,1](x0)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈J

lj1(x0,x](y
j)

∣∣∣∣∣∣ ≤
∑
j∈Jjε

∣∣lj∣∣ ≤ ε.

Step 3: Let x0 be any point in (0, 1] such that x0 6= yj for all j in J . We claim
that

ω(x0) = lim
x→x−0

ω(x).

Let ε be a positive real number. As defined in the previous step, we set jε and δ.
Similarly, if x is in (x0 − δ, x0), we have that

|ω(x0)− ω(x)| =

∣∣∣∣∣∣
∑
j∈J

lj1(x,x0](y
j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈J

lj1(x,x0)(y
j)

∣∣∣∣∣∣ ≤
∑
j∈Jjε

∣∣lj∣∣ ≤ ε.

Step 4: Let i be in J . We claim that

ω(yi)− li = lim
x→yi−

ω(x).

Let ε be a positive real number. As defined in the second step, we set jε and δ. Similarly,
if x is in (yi − δ, yi), we have that

∣∣ω(yi)− li − ω(x)
∣∣ =

∣∣∣∣∣∣
∑
j∈J

lj1(x,yi](y
j)

− li
∣∣∣∣∣∣

=

∣∣∣∣∣∣
li +

∑
j∈J

lj1(x,yi)(y
j)

− li
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
j∈J

lj1(x,yi)(y
j)

∣∣∣∣∣∣ ≤
∑
j∈Jjε

∣∣lj∣∣ ≤ ε.

Step 5: Since ω is a representative of U , for all x0 in (0, 1) we have that

∆U (x0) = lim
x→x+0

ω(x)− lim
x→x−0

ω(x) =

{
0 if ∀j ∈J : x0 6= yj;

lj if ∃j ∈J : x0 = yj.
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Similarly, we have that

U (0)+ = lim
x→0+

ω(x) =

{
0 if ∀j ∈J : 0 6= yj;

lj if ∃j ∈J : 0 = yj.

We recall that ψ is globally subadditive; hence, the following inequalities hold true:∑
i∈I

ψ(hi) =
∑
j∈J

(∑
i∈I j

ψ(hi)

)

≥
∑
j∈J

(
ψ

(∑
i∈I j

hi

))
=
∑
j∈J

ψ(lj)

≥MSψ(U ).

Remark 2.1.16. Similarly, we can easily show thatMSψ is a subadditive functional: if
U1,U2 are in PJ , then

MSψ(U1) +MSψ(U2) ≥MSψ(U1 + U2).

If we denote S := S (U1) ∪ S (U2), as shown in 2.1.7, it holds that

S (U1 + U2) ⊆ S.

Since ψ(0) = 0, the following inequality hold true:

MSψ(U1) +MSψ(U2) =
∑
x∈S

ψ(∆U1 (x)) + ψ(∆U2 (x)) (2.2)

≥
∑
x∈S

ψ(∆U1 (x) + ∆U2 (x))

=
∑
x∈S

ψ(∆(U1 + U2) (x))

≥MSψ(U1 + U2).

In (2.2) we used the fact that ψ(0) is globally subadditive.

2.1.3 Compactness and lower semicontinuity in PJ
From now on, with a slight abuse of notation, we identify U in PJ with the corre-
sponding canonical representative.

Lemma 2.1.17. Let ψ be a weight function as in 2.1.11; let us define MSψ as in
2.1.14. Let M, ε be positive real numbers. There exists n0 in N with the following
property: if n is a natural number greater than or equal to n0 and v is a function in
PJ such thatMSψ(v) ≤M, then∥∥∥∥∥v −

(
v(0) +

∑
i≤n

vi

)∥∥∥∥∥
∞

≤
∑
i>n

 ∑
x∈S(vn)i

|∆vn (x)|

 ≤ ε.
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Proof. LetM, ε be positive real numbers; let θ be a positive real number. We define

Γψ(θ) :=
ψ(θ)

|θ|

as in 2.1.10. By definition of weight function (see 2.1.11), it holds that

lim
θ→0+

Γψ(θ) = +∞.

Hence, there exists a natural number n0 such that if θ is in
(

0, 1
n0

]
then

Γψ(θ) ≥ M
ε
.

As declared in 2.1.8, if n is greater that n0 and x is S (v)n, then

|∆v (x)| ≤ 1

n0

.

In particular, we can conclude that

ψ(|∆v (x)|)
|∆v (x)|

≥ M
ε
.

If we denote
S :=

⋃
i>n0

S(v)i,

the following inequalities hold true:∥∥∥∥∥v −
(
v(0) +

∑
i≤n

vi

)∥∥∥∥∥
∞

=

∥∥∥∥∥∑
i>n

vi

∥∥∥∥∥
∞

≤
∑
i>n

∥∥vi∥∥∞
≤
∑
i>n0

∥∥vi∥∥∞ ≤∑
i>n0

 ∑
x∈S(v)i

|∆v (x)|


=
∑
x∈S

|∆v (x)| ≤ ε

M
∑
x∈S

ψ(|∆v (x)|)

≤ ε.

Proposition 2.1.18. Let ψ be a weight function as in 2.1.11; let us define MSψ as
in 2.1.14. Let {vn}n∈N be a sequence in PJ . LetM be a positive real number. Let us
assume that for all n in N it holds that

• |vn(0)| ≤ M;

• if x is in S (vn), then |∆vn (x)| ≤ M;

• MSψ(vn) ≤M.

There exists a subsequence {vni}i∈N with the following properties:
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Chapter 2. An example of free discontinuity problem

• there exists a sequence of nonnegative integers {βi}i∈N such that if n is a natural
number greater than or equal to i, then cardS (vn)i = βi; in particular for all i in
N for all n ≥ i we denote

S (vn)i :=
{
xi;1n ; . . . ;xi;β

i

n

}
,

with the assumption that

0 := xi;0n < xi;1n < · · · < xi;β
i

n < xi;β
i+1

n := 1.

We also denote

vin :=

βi∑
t=1

∆i;t
n 1[xi;tn ,1].

• Let i be a positive integer; if t is any integer in {1; . . . ; βi}, there exist xi;t∞ in [0, 1]
and ∆i;t

∞ whose absolute value is in
[

1
i
, 1
i−1

]
∩ (0,M], such that

lim
n→+∞

xi;tn = xi;t∞,

lim
n→+∞

∆i;t
n = ∆i;t

∞.

• For all positive integer i we define

vi∞ :=

βi∑
t=1

∆i;t
∞1[xi;t∞ ,1];

then {vin}n∈N converges toward vi∞ with respect to L2 norm and pointwise for
almost every x in [0, 1]; moreover, if we define

Bi :=
{
t ∈ {1; . . . ; βi} | xi;t∞ = 0

}
,

then
vi∞(0) =

∑
t∈Bi

∆i;t
∞.

•

{
i∑
t=1

vt∞

}
i∈N

is a Cauchy sequence with respect to L2 norm; if we define

v∞ :=
∑
i∈N∗

vi∞,

then {vni}i∈N converges toward v∞ with respect to L2 norm.

In particular, v∞ is in PJ and it holds that

lim inf
i→+∞

MSψ (vni) ≥MSψ(v∞). (2.3)
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2.1. Generalized Mumford-Shah functional in PJ

Proof. Step 1: Let i be a positive integer. Let Λi be an infinite subset in N. We define

Iψ
(

1

i

)
:= inf

{
ψ(x)

∣∣∣∣ x ∈ [1

i
,+∞

)}
as in 2.1.12 and we recall that it is a positive real number (see 2.1.13). Hence, if n is
any integer in Λi, it holds that

M≥MSψ(vin) =
∑

x∈S(vn)i

ψ(∆vn (x)) ≥ cardS
(
vin
)
· Iψ

(
1

i

)
.

In particular, if n is any integer in Λi it holds that

cardS (vn)i ≥ M

Iψ
(

1
i

) .
Therefore, we can find another infinite subset Λi+1 completely contained in Λi and a
positive integer βi such that if k is an integer in Λi+1, then

βi := cardS (vn)i .

In other words, up to subsequence we can assume that the number of jumps whose
height is in

(
1
i
, 1
i−1

]
is equi-finite.

If we put Λ1 := N, by a diagonal procedure, we can find an infinite subset of natural
numbers

Λ := {λi | i ∈ N}

and a sequence of natural numbers {βi}i∈N with the following property: if i,m are
positive integers such that m ≥ i, then

cardS (vλm)i = βi.

We can also assume that the sequence {λi}i∈N is monotonically increasing. Therefore,
up to subsequences, not relabelled, we can assume that Λ is equal to N.

Step 2: Let i be a positive integer. Let Θi be an infinite subset completely contained
in N ∩ [i,+∞). For all n in Θi, we denote

S (vn)i :=
{
xi;1n ; . . . ;xi;β

i

n

}
,

with the assumption that

0 := xi;0n < xi;1n < · · · < xi;β
i

n < xi;β
i+1

n := 1.

We also denote

vin :=

βi∑
t=1

∆i;t
n 1[xi;tn ,1].

Then, we can identify the sequence {vin}n∈Θi with a sequence of vectors in R2βi as
follows:

vin ∼
(
xi;1n ; . . . ;xi;β

i

n ; ∆i;1
n ; . . . ; ∆i;βi

n

)
:= νin.
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Chapter 2. An example of free discontinuity problem

Thanks to our hypothesis, {νin}n∈Θi is a sequence in [0, 1]β
i × [−M,M]β

i . Since the
closed balls are compact subsets in R2βi , we can find another infinite subset Θi+1

completely contained in Θi and two finite subsets{
xi;1∞ ≤ · · · ≤ xi;β

i

∞

}
⊆ [0, 1],

{∆i;1
∞ ≤ · · · ≤ ∆i;Bi

∞ } ⊆ [−M,M]

with the property the follows: if we define

νi∞ :=
(
xi;1∞ ; . . . ;xi;β

i

∞ ; ∆i;1
∞ ; . . . ; ∆i;βi

∞

)
,

then {νin}n∈Θi+1 converges toward νi∞ as vectors in R2βi . Let us denote

vi∞ :=

βi∑
t=1

∆i;t
∞1[xi;t∞ ,1].

We claim that the sequence {vin}n∈Θi+1 converges toward vi∞ with respect to L2 norm.
Since the finite sum is continuous with respect to L2 norm, it is enough to show that if
t is an integer in {1; . . . ; βi}, then the sequence{

∆i;t
n 1[xi;tn ,1]

}
n∈Θi+1

converges toward ∆i;t
∞1[xi;t∞ ,1] with respect to the L2 norm. Without loss of generality,

we can assume that xi;tn ≤ xi;t∞ for all n in Θi+1. Therefore, the following inequalities
hold true:∥∥∥∆i;t

n 1[xi;tn ,1] −∆i;t
∞1[xi;t∞ ,1]

∥∥∥2

L2
=

∫ 1

0

(
∆i;t
n 1[xi;tn ,1] −∆i;t

∞1[xi;t∞ ,1]

)2

dx

=

∫ xi;t∞

xi;tn

(
∆i;t
n

)2
dx+

∫ 1

xi;t∞

(
∆i;t
n −∆i;t

∞
)2
dx (2.4)

≤M2
∣∣xi;tn − xi;t∞∣∣+

(
∆i;t
n −∆i;t

∞
)2
.

In (2.4) we used the upper bound of the height of the jumps, as stated in hypothesis. So,
we can take the limit as n in Θi+1 approaches +∞. It’s easy to see that the convergence
is also pointwise for almost every x in [0, 1]. Moreover, if we define

Bi :=
{
t ∈ {1; . . . ; βi} | xi;t∞ = 0

}
,

then
vi∞(0) =

∑
t∈Bi

∆i;t
∞,

as immediately follows by definition of vi∞.
If we put Θ1 := N, by a diagonal procedure, we can find an infinite subset Θ and a

sequence {vi∞}i∈N∗ with the following property: if i is in N∗, then {vin}n∈Θ converges
toward vi∞ with respect to L2 norm as n approaches +∞ in Θ.

Moreover, we recall that {vn(0)}n∈Θ is a sequence in [−M;M]. So, up to subse-
quences, not relabelled, we can assume that there exists a real number d in [−M;M]
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2.1. Generalized Mumford-Shah functional in PJ

such that {vn(0)}n∈Θ converges toward d. Since Θ is infinite, up to subsequences, not
relabelled, we can assume that it is equal to N.

Step 3: Let us define

v∞ := d+

(∑
i≥1

vi∞

)
= d+

∑
i≥1

 βi∑
t=1

∆i;t
∞1[xi;t∞ ,1]

 .

We have to show that v∞ is well defined in PJ , that is

∑
i≥1

βi∑
t=1

∣∣∆i;t
∞
∣∣ <∞.

It is equivalent to require that the sequence of the partial sums is a Cauchy sequence.
Let n be any integer. We define

wn := |vn(0)|+
∑
i≥1

∑
x∈S(vn)i

|∆vn (x)|1[x,1].

Let i be a positive integer; we can define

win :=
∑

x∈S(vn)i

|∆vn (x)|1[x,1].

More explicitly, thanks to the previous step, if n is greater than or equal to i, we have
that

win :=

βi∑
t=1

∣∣∆i;t
n

∣∣1[xi;tn ,1].

We also define

wi∞ :=

βi∑
t=1

∣∣∆i;t
∞
∣∣1[xi;t∞ ,1].

If we slightly modify the procedure described in the previous step, we show that for all
positive integer i the sequence {win}n∈N converges toward wi∞ with respect to L2 norm.
Since ψ is even, we notice that for all n in N it holds that

MSψ(wn) =MSψ(vn) ≤M.

Let ε be a positive real number. We can apply lemma 2.1.17 with ε andM. Let n0 be
an integer with the property declared in lemma 2.1.17. Let us consider k, j positive
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Chapter 2. An example of free discontinuity problem

integer such that k > j ≥ n0. So, the following inequalities hold true:∣∣∣∣∣∣
k∑
i=1

 βi∑
t=1

∣∣∆i;t
∞
∣∣− j∑

i=1

 βi∑
t=1

∣∣∆i;t
∞
∣∣∣∣∣∣∣∣ =

k∑
i=j+1

 βi∑
t=1

∣∣∆i;t
∞
∣∣

= lim
n→+∞

k∑
i=j+1

 βi∑
t=1

∣∣∆i;t
n

∣∣
= lim

n→+∞

∑
i≥n0

 ∑
x∈S(vn)i

|∆vn (x)|


= lim

n→+∞

∥∥∥∥∥wn −
(
|vn(0)|+

n0∑
i=1

win

)∥∥∥∥∥
∞

≤ ε.

So we can conclude that v∞ is well defined and it is in PJ , as shown in further details
in the proof of lemma 2.1.16. As a matter of facts, we are not assuming that v∞ is the
canonical representative of a class of functions in PJ .

Step 4: We have to show that {vn}n∈N converges toward v∞ with respect to L2

norm (in deed, this holds for a specific subsequence). Let ε be a positive real number.
We can apply lemma 2.1.17 with M and ε

4
. Let n0 be an integer with the property

declared in lemma 2.1.17. By definition of v∞, we can make the following assumptions:

•

∥∥∥∥∥
(
d+

n0∑
j=1

vj∞

)
− v∞

∥∥∥∥∥
L2

≤ ε

4
;

• if n is an integer greater than or equal to n0, then∥∥∥∥∥
(

n0∑
j=1

vjn

)
−

(
n0∑
j=1

vj∞

)∥∥∥∥∥
L2

≤ ε

4
;

• if n is an integer greater than or equal to n0, then

|vn(0)− d| ≤ ε

4
.

Hence, if n is an integer such that n ≥ n0, the following inequalities hold true:

‖vn − v∞‖L2 ≤ ‖vn(0)− d‖L2 +

∥∥∥∥∥
(∑

i≥1

vin

)
−

(∑
i≥1

vi∞

)∥∥∥∥∥
L2

≤ ‖vn(0)− d‖L2 +

∥∥∥∥∥
(∑

i≥1

vin

)
−

(
n0∑
i=1

vin

)∥∥∥∥∥
L2

+

∥∥∥∥∥
(

n0∑
i=1

vin

)
−

(
n0∑
i=1

vi∞

)∥∥∥∥∥
L2

+

∥∥∥∥∥
(

n0∑
i=1

vi∞

)
−

(∑
i≥1

vi∞

)∥∥∥∥∥
L2

≤ 4 · ε
4

= ε.
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2.1. Generalized Mumford-Shah functional in PJ

Step 5: In conclusion, we have to show that

lim inf
n→+∞

MSψ(vn) ≥MSψ(v∞).

As a matter of fact, this holds for a specific subsequence subsequence. Let n be a
natural number. If i, j are positive integers and i 6= j, we notice that S (vn)i and S (vn)j

are disjoint. Hence, it holds that

MSψ(vn) =
∑

x∈S(vn)

ψ(∆vn (x)) =
∑
i≥1

∑
x∈S(vn)i

ψ(∆vn (x)) =
∑
i≥1

MSψ(vin).

We have that

lim inf
n→+∞

MSψ(vn) = lim inf
n→+∞

∑
i≥1

MSψ(vin) (2.5)

≥
∑
i≥1

(
lim inf
n→+∞

MSψ(vin)

)

=
∑
i≥1

lim inf
n→+∞

∑
x∈S(vn)i

ψ(∆vin (x))

 (2.6)

=
∑
i≥1

lim inf
n→+∞

βi∑
t=1

ψ(∆i;t
n )

 (2.7)

≥
∑
i≥1

 βi∑
t=1

ψ(∆i;t
∞)

 (2.8)

≥MSψ(v∞).

In (2.5) we used the Fatou’s lemma; in (2.6) we used the fact that if i, n are positive
integers such that n ≥ i, then

S
(
vin
)

=
{
xi;1n ; . . . ;xi;β

i

n

}
;

in (2.7) we used the lower semicontinuity of ψ and the definition of ∆i;t
∞; in (2.8) we

used the minimality of the canonical representative (see 2.1.15).

Proposition 2.1.19. Let {vn}n∈N be a sequence in PJ . LetM be a natural number
such that for all n in N it holds that

• cardS (vn) ≤M;

• ‖vn‖L2 ≤M.

There exists a subsequence, not relabelled, with the following properties:

• there exists a natural number β such that cardS (vn) = β for all n in N. Hence,
we can denote

S (vn) :=
{
x1
n; . . . ;xβn

}
,

with the assumption that

0 := x0
n < x1

n < · · · < xβn < xβ+1
n := 1.
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Chapter 2. An example of free discontinuity problem

We also denote

vn := vn(0) +

β∑
t=1

∆t
n1[xtn,1].

• For all integer i in {0; . . . ; β + 1} there exists xi∞ in [0, 1] such that

lim
n→+∞

xin = xi∞.

• Let r, t be integers in {0; . . . ; β + 1}. We declare that r, t are equivalent if and
only if xt∞ = xr∞. This induces a partition on {0; . . . ; β + 1} into disjoint sets. In
other words, there exist a natural number α and a collection of pairwise disjoint
classes of equivalence

{J 0; . . . ;J α+1}
that covers {0; . . . ; β + 1}. For all integer s in {0; . . . ;α + 1}, we can well define
ys∞ := xr∞, where r is an index in J s. For all s in {1; . . . ;α} there exists a real
number Θs

∞ such that
lim

n→+∞

∑
t∈J s

∆t
n = Θs

∞;

there exists a real number Θ0
∞ such that

lim
n→+∞

∑
t∈J 0

vn(0) + ∆t
n = Θ0

∞.

• If we define

v∞ =
α∑
i=0

Θi
∞1[yi∞,1],

{vn}n∈N converges pointwise for almost every x in (0, 1) toward v∞. In particular,
we have that cardS (v∞) ≤ α.

• If we defineMSψ as in 2.1.14, it holds that

MSψ(v∞) ≤ lim inf
n→+∞

MSψ(vn).

Proof. Step 1: It’s immediate to see that there exists a natural number β such that
cardS (vn) = β for all n in N. Hence, we can denote

S (vn) :=
{
x1
n; . . . ;xβn

}
,

with the assumption that

0 := x0
n < x1

n < · · · < xβn < xβ+1
n := 1.

We also denote

vn := vn(0) +

β∑
t=1

∆t
n1[xtn,1].

Since [0, 1]β is a compact set in Rβ, there exist a subsequence, not relabelled, and real
numbers

{
x1
∞; . . . ;xβ∞

}
such that for all t in {1; . . . ; β} it holds that

xt∞ := lim
n→+∞

xtn.
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2.1. Generalized Mumford-Shah functional in PJ

In particular, we have that

0 := x0
∞ ≤ x1

∞ ≤ · · · ≤ xβ∞ ≤ xβ+1
∞ := 1.

Let i, j be in {0; . . . ; β+ 1}; we say that i, j are equivalent if and only if xi∞ = xj∞. This
induces a partition on {0; . . . ; β + 1} into disjoint sets. In other words, there exist a
natural number α and a collection of pairwise disjoint classes of equivalence{

J 0; . . . ;J α+1
}

that covers {0; . . . ; β + 1}. For all integer s in {0; . . . ;α + 1}, we can well define
ys∞ := xr∞, where r is an index in J s. For all n in N, we also denote

∆0
n := vn(0),

∆β+1
n := vn(1).

Having said that, for all n in N we have that

vn =

β+1∑
t=0

∆t
n1[xtn,1] =

α+1∑
s=0

(∑
t∈J s

∆t
n1[xtn,1]

)
.

Step 2: Let s be an integer in {0; . . . ;α + 1}; for all n in N we define

Θs
n :=

∑
t∈J s

∆t
n.

We claim that for all s in {0; . . . ;α} the sequence {Θs
n}n∈N is bounded. By contradiction,

let us assume that we can well define

s0 := min

{
s ∈ {0; . . . ;α}

∣∣ ∃{Θs
nk

}
k∈N : lim

k→+∞

∣∣Θs
nk

∣∣ = +∞
}
.

Let us assume that s0 is a positive integer. Hence, there exists a positive real number
M1 such that |Θs

n| ≤ M1 for all s in {0; . . . ; s0 − 1} for all n in N. By definition, for
all t in J s0 it holds that

lim
n→+∞

xtn = ys0∞.

Let t be in J s0+1: we remark that it is fundamental to assume that s0 < α + 1. By
definition, for all t in J s0+1 we have that

lim
n→+∞

xtn = ys0+1
∞

and ys0∞ < ys0+1
∞ . We denote

ε0 := max

{
ys0+1
∞ − ys0∞

4
;
ys0∞ − ys0−1

∞
4

}
.

There exists a natural number n0 such that for all n greater than or equal to n0 it holds
that

• if s is an integer in {0; . . . ; s0 − 1} and t is an integer in J s, then

xtn < ys0∞ − ε0;
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Chapter 2. An example of free discontinuity problem

• if s is an integer in {s0 + 1; . . . ;α + 1} and t is an integer in J s, then

xtn > ys0∞ + ε0;

• if t is an integer in J s0 , then

ys0∞ −
ε0

2
< xtn < ys0∞ +

ε0

2
.

Having said that, if n is any integer greater than or equal to n0, the following inequalities
hold true:

M2 ≥ ‖vn‖2
L2 =

∫ 1

0

(
α+1∑
s=0

(∑
t∈J s

∆t
n1[xtn,1](x)

))2

dx

≥
∫ y

s0∞+ε0

y
s0∞+

ε0
2

[
s0∑
s=0

(∑
t∈J s

∆t
n

)]2

dx

=
ε0

2

[
s0−1∑
s=0

(∑
t∈J s

∆t
n

)
+
∑
t∈J s0

∆t
n

]2

=
ε0

2

[(
s0−1∑
s=0

Θs
n

)
+ Θs0

n

]2

.

By definition of s0 andM1, for all n in N for all s in {0; . . . ; s0 − 1} it holds that∣∣∣∣∣
s0−1∑
s=0

Θs
n

∣∣∣∣∣ ≤ s0 · M1.

So, the absurd follows taking the superior limit.
If s0 is equal to 0, the procedure that we have just described in many details can

be easily adapted. To be precise, we remark that the sequence {Θα+1
n }n∈N can be

unbounded.
Step 3: Because of the compactness of closed balls in Rα+1, there exist a subsequence,

not relabelled, and real numbers {Θ0
∞; . . . ; Θα

∞} such that for all s in {0; . . . ;α} it holds
that

lim
n→+∞

Θs
n = Θs

∞.

We define

v∞ :=
α∑
s=0

Θs
∞1[ys∞,1].

Obviously, v∞ is in PJ . We claim that {vn}n∈N converges pointwise for almost every x
in (0, 1) toward v∞. For all n in N we have that

vn =
α∑
s=0

(∑
t∈J s

∆t
n1[xtn,1]

)
.

Hence, it is enough to show that
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2.1. Generalized Mumford-Shah functional in PJ

•

{∑
t∈J s

∆t
n1[xtn,1]

}
n∈N

converges pointwise for all x in (0, 1)\{ys∞} toward Θs
∞1[ys∞,1]

for all s in {0; . . . ;α};

•

{ ∑
t∈J α+1

∆t
n1[xtn,1]

}
n∈N

converges pointwise toward 0.

As for the first statement, let s be an integer in {0; . . . ;α}; let and x be in [0, ys∞).
There exists n0 in N such that xtn > x for all integer n ≥ n0 for all t in J s. So, if n is
an integer greater than or equal to n0, then∑

t∈J s
∆t
n1[xtn,1](x) = 0 = Θs

∞1[ys∞,1](x).

If x is in (ys∞, 1], there exists n0 in N such that x > xtn for all integer n ≥ n0 for all t in
J s. So, if n is an integer greater than or equal to n0, then

lim
n→+∞

∑
t∈J s

∆t
n1[xtn,1](x) = lim

n→+∞

∑
t∈J s

∆s
n = lim

n→+∞
Θs
n = Θs

∞ = Θs
∞1[ys∞,1](x).

As for the second statement, it can be similarly proved.
Step 4: In conclusion, the following inequalities hold true:

lim inf
k→+∞

MSψ(vnk) = lim inf
k→+∞

β∑
t=1

ψ
(
∆t
n

)
≥ lim inf

k→+∞

α∑
s=1

(∑
t∈J s

ψ
(
∆t
nk

))
(2.9)

≥ lim inf
k→+∞

α∑
s=1

ψ

(∑
t∈J s

∆t
nk

)

= lim inf
k→+∞

α∑
s=1

ψ
(
Θs
nk

)
(2.10)

=
α∑
s=1

ψ (Θs
∞) (2.11)

=MSψ(v∞).

In (2.9) we used the fact that ψ is subadditive; in (2.10) we used the fact that ψ is lower
semicontinuous; in (2.11) we used the characterization of the essential discontinuities of
v∞ and the fact that ψ(0) = 0.

Theorem 2.1.20 (Compactness and lower semicontinuity of the generalized Mum-
ford-Shah functional in PJ ).
Let ψ be a weight function as in 2.1.11; let us defineMSψ as in 2.1.14. Let {vn}n∈N
be a sequence in PJ . We assume that there exists a real numberM such that for all n
in N it holds that

• MSψ(vn) ≤M;
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Chapter 2. An example of free discontinuity problem

• ‖vn‖L2 ≤M.

Then, there exist a subsequence, not relabelled, and a function v∞ in PJ such that
{vn}n∈N converges pointwise for almost every x in (0, 1) toward v∞ and

lim inf
n→+∞

MSψ(vn) ≥MSψ(v∞).

In particular,MSψ is a lower semicontinuous functional.

Proof. Step 1: Let {vn}n∈N be a sequence in PJ as in the hypothesis. As declared in
2.1.8, for all n in N we have that

vn =

(∑
i≥1

vin

)
+ vn(0).

For all n in N we define
νn :=

∑
i≥2

vin.

We immediately notice that for all n in N the following properties hold true:

• if x is any point in S (νn), then |∆νn (x)| = |∆vn (x)| ≤ 1;

• νn(0) = 0;

• MSψ(νn) ≤MSψ(vn) ≤M+ 1.

Thanks to proposition 2.1.18, up to subsequences, not relabelled, there exists ν∞ in
PJ such that {νn}n∈N converges toward ν∞ with respect to L2 norm and

lim inf
n→+∞

MSψ(νn) ≥MSψ(ν∞).

Up to further subsequences, not relabelled, we can assume that the convergence is
pointwise for almost every x in (0, 1).

Thanks to the triangular inequality, there exists a positive real numberM1 such
that ‖v1

n + vn(0)‖L2 ≤M1 for all n in N. Moreover, for all n in N we have that

• MSψ(v1
n) ≤M+ 1;

• |∆v1
n (x)| ≥ 1 for all x in S (v1

n).

If we define Iψ(1) as in 2.1.12 and we recall that is a positive real number (see 2.1.13),
for all n in N the following inequalities hold true:

M+ 1 ≥MSψ(v1
n) =

∑
x∈S(v1n)

ψ(∆v1
n (x)) ≥ cardS

(
v1
n

)
· Iψ(1);

in other words, we have that

cardS
(
v1
n

)
≤ M+ 1

Iψ(1)
.
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2.2. Generalized Mumford-Shah functional in SBV

Thanks to proposition 2.1.19, there exist another subsequence, not relabelled, and a
function ν1

∞ in PJ such that {v1
n + vn(0)}n∈N converges pointwise for almost every x

in (0, 1) toward ν1
∞ and

lim inf
n→+∞

MSψ(v1
n + vn(0)) ≥MSψ(ν1

∞).

To resume, if we define v∞ := ν1
∞ + ν∞, we have that

lim inf
n→+∞

MSψ(vn) = lim inf
n→+∞

MSψ
(
v1
n + vn(0) + νn

)
(2.12)

= lim inf
n→+∞

[
MSψ

(
v1
n + vn(0)

)
+MSψ(νn)

]
≥ lim inf

n→+∞
MSψ(νn) + lim inf

k→+∞
MSψ

(
v1
n

)
(2.13)

≥MSψ(ν∞) +MSψ(ν1
∞) (2.14)

≥MSψ(v∞).

In (2.12) we used 2.1.8 and the definition ofMSψ; (2.13) have already been discussed;
in (2.14) we used the fact thatMSψ is subadditive (see 2.1.16).

Step 2: As for the lower semicontinuity, let v∞ be a function in L2; let {vn}n∈N be
a sequence in L2 that converges toward v∞ with respect to L2 norm. We have to show
that

lim inf
n→+∞

MSψ(vn) ≥MSψ(v∞).

If the left hand side is +∞, the conclusion is trivial. Hence, up to subsequences, not
relabelled, we can assume that there exists a real numberM such thatMSψ(vn) ≤M+1
for all n in N, the inferior limit is actually a limit, i. e.

lim
n→+∞

MSψ(vn) =M,

and {vn}n∈N converges pointwise for almost every x in (0, 1) toward v∞. As shown in
the previous step, we can conclude that

lim inf
n→+∞

MSψ(vn) =M≥MSψ(v∞).

2.2 Generalized Mumford-Shah functional in SBV
We introduce the space of the Special Functions of Bounded Variations (SBV); we
define the generalized Mumford-Shah functional in SBV; we state and prove a lower
semicontinuity theorem and some compactness result.

2.2.1 The space of functions SBV
Definition 2.2.1 (SBV).
Let U be a class of functions in L2 coinciding almost everywhere. Let us assume that
∆U (x) is well defined for all x in (0, 1) (see 2.1.4). Let us define S (U ) as in 2.1.5. Let
us assume that

• S (U ) is at most countable;
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Chapter 2. An example of free discontinuity problem

•
∑

x∈S(U )

|∆U (x)| < +∞;

• U (0)+ is well defined and it is a real number.

Hence, we can well define the function v : [0, 1]→ R such that

v := U (0)+ +
∑

y∈S(U )

∆U (y)1[y,1].

We denote as V the class of the functions that coincide with v for almost every x in
[0, 1]. We refer to v as the jump part of U . We define W := U − V . We say that
U is in SBV if and only if W is in W 1;1. We denote as w : [0, 1]→ R the continuous
representative of W ; we refer to w as the absolutely continuous part of U . We can also
define u : [0, 1]→ R such that u := w+ v. We refer to u as the canonical representative
of U . We denote .

u :=
.
w and we say that it is the weak derivative of U .

Remark 2.2.2. In the setting of definition 2.2.1, we notice that u belongs to U . Obviously,
any class in SBV is completely determined by its canonical representative. Let U1,U2

be classes in SBV; let us denote as u1 := w1 + v1 and u2 := w2 + v2 respectively the
canonical representatives of U1 and U2 as declared in definition 2.2.1. If u1(x) = u2(x)
for all x in [0, 1], then U1 = U2 in SBV. If we assume that U1 = U2, by definition
2.2.1 it holds that v1(x) = v2(x) for all x in [0, 1]; so, w1 and w2 are the continuous
representatives of the same class of functions in W 1;1; therefore, w1(x) = w2(x) for all
x in [0, 1]. Having said that, we can identify U with its canonical representative. If we
recall definition 2.1.8, it holds that

u = u(0) + w +
∑
i≥1

vi.

We also introduce the following notation, that will be very useful later.

Definition 2.2.3 ( ˜SBV).
Let u be in SBV as declared in 2.2.2. We say that u is in ˜SBV if cardS (u) < +∞.
From now on, unless otherwise specified, we represent u as

u := w + u(0) +
k∑
i=1

∆i1[xi,1],

with the following assumption:

• w is the absolutely continuous part of u, i. e. w is in W 1;1, and w(0) = 0;

• S (u) :=
{
x1; . . . ;xk

}
and 0 := x0 < x1 < · · · < xk < xk+1 := 1;

• for all integer i in {1; . . . ; k}, we denote ∆i := ∆u (xi);

• v is the jump part of u, i. e. v is in PJ , and v(0) = 0; more precisely, it holds
that

v :=
k∑
i=1

∆i1[xi,1].
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2.2. Generalized Mumford-Shah functional in SBV

Figure 2.2: Example of a function u in ˜SBV

2.2.2 Weak formulation in SBV
Definition 2.2.4 (Generalized Mumford-Shah functional in SBV).
Let ϕ be a Young function as in 1.1.1; let ψ be a weight function as in 2.1.11. Let us
define Dϕ as in 1.3.1 andMSψ as in 2.1.14. We define the generalized Mumford-Shah
functional in SBV MSϕ;ψ : L2 → [0,+∞] as follows:

• if u is in SBV and u = w + v is the canonical decomposition as in 2.2.2, then

MSϕ;ψ(u) := Dϕ(w) +MSψ(v) =

∫ 1

0

ϕ(
.
u(x)) dx+

∑
x∈S(u)

ψ(∆u (x));

• if u is in L2 \ SBV , then
MSϕ;ψ(u) := +∞.

2.2.3 Compactness and lower semicontinuity in SBV
Theorem 2.2.5 (Compactness and lower semicontinuity of the generalized Mum-
ford-Shah functional in SBV).
Let ϕ be a Young function as in 1.1.1; let ψ be a weight function as in 2.1.11; let us
define MSϕ;ψ as in 2.2.4. Let {un}n∈N be a sequence in L2. We assume that there
exists a real numberM such that for all n in N it holds that:

• MSϕ;ψ(un) ≤M;
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Chapter 2. An example of free discontinuity problem

• ‖un‖L2 ≤M.

There exist a subsequence, not relabelled, and a function u∞ with the following properties:

• u∞ is in SBV;

• if we consider the usual decomposition un := wn + vn, we have that {wn}n∈N
converges uniformly in [0, 1] toward w∞ and {vn}n∈N converges pointwise for
almost every x in (0, 1) toward v∞. In other words, the sequence of the jump parts
and the sequence of the absolutely continuous parts converge separately toward the
jump part of u∞ and the absolutely continuous part of u∞, respectively.

• lim inf
n→+∞

MSϕ;ψ(un) ≥MSϕ;ψ(u∞).

In particular,MSϕ;ψ is a lower semicontinuous functional.

Proof. Step 1: Under our hypothesis, {un}n∈N is a sequence in SBV . Let un = wn + vn
be the canonical decomposition as declared in 2.2.1. By definition of MSϕ;ψ, we
immediately notice that Dϕ(wn) ≤ M andMSψ(vn) ≤ M for all n in N. Moreover,
wn(0) is equal to 0 for all n in N. Thanks to theorem 1.3.9, there exists a subsequence,
not relabelled, and a function w∞ in W 1;1 such that {wn}n∈N converges toward w∞
uniformly in [0, 1], { .wn}n∈N converges L1-weakly toward .

w∞ and

lim inf
n→+∞

Dϕ(wn) ≥ Dϕ(w∞).

In particular, {wn}n∈N converges toward w∞ with respect to L2 norm and w∞(0) = 0.
Thanks to the triangular inequality, there existsM1 in R such that ‖vn‖L2 ≤M1

for all n in N. Thanks to theorem 2.1.20, there exist a function v∞ in PJ and a
subsequence, not relabelled, such that {vn}n∈N converges pointwise for almost every x
in (0, 1) toward v∞ and

lim inf
n→+∞

MSψ(vn) ≥MSψ(v∞).

If we define u∞ := w∞ + v∞, we have that

lim inf
n→+∞

MSϕ;ψ(un) = lim inf
n→+∞

Dϕ(wn) +MSψ(vn)

≥ lim inf
n→+∞

Dϕ(wn) + lim inf
n→+∞

MSψ(vn)

≥ Dϕ(w∞) +MSψ(v∞)

=MSϕ;ψ(u∞).

Step 2: As for the lower semicontinuity, let u∞ be a function in L2; let {un}n∈N be
a sequence in L2 that converges toward u∞ with respect to L2 norm. We have to show
that

lim inf
n→+∞

MSϕ;ψ(un) ≥MSϕ;ψ(u∞).

If the left hand side is +∞, the conclusion is trivial. Hence, up to subsequences, not
relabelled, it is not restrictive to assume that there exists a real numberM such that
MSϕ;ψ(un) ≤M+ 1 for all n in N, the inferior limit is actually a limit, i. e.

lim
n→+∞

MSϕ;ψ(un) =M,
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2.3. Generalized Mumford-Shah energy

{wn}n∈N converges uniformly in [0, 1] toward w∞ and {vn}n∈N converges pointwise for
almost every x in (0, 1) toward v∞. As shown in the previous step, we can conclude
that

lim inf
n→+∞

MSϕ;ψ(un) =M≥MSϕ;ψ(u∞).

2.3 Generalized Mumford-Shah energy
Finally, we can define the functional Eϕ;ψ as in 0.1 and show that it admits minimum.

Definition 2.3.1 (Generalized Mumford-Shah energy).
Let ϕ be a Young function as in 1.1.1; let ψ be a weight function as in 2.1.11; let
us define MSϕ;ψ as in 2.2.4. Let h : [0, 1] → R be a function in L2. We define the
functional Eϕ;ψ : L2 → [0,+∞] such that

Eϕ;ψ(u) :=


∫ 1

0

(u− h)2 dx+MSϕ;ψ(u) if u ∈ SBV ;

+∞ if u ∈ L2 \ SBV .

Theorem 2.3.2 (Existence of the minimum via direct method).
Let h : [0, 1]→ R be a function in L2; let ϕ be a Young function as in 1.1.1; let ψ be
a weight function as in 2.1.11. We define the functional Eϕ;ψ as in 2.3.1. Then, the
generalized Mumford-Shah energy admits minimum in SBV.

Proof. Let {un}n∈N be a sequence in L2 such that

lim
n→+∞

∣∣∣∣Eϕ;ψ(un)− inf
L2

Eϕ;ψ

∣∣∣∣ = 0.

We define γ := ‖h‖L2 ; since Eϕ;ψ(0) is equal to γ2, it is not restrictive to assume that
Eϕ;ψ(un) ≤ γ2 for all n in N. In particular, {un}n∈N is a sequence in SBV such that for
all n in N it holds that:

• MSϕ;ψ(un) ≤ γ2;

• ‖un‖L2 ≤ ‖un − h‖L2 + ‖h‖L2 ≤
√

Eϕ;ψ(un) + ‖h‖L2 ≤ 2γ.

Thanks to theorem 2.2.5, there exist a subsequence, not relabelled, and a function u∞ is
SBV such that {un}n∈N converges pointwise for almost every x in (0, 1) toward u∞ and

lim inf
n→+∞

MSϕ;ψ(un) ≥MSϕ;ψ(u∞). (2.15)

Thanks to the Fatou’s lemma, we have that

lim inf
n→+∞

∫ 1

0

(h− un)2 dx ≥
∫ 1

0

(h− u∞)2 dx. (2.16)

If we join (2.15) and (2.16), we obtain that

lim inf
n→+∞

Eϕ;ψ(un) ≥ Eϕ;ψ(u∞).
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Chapter 2. An example of free discontinuity problem

In conclusion, we have that

inf
L2

Eϕ;ψ ≤ Eϕ;ψ(u∞)

≤ lim inf
n→+∞

Eϕ;ψ(un)

= lim
n→+∞

(
Eϕ;ψ(un)− inf

L2
Eϕ;ψ

)
+ inf

L2
Eϕ;ψ

= inf
L2

Eϕ;ψ.

So, u∞ is a function that minimizes the Mumford-Shah energy.
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Chapter 3

A discrete approximation

We introduce the notion of Γ-convergence. We define a family of problems that
approximate Eϕ;ψ is the sense of the Γ-convergence; this allows to obtain the minimum
and the minimizers of Eϕ;ψ as limit of the sequences of the minima and minimizers of
the approximating problems. The simplification turn out to be very relevant, because
the approximating problems are set in finite-dimensional spaces.

3.1 Γ-convergence
Definition 3.1.1 (Γ-convergence).
Let (X; d) be a metric space; let {Fn}n∈N and F be functionals from X to [0,+∞]. We
say that Fn Γ-converges toward F as n approaches +∞ with respect to the distance d
if the following inequalities hold:

• (liminf inequality) if u is in X and {un}n∈N is any sequence in X that converges
toward u, then we have that

F (u) ≤ lim inf
n→+∞

Fn(un); (3.1)

• (limsup inequality) if u is in X, there exists a sequence {un}n∈N in X that converges
toward u such that

F (u) ≥ lim sup
n→+∞

Fn(un). (3.2)

{un}n∈N is called recovery sequence of u.

Proposition 3.1.2 (Stability under continuous perturbations).
Let (X; d) be a metric space; let {Fn}n∈N and F be functionals from X to [0,+∞].
Let us assume that {Fn}n∈N Γ-converges toward F with respect to the distance d. Let
G : X→ [0,+∞) be a continuous functional. Then, {Fn +G}n∈N Γ-converges toward
F +G with respect to the distance d.

Proof. We have to show that (3.1) and (3.2) hold for {Fn +G}n∈N and F +G.

• As for (3.1), let u be in X; let {un}n∈N be a sequence in X that converges toward
u. Then, we have that

lim inf
n→+∞

Fn(un) +G(un) ≥ lim inf
n→+∞

Fn(un) + lim inf
n→+∞

G(un) ≥ F (u) +G(u).

37



Chapter 3. A discrete approximation

• As for (3.2), let u be in X; let {un}n∈N be a recovery sequence of u for F . We
claim that it works for F +G. We have that

lim sup
n→+∞

Fn(un) +G(un) ≤ lim sup
n→+∞

Fn(un) + lim sup
n→+∞

G(un) ≤ F (u) +G(u).

Definition 3.1.3 (Dense in energy).
Let (X; d) be a metric space; let F : X→ [0,+∞] be a functional. Let D a subset in X
with the following property: for all u in X there exists a sequence {un}n∈N in D such
that

lim
n→+∞

d(u;un) = 0,

lim
n→+∞

F (un) = F (u).

We say that D is dense in energy for F .

Lemma 3.1.4. Let (X; d) be a metric space; let {Fn}n∈N and F be functionals between
X and [0,+∞]. Let D be a subset dense in energy for F∞ as in 3.1.3. Let us suppose
that for all b in D there exists a recovery sequence sequence {bn}n∈N for F in D (see
3.1.1), i. e.

lim
n→+∞

d(bn; b) = 0,

lim sup
n→+∞

Fn(bn) ≤ F (b).

Then, for all x in X there exists a recovery sequence for F in D.

Proof. Let x be in X. By hypothesis, there exists a sequence {bn}n∈N in D such that

lim
n→+∞

d(bn;x) = 0,

lim
n→+∞

F (bn) = F (x).

For all n in N there exists a sequence
{
bkn
}
k∈N in D such that

lim
k→+∞

d
(
bkn; bn

)
= 0,

lim sup
k→+∞

Fk
(
bkn
)
≤ F (bn).

Let n be a natural number. There exists a positive integer kn such that for all integer i
greater than or equal to kn it holds that

d
(
bin; bn

)
≤ 1

n
,

Fi
(
bin
)
≤ F (bn) +

1

n
.

Without loss of generality, we can assume that the sequence {kn}n∈N is strictly mono-
tonically increasing. For all integer i in {0; . . . ; k1 − 1} we define xi := bi1; let n be an
integer greater than 1 for all integer i in {kn; . . . ; kn+1− 1} we define xi := bin. We claim
that {xi}i∈N is a recovery sequence for F∞ in D. Let i be an integer greater than k1;

38



3.2. A family of approximating problems

there corresponds a natural number n such that i is in {kn; . . . ; kn+1 − 1}; so, we have
that

d(xi;x) ≤ d(xi; bn) + d(bn;x) ≤ 1

n
+ d(x; bn),

Fi(xi) = Fi
(
bin
)
≤ F (bn) +

1

n
.

Let ε be a positive real number. By definition, there exists a positive integer n0 such
that for all integer n greater than n0 it holds that

d(bn;x) +
1

n
≤ ε,

F (bn) +
1

n
≤ F (x) + ε.

Therefore, for all i greater than kn0 we have that

d(xi;x) ≤ ε,

Fi(xi) ≤ F (x) + ε.

So, the thesis follows immediately.

3.2 A family of approximating problems
The aim of this section is to introduce a discrete approximation of Eϕ;ψ in the sense of
the Γ-convergence.
Remark 3.2.1. Let ϕ be a Young function as in 1.1.1; let ψ be a weight function as in
2.1.11; let h be a function in L2. We defineMSϕ;ψ as in 2.2.4 and Eϕ;ψ as in 2.3.1. So,
we can consider the functional Eϕ;ψ −MSϕ;ψ : L2 → [0,+∞) such that

Eϕ;ψ(u)−MSϕ;ψ(u) :=

∫ 1

0

(h− u)2 dx.

Obviously, it is continuous with respect to L2 norm. Let {Fn}n∈N be a family of
functionals between L2 and [0,+∞] that Γ-converges towardMSϕ;ψ with respect to L2

norm. Thanks to proposition 3.1.2, the sequence {Fn + Eϕ;ψ −MSϕ;ψ}n∈N Γ-converges
toward Eϕ;ψ with respect to L2 norm. So, it is enough to approximateMSϕ;ψ in the
sense of the Γ-convergence.

Definition 3.2.2 (Sublinear weight function).
Let ψ be a weight function as in 2.1.11. Let us assume that there exist positive real
numbers A,B such that ψ(x) ≤ Ax + B for all x in [0,+∞). We say that ψ is a
sublinear weight function.

Definition 3.2.3. Let ψ be a sublinear weight function as in 3.2.2. For all natural
number n, we define the function ψn : R→ [0,+∞) such that

ψn(x) := 2nψ
( x

2n

)
.

Let ϕ be a Young function as in 1.1.1. We also define

Ξn := {a ∈ (0,+∞) | ∀x ≥ a : ϕ(x) ≥ ψn(x)} ,

ξn := inf Ξn.
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Remark 3.2.4. Since ϕ is a superlinear function and ψ is a sublinear function, for all
natural number n the set Ξn is not empty; so, the sequence {ξn}n∈N is well defined.

Lemma 3.2.5. Let ϕ be a Young function as in 1.1.1; let ψ be a sublinear weight
function as in 3.2.2. Let us define the sequences {Ξn}n∈N and {ξn}n∈N as in 3.2.3. The
following conclusions hold true:

• ξn belongs to Ξn for all n in N, i. e. Ξn = [ξn,+∞);

• lim
n→+∞

ξn = +∞;

• lim
n→+∞

ξn
2n

= 0.

Proof. Step 1: Let n be any natural number. Let {xk}k∈N be a sequence in Ξn that
converges toward ξn. Since ϕ is continuous and ψn is lower semicontinuous, we have
that

ϕ(ξn) = lim
k→+∞

ϕ(xk) ≥ lim inf
k→+∞

ψn(xk) ≥ ψn(ξn).

Having said that, it immediately follows that Ξn = [ξn,+∞).
Step 2: Let x be a positive real number. By hypothesis on ψ, we have that

lim
n→+∞

2nψ
( x

2n

)
= lim

n→+∞
x
ψ
(
x
2n

)
x
2n

= +∞.

By contradiction, let us assume that there exist a positive real number M and a
subsequence {ξnk}k∈N such that ξnk ≤M for all k in N. Then, for all x in [M+ 1,+∞)
for all k in N it holds that

ϕ(x) ≥ 2nkψ
( x

2nk

)
.

The absurd follows taking the limit as k approaches +∞.
Step 3: We claim that

{
ξn
2n

}
n∈N is a bounded sequence. By definition of infimum, for

all natural number n there exists xn in (ξn− 1, ξn)∩ (0,+∞) such that ψn(xn) ≥ ϕ(xn),
i. e.

ψ
(
xn
2n

)
xn
2n

≥ ϕ(xn)

xn
.

So, we can conclude that {xn}n∈N converges toward +∞. Since ϕ is a superlinear
function, we have that

lim
n→+∞

ψ
(
xn
2n

)
xn
2n

= +∞.

By contradiction, if there exists a subsequence
{
ξnk
2nk

}
k∈N

that converges toward +∞,
then

lim sup
x→+∞

ψ(x)

x
= +∞.

This is absurd because ψ is a sublinear growth function.
Step 4: We claim that

lim
n→+∞

ξn
2n

= 0.
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3.2. A family of approximating problems

By contradiction, let us assume that there exists a positive real number ε0 and a
subsequence, not relabelled, such that ξn

2n
> ε0 for all n in N. By definition of infimum,

for all n in N there exists xn in (ε02n, ξn) such that ϕ(xn) < ψn(xn), i. e.

ϕ(xn)

2n
< ψ

(xn
2n

)
.

Since ϕ is monotonically increasing in [0,+∞), for all n in N it holds that

ε0
ϕ(ε02n)

ε02n
< ψ

(xn
2n

)
.

We have shown that there exists a positive real numberM such that for all n in N it
holds that

xn
2n
∈
[
ε0,

ξn
2n

]
⊆ [ε0,M].

Since ψ is sublinear, we know that

sup
[ε0,M]

{ψ(x)} < +∞.

So, for all n in N we have that

ε0
ϕ(ε02n)

ε02n
< ψ

(xn
2n

)
≤ sup

[ε0,M]

{ψ(x)}.

Since ϕ is superlinear, the absurd follows taking the limit as n approaches +∞.

Definition 3.2.6 (Truncated potential).
Let ϕ be a Young function as in 1.1.1; let ψ be a sublinear weight function as in 3.2.2.
Let {ψn}n∈N be as in 3.2.3. For all n in N we define

fn := min{ϕ;ψn}.

Figure 3.1: Example of truncated potentials f0 and f2, where ϕ(x) = 3
10
x2, ψ(x) =

√
|x|
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Chapter 3. A discrete approximation

Remark 3.2.7. By definitions 3.2.6 and 3.2.3, if |x| ≥ ξn, then ϕ(x) ≥ ψn(x) and
fn(x) = ψn(x).

Definition 3.2.8 (PCn).
Let n be a natural number. We define

PCn :=

{
v ∈ PJ

∣∣∣∣ S (v) ⊆
{

1

2n
; . . . ;

2n − 1

2n

}}
.

Definition 3.2.9 (Piecewise affine interpolation).
Let n be in N; let v be a function in PCn. We define ρv as the piecewise affine function
that joins the points (

i

2n
; v

(
i

2n

))
→
(
i+ 1

2n
; v

(
i+ 1

2n

))
for all i in {0; . . . ; 2n − 1}.

Figure 3.2: Example of a function u in PCn and its piecewise affine interpolation ρu

Remark 3.2.10. In the setting of definition 3.2.9, to v in PCn there corresponds a finite
set {∆0; . . . ; ∆2n−1} in R such that

v :=
2n−1∑
i=0

∆i1[ i
2n
,1].

So, for all integer i in {0; . . . ; 2n − 2} we have that

ρ̇v∣∣( i
2n
, i+1
2n )

= 2n∆i+1

and
ρ̇v∣∣( 2n−1

2n
,1)

= 0.
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3.3. Γ-convergence of the approximating problems

Definition 3.2.11 (Approximating functionals).
Let ϕ be a Young function as in 1.1.1; let ψ be a sublinear weight function as in 3.2.2.
For all n in N we define fn as in 3.2.6. We define Fn : L2 → [0,+∞] such that

Fn(u) :=


2n−1∑
i=1

1

2n
fn(2n∆i) if u =

2n−1∑
i=0

∆i1[ i
2n
,1] ∈ PCn

+∞ if u ∈ L2 \ PCn

.

3.3 Γ-convergence of the approximating problems
Let ϕ be a Young function as in 1.1.1; let ψ be a sublinear weight function as in 3.2.2.
We define the sequence {Fn}n∈N as in 3.2.11 andMSϕ;ψ as in 2.2.4. We claim that
{Fn}n∈N Γ-converges towardMSϕ;ψ with respect to L2 norm. By definition 3.1.1, we
have to show limsup inequality and liminf inequality. So, in this section we consider ϕ,
ψ, {Fn}n∈N andMSϕ;ψ as we have just declared.

3.3.1 Limsup inequality

Lemma 3.3.1. ˜SBV is dense in energy in L2 forMSϕ;ψ as in 3.1.3.

Proof. Let u be in L2. If MSϕ;ψ(u) is equal to +∞, we can consider any sequence
{un}n∈N in C∞((0, 1)) that converges toward u with respect to L2 norm. Thanks to the
lower semicontinuity theorem of the generalized Mumford-Shah functional (see 2.2.5),
we have that

lim inf
n→+∞

MSϕ;ψ(un) ≥MSϕ;ψ(u) = +∞.

So, we can assume thatMSϕ;ψ(u) is a real number. We have that u belongs to SBV ;
we consider the canonical representation as in 2.2.1, namely

u = w + v = u(0) + w +
∑
i≥1

vi,

where w is the absolutely continuous part and v is the jump part that can be decomposed
as described 2.1.8. For all positive integer n, we define

un := u(0) + w +
n∑
i=1

vi.

By definition 2.2.1, it immediately follows that the sequence {un}n∈N∗ converges toward
u with respect to L2 norm. Let us define Iψ as in 2.1.12; as shown in 2.1.13, if a is a
positive real number, then Iψ(a) is greater than 0. So, for all n in N∗ the following
inequalities hold true:

MSϕ;ψ(u) ≥
∫ 1

0

ϕ(u̇) dx+
n∑
i=1

 ∑
x∈S(u)i

ψ(∆u (x))


≥

n∑
i=1

 ∑
x∈S(u)i

Iψ
(

1

i

)
≥

(
n∑
i=1

cardS (u)i
)
· Iψ

(
1

n

)
.
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Chapter 3. A discrete approximation

In particular, we have that

cardS (un) =
n∑
i=1

cardS (u)i ≤ MSϕ;ψ(u)

Iψ
(

1
n

) <∞.

So, {un}n∈N is a sequence in ˜SBV . To conclude, we just remark that

MSϕ;ψ(u) =

∫ 1

0

ϕ(u̇) dx+ lim
n→+∞

n∑
i=1

 ∑
x∈S(u)i

ψ(∆u (x))

 = lim
n→+∞

MSϕ;ψ(un).

Theorem 3.3.2 (Limsup inequality).
Let u be in L2. There exists a recovery sequence {un}n∈N forMSϕ;ψ, i. e.

lim
n→+∞

‖un − u‖L2 = 0,

lim sup
n→+∞

Fn(un) ≤MSϕ;ψ(u).

Proof. Step 1: Let u be in L2. If we join lemmas 3.1.4 and 3.3.1, we can assume that
u belongs to ˜SBV . Let us consider the canonical representative of u as declared in 2.2.3,
i. e.

u := u(0) + w +
k∑
i=1

∆i1[xi,1].

There exists a positive integer n0 with the following property: for all integer n greater
than or equal to n0 for all integer i in {1; . . . ; k} there exists an integer j(n; i) in
{1; . . . ; 2n − 1} such that, if we set

Ij(n;i) :=

[
j(n; i)

2n
,
j(n; i) + 1

2n

]
,

it holds that

• if i1 6= i2, then Ij(n;i1) ∩ Ij(n;i2) = ∅;

• xi is in Ij(n;i).

Moreover, the sequence
{
j(n;i)+1

2n

}
n≥n0

is monotonically decreasing and it converges

toward xi; the sequence
{
j(n;i)

2n

}
is monotonically increasing and it converges toward xi.

Let n be an integer greater than or equal to n0; for all integer t in {0; . . . ; 2n − 1},
we define

χtn :=

{
∆t + u

(
t−1
2n

)
if ∃i ∈ {1; . . . ; k} : t = j(n; i);

u
(
t

2n

)
if ∀i ∈ {1; . . . ; k} : t 6= j(n; i).

We also define

un :=
2n−1∑
t=0

χtn1[ t
2n
, t+1
2n ).
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3.3. Γ-convergence of the approximating problems

Step 2: Let x0 be any point in (0, 1) \ S(u); we claim that {un(x0)}n≥n0 converges
toward u(x0). There exists a positive real number η such that (x0 − η, x0 + η) is
completely contained in (0, 1) and it is disjoint by S (u). Let ε be a positive real number.
Since w is uniformly continuous, there exists a positive real number δ that corresponds
to ε in the definition of uniform continuity. There exists an integer n1 greater than n0

such that

• for all integer n greater than or equal to n1 for all integer i in {1; . . . ; k} it holds
that Ij(n;i) ∩ (x0 − η, x0 + η) = ∅;

•
1

2n
≤ min{η; δ}.

For all integer n ≥ n1 there exists in in {0; . . . ; 2n − 1} \ {j(n; 1); . . . j(n;N)} such that
x0 is in

[
in
2n
, in+1

2n

)
. For all integer n ≥ n1, it holds that

∣∣∣∣x0 −
in
2n

∣∣∣∣ ≤ 1

2n
≤ min{η; δ};

so, we can state that

|un(x0)− u(x0)| =
∣∣∣∣u( in2n

)
− u(x0)

∣∣∣∣ =

∣∣∣∣w( in2n
)
− w(x0)

∣∣∣∣ ≤ ε.

So, the sequence {un}n≥n0 converges pointwise toward u for almost every x in (0, 1).
Moreover, for all integer n greater than or equal to n0 it holds

‖un‖∞ ≤ max
t∈{1;...;k}

∣∣χtn∣∣ ≤ ‖u‖∞ + max
t∈{1;...;k}

∣∣∆t
∣∣ < +∞.

Thanks to the dominated convergence theorem, the sequence {un}n∈N converges toward
u with respect to L2 norm.

Step 3: For all integer n greater than or equal to n0, we define

Θn := {0; . . . ; 2n − 1} \ {j(n; 1); . . . j(n;N)}.
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Chapter 3. A discrete approximation

So, for all integer n greater than or equal to n0 the following inequalities hold true:

MSϕ;ψ(u0) =

∫ 1

0

ϕ(ẇ) dx+
k∑
t=1

ψ(∆t)

=

∫ 1

0

ϕ(ẇ) dx+
k∑
t=1

ψ

(
2n∆t

2n

)
(3.3)

≥
∫ 1

0

ϕ(ẇ) dx+
k∑
t=1

1

2n
fn
(
2n∆t

)
≥
∑
t∈Θn

(∫ t+1
2n

t
2n

ϕ(ẇ) dx

)
+

k∑
t=1

1

2n
fn
(
2n∆t

)
(3.4)

≥
∑
t∈Θn

1

2n
ϕ

(
2n
(
w

(
t+ 1

2n

)
− w

(
t

2n

)))
+

k∑
t=1

1

2n
fn
(
2n∆t

)
(3.5)

=
∑
t∈Θn

1

2n
ϕ

(
2n
(
u

(
t+ 1

2n

)
− u

(
t

2n

)))
+

k∑
t=1

1

2n
fn
(
2n∆t

)
(3.6)

≥
2n−1∑
t=0

1

2n
fn

(
2n
(
un

(
t+ 1

2n

)
− un

(
t

2n

)))
(3.7)

= Fn(un).

In (3.3) we used the definition of truncated potential (see 3.2.6); in (3.4) we used the
fact that the straight line that joins the points (a; b) and (c; d) minimizes the functional
Dϕ with Dirichlet boundary conditions (see 1.3.2); in (3.5) we used the definition of
Θn; in (3.6) we used the definition of un and the definition of the truncated potential;
in (3.7) we used the definition of Fn (see (3.2.11)). So, the thesis follows taking the
superior limit.

3.3.2 Liminf inequality

Lemma 3.3.3 (Replacing technique).
Let u be in L2. Let {un}n∈N a sequence such that un belongs to PCn for all n in N.
There exists a sequence {ũn}n∈N in SBV with the following properties:

• Fn(un) =MSϕ;ψ(ũn) for all n in N;

• lim
n→+∞

‖ũn − un‖L2 = 0.

We say that {ũn}n∈N is the replaced sequence.

Proof. Since un belongs to PCn for all n in N, we denote

un :=
2n−1∑
i=0

∆i
n1[ i

2n
,1].

For all n in N we define

Λn :=

{
i ∈ {1; . . . ; 2n − 1}

∣∣∣∣ ϕ(∆i
n) ≥ 2nψ

(
∆i
n

2n

)}
.
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3.3. Γ-convergence of the approximating problems

We also define
vn := ∆0

n +
∑
i∈Λn

∆i
n1[ i

2n
,1],

wn :=
∑
i/∈Λn

∆i
n1[ i

2n
,1].

We say that vn is the "jump part" of un and wn is the "absolutely continuous part" of
un. For all n in N we define ρwn as the piecewise affine function that joins the points(

i

2n
;wn

(
i

2n

))
→
(
i+ 1

2n
;wn

(
i+ 1

2n

))
for all i in {0; . . . ; 2n − 1}, as declared in 3.2.9. We also define ũn := vn + ρwn . By
definition of Fn (see 3.2.11) and ũn, for all n in N it holds that

Fn(un) =
∑
i/∈Λn

1

2n
fn
(
2n∆i

n

)
+
∑
i∈Λn

1

2n
fn
(
2n∆i

n

)
=
∑
i/∈Λn

1

2n
ϕ
(
2n∆i

n

)
+
∑
i∈Λn

ψ
(
∆i
n

)
=
∑
i/∈Λn

(∫ i+1
2n

i
2n

ϕ ( ˙ρwn) dx

)
+
∑
i∈Λn

ψ
(
∆i
n

)
=

∫ 1

0

ϕ ( ˙ρwn) dx+
∑
i∈Λn

ψ
(
∆i
n

)
=MSϕ;ψ (ρwn + vn) =MSϕ;ψ(ũn).

We claim that
lim

n→+∞
‖ũn − un‖L2 = 0.

We have that ũn − un = ρwn − wn for all n in N. Let us define {ξn}n∈N as in 3.2.3.
We notice that if i does not belong to Λn, then |∆n

i | ≤
ξn
2n
. Hence, for all n in N the

following inequalities hold true:

‖ρwn − wn‖
2
L2 =

∑
i/∈Λn

∫ i+1
2n

i
2n

(ρwn − wn)2dx

≤
∑
i/∈Λn

∫ i+1
2n

i
2n

(
∆i
n

)2
dx

=
∑
i/∈Λn

1

2n
(
∆i
n

)2

≤
∑
i/∈Λn

1

2n

(
ξn
2n

)2

≤
(
ξn
2n

)2

.

Thanks to lemma 3.2.5, we can conclude that

lim
n→+∞

‖ρwn − wn‖L2 = 0.
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Chapter 3. A discrete approximation

Theorem 3.3.4 (Liminf inequality).
Let u be in L2. Let {un}n∈N be a sequence in L2 that converges toward u with respect to
L2 norm. Then, the following inequality holds true:

MSϕ;ψ(u) ≤ lim inf
n→+∞

Fn(un).

Proof. If the right hand side is equal to +∞, the conclusion is trivial. Therefore, up to
subsequences, not relabelled, we can assume that the inferior limit is actually a limit
and it is real, i. e. there exists a real numberM such that

lim
n→+∞

Fn(un) =M

and that Fn(un) ≤M+ 1 for all n in N. In particular, un belongs to PCn for all n in
N. Let {ũn}n∈N be the replaced sequence given by lemma 3.3.3. It’s easy to see that
{ũn}n∈N converges toward u with respect to L2 norm. So, the conclusion is an immediate
consequence of the lower semicontinuity theorem of the generalized Mumford-Shah
functional (see 2.2.5). In fact, the following inequalities hold true:

lim inf
n→+∞

Fn(un) = lim inf
n→+∞

MSϕ;ψ(ũn) ≥MSϕ;ψ(u).

3.4 Approximation of minima and minimizers
Finally, we show how to approximate the minimum and the minimizers of the functional
Eϕ;ψ.

In this section, we assume that

• ϕ is a Young function as in 1.1.1;

• ψ is a sublinear weight function as in 3.2.2;

• MSϕ;ψ is defined as in 2.2.4;

• h : [0, 1]→ R is a function in L2;

• Eϕ;ψ is defined as in 2.3.1;

• the sequence {Fn}n∈N is defined as in 3.2.11.

Definition 3.4.1 (Approximating functionals of the generalized Mumford-Shah energy).

For all n in N we define Gn : L2 → [0,+∞] such that

Gn(u) :=


∫ 1

0

(u− h)2 dx+ Fn(u) if u ∈ PCn;

+∞ if u ∈ L2 \ PCn.

Remark 3.4.2. As explained in 3.2.1, the sequence {Gn}n∈N Γ-converges toward Eϕ;ψ

with respect to L2 norm.
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Definition 3.4.3 (Quasi-minima sequence).
Let {Gn}n∈N be defined as in 3.4.1. Let {un}n∈N be a sequence in L2 such that

lim
n→+∞

∣∣∣∣Gn(un)− inf
L2
Gn
∣∣∣∣ = 0.

We say that {un}n∈N is a quasi-minima sequence.

Theorem 3.4.4. Let us define {Gn}n∈N as in 3.4.1. Let {un}n∈N be a quasi-minima
sequence as in 3.4.3. There exists a subsequence, not relabelled, and a function u in SBV
such that {un}n∈N converges pointwise for almost every x in (0, 1) toward u. Moreover,
it holds that

lim inf
n→+∞

Gn(un) ≥ Eϕ;ψ(u).

and u is a function that minimizes Eϕ;ψ.

Proof. Step 1: Let us define γ := ‖h‖L2 . Since Gn(0) is equal to γ2 for all n in N, we
can assume that Gn(un) ≤ γ2 for all n in N. In particular, un belongs to PCn for all n
in N. So, we can consider the replaced sequence {ũn}n∈N in SBV as in 3.3.3. For all n
in N we have that

MSϕ;ψ(ũn) = Fn(un) ≤ Gn(un) ≤ γ2.

As shown in lemma 3.3.3, the sequence {‖un − ũn‖L2}n∈N is infinitesimal. Thanks to
the triangular inequality, for all n in N we have that

‖un‖L2 ≤ ‖un − ũn‖L2 + ‖h− un‖L2 + ‖h‖L2

≤ ‖un − ũn‖L2 +
√
Gn(un) + γ

≤ ‖un − ũn‖L2 + 2γ.

In particular, we can conclude that there exists a real numberM such that ‖ũn‖L2 ≤M
for all n in N. So, we can use theorem 2.2.5 and we obtain that there exist a subsequence,
not relabelled, and a function u in SBV such that {ũn}n∈N converges pointwise for
almost every x in (0, 1) toward u. Since {un − ũn}n∈N converges toward zero function
with respect to L2 norm, up to further subsequences, not relabelled, we can assume that
the convergence is pointwise for almost every x in (0, 1). By difference, we can conclude
that {un}n∈N converges pointwise almost everywhere toward u. If we join theorem 2.2.5
and lemma 3.3.3, we obtain that

MSϕ;ψ(u) ≤ lim inf
n→+∞

MSϕ;ψ(ũn) = lim inf
n→+∞

Fn(un).

Thanks to the Fatou’s lemma, we can state that∫ 1

0

(u− h)2 dx ≤ lim inf
n→+∞

∫ 1

0

(h− un)2 dx.

So, we have that

Eϕ;ψ(u) =

∫ 1

0

(h− u)2 dx+MSϕ;ψ(u)

≤ lim inf
n→+∞

∫ 1

0

(h− un)2 dx+ lim inf
n→+∞

Fn(un)

≤ lim inf
n→+∞

Gn(un).
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Chapter 3. A discrete approximation

Step 2: Thanks to theorem 2.3.2, there exists a function y that minimizes Eϕ;ψ. Thanks
to 3.4.2, there exists a recovery sequence (see 3.1) for y. So, the following inequalities
hold true:

min
L2

Eϕ;ψ = Eϕ;ψ(y) ≥ lim sup
n→+∞

Gn(un)

≥ lim inf
n→+∞

(
inf
L2
Gn
)

= lim inf
n→+∞

(
inf
L2
Gn − Gn(un) + Gn(un)

)
= lim inf

n→+∞
Gn(un)

≥ Eϕ;ψ(u)

≥ min
L2

Eϕ;ψ.

So, we conclude that u is a function that minimizes Eϕ;ψ.
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Chapter 4

Descending metric slope

We introduce the notion of descending metric slope; it describes how regular is the
functional in a neighborhood of a fixed point. We want to compute the descending
metric slope of the generalized Mumford-Shah functional.

4.1 Definition and main properties
Definition 4.1.1 (Descending metric slope).
Let (X; d) be a metric space; let F : X→ [0,+∞] be any function; let x0 be any point in
X such that F (x0) is a real number. The descending metric slope of F in x0 is defined
as ∣∣∇F ∣∣(x0) := lim sup

r→0+

F (x0)− inf {f(x) | d(x;x0) ≤ r}
r

.

If F (x0) = +∞ we define ∣∣∇F ∣∣(x0) := +∞.

Remark 4.1.2. In the setting of definition 4.1.1, the descending metric slope of F in x0

measures how much it is possible to decrease the value of the functional with respect to
the distance from x0. We notice that

∣∣∇F ∣∣ is a nonnegative function on X.

Lemma 4.1.3. Let (X; d) be a metric space; let F : X→ [0,+∞] be a function; let x0

be any point in X. Let us define the descending metric slope as in 4.1.1. If we assume
that F (x0) is a real number and x0 is not an isolated point, then the following identity
holds true: ∣∣∇F ∣∣(x0) = lim sup

x→x0

max {F (x0)− F (x); 0}
d(x0;x)

.

Proof. Let us define

M := lim sup
x→x0

max {F (x0)− F (x); 0}
d(x0;x)

.

Since x0 is a cluster point for X, we notice thatM is well defined.
Step 1: We show that

∣∣∇F ∣∣(x0) ≥M. IfM is equal to 0, the conclusion is trivial;
therefore, we can assumeM is in (0,+∞]. By definition of superior limit, there exists
a sequence {xn}n∈N in X \ {x0} that converges toward x0 such that

lim
n→+∞

max {F (x0)− F (xn); 0}
d(xn;x0)

=M.
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Chapter 4. Descending metric slope

SinceM is greater than 0, the numerator must be eventually positive, hence

lim
n→+∞

F (x0)− F (xn)

d(xn;x0)
=M.

For all natural number n we set

rn := d(xn;x0),

in := inf {f(x) | d(x;x0) ≤ rn} .
So, we have that in ≤ F (xn) for all n in N. Therefore, the following inequalities hold
true: ∣∣∇F ∣∣(x0) = lim sup

r→0+

F (x0)− inf {f(x) | d(x;x0) ≤ r}
r

≥ lim sup
n→+∞

F (x0)− in
rn

≥ lim sup
n→+∞

F (x0)− F (xn)

rn
=M.

Step 2: We show that
∣∣∇F ∣∣(x0) ≤ M. If

∣∣∇F ∣∣(x0) is equal to 0, the conclusion
is trivial; therefore, we can assume that

∣∣∇F ∣∣(x0) is greater than 0. Let {rn}n∈N be
an infinitesimal positive sequence such that, if we define in as in previous step, the
following identity holds true:∣∣∇F ∣∣(x0) = lim

n→0+

F (x0)− in
rn

.

Up to subsequences, not relabelled, we can assume that in < F (x0) for all n in N. By
definition of infimum, there exists a sequence {yn}n∈N in X\{x0} such that d(x0;xn) ≤ rn
and F (yn) ≤ in + r2

n for all n in N. So, the following inequalities hold true:

M≥ lim sup
n→+∞

max {F (x0)− F (yn); 0}
rn

≥ lim sup
n→+∞

F (x0)− F (yn)

rn

≥ lim sup
n→+∞

F (x0)− in
rn

− rn

=
∣∣∇F ∣∣(x0).

Remark 4.1.4. Let ϕ be a Young function as in 1.1.1; let ψ be a weight function as in
2.1.11. We define the generalized Mumford-Shah functional MSϕ;ψ as in 2.2.4. Let
u0 be in SBV. We notice thatMSϕ;ψ(u0 + c) =MSϕ;ψ(u0) for all c in R. Hence, if
{cn}n∈N is any infinitesimal sequence, the following identity holds true:

MSϕ;ψ(u0)−MSϕ;ψ(u0 + cn)

|cn|
= 0.

This is enough to state that∣∣∇MSϕ;ψ

∣∣(u0) = lim sup
u→u0

MSϕ;ψ(u0)−MSϕ;ψ(u)

‖u0 − u‖L2

.
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4.2 Slope ofMSϕ;ψ

From now on we assume that ϕ is a Young function as in 1.1.1, ψ is a weight function
as in 2.1.11,MSϕ;ψ is the generalized Mumford-Shah functional defined in 2.2.4 and∣∣∇MSϕ;ψ

∣∣ is the descending metric slope defined in 4.1.1.
Our aim is to compute the descending metric slope of the generalized Mumford-Shah

functional. We find as more necessary conditions as possible for the slope to be finite
and we write a lower bound for the slope. Surprisingly enough, these conditions prove
sufficient and we find an upper bound for the slope that involves the regularity of ϕ
and ψ.

4.2.1 Lower bound for the slope

Theorem 4.2.1 (Finiteness of the essential discontinuities).
Let u be a function in SBV such thatMSϕ;ψ(u) and

∣∣∇MSϕ;ψ

∣∣(u) are real numbers.
Then, the set of the essential discontinuities of u is finite; in other words, u belongs to

˜SBV (see 2.2.3).

Proof. We consider the canonical representative of u, i. e. u = w + v + u(0), where w
is the absolutely continuous part and v is the jump part (see 2.2.1). As defined in 2.1.8,
we can decompose v as follows:

v =
∑
i≥1

vi =
∑
i≥1

 ∑
x∈S(u)i

ψ (∆u (x))

 .

By definition 2.1.8, if i is a positive integer and x belongs to S (u)i, then |∆u (x)| is in(
1
i
, 1
i−1

]
. For all positive integer n, we define

un := u(0) + w +
n∑
i=1

vi.

Let θ be a positive real number; let Γψ(θ) be as in 2.1.10. By definition 2.1.11, we have
that

lim inf
θ→0+

Γψ(θ) = lim inf
θ→0+

ψ(θ)

θ
= +∞.

Let ε be a positive real number; there exists a positive integer N0 such that if x is in(
0, 1

N0

)
, then Γψ(x) ≥ 1

ε
. So, if i is a natural number greater than or equal to N0 and

x is a point in S (u)i, then 1
ε
≤ Γψ(|∆u (x)|); in other words, we have that

|∆u (x)| ≤ εψ(|∆u (x)|).
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For all integer n greater than or equal to N0 the following inequalities hold true:

‖u− un‖L2 =

∥∥∥∥∥v −
n∑
i=1

vi

∥∥∥∥∥
L2

≤

∥∥∥∥∥v −
n∑
i=1

vi

∥∥∥∥∥
∞

≤
∑
i≥n+1

∥∥vi∥∥∞
≤
∑
i≥n+1

 ∑
x∈S(u)i

|∆u (x)|


≤
∑
i≥n+1

 ∑
x∈S(u)i

ε |ψ(∆u (x))|


= ε [MSϕ;ψ(u)−MSϕ;ψ(un)] .

Obviously, {un}n∈N converges toward u with respect to L2 norm (see 2.1.8). We also
remark that MSϕ;ψ(u) is a real number; if we assume that S (u) is not finite, then
un 6= u for all positive integer n. We have just shown that if n is an integer greater
than or equal to N0, then

1

ε
≤ MSϕ;ψ(u)−MSϕ;ψ(un)

‖u− un‖L2

.

So, we can state that

lim inf
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(un)

‖u− un‖L2

= +∞.

As shown in lemma 4.1.3, we can conclude that
∣∣∇MSϕ;ψ

∣∣(u) = +∞.

Theorem 4.2.2 (Regularity and Neumann boundary conditions).
Let u be in ˜SBV represented as in 2.2.3, namely

u = w + u(0) +
k∑
i=1

∆i1[xi;1].

For all integer i in {0; . . . ; k} we denote Ωi := [xi, xi+1]; we also denote Ω := [0, 1]. We
suppose thatMSϕ;ψ(u) and

∣∣∇MSϕ;ψ

∣∣(u) are both real numbers. We assume that:

• ψ is in C1((0,+∞));

• ϕ is in C1(R);

• for all ρ in C∞(Ω) there exist a positive real number τ and a function η in L1(Ω)
such that for all t in (−τ, τ) for almost every x in Ω the following inequality holds
true:

|ϕ′(u̇(x) + tρ̇(x))| ≤ η(x).
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Then, the following conclusions hold true:

• (regularity) ϕ′(u̇) is in W 1;2(Ω) and it holds that∣∣∇MSϕ;ψ

∣∣(u) ≥
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

; (4.1)

• (Neumann boundary conditions)

1. ϕ′ (u̇ (xi)) = ψ′ (∆i) for all integer i in {1; . . . ; k};
2. ϕ′ (u̇(0)) = 0;
3. ϕ′ (u̇(1)) = 0.

Proof. Step 1: Let ρ be a function in C∞c (Ω). Since
∣∣∇MSϕ;ψ

∣∣(u) is a real number,
we can state that

lim sup
t→0

MSϕ;ψ(u)−MSϕ;ψ(u+ tρ)

‖tρ‖L2(Ω)

≤
∣∣∇MSϕ;ψ

∣∣(u).

In other words, the following inequalities hold true:

lim sup
t→0

∫
Ω

ϕ(u̇)− ϕ(u̇+ tρ̇)

|t|
dx = lim sup

t→0

MSϕ;ψ(u)−MSϕ;ψ(u+ tρ)

|t|
≤
∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ω) .

We consider a positive real number τ and a function η in L1(Ω) as in the hypothesis;
thanks to the theorem of derivation under integral, the following identities holds true:

lim
t→0+

∫
Ω

ϕ(u̇)− ϕ(u̇+ tρ̇)

t
dx = −

∫
Ω

ϕ′(u̇)ρ̇ dx;

lim
t→0−

∫
Ω

ϕ(u̇)− ϕ(u̇+ tρ̇)

−t
dx =

∫
Ω

ϕ′(u̇)ρ̇ dx.

Hence, if ρ is a function in C∞c (Ω), we have that∣∣∣∣∫
Ω

ϕ′(u̇)ρ̇ dx

∣∣∣∣ ≤ ∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ω) . (4.2)

So, if we define Ξ(u) : C∞c (Ω)→ R such that

[Ξ(u)] (ρ) :=

∫
Ω

ϕ′(u̇)ρ̇ dx,

the functional Ξ(u) is linear and continuous. Thanks to the Riesz’s representation
theorem (see [2]), there exists a function ξ in L2(Ω) such that for all ρ in C∞c (Ω) the
following identities hold true:∫

Ω

ϕ′(u̇)ρ̇ dx = [Ξ(u)] (ρ) =

∫
Ω

ξρ dx.

In other words, we have just shown that ϕ′(u̇) is in W 1;2(Ω) and −ξ is the weak
derivative. So, for all ρ in C∞c (Ω), we can integrate by parts (4.2) and we obtain that∣∣∣∣∫

Ω

[ϕ′(u̇)]
′
ρ dx

∣∣∣∣ ≤ ∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ω) . (4.3)
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Let {ρn}n∈N be a sequence in C∞c (Ω) that converges toward [ϕ′(u̇)]′ with respect to L2

norm. If we take the limit as n approaches +∞ in (4.3), we obtain that∫
Ω

(
[ϕ′(u̇)]

′)2
dx ≤

∣∣∇MSϕ;ψ

∣∣(u)
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

.

Then, we immediately conclude that∥∥[ϕ′(u̇)]
′∥∥
L2(Ω)

≤
∣∣∇MSϕ;ψ

∣∣(u).

Step 2: Since ϕ′(u̇) is in W 1;2(Ω), it is continuous in [0, 1]; so, the boundary
conditions make sense. Moreover, we have that ϕ′(u̇) is inW 1;2(Ωi) for all i in {0; . . . ; k}
and the weak derivative is the restriction of the weak derivative defined in (0, 1). We
also notice that for all integer i in {0; . . . ; k} for all ρ in C∞(Ωi) it holds that∫

Ωi
ϕ′(u̇)ρ̇ dx =

∫
Ωi
ξρ dx+

[
ϕ′(u̇)ρ

]xi+1

xi
.

Let us assume that i is in {1; . . . ; k}. Let ρ be any function in C∞(Ωi) such that
ρ (xi) = 1 and ρ (xi+1) = 0; we define ρ̃ : [0, 1]→ R such that ρ̃(x) := ρ(x)1Ωi(x). Then,
the following inequalities hold true:

lim sup
t→0

[∫
Ωi

ϕ(u̇)− ϕ(u̇+ tρ̇)

|t|
dx+

ψ (∆i)− ψ (∆i + t)

|t|

]
= lim sup

t→0

MSϕ;ψ(u)−MSϕ;ψ(u+ tρ̃)

|t|
≤
∣∣∇MSϕ;ψ

∣∣(u) ‖ρ̃‖L2(Ω)

=
∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ωi) .

We consider a positive real number τ and a function η in L1(Ωi) as in the hypothesis.
Thanks to the theorem of derivation under integral and the regularity of ψ, the following
identities hold true:

lim
t→0+

[∫
Ωi

ϕ(u̇)− ϕ(u̇+ tρ̇)

t
dx+

ψ (∆i)− ψ (∆i + t)

t

]
= −

∫
Ωi
ϕ′(u̇)ρ̇ dx− ψ′

(
∆i
)
,

lim
t→0−

[∫
Ωi

ϕ(u̇)− ϕ(u̇+ tρ̇)

−t
dx+

ψ (∆i)− ψ (∆i + t)

−t

]
=

∫
Ωi
ϕ′(u̇)ρ̇ dx+ ψ′

(
∆i
)
.

So, for all function ρ is in C∞(Ωi) such that ρ (xi) = 1 and ρ (xi+1) = 0 it holds that∣∣∣∣∫
Ωi
ϕ′(u̇)ρ̇ dx+ ψ′

(
∆i
)∣∣∣∣ ≤ ∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ωi) .

We integrate by parts and we obtain that∣∣∣∣∫
Ωi
ξρ dx− ϕ′

(
u̇
(
xi
))

+ ψ′
(
∆i
)∣∣∣∣ ≤ ∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ωi) .

If we use the triangular inequality, we find that

−
∣∣∣∣∫

Ωi
ξρ dx

∣∣∣∣+
∣∣−ϕ′ (u̇ (xi))+ ψ′

(
∆i
)∣∣ ≤ ∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ωi) .
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We can rearrange terms and use the Hölder’s inequality; so, we have that

∣∣−ϕ′ (u̇ (xi))+ ψ′
(
∆i
)∣∣ ≤ ∣∣∇MSϕ;ψ

∣∣(u) ‖ρ‖L2(Ωi) +

∣∣∣∣∫
Ωi
ξρ dx

∣∣∣∣
≤
(∣∣∇MSϕ;ψ

∣∣(u) + ‖ξ‖L2(Ωi)

)
‖ρ‖L2(Ωi) .

Having said that, we can choose a sequence {ρn}n∈N in C∞(Ωi) with the following
properties:

• ρn (xi) = 1 and ρn (xi+1) = 0 for all natural number n;

• {ρn}n∈N converges toward zero function with respect to L2 norm in Ωi.

Hence, we obtain that ∣∣−ϕ′ (u̇ (xi))+ ψ′
(
∆i
)∣∣ = 0.

Step 3: To conclude, we can easily adapt the procedure described in the previous
step, taking different sets of test functions:

• if we consider ρ in C∞(Ω0) such that ρ(0) = 1 and ρ (x1) = 0, we obtain that
|ϕ′(u̇(0))| = 0;

• if we consider ρ in C∞(Ωk) such that ρ(1) = 1 and ρ
(
xk
)

= 0, we obtain that
|ϕ′(u̇(1))| = 0.

Then, the theorem is completely proved.

Remark 4.2.3. Under the hypothesis of the theorem 4.2.2, ϕ′(u̇) is a continuous function.
If we also assume that ϕ′ : R → R is an homeomorphism, then u̇ is a continuous
function and u is in C1(Ω).

Corollary 4.2.4 (Characterization of the global minimum).
Under the hypothesis of theorem 4.2.2, we also assume that

• if ∆ is in (0,+∞), then ψ′(∆) 6= 0;

• ϕ(x) = 0 if and only if x = 0;

• ϕ′(x) = 0 if and only if x = 0.

Then,
∣∣∇MSϕ;ψ

∣∣(u) = 0 if and only if u is a global minimum point for MSϕ;ψ. In
particular, the set of local minimum points that are not global minimum points for
MSϕ;ψ is empty.

Proof. It’s easy to see that u is a global minimum forMSϕ;ψ if and only if there exists
a constant c such that u(x) = c for almost every x in Ω.

If
∣∣∇MSϕ;ψ

∣∣(u) is equal to 0 we have that [ϕ′(u̇)]′ is equal to 0 almost everywhere
in Ω (see (4.1)). We integrate by parts and we use the Neumann boundary conditions
in 0 and 1; so, for all ρ in C∞(Ω) we have that

0 =

∫
Ω

[ϕ′(u̇)]′ρ dx = −
∫

Ω

ϕ′(u̇)ρ̇ dx.
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Chapter 4. Descending metric slope

Thanks to the Du Bois-Reymond’s lemma, there exists a constant c such that ϕ′(u̇(x))
is equal to c for almost every x in Ω. We know that ϕ′(u̇(1)) = ϕ′(u̇(0)) = 0 (see 4.2.2);
so, c is equal to 0. In particular, we have that u̇(x) = 0 for almost every x in Ω. We
have shown that w coincides almost everywhere with a globally constant function. If
S (u) 6= ∅, let x be in S (u) and ∆u (x) be the height of the corresponding jump; then,
ψ′(∆u (x)) = ϕ′(u(x)) = 0 that is against our assumption on ψ′. In particular, u is a
globally constant function.

If u is a local minimum, by definition of descending metric slope it immediately
follows that

∣∣∇MSϕ;ψ

∣∣(u) = 0 (see 4.1.1). In particular u is a global minimum.

Remark 4.2.5. We remark that the necessary conditions on u and the lower bound for
the slope given by theorem 4.2.2 are consistent with those obtained in the classical case,
where ϕ is the quadratic potential and ψ is the function that counts jumps. However,
it was studied by Clara Antonucci in her master thesis (see [1]). She find out that the
conditions given by theorem 4.2.2 are also sufficient for the slope to be finite and 4.1 is
actually an identity. As for the generalized Mumford-Shah functional, the metric slope
is strictly related to the regularity of ϕ and ψ.

Theorem 4.2.6. Under the hypothesis of theorem 4.2.2, we also assume that

• ϕ is in C2(R);

• ϕ′ : R→ R is an homeomorphism.

There exists a positive real number M such that for all integer i in {1; . . . ; k} the
following inequality holds true:

lim sup
ε→0

ψ (∆i)− ψ (∆i + ε) + εψ′ (∆i)

|ε|
4
3

≤M.

Proof. Thanks to 4.2.3, we know that w is in C1(Ω); in particular ẇ is bounded. Let
µ be a positive real number such that ẇ(x) is in [−µ, µ] for all x in Ω. Let us fix i in
{1; . . . ; k}; let ε be a positive real numbers such that ε < xi − xi−1. We set

Ωi
−(ε) :=

(
xi − ε, xi

]
.

Let a be in [1,+∞). We define ρε : Ω→ R such that

ρε(x) := [x− (xi − ε)]a1Ωi−(ε)(x).

We notice that if x is in Ω \ {xi} then ρ̇ε(x) is in [−aεa−1, aεa−1]. Without loss of
generality, we can assume that if x is in Ω \ {xi} then ẇ(x) + ρ̇ε(x) is in [−µ, µ]. Since
ϕ is a C2 function, to x in Ω there corresponds ξx in [ẇ(x)− |ρ̇ε(x)| , ẇ(x) + |ρ̇ε(x)|]
such that

ϕ(u̇(x) + ρ̇ε(x)) = ϕ(u̇(x)) + ρ̇ε(x)ϕ′(u̇(x)) +
ρ̇ε(x)2

2
ϕ′′(ξx).

Moreover, it is not restrictive to assume that if x is in Ω then ϕ′′(ξx) is in [0, µ]. In
other words, for all x in Ω \ {xi} we have that

ϕ(u̇(x))− ϕ(u̇(x) + ρ̇ε(x)) = −ρ̇ε(x)ϕ′(u̇(x))− ρ̇ε(x)2

2
ϕ′′(ξx)

≥ −ρ̇ε(x)ϕ′(u̇(x))− µ

2
ρ̇ε(x)2.
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So, we have that∣∣∇MSϕ;ψ

∣∣(u) ≥ lim sup
ε→0+

MSϕ;ψ(u)−MSϕ;ψ(u+ ρε)

‖ρε‖L2(Ω)

≥ lim sup
ε→0+

−
∫

Ω

ϕ′(u̇)ρ̇ε dx−
µ

2

∫
Ω

ρ̇2
ε dx+ ψ

(
∆i
)
− ψ

(
∆i − εa

)
‖ρε‖L2(Ω)

= lim sup
ε→0+

−
∫

Ωi−(ε)

ϕ′(u̇)ρ̇ε dx−
µ

2

∫
Ω

ρ̇2
ε dx+ ψ

(
∆i
)
− ψ

(
∆i − εa

)
‖ρε‖L2(Ω)

.

Since we can integrate by parts and use the Neumann boundary condition in xi (see
theorem 4.2.2), we obtain that

∣∣∇MSϕ;ψ

∣∣(u) ≥ lim sup
ε→0+

∫
Ωi−(ε)

[ϕ′(u̇)]
′
ρε dx−

µ

2
‖ρ̇ε‖2

L2(Ω)

‖ρε‖L2(Ω)

+
−ϕ′

(
u̇
(
xi
))
εa + ψ

(
∆i
)
− ψ

(
∆i − εa

)
‖ρε‖L2(Ω)

= lim sup
ε→0+

∫
Ω

[ϕ′(u̇)]
′
ρε dx−

µ

2
‖ρ̇ε‖2

L2(Ω)

‖ρε‖L2(Ω)

+
−εaψ′

(
∆i
)

+ ψ
(
∆i
)
− ψ

(
∆i − εa

)
‖ρε‖L2(Ω)

.

If we use the Hölder’s inequality, we have that

−
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

‖ρε‖L2(Ω) ≤
∫

Ω

[ϕ′(u̇)]
′
ρε dx ≤

∥∥[ϕ′(u̇)]
′∥∥
L2(Ω)

‖ρε‖L2(Ω) .

It’s easy to see that there exist two positive real numbers c1(a) and c2(a) such that

‖ρε‖L2(Ω) =

(∫ ε

0

x2a dx

) 1
2

=
1√

2a+ 1
εa+ 1

2 = c1(a)εa+ 1
2 ,

‖ρ̇ε‖2
L2(Ω) =

∫ ε

0

a2x2a−2 dx =
a2

2a− 1
ε2a−1 = c2(a)ε2a−1.

Therefore, we can rearrange terms and we obtain that

lim sup
ε→0+

−µ
2
c2(a)ε2a−1 − εaψ′(∆i) + ψ(∆i)− ψ(∆i − εa)

‖ρε‖L2(Ω)

≤
∣∣∇MSϕ;ψ

∣∣(u) +
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

.

In other words, we have that

lim sup
ε→0+

ψ (∆i)− ψ (∆i − εa)− εaψ′ (∆i)

c1(a)εa+ 1
2

≤
∣∣∇MSϕ;ψ

∣∣(u) +
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

+
µ

2
lim
ε→0

c2(a)ε2a−1

c1(a)εa+ 1
2

.
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Since
∣∣∇MSϕ;ψ

∣∣(u) is a real number and ϕ′(ẇ) is in W 1;2(Ω) (see 4.2.2), the right hand
side is finite if and only if a ≥ 3

2
. So, if a is greater than or equal to 3

2
, it holds that

lim sup
ε→0+

ψ (∆i)− ψ (∆i − εa)− εaψ′ (∆i)

c1(a)εa+ 1
2

≤
∣∣∇MSϕ;ψ

∣∣(u) +
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

+
µc2(a)

2c1(a)
.

If we replace εa with ε, we have shown that there exists a positive real numberM such
that

lim sup
ε→0+

ψ (∆i)− ψ (∆i − ε)− εψ′ (∆i)

ε1+ 1
2a

≤M.

The condition is optimal if a is equal to 3
2
; hence, the following inequality holds true:

lim sup
ε→0+

ψ (∆i)− ψ (∆i − ε)− εψ′ (∆i)

ε
4
3

≤M. (4.4)

To conclude, let us consider any positive real number ε such that ε < xi+1 − xi. We set

Ωi
+(ε) := [xi, xi + ε).

Let a be in [1,+∞). We define ρε : Ω→ R such that

ρε(x) := −[x− (xi − ε)]a1Ωi−(ε)(x).

If we slightly modify the procedure that we have just described, we easily obtain that

lim sup
ε→0−

ψ (∆i)− ψ (∆i − ε)− εψ′ (∆i)

(−ε) 4
3

≤M. (4.5)

Joining (4.4) and (4.5), the thesis follows immediately.

Example 4.2.7. Let ψ be a weight function with the following properties:

• ψ is in C1((0,+∞));

• if x is in [1,+∞), then ψ(x) = 1;

• if x is in
(

1
2
, 1
)
then ψ(x) = 1− (1− x)

4
3 .

We notice that
lim sup
ε→0

ψ(1)− ψ(1 + ε) + ψ′(1)ε

|ε|
4
3

= 1.

Let us define u := 1[ 12 ,1]
. In particular, we have thatMSϕ;ψ(u) = ψ(1) = 1. Let a be

in [1,+∞); let θ be a positive real number. Let us fix a positive real number ε such
that εa is in

(
0, 1

2θ

)
; we define ρε : [0, 1]→ R such that

ρε(x) = θ

[
x−

(
1

2
− ε
)]a

1( 1
2
−ε, 1

2 ](x).

We notice that

‖ρε‖L2 =

(∫ ε

0

θax2a dx

) 1
2

=
θ√

2a+ 1
εa+ 1

2 ;
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‖ρ̇ε‖2
L2 =

∫ ε

0

θ2a2x2a−2 dx = θ2 a2

2a− 1
ε2a−1;

ψ(1− θεa) = 1− θ
4
3 εa

4
3 .

Hence, the following identities hold true:

MSϕ;ψ(u)−MSϕ;ψ(u+ ρε)

‖ρε‖L2

=
−‖ρ̇ε‖2

L2 + ψ(1)− ψ(1− θεa)
‖ρε‖L2

=
−θ2 a2

2a−1
ε2a−1 + θ

4
3 εa

4
3

θ√
2a+1

εa+ 1
2

.

It’s easy to see that if a is equal to 3
2
, then

lim sup
ε→0+

MSϕ;ψ(u)−MSϕ;ψ(u+ ρε)

‖ρε‖L2

= −9

4
θ + 2θ

1
3 .

Therefore, we obtain that

∣∣∇MSϕ;ψ

∣∣(u) ≥ max
θ>0

{
−9

4
θ + 2θ

1
3

}
=

8

9

√
2

3
.

The example show that the lower bound given by 4.1 can be strict.

4.2.2 Upper bound for the slope

Definition 4.2.8 (Approximating sequence).
Let u be in SBV such that MSϕ;ψ(u) is a real number. Let {un}n∈N be a sequence
in SBV that converges toward u with respect to L2 norm. We say that it is an
approximating sequence for u if the following identity holds true:∣∣∇MSϕ;ψ

∣∣(u) = lim
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(un)

‖u− un‖L2

.

Lemma 4.2.9. Let u be in SBV such thatMSϕ;ψ(u) is a real number. Let {un}n∈N be
an approximating sequence in SBV for u in the sense of definition 4.2.8. The following
conclusions hold true:

• lim inf
n→+∞

MSϕ;ψ(un) = lim sup
n→+∞

MSϕ;ψ(un) =MSϕ;ψ(u).

• Let us consider the canonical decomposition un = wn + vn as in 2.2.1, where wn is
the absolutely continuous part and vn is the jump part. Similarly, we decompose
u = w + v. Then, there exists a subsequence, not relabelled, with the following
properties:

1. {wn}n∈N converges uniformly in [0, 1] toward w and {vn}n∈N converges toward
v with respect to L2 norm and pointwise for almost every x in (0, 1);

2. lim inf
n→+∞

Dϕ(wn) = lim sup
n→+∞

Dϕ(wn) = Dϕ(w);

3. lim inf
n→+∞

MSψ(vn) = lim sup
n→+∞

MSψ(vn) =MSψ(v).
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Proof. As for the first statement, we notice that
∣∣∇MSϕ;ψ

∣∣(u) is nonnegative; hence,
we can state that:

lim inf
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(un) ≥ 0.

In other words, we have

lim sup
n→+∞

MSϕ;ψ(un) ≤MSϕ;ψ(u).

As shown in theorem 2.2.5,MSϕ;ψ is a lower semicontinuous functional in SBV. So,
the following inequalities are proved:

MSϕ;ψ(u) ≤ lim inf
n→+∞

MSϕ;ψ(un) ≤ lim sup
n→+∞

MSϕ;ψ(un) ≤MSϕ;ψ(u).

We remark that MSϕ;ψ(u) is a real number: then, up to further subsequences, not
relabelled, there exists a real numberM such thatMSϕ;ψ(un) ≤M and ‖un‖L2 ≤M
for all n in N. Thanks to theorem 2.2.5, up to further subsequences, {wn}n∈N converges
uniformly in [0, 1] toward w; by difference {vn}n∈N converges toward v with respect to
L2 norm and pointwise for almost every x in (0, 1). Thanks to theorems 1.3.11 and
2.1.20, we also know that

lim inf
n→+∞

Dϕ(wn) ≥ Dϕ(w),

lim inf
n→+∞

MSψ(vn) ≥MSψ(v).

Let us assume that there exists ε0 > 0 such that

lim sup
n→+∞

Dϕ(wn) ≥ Dϕ(w) + ε0

Up to further subsequence, not relabelled, we can assume that for all n in N it holds
that

Dϕ(w) ≤ Dϕ(wn)− ε0

2
.

Up to further subsequences, not relabelled, we can assume that if n is in N, then

MSψ(v) ≤MSψ(vn) +
ε0

4
.

Hence, for all n in N the following inequalities hold true:

MSϕ;ψ(u) = Dϕ(w) +MSψ(v)

≤ Dϕ(wn)− ε0

2
+MSψ(vn) +

ε0

4

=MSϕ;ψ(un)− ε0

4
,

that is against the first statement. We have shown that

lim sup
n→+∞

Dϕ(wn) ≤ Dϕ(w).

Then, we can immediately conclude that

lim sup
n→+∞

MSψ(vn) ≤MSψ(v).

62



4.2. Slope ofMSϕ;ψ

Definition 4.2.10 (Strictly weight function).
Let ψ be a weight function as in 2.1.11 with the following properties:

• for all a, b in R \ {0} it holds that

ψ(a+ b) < ψ(a) + ψ(b);

• if {an}n∈N is a sequence that converges toward +∞, {bn}n∈N is a sequence that
converges toward −∞ and {an + bn}n∈N converges toward a real number, then

lim inf
n→+∞

ψ(an + bn) < lim inf
n→+∞

ψ(an) + lim inf
n→+∞

ψ(bn).

We say that ψ is a strictly weight function.

Lemma 4.2.11 (Regularity of the approximating sequence).
Let u be in ˜SBV represented as in 2.2.3, namely

u = w + u(0) +
k∑
i=1

∆i1[xi,1].

For all integer i in {0; . . . ; k} we denote Ωi := [xi, xi+1] and Ω := [0, 1]. Let us assume
that ψ is a strictly weight function as in 4.2.10. Let us assume that MSϕ;ψ(u) is a
real number. LetM be any real number such that

∣∣∇MSϕ;ψ

∣∣(u) >M. There exists a
sequence {ūn}n∈N with the following properties:

• {ūn}n∈N converges toward u with respect to L2 norm;

• if n is in N, then S (ūn) = S (u);

• if we represent the sequence {un}n∈N as in 2.2.3, namely

ūn := ūn(0) + w̄n + v̄n = ūn(0) + w̄n +
k∑
i=1

∆i
n1[xi,1],

then, for all integer i in {1; . . . ; k} it holds that {∆i
n}n∈N converges toward ∆i and

{ūn(0)}n∈N converges toward u(0).

• lim sup
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(ūn)

‖u− ūn‖L2(Ω)

≥M.

Proof. Step 1: Let {un}n∈N be any approximating sequence for u (see 4.2.8) represented
as in 2.2.1, namely

un := un(0) + wn + vn.

LetM be any real number such that
∣∣∇MSϕ;ψ

∣∣(u) >M. We set

∆0 := min
{∣∣∆i

∣∣ | i ∈ {1; . . . ; k}
}
,

ΘM := sup

{
δ ∈ (0,+∞)

∣∣∣∣ ∀x ∈ (0, δ)
ψ(x)

x
≥M

}
.
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Let us fix ε0 > 0 such that

ε0 ≤ min

{
∆0

4
; ΘM

}
. (4.6)

Thanks to lemma 2.1.17, there exists a positive real number i0 such that for all n in N
the following inequalities hold true:∥∥∥∥∥∑

i>i0

vin

∥∥∥∥∥
∞

≤
∑
i>i0

 ∑
x∈S(vin)

|∆vn (x)|

 ≤ ε0. (4.7)

For all n in N we consider the following decomposition:

an := un(0) +

i0∑
i=1

vin,

bn :=
∑
i>i0

vin.

We notice that

S (an) =

i0⋃
i=1

S
(
vin
)
,

S (bn) =
⋃
i>i0

S
(
vin
)
.

For all n in N we have that

• if x is in S (bn), then |∆bn (x)| ≤ 1

i0
;

• bn(0) = 0;

• MSψ(bn) ≤MSϕ;ψ(un).

Thanks to lemma 4.2.9, we have that

lim
n→+∞

MSϕ;ψ(un) =MSϕ;ψ(u) < +∞;

in particular, the sequence {MSψ(bn)}n∈N is bounded. Therefore, the proposition 2.1.18
guarantees the existence of a subsequence, not relabelled, with the following properties:

• for all integer p > i0 there exists βp in N such that if n ≥ p, then cardS (vpn) = βp;

• for all integer p > i0, for all n ≥ p we represent vpn as in 2.2.3, namely

vpn =

βp∑
t=1

∆p;t
n 1[xp;tn ,1].

Then, for all integer t in {1; . . . ; βp} there exists xp;t∞ in [0, 1] and ∆p;t
∞ whose

absolute value is in
[

1
p
, 1
p−1

]
, such that

lim
n→+∞

xp;tn = xp;t∞ ,

lim
n→+∞

∆p;t
n = ∆p;t

∞ .
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4.2. Slope ofMSϕ;ψ

• For all integer p > i0, if we define

vp∞ :=

βp∑
t=1

∆p;t
∞1[xp;t∞ ,1]

then {vpn}n∈N converges toward vp∞ with respect to L2 norm and pointwise for
almost every x in [0, 1]; moreover, if we define

Bp :=
{
t ∈ {1; . . . ; βp} | xp;t∞ = 0

}
,

then
vp∞(0) =

∑
t∈Bp

∆p;t
∞ .

•

{
p∑

t=i0+1

vt∞

}
p>i0

is a Cauchy sequence with respect to L2 norm; if we define

b :=
∑
p>i0

vp∞,

then, {bn}n∈N converges toward b with respect to L2 norm.

In particular, b is in PJ . Moreover, for all integer p > i0 we have that:

lim inf
n→+∞

MSψ(vpn) ≥MSψ(vp∞);

we also know that
lim inf
n→+∞

MSψ(bn) ≥MSψ(b).

Obviously, we can state that ‖b‖∞ ≤ ε0.
The sequence {an}n∈N is such that for all natural number n the following properties

hold true:

• if x is in S (an), then |∆an (x)| ≥ 1

i0
;

• MSψ(an) ≤MSϕ;ψ(un);

• ‖an‖L2(Ω) ≤ ‖vn + un(0)‖L2(Ω) + ‖bn‖L2(Ω) ≤ ‖vn + un(0)‖L2(Ω) + ε0.

In particular, we can assume that the sequences {MSψ(an)}n∈N and
{
‖an‖L2(Ω)

}
n∈N

are bounded, because

lim
n→+∞

MSϕ;ψ(un) =MSϕ;ψ(u) < +∞,

lim
n→+∞

‖vn + un(0)‖L2(Ω) = ‖v + u(0)‖L2(Ω) < +∞

as shown in lemma 4.2.9. If we define a := v + u(0)− b, it’s easy to see that {an}n∈N
converges toward a with respect to L2 norm. Up to further subsequences, not relabelled,
we can assume that the convergence is pointwise for almost every x in (0, 1). If we
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recall definition 2.1.12 and the fact that Iψ
(

1
i0

)
> 0, it’s immediate to see that the

following inequality holds for all n in N:

Iψ
(

1

i0

)
cardS(an) ≤MSψ(an) ≤MSϕ;ψ(un);

hence, there exist another subsequence, not relabelled, and a natural number j such
that cardS (an) = j for all n in N. Thanks to proposition 2.1.19, we can state that a is
in PJ , cardS (a) ≤ j and

lim inf
n→+∞

MSψ(an) ≥MSψ(a).

Step 2: By definition, v + u(0) = a+ b; we know that the sets S (v) and S (a) are
finite; therefore, S (b) is finite too. We set A := cardS (a) and B := cardS (b); let a
and b be represented as in 2.2.3, namely

a := a(0) +
A∑
i=1

αi1[yi,1],

b := b(0) +
B∑
i=1

βi1[zi,1].

We know that S (v) is contained in S (a) ∪ S (b) and

MSψ(v + u(0)) = lim
n→+∞

MSψ(vn + un(0))

= lim
n→+∞

MSψ(an) +MSψ(bn)

≥ lim inf
n→+∞

MSψ(an) + lim inf
n→+∞

MSψ(bn)

≥MSψ(a) +MSψ(b)

≥MSψ(v + u(0)).

We claim that S (b) ∩ S (a) = ∅. Since ψ is a strictly weight function (see 4.2.10), if
there exists x in S (b) ∩ S (a), then

MSψ(a) +MSψ(b) >MSψ(v + u(0)),

that is absurd, obviously. We claim that S (b) = ∅. We know that

‖b‖∞ ≤ ε0 ≤
∆0

4
.

If there exists x0 in S (b), then

|∆b (x)| ≤ 2ε0 ≤
∆0

2
.

In particular, we find that x0 must be in S (a), that is absurd. We also claim that
S (v) = S (a). If there exists x0 in S (a) \S (v), then x0 must be in S (b), that is absurd.

We have just shown that b(x) = b(0) for all x in Ω. We claim that b(0) = 0. First of
all, we have that

lim sup
n→+∞

MSψ(bn) = 0.
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4.2. Slope ofMSϕ;ψ

By contradiction, if there exists a positive real number ε such that

lim sup
n→+∞

MSψ(bn) > ε,

then, up to further subsequences, not relabelled,MSψ(bn) ≥ ε for all n in N. Thanks
to theorem 2.2.5, up to further subsequences, not relabelled,MSψ(a)− ε

2
≤MSψ(an)

for all n in N. Hence, if n is in N, then

MSψ(a) +
ε

2
≤MSψ(an) +MSψ(bn) =MSψ(an + bn).

Since we have that

MSψ(v + u(0)) +
ε

2
=MSψ(a) +

ε

2
≤ lim

n→+∞
MSψ(an + bn) =MSψ(v + u(0)),

that is absurd. If we recall that
bn =

∑
i>i0

vin,

we have shown that

0 = lim
n→+∞

MSψ

(∑
i>i0

vin

)
= lim

n→+∞

∑
i>i0

MSψ(vin).

It immediately follows that for all integer i > i0, the following identity holds true:

lim
n→+∞

MSψ(vin) = 0.

If there exists i1 > i0, ε > 0 and a specific subsequence, not relabelled, such that for all
n in N it holds thatMSψ(vi1n ) > ε, then

0 = lim
n→+∞

∑
i>i0

MSψ(vin) ≥ lim sup
n→+∞

MSψ(vi1n ) ≥ ε,

that is absurd. Therefore, for all integer i > i0, the following identity holds true:

0 = lim
n→+∞

MSψ(vin) =MSψ(vi∞).

Hence, for all x in Ω for all integer i > i0 it holds that vi∞(x) = vi∞(0). We claim that
vi∞(0) = 0 for all integer i > i0. Let us fix i1 > i0; we know that

vi1∞(0) =
∑
t∈Bi1

∆i1;t
∞ .

Since |∆t;i1
∞ | is in

[
1
i1
, 1
i1−1

]
, if Bi1 is not empty we find that

0 = lim
n→+∞

MSψ(vi1n ) ≥ lim
n→+∞

∑
t∈Bi1

ψ(∆i1;t
n ) =

∑
t∈Bi1

ψ(∆i1;t
∞ ) > 0,

that is absurd. By definition of b, we can easily conclude b(x) = 0 for all x in Ω.
Step 3: We define ũn := wn + an. We claim that {ũn}n∈N has the following

properties:
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• cardS (an) = j for all n in N;

• {ũn}n∈N converges toward u with respect to L2 norm;

• lim sup
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(ũn)

‖u− ũn‖L2(Ω)

≥M.

Since
{
‖bn‖L2(Ω)

}
n∈N

is an infinitesimal sequence, we notice that {ũn}n∈N converges

toward u with respect to L2 norm. More precisely, the following inequalities hold true:

‖u− ũn‖L2(Ω) ≤ ‖u− un‖L2(Ω) + ‖bn‖L2(Ω) ≤ ‖u− un‖L2(Ω) +
∑

x∈S(bn)

|∆bn (x)| .

If we join (4.6), (4.7) and the definition of {ũn}n∈N, the following inequality are proved:

MSϕ;ψ(u)−MSϕ;ψ(ũn) =MSϕ;ψ(u)−MSϕ;ψ(un) +
∑

x∈S(bn)

ψ(∆bn (x))

=MSϕ;ψ(u)−MSϕ;ψ(un) +
∑

x∈S(bn)

ψ(|∆bn (x)|)

≥MSϕ;ψ(u)−MSϕ;ψ(un) + ψ

 ∑
x∈S(bn)

|∆bn (x)|


≥MSϕ;ψ(u)−MSϕ;ψ(un) +M

∑
x∈S(bn)

|∆bn (x)| .

Let n0 be a natural number such that for all integer n ≥ n0 it holds that

MSϕ;ψ(u)−MSϕ;ψ(un) ≥M‖u− un‖L2(Ω) .

Hence, if n is any integer greater than or equal to n0, the following inequalities hold
true:

MSϕ;ψ(u)−MSϕ;ψ(ũn)

‖u− ũn‖L2(Ω)

≥

MSϕ;ψ(u)−MSϕ;ψ(un) +M
∑

x∈S(bn)

|∆bn (x)|

‖u− un‖L2(Ω) +
∑

x∈S(bn)

|∆bn (x)|

≥

M‖u− un‖L2(Ω) +M
∑

x∈S(bn)

|∆bn (x)|

‖u− un‖L2(Ω) +
∑

x∈S(bn)

|∆bn (x)|
=M.

In other words, we have just shown that:

lim sup
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(ũn)

‖u− ũn‖L2(Ω)

≥M.

Step 4: Having said that, for all n in N we represent an as in 2.2.3, namely

an = wn + un(0) +

j∑
i=1

∆i
n1[xin,1]
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where 0 := x0
n < x1

n < · · · < xjn < xj+1
n := 1. We notice that |∆i

n| ≥ 1
i0

for all n in N for
all i in {1; . . . ; j}. Up to further subsequence, not relabelled, we can assume that for
all i in {0; . . . ; j + 1} there exists xi∞ in [0, 1] such that

lim
n→+∞

xin = xi∞.

Let r, t be integers in {0; . . . ; j + 1}; we declare that r, t are equivalent if and only if
xt∞ = xr∞. This induces a partition on {0; . . . ; j + 1} into disjoint sets. In other words,
there exist a natural number h and a collection of pairwise disjoint sets

{A0; . . . ;Ah+1}

that cover {0; . . . ; j + 1} (see 2.1.19). So, for all i in {0; . . . ;h+ 1} we can well define
yi := xr∞, where r is any index in Ai. We recall that r belongs to A0 if and only if
xr∞ = 0; similarly, r belongs to Ah+1 if and only if xr∞ = 1. For all i in {0; . . . ;h+ 1}
for all n in N we define

Θi
n :=

∑
t∈Ai

∆t
n.

As shown in 2.1.19, up to further subsequences, not relabelled, for all i in {0; . . . ;h}
there exists a real number Θi such that

lim
n→+∞

Θi
n = Θi.

We set
B :=

{
i ∈ {1; . . . ;h}

∣∣ ∀t ∈ {0; . . . ; k + 1} yi 6= xt
}
,

C := {1; . . . ;h} \ B.
As shown in proposition 2.1.19, for all i in {1; . . . ;h} we have that Θi 6= 0 if and only i
belongs to C and it holds that Θi = ∆v (yi).

We claim that A0 = Ah+1 = B = ∅ and if i is in {1; . . . ;h} then cardAi = 1. We
have shown that

MSψ(v + u(0)) = lim
n→+∞

MSψ(an) ≥MSψ(a).

If we rearrange terms, we find that

0 = lim
n→+∞

∑
i∈C

(∑
t∈Ai

ψ(∆t
n)− ψ(∆v

(
yi
)
)

)

+
∑
t∈A0

ψ(∆t
n) +

∑
t∈Ah+1

ψ(∆t
n) +

∑
i∈B

(∑
t∈Ai

ψ(∆i
n)

)

≥
∑
i∈C

lim inf
n→+∞

(∑
t∈Ai

ψ(∆t
n)− ψ(∆v

(
yi
)
)

)

+
∑
t∈A0

lim inf
n→+∞

ψ(∆t
n) +

∑
t∈Ah+1

lim inf
n→+∞

ψ(∆t
n) +

∑
i∈B

lim inf
n→+∞

(∑
t∈Ai

ψ(∆t
n)

)

≥
∑
i∈C

lim inf
n→+∞

(∑
t∈Ai

ψ(∆t
n)− ψ(∆v

(
yi
)
)

)

+

(
cardA0 + cardAh+1 +

∑
i∈B

cardAi
)
Iψ
(

1

i0

)
, (4.8)
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where Iψ
(

1
i0

)
is defined as in 2.1.12 and it is positive (see 2.1.13). We also notice that

for all i in {1; . . . ;h} it holds that

lim inf
n→+∞

∑
t∈Ai

ψ(∆t
n)− ψ(∆v

(
yi
)
) ≥ lim inf

n→+∞
ψ

(∑
t∈Ai

∆t
n

)
− ψ(∆v

(
yi
)
)

≥ ψ

(
lim inf
n→+∞

Θi
n

)
− ψ(∆v

(
yi
)
) = 0.

In other words, each addendum of the (4.8) is nonnegative. To be valid, each addendum
of the sum must be zero. In particular, A0 = Ah+1 = B = ∅.

We show that if i is in C, then cardS (Ai) = 1. Obviously, S (Ai) 6= ∅. By
contradiction, we assume that there exists an integer i in C such that cardAi > 1; in
particular, there exist two disjoint, non empty sets P and Q such that P ∪Q = Ai and,
up to further subsequences, not relabelled, there exist p in [0,+∞] and q in [−∞, 0]
such that

lim
n→+∞

∑
t∈P

∆t
n = p,

lim
n→+∞

∑
t∈Q

∆t
n = q.

So, we have that

0 = lim inf
n→+∞

∑
t∈Ai

ψ(∆t
n)− ψ(∆v

(
yi
)
)

≥ lim inf
n→+∞

∑
t∈P

ψ(∆t
n) + lim inf

n→+∞

∑
t∈Q

ψ(∆t
n)− ψ(∆v

(
yi
)
)

≥ lim inf
n→+∞

ψ

(∑
t∈P

∆t
n

)
+ lim inf

n→+∞
ψ

(∑
t∈Q

∆t
n

)
− ψ(∆v

(
yi
)
)

≥ lim inf
n→+∞

ψ

(∑
t∈P

∆t
n

)
+ lim inf

n→+∞
ψ

(∑
t∈Q

∆t
n

)
− lim inf

n→+∞
ψ

(∑
t∈P

∆t
n +

∑
t∈Q

∆t
n

)
> 0,

because ψ is a strictly weight function (see 4.2.10); this is absurd.
Step 5: To conclude, we show that we can assume that xin = xi for all n in N for

all i in {1; . . . ; k}. If there exists a specific subsequence, not relabelled, such that for
all i in {1; . . . ; k} for all n in N it holds that xin = xi, the conclusion is trivial. Hence,
we can assume that there exists i0 in {1; . . . ; k} such that xi0n 6= xi0 for all n in N. We
define yin := xin if i 6= i0 and yi0n := xi0 . Moreover, we define

ūn := wn + un(0) +
k∑
i=1

∆i
n1[yin,1].

We claim that {ūn}n∈N converges toward u with respect to L2 norm and

lim sup
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(ūn)

‖u− ūn‖L2(Ω)

≥M.
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We notice thatMSϕ;ψ(ūn) =MSϕ;ψ(un) for all n in N. If we show that for all n in N
it holds that

‖u− ūn‖L2(Ω) ≤ ‖u− ũn‖L2(Ω) ,

then, we immediately obtain that for all n in N it holds that

MSϕ;ψ(u)−MSϕ;ψ(ũn)

‖u− ũn‖L2(Ω)

≤ MSϕ;ψ(u)−MSϕ;ψ(ūn)

‖u− ūn‖L2(Ω)

.

This is enough to conclude that {ūn}n∈N satisfies our requests.
We know that {wn | n ∈ N} ∪ {w} is a family of equicontinuous functions (see

theorem 1.3.4) and {ũn(x)}n∈N converges toward u(x) for all x in E, where E is a subset
in [0, 1] such that L (E) = 1. Without loss of generality, we can assume that xi0 > xi0n
for all n in N. Let us denote

ε1 :=
|∆i0|
10

.

Let δ1 > 0 be corresponding to ε1 in the definition of uniform continuity. We can
assume that

δ1 ≤ min

{
xi+1 − xi

10

∣∣∣∣ i ∈ {0; . . . ; k}
}
.

Let xδ1 be in
(
xi0 , xi0 + δ1

2

)
∩E; let yδ1 be in

(
xi0 − δ1, x

i0 − δ1
2

)
∩E. Let n0 be a natural

number such that for all n ≥ n0 it holds that

• |xin − xi| ≤ δ1
2
for all i ∈ {1; . . . ; k};

• |u(xδ1)− ũn(xδ1)| ≤ ε1;

• |u(yδ1)− ũn(yδ1)| ≤ ε1.

Thanks to our assumption, we can state that if n ≥ n0 then ũn is a continuous function
in
(
xi0n , x

i0 + δ1
2

)
; moreover, for all x in (xi0n , x

i0) the following inequalities hold true:

|ũn(x)− u(x)| ≥
∣∣u(xi0)+ − u(xi0)−

∣∣
− |ũn(x)− ũn (xδ1)|
− |ũn (xδ1)− u (xδ1)|
−
∣∣u (xδ1)− u(xi0)+

∣∣
−
∣∣u(x)− u(xi0)−

∣∣
≥
∣∣∆i0

∣∣− 4ε0 =
3

5

∣∣∆i0
∣∣ ≥ |∆i0|

2

Similarly, we have ūn is a continuous function in (xi0 − δ1, x
i0). Hence, for all x in

(xi0n , x
i0 ] we have that

|ūn(x)− u(x)| ≤ |ūn(x)− ūn (yδ1)|
+ |ūn (yδ1)− u (yδ1)|
+ |u (yδ1)− u(x)|

≤ 3ε0 =
3

10

∣∣∆i0
∣∣ ≤ |∆i0|

2
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Having said that, we conclude with the following inequalities:

‖u− ūn‖2
L2(Ω) =

∫ x
i0
n

0

(u− ūn)2 dx+

∫ xi0

x
i0
n

(u− ūn)2 dx+

∫ 1

xi0
(u− ūn)2 dx

=

∫ x
i0
n

0

(u− ũn)2 dx+

∫ xi0

x
i0
n

(u− ūn)2 dx+

∫ 1

xi0
(u− ũn)2 dx

≤
∫ x

i0
n

0

(u− ũn)2 dx+

∫ 1

xi0
(u− ũn)2 dx+ (xi0 − xi0n )

(
|∆i0|

2

)2

≤
∫ x

i0
n

0

(u− ũn)2 dx+

∫ 1

xi0
(u− ũn)2 dx+

∫ xi0

x
i0
n

(u− ũn)2 dx

= ‖u− ũn‖2
L2(Ω) .

Theorem 4.2.12 (Upper bound for the descending metric slope).
Let ψ be a strictly weight function as in 4.2.10. Let us assume that ϕ is in C2(R) and
that there exists γ > 0 such that ϕ′′(x) ≥ 2γ for all x in R. Let u be in ˜SBV represented
as in 2.2.3, namely

u := w + u(0) +
k∑
i=1

∆i1[xi,1].

If i is any integer in {0; . . . ; k}, we denote Ωi = [xi, xi+1]; we also denote Ω := [0, 1].
Let us assume that

• ϕ′(u̇) is in W 1;2(Ω);

• ϕ′(u̇(0)) = ϕ′(u̇(1)) = 0;

• if i is any integer in {1; . . . ; k}, then ϕ′(u̇(xi)) = ψ′(∆i);

• if i is any integer in {1; . . . ; k}, there exist βi in [0,+∞) such that

lim sup
δ→0

ψ(∆i)− ψ(∆i + δ) + δψ′(∆i)

|δ|
4
3

≤ βi.

Then, the following inequality holds true:

∣∣∇MSϕ;ψ

∣∣(u) ≤
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

+
16

3
√

3γ

k∑
i=1

(βi)
3
2 .

Proof. Step 1: LetM be any real number such that
∣∣∇MSϕ;ψ

∣∣(u) >M. Thanks to
lemma 4.2.11, there exists a sequence {un}n∈N in SBV with the following properties:

• {un}n∈N converges toward u with respect to L2 norm;

• if n is any natural number, then S (un) = S (u);

• lim sup
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(un)

‖u− un‖L2(Ω)

= lim
n→+∞

MSϕ;ψ(u)−MSϕ;ψ(un)

‖u− un‖L2(Ω)

≥M.
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• For all n in N we represent un as in 2.2.3, namely

un := wn + un(0) +
k∑
i=1

∆i
n1[xi,1];

for all i in {1; . . . ; k} we have that

lim
n→+∞

∆i
n = ∆i.

If n is any natural number and i is any integer in {1; . . . ; k}, we define ρn := un − u
and χin := ∆i

n −∆i. We set

A := max

{
2

xi − xi−1

∣∣∣∣ i ∈ {1; . . . ; k + 1}
}
, B := (4A)

2
3 , C :=

1

A
.

If i is any integer in {1; . . . ; k}, we set

Λi
+ := (xi, xi + C), Λi

− := (xi − C, xi), Λi := Λi
+ ∪ Λi

−.

We remark that if i 6= j then Λi ∩ Λj = ∅.
Since ϕ is a function in C2(R) and u̇ and u̇n are in L2(Ω) for all n in N, we notice

that for all natural number n for almost every x in Ω there exists ξx in R with the
following properties:

• ϕ(u̇(x) + ρ̇n(x)) = ϕ(u̇(x)) + ρ̇n(x)ϕ′(u̇(x)) +
ρ̇n(x)2

2
ϕ′′(ξx);

• |ξx − u̇(x)| ≤ |ρ̇n(x)|.

If we rearrange terms and use the definition of γ, we obtain that the following inequality
holds for all n in N for almost every x in Ω:

ϕ(u̇(x))− ϕ(u̇(x) + ρ̇n(x)) = −ρ̇n(x)ϕ′(u̇(x))− ρ̇n(x)2

2
ϕ′′(ξx)

≤ −ρ̇n(x)ϕ′(u̇(x))− γρ̇n(x)2.
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Hence, if n is any natural number, the following inequalities hold true:

MSϕ;ψ(u)−MSϕ;ψ(u+ ρn)

‖ρn‖L2(Ω)

(4.9)

=

k∑
i=0

[∫
Ωi

(ϕ(u̇)− ϕ(u̇+ ρ̇n)) dx

]
+

k∑
i=1

[
ψ(∆i)− ψ(∆i + χin)

]
‖ρn‖L2(Ω)

(4.10)

≤

k∑
i=0

[
−
∫

Ωi
ρ̇nϕ

′(u̇) dx− γ ‖ρ̇n‖2
L2(Ωi)

]
+

k∑
i=1

[
χinψ

′(∆i) + ψ(∆i)− ψ(∆i + χin)
]

‖ρn‖L2(Ω)

=

k∑
i=0

[∫
Ωi
ρn [ϕ′(u̇)]

′
dx− γ ‖ρ̇n‖2

L2(Ωi)

]
+

k∑
i=1

[
χinψ

′(∆i) + ψ(∆i)− ψ(∆i + χin)
]

‖ρn‖L2(Ω)

=

∫
Ω

ρn [ϕ′(u̇)]
′
dx−

k∑
i=0

γ ‖ρ̇n‖2
L2(Ωi) +

k∑
i=1

[
χinψ

′(∆i) + ψ(∆i)− ψ(∆i + χin)
)

‖ρn‖L2(Ω)

(4.11)

≤
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

+

−
k∑
i=0

γ ‖ρ̇n‖2
L2(Ωi) +

k∑
i=1

[
χinψ

′(∆i) + ψ(∆i)− ψ(∆i + χin)
]

‖ρn‖L2(Ω)

≤
∥∥[ϕ′(u̇)]

′∥∥
L2(Ω)

+
k∑
i=1

[
−γ ‖v̇n‖2

L2(Λi) + χinψ
′(∆i) + ψ(∆i)− ψ(∆i + χin)

‖ρn‖L2(Ω)

]

In (4.9) we used the definition of ρn and χin; in (4.10) we integrate by parts and we
used the Neumann boundary conditions; in (4.11) we used the Hölder’s inequality.

Let i be any integer in {1; . . . ; k}; we claim that

lim sup
n→+∞

−γ ‖ρ̇‖2
L2(Λi) + χinψ

′(∆i) + ψ(∆i)− ψ(∆i + χin)

‖ρn‖L2(Ω)

≤ 16

3
√

3γ
(βi)

3
2 . (4.12)

We notice that, if we show (4.12), then the thesis follows immediately.
Step 2: Let us fix i in {1; . . . ; k}; let us assume that

lim sup
n→+∞

ψ(∆i)− ψ(∆i + χin) + χinψ
′(∆i)

|χin|
4
3

< βi.

So, there exists ni in N such that if n is any integer greater than or equal to ni, then

ψ(∆i)− ψ(∆i + χin) + χinψ
′(∆i)

|χin|
4
3

≤ βi.

In other words, we obtain that

ψ(∆i)− ψ(∆i + χin) + χinψ
′(∆i) ≤ βi

∣∣χin∣∣ 43 . (4.13)
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Hence, if n in any integer such that n ≥ ni, the following inequality holds true:

−γ ‖ρ̇n‖2
L2(Λi) + χinψ

′(∆i) + ψ(∆i)− ψ(∆i + χin)

‖ρn‖L2(Ω)

≤
−γ ‖ρ̇n‖2

L2(Λi) + βi |χin|
4
3

‖ρn‖L2(Ω)

. (4.14)

Let us denote

Ki := lim sup
n→+∞

−γ ‖ρ̇n‖2
L2(Λi) + βi |χin|

4
3

‖ρn‖L2(Ω)

; (4.15)

if we show that
Ki ≤ 16

3
√

3γ
(βi)

3
2 ,

then (4.12) follows immediately. If Ki ≤ 0, the conclusion is trivial; hence, we can
assume that Ki > 0. Up to further subsequences, not relabelled, we can suppose that if
n is any integer greater than or equal to ni, then

−γ ‖ρ̇n‖2
L2(Λi) + βi |χin|

4
3

‖ρn‖L2(Ω)

> 0.

Having said that, we can state that for all integer n ≥ ni, it holds that

−γ ‖ρ̇n‖2
L2(Λi) + βi |χin|

4
3

‖ρn‖L2(Ω)

≤
−γ ‖ρ̇n‖2

L2(Λi) + βi |χin|
4
3

‖ρn‖L2(Λi)

.

Therefore, it is enough to show that

lim sup
n→+∞

−γ ‖ρ̇n‖2
L2(Λi) + βi |χin|

4
3

‖ρn‖L2(Λi)

≤ 16

3
√

3γ
(βi)

3
2 .

Let n be an integer greater than or equal to ni. By definition 2.1.4, we have that
χin = ρn(xi)+ − ρn(xi)−; thanks to the triangular inequality, we obtain that∣∣χin∣∣ ≤ ∣∣ρn(xi)+

∣∣+
∣∣ρn(xi)−

∣∣ . (4.16)

Thanks to the mean value theorem, there exists xin in Λi
− such that

∣∣ρ(xin)
∣∣2 ≤ ‖ρn‖2

L2(Λi−)

C
≤ A ‖ρn‖2

L2(Λi−) . (4.17)

Since ρn is in W 1;2(Λi
−), the following inequalities hold true:∣∣ρn(xi)+

∣∣2 =

∣∣∣∣ρn(xin)2 + lim
x→xi+

∫ x

xin

2ρ̇n(t)ρn(t) dt

∣∣∣∣ (4.18)

≤ A ‖ρn‖2
L2(Λi) + 2 ‖ρn‖L2(Λi) ‖ρ̇n‖L2(Λi)

≤ A ‖ρn‖2
L2(Λi) + 2 ‖ρn‖L2(Λi) ‖ρ̇n‖L2(Λi) . (4.19)

In (4.18) we used (4.17) and the Hölder’s inequality. We also remark that (4.19) is a
very specific case of the Gagliardo-Nirenberg’ inequalities (see [5]). In particular, we
can state that ∣∣ρn(xi)−

∣∣ ≤ (A ‖ρn‖2
L2(Λi) + 2 ‖ρn‖L2(Λi) ‖ρ̇n‖L2(Λi)

) 1
2
. (4.20)
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Similarly, we prove that

∣∣ρn(xi)+
∣∣ ≤ (A ‖ρn‖2

L2(Λi) + 2 ‖ρn‖L2(Λi) ‖ρ̇n‖L2(Λi)

) 1
2
. (4.21)

If we join (4.16), (4.20) and (4.21), we find that if n is any integer greater than or equal
to ni, then the following inequality holds true:∣∣χin∣∣2 ≤ 4A ‖ρn‖2

L2(Λi) + 8 ‖ρn‖L2(Λi) ‖ρ̇n‖L2(Λi) . (4.22)

We remark that f(x) := x
2
3 is a subadditive function; so, if we elevate to the power of 2

3

both sides in (4.22), we obtain that

∣∣χin∣∣ 43 ≤ (4A ‖ρn‖2
L2(Λi) + 8 ‖ρn‖L2(Λi) ‖ρ̇n‖L2(Λi)

) 2
3

≤ B ‖ρn‖
4
3

L2(Λi)
+ 4 ‖ρn‖

2
3

L2(Λi)
‖ρ̇n‖

2
3

L2(Λi)
. (4.23)

Let θ be any positive real number. If we use the Young’s inequality, we find that

∣∣χin∣∣ 43 ≤ B ‖ρn‖
4
3

L2(Λi)
+ 4

(
‖ρn‖L2(Λi)

θ

) 2
3 (
θ ‖ρ̇n‖L2(Λi)

) 2
3

≤ B ‖ρn‖
4
3

L2(Λi)
+ 4

(
2

3θ
‖ρn‖L2(Λi) +

θ2

3
‖ρ̇n‖2

L2(Λi)

)
. (4.24)

Having said that, if n is any integer greater than or equal to ni, the following inequalities
hold true:

−γ ‖ρ̇n‖2
L2(Λi) + βi |χin|

4
3

‖ρn‖L2(Λi)

≤
−γ ‖ρ̇n‖2

L2(Λi) + βi
[
B ‖ρn‖

4
3

L2(Λi)
+ 4

(
2
3θ
‖ρn‖L2(Λi) + θ2

3
‖ρ̇n‖2

L2(Λi)

)]
‖ρn‖L2(Λi)

=

‖ρ̇n‖2
L2(Λi)

[
−γ +

4θ2βi

3

]
‖ρn‖L2(Λi)

+Bβi ‖ρn‖
1
3

L2(Λi)
+

8βi

3θ
. (4.25)

As (4.25) holds for all positive real number θ, we can choose θ such that

−γ +
4θ2βi

3
≤ 0,

that is

θ ≤
√

3γ

4βi
.

It’s easy to see that (4.25) is optimal if we choose

θ =

√
3γ

4βi
.
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Hence, we have shown that there exists ni in N such that for all integer n greater than
or equal to ni the following inequality holds true:

−γ ‖ρ̇n‖2
L2(Λi) + βi |χin|

4
3

‖ρn‖L2(Λi)

≤ Bβi ‖ρn‖
1
3

L2(Λi)
+

16

3
√

3γ

(
βi
) 3

2 .

If we recall the definition of Ki (see (4.15)), we have that

Ki ≤ lim sup
n→+∞

Bβi ‖ρn‖
1
3

L2(Λi)
+

16

3
√

3γ

(
βi
) 3

2 =
16

3
√

3γ

(
βi
) 3

2 .

Step 3: In conclusion, we have just shown that ifM is any real number such that
M <

∣∣∇MSϕ;ψ

∣∣(u) and {β1; . . . ; βk} are real numbers in [0,+∞) such that for all i in
{1; . . . ; k} it holds that

lim sup
δ→0

ψ(∆i)− ψ(∆i + δ) + δψ′(∆i)

|δ|
4
3

< βi,

then the following inequality holds true:

M≤
∥∥[ϕ′(u̇0)]

′∥∥
L2(Ω)

+
16

3
√

3γ

k∑
i=1

(βi)
3
2 .

This is enough to state that

∣∣∇MSϕ;ψ

∣∣(u) ≤
∥∥[ϕ′(u̇0)]

′∥∥
L2(Ω)

+
16

3
√

3γ

k∑
i=1

(βi)
3
2 .

It is immediate to see that it is not restrictive to assume that for all i in {1; . . . ; k} we
have that

lim sup
δ→0

ψ(∆i)− ψ(∆i + δ) + δψ′(∆i)

|δ|
4
3

≤ βi.

Then, the theorem is completely proved.

Corollary 4.2.13. In the hypothesis of theorem 4.2.12, if we also assume that βi = 0
for all i in {1; . . . k}, then ∣∣∇MSϕ;ψ

∣∣(u) = ‖[ϕ′(u̇)′]‖L2(Ω) .

Proof. We notice that
∣∣∇MSϕ;ψ

∣∣(u) ≥
∥∥[ϕ′(u̇)]′

∥∥
L2(Ω)

because of theorem 4.2.2; by
theorem 4.2.12, it immediately follows that

∣∣∇MSϕ;ψ

∣∣(u) ≤
∥∥[ϕ′(u̇)]′

∥∥
L2(Ω)

.
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