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Cthulhu Macula in the southern hemisphere of Pluto.

The most merciful thing in the world, I think, is the inability of the
human mind to correlate all its contents. We live on a placid island of
ignorance in the midst of black seas of infinity, and it was not meant
that we should voyage far. The sciences, each straining in its own
direction, have hitherto harmed us little; but some day the piecing
together of dissociated knowledge will open up such terrifying vistas
of reality, and of our frightful position therein, that we shall either go
mad from the revelation or flee from the deadly light into the peace
and safety of a new dark age.

H.P. Lovecraft, The Call of Cthulhu
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I NTRODUCT ION

In 1610, the Italian astronomer Galileo Galilei observed with his telescope three
small bodies near Jupiter. Initially, he thought they were stars, because of their
brightness. But unlike the stars, they moved fast with respect to the planet’s
position. The following nights he discovered the presence of a fourth light on the
same line of the others.

Il giorno sette gennaio, dunque, dell’anno meilleseicentodieci, a un’ora di notte,
mentre col cannocchiale osservavo gli astri mi si presentò Giove; poichè mi ero preparato
uno strumento eccellente, vidi (e ciò prima non mi era accaduto per la debolezza
dell’altro strumento) che intorno gli stavano tre stelle piccole ma luminose; e quan-
tunque le credessi del numero delle fisse, mi destarono una certa meraviglia, poiché
apparivano disposte esattamente secondo una linea retta e parallela all’eclittica, e più
splendenti delle altre di grandezza uguale a loro.

Galilei, Sidereus Nuncius (1610)

In [12], Galilei announced the discovery of four satellites of Jupiter, which in his
honour would have been named Galilean (actually Galilei named them Medicean
stars, in honour of Cosimo II de Medici of Florence). This was an extraordinary
fact for the time, as it showed that there were bodies that did not orbit around the
Earth, in the long dispute between geocentric and heliocentric theories.

Instead, the single names of the satellites are due to a German astronomer, Si-
mon Marius, that claimed to be the first to have observed the moons. Their names
were taken from the Greek mythology, in particular from some lovers of the god
Jupiter: Io, Europa, Ganymede and Callisto (in order from the planet).

For the whole 17th century the Galilean satellites were observed with the new
telescopes at the time, allowing to produce first ephemerides tables of the moons
and to study their eclipses with Jupiter. In particular, the last ones were very
important for first computations of the longitude on Earth and of the speed of
light. In 1798, Laplace proved in [26] that the three inner moons were locked in a
mean motion resonance with ratio 4 : 2 : 1, today known as Laplace resonance.

[...] on aura donc, en n’ayant égard qu’aux quantités moyennes, n1 − 3n2 +
2n3 = 0; c’est-à-dire, que le moyen mouvement du premier satellite, moins trois fois
celui du second, plus deux fois celui du troisième, est exactement et constamment égal
à zéro.

Laplace, Traité de Mécanique Céleste, Livre II (1798)
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Drawings of Galileo Galilei, taken from the Sidereus Nuncius. They represent Jupiter and the
Galilean satellites as seen by the astronomer in six different nights. In his book, he reported the
positions of the moons from the day of their discovery, January 7, to March 2, and only from
January 13 Callisto was observed.

This commensurability means that the orbital period of Ganymede around Jupiter
is (almost) two times the one of Europa and (almost) four times the one of Io. Mean
motion resonances are not uncommon for asteroids and satellites, but most of the
times they involve two bodies only. The Galilean satellites were the first known
case in the Solar System of a three-body resonance, although recently it was dis-
covered a similar resonance between the satellites of Pluto, as reported in [43].

From that year, a wide number of scientists have studied the system composed
by Jupiter and the Galilean satellites. One of the first important contribution for
the understanding of their dynamics, is due to de Sitter. In [6], the author devel-
oped a new analytical model of the satellites’ motion, investigating the existence of
periodic orbits. This special case is called de Sitter resonance, which is not exactly
the same configuration of the current Laplace resonance.

In 1979, Peale, an American scientist, and its collaborators predicted the pres-
ence of volcanoes on the surface of Io, computing for the first time the large energy
dissipation due to the tides that Jupiter raises on the little moon. For the same rea-
son, an year later, in [4] it was supposed the existence of an ocean under the icy
crust of Europa. Peale managed to publish his results in [38], some days before
the images of the Voyager space mission that confirmed his theory: the camera
captured the ejected gas plumes that rose over Io’s surface. The paper was pub-
lished in Science of March 2, while the photo reported in this section was taken
on March 8.

From this discovery, it was clear that there was a force that could make the
resonance evolve. Apart from being the source of the Io’s volcanism, the huge
tidal friction dissipates the orbital energy of the moon, modifying its semi-major
axis. Moreover, because of the resonant interaction, also the orbits of Europa and
Ganymede change.
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Picture taken by Voyager 1 in 1979. The plume captured by the spacecraft’s camera was the first
evidence of Io’s volcanic activity.

From 1995 to 2003, Galileo space mission performed some very close flybys of
the satellites. For the first time it was possible to obtain tracking data for a better
understanding of the moons’ structure. Unfortunately, the main antenna mounted
on the spacecraft had a problem in the opening, then it was necessary to use the
low-gain antenna, losing quality in the tracking.

Meanwhile, for all the 20th century, the Galilean satellites were observed from
telescopes all over the world, providing data useful to comprehend their motion.

The generation of new ephemerides with improved accuracy is a challenge for
the main teams that provide this kind of tables. In particular, it means to handle
a big amount of data, almost from the end of the 19th century to the present day.
The kind and the precision of the observations can be very different: they pass
from astrometry to spacecraft tracking data and from accuracies of hundreds of
kilometers to few meters. Moreover, the forces acting on the system are several
and, because of the large time span, they must be taken all into account.

Up to now, the several solutions of the Galilean satellites motion disagree about
the amount of dissipation. We reported a table taken from [24] with the values
of the variation in the satellites’ mean motions due to the tidal dissipation, as
calculated in various articles. The results differ both for the orders of magnitude
and for the signs; this means that there is discrepancy both about the amount of
the dissipative effects and the resultant effect. In fact, the sign of the mean motions’
variation indicates if the satellites are accelerating or decelerating, or equivalently,
if they are moving toward Jupiter or outward.

In particular, the values of the dissipative parameters obtained by the IMCCE
(Institut de Mécanique Céleste et de Calcul des Éphémérides) in [24] and by the
JPL (Jet Propulsion Laboratory) in [16] differ for almost three orders of magni-
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Author Year ṅ1/n1 ṅ2/n2 ṅ3/n3

De Sitter 1928 3.3 2.7 1.5
Lieske 1987 -0.074 -0.082 -0.098
Goldstein et al. 1995 4.54 5.6 2.8
Vaundhara et al. 1996 2.27 -0.67 1.06
Asknes et al. 2001 3.6 − −
Lainey et al. 2009 0.14 -0.43 -1.57

Dissipative effects, presented as variation in mean motions over mean motions (units
10−10 rad/y), as obtained from different articles. Table taken from [24]; references in the
paper.

tude. Therefore, while for the first the effect of the dissipation over 100 years is
a shift along the orbits of tens or hundreds of kilometers, for the second it is just
hundreds of meters. And more, also the tidal friction that disrupts the interior of
Io would be strongly downsized. It is very surprising that at the current level of
knowledge of celestial mechanics’ sciences, it is possible this huge disagreement
between two of the main teams of satellites’ ephemerides. Actually, this could
be due to the different choices of which data to include into the fit; considering
Galileo mission’s data, as done in [16], or not, as in [24], could have brought to
completely different results.

The future JUICE space mission is a great opportunity to solve this dispute.
JUICE is an ESA (European Space Agency) mission that will be inserted in the
Jovian system at the beginning of 2030 and that will perform several flybys of the
Galilean satellites. Moreover, in the last part of the mission, it will orbit around
Ganymede for nine months, with a possible extension of the mission. The data that
JUICE will collect during its tour will have an extraordinary precision, allowing to
investigate several aspects of the system. Amongst them, the energy dissipation
and the Laplace resonance should have a crucial role in the scientific program of
the mission.

The Galilean satellites’ dynamics is a very fascinating topic. It comprehends res-
onances and large dissipative effects and these two aspects are strongly correlated
as we will see. Besides, they are a small copy of the Solar System: obtaining infor-
mation about them, it could be possible to comprehend better the whole system.
Moreover, the evolution of the resonance and the dissipative forces can give some
clues of their origin and the history of other satellites systems (e.g. Saturn) and
exoplanets.

The aim of this thesis is to study the dynamics of the Galilean satellites and to
investigate the contribution of the JUICE space mission data to the improvement
of Galilean satellites’ ephemerides and to the knowledge of the dissipation in the
system.
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The thesis is structured as follows: in the first part, we will present a semi-
analytical model of the Galilean satellites’ dynamics. We will study the resonant
and secular motion through a Hamiltonian containing the main perturbations of
the system and depending on the slow angles only. We will show, by a comparison
with numerical models, that the model describes well the actual motion of the
moons and also the migration of their orbits due to the tidal dissipation.

In the second part, we will describe the JUICE mission and the orbit deter-
mination experiments we performed in order to estimate the energy dissipation.
We will introduce ORBIT14, an orbit determination software developed by the
Celestial Mechanics Group of Pisa, and we will illustrate the numerical models
implemented for the bodies’ propagation and for the prediction of the observa-
tions. For a realistic estimation, we will consider a great number of parameters
and dynamical effects, although we will focus our analysis mainly on the tidal
dissipation.
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Part I

A S E M I - A N A LY T I C A L M O D E L O F T H E G A L I L E A N
S AT E L L I T E S D Y N A M I C S





1 THE GAL I LEAN SATELL ITES

The Jovian system has very particular and fascinating characteristics. Jupiter is
distant almost 5.2 au (astronomical unit) from the Sun and it is the major planet
of the Solar System. It is a gas giant, it means that it is composed mainly by
gaseous matter, in particular hydrogen and helium. As witnessed by the numerous
pictures and by the new photos of the Juno mission currently orbiting around the
planet, Jupiter is completely covered by clouds and storms. Since we are mostly
interested in the Galilean satellites, we give a brief description of these bodies,
while we avoid presenting minor moons.

The Galilean satellites are the Jupiter’s biggest moons: Io (1), Europa (2), Ganymede
(3) and Callisto (4). In the next chapters we will focus on their dynamics, but first
we want to present their main physical properties. More details can be found
in [44].

• Io. It is the closest to Jupiter. Unlike the other Galilean satellites, it has
a dry surface, with no evidence of water. Because of its proximity to the
gas giant, the dissipative effects due to the tides have a huge impact on
its structure. In fact, the tidal forces of Jupiter are the source of volcanism
on the satellite. In 1979, Voyager spacecraft observed plumes arising from
its volcanoes, but volcanism on Io comprehends also liquid lava flows and
pyroclastic eruptions. Pictures and infrared observations showed how much
strong the volcanic activity is, leading to an heat flux near to 2 Watt/m2 (for
the Earth is almost 0.1). Moreover, the escape and ionization of the atoms
form a plasma torus in the space around Jupiter.

• Europa. It is the first of the icy moons and the smallest of the Galilean
satellites. It has an icy crust that covers the surface, and below it is supposed
to lie an ocean of water. Its existence would be due to the tidal dissipation,
the same cause of Io’s volcanism, that allowed to heat the water near the
surface for millions of years. There are also some evidences of cryovolcanism.
Along the surface the splits of the icy terrain are evident; they could be the
result of the displacement of the tidal bulges.

• Ganymede. It is the largest satellite in the Solar System. Its grooved surface
indicates a very active geological past, with some evidences of cryovolcan-
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the galilean satellites

Figure 1.1.: The four Galilean satellites: Io, Europa, Ganymede and Callisto.

ism. Ganymede has an intrinsic magnetic field that generates a small mag-
netosphere inside the larger Jupiter’s magnetosphere. It has also a tenuous
atmosphere, mainly composed by oxygen and ozone. The presence of oxy-
gen could be due to the sublimation of ice on the surface or to some gas
bubbles trapped under the ice.

• Callisto. It is the furthest moon and the less active geologically. In fact,
craters and asteroids crashes are clear on its surface; this leads to think that
the surface has not changed for a very long time. Since Callisto is the furthest
from Jupiter and is not in resonance, it is probable that it has not suffered
tidal effects as much as the other moons.

Generally, satellites’ dynamics is more complex than the one of the planets,
mainly because some forces become significant when the distances are small (for
example tides or oblateness). A study of the main effects acting on the Jovian

Io Europa Ganymede Callisto

Physical parameters
Mass (1022 kg) 8.932 4.800 14.818 10.759
Mean radius (103 km) 1.821 1.561 2.631 2.410
g surface (m/s2) 1.79 1.314 1.430 1.235
Density (103 kg/m3) 3.528 3.014 1.942 1.834
Orbital parameters
Period (days) 1.7691 3.5512 7.1546 16.6890
Mean motion (◦/day) 203.49 101.37 50.32 21.57
Semi-major axis (105 km) 4.220 6.713 10.706 18.831
Eccentricity 0.0042 0.0095 0.0013 0.0074
Inclination (◦) 0.04 0.46 0.21 0.20

Table 1.1.: Overview of some Galilean satellites’ physical and mean orbital parameters in
an equatorial reference system at J2000.

4



the galilean satellites

EuropaIo

Ganymede Callisto
Jupiter

Figure 1.2.: Scaled representation of Jupiter and the Galilean satellites’ orbits.

satellites is presented in [20]; the numerical model we will implement is mainly in-
spired by this paper and other following works of the same authors, such as [7], [21]
and [24].

Moreover, as mentioned in the Introduction, the Galilean satellites are in a very
particular motion condition: they are locked in a three-body resonance with ratio
4 : 2 : 1. In particular, Io and Europa are in a 2 : 1 mean motion resonance, the
same of Europa and Ganymede.

One of the most fascinating aspects is that the dissipation and the resonance are
strongly related one to each other. In fact, the tides could have driven the satellites
in their current state, leading the inner satellites outward from Jupiter, reaching
their present location. Moreover, as we will study in this part of the thesis, the
resonance forces the moons’ eccentricities to higher values (with respect to their
free values), making the dissipation within the satellites stronger.

In order to have a clear description of the dynamics, we developed a semi-
analytic model of the Galilean satellites, which we will present in Chapter 3.

5





2 SECULAR THEORY

In this chapter we introduce the general problem of the motion of N + 1 point
masses (mi, i = 0,N) under their mutual gravitational attraction. In particular,
since we are interested in the long period evolution of their orbits, we present the
secular theory of the motion.

In celestial mechanics the approximation of point masses is justified by the the-
orem of Newton:

Theorem. A spherically symmetric body affects external object gravitationally as though
all of its mass were concentrated at a point at its center.

In the case N = 1, we find the classic two-body problem. Let be z0 and z1 the
barycentric positions of the two bodies, then the equations of motion are

m0z̈0 =
Gm0m1
r3

r,

m1z̈1 = −
Gm0m1
r3

r,
(2.1)

where G is the gravitational constant (almost 6.674× 10−11 m3kg−1s2) and r =

z1 − z0 (we use the notation r = |r|). With a dot over a quantity we indicate the
derivative with respect to the time, then ż is the velocity and z̈ is the acceleration.

Subtracting the first equation multiplied by m1 from the second one multiplied
by m0, we can reduce the problem to a motion of a single body with reduced
mass M = m0m1/(m0 +m1) under the central force due to a body of mass M =

m0 +m1.

Mr̈ = −
GMM

r3
r (2.2)

The differential equation (2.2) defines the Kepler problem and it is well known
that the solutions are conic sections. Solving (2.2) we obtain r(t) and then the
solutions of (2.1). Since we will treat the motion of satellites, we consider the case
of negative energy, or equivalently, elliptic orbits.

Instead of r and ṙ, we can describe the state of the bodies through new coordi-
nates, called orbital elements and represented in Figure 2.1. They are the semi-
major axis a, the eccentricity e, the inclination I, the argument of the pericenter
ω, the longitude of the node Ω and the mean anomaly `. In the two-body prob-
lem the orbits are fixed, then five over six elements are constant. Only the mean
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ω
I

y

z

Ωx

Figure 2.1.: A generic elliptic orbit: the three angles I, ω and Ω describe the position of the ellipse
in the space, while a and e define its shape.

anomaly changes with time and it indicates the position of the body on the ellipse.
Its rate is constant and it is called mean motion n.

Generally, in the real space the two-body dynamics is not enough to obtain an
accurate description of the real motion. In fact, there can be other forces in the
right hand side of the equations of motion (2.1) which are not negligible. Most
of the times, they are small with respect to the main term due to the two-body
dynamics, then we can use a perturbative approach and we suppose that at each
instant the orbits are still elliptic. Because of the perturbations, the orbital elements
are not constant, but they change with time.

For this reason, we introduce the notion of osculating elements: they are the
instantaneous orbital elements of the body, if all perturbations vanish. Generally,
they change wildly just during few orbital periods. These elements are important
to have a precise knowledge of the orbit of the celestial body at a certain time t,
but they are not very significant for a long period description of the motion.

There are three scales of time in celestial mechanics. Let be ε the small parame-
ter of the perturbation, then we have:

• short period effects, with frequencies of the order of n;

• resonant effects, frequencies of the order of n
√
ε;

• secular effects, frequencies of the order of nε.

8



2.1 third-body perturbation

x

z

y
O

2
x

1
r1 r12

r2

Figure 2.2.: Three-body problem with the origin of the reference frame fixed in one of the body.

The purpose of a secular theory is to describe the motion with elements that
vary over long time scales only and that avoid the wide oscillations of the short
period terms.

2.1 third-body perturbation

A classic example of perturbation is that due to the presence of a third body. If we
consider the two-body problem (2.1) with a primary (mass m0) and a secondary
body (mass m1 � m0), it is convenient to consider a reference frame centered
in the first one. This is the case of a satellite that orbits around a planet or a
planet that orbits around its star. As the system is not inertial anymore, we have
to consider also inertial forces and from (2.1) we obtain the acceleration

r̈1 = −
G(m0 +m1)

r31
r1. (2.3)

If we add a third body, for example another satellite with mass m2 and planeto-
centric position r2, as represented in Figure 2.2, the secondary body will undergo
a force

m1r̈1 = Gm1m2
( r12
r312

−
r2
r32

)
, (2.4)

where r12 = r2 − r1 and r12 is its norm. In the right hand side of (2.4), the first
term in the brackets is the direct term, while the second one is the indirect term,
due to the new force acting on the primary.

9
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As the two forces given by (2.3) and (2.4) are conservative, we can express them
in term of a potential U. For the main term, also called Keplerian as it describes
the two-body problem, we have

U0 =
G(m0 +m1)

r1
, (2.5)

while for the third-body perturbation

U3b = Gm2

( 1

r12
−

r1 · r2
r32

)
. (2.6)

In this case, the small parameter of the perturbation is ε = m2/m0.

2.2 hamiltonian theory

Since we will use the Hamiltonian formalism, we recall its main properties. We
consider a function H(p, q), called Hamiltonian, that depends on some coordi-
nates q and their conjugated momenta p.

From this function, we can define a system of first order differential equations
ṗ = −

∂H

∂q
,

q̇ =
∂H

∂p
,

(2.7)

called Hamilton’s equations. From (2.7), it is easy to verify that the Hamiltonian
is a first integral of the motion.

We recall also the notion of canonical transformations. They are special variables
transformations

φ : (p, q) 7→ (P, Q),

for which the Hamilton’s equations relative to the new Hamiltonian

H ′(P, Q) = H(p(P, Q), q(P, Q))

express the same dynamics of the initial differential equations.
An example of canonical transformation is the integral flow ΦtH(x). In fact, if

we consider the map x 7→ ΦtH(x), we pass to a new Hamiltonian system, where in
this case the Hamiltonian remains the same.

Another way to create canonical transformations is to use generating functions.
They are functions of the coordinates (old or new) and the momenta (old or new).

10



2.2 hamiltonian theory

For example, we suppose to have a function F(q, P) defined in an open domain
and such that

det
( ∂2F
∂q∂P

)
6= 0.

In order to obtain the associated canonical transformation, we have to compute
the partial derivatives

Q =
∂F

∂P
, p =

∂F

∂q
,

and through an inversion we get the expressions for the new momenta P.

2.2.1 Poincaré canonical coordinates

Relative, or planetocentric, coordinates are not canonical variables, then we need to
use different coordinates. We consider N+ 1 bodies with mass mi and barycentric
positions zi, i = 0,N. The idea is to pass to a mixed set of variables, known also
as Poincaré coordinates: relative positions ri = zi − z0 and barycentric momenta
pi = miżi, i = 1,N. Instead, for the central body we take r0 = z0 and p0 =∑N
i=0 pi.
The Hamiltonian is the sum of the kinetic energy

T =
1

2

N∑
i=1

p2i

( 1
mi

+
1

m0

)
+
1

2

p20
m0

−

N∑
i=1

p0 · pi
m0

+
∑

0<i<k6N

pi · pk
m0

and the potential energy

U = −G

N∑
i=1

m0mi
ri

−G
∑

0<i<k6N

mimk
rik

.

Since r0 is missing, the conjugated momentum p0 is constant and we can set it to
0. We can reduce the problem to 3N degrees of freedom and the new Hamiltonian
is

H =

N∑
i=1

( |pi|2
2βi

−
µiβi
|ri|

)
+

∑
0<i<k6N

(
−
Gmimk
|rik|

+
pi · pk
m0

)
, (2.8)

where βi = m0mi/(m0 +mi) and µi = G(m0 +mi).
It is worth noting that the first sum is the unperturbed Hamiltonian, composed

just by two-body problems between the bodies 0 and i, while the second sum is
due to the interactions between the bodies with i = 1,N. Moreover, with this
formulation, the indirect part of the third-body perturbation (2.6) comes out from
the kinetic part and not from the potential one.
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2.2.2 Delaunay variables

Since we are interested in the secular theory of the motion, we need to use vari-
ables that vary slowly. Unfortunately, the orbital elements are not canonical. There-
fore, it is necessary to consider another set of variables, in particular we choose
the Delaunay variables. Starting from the Poincaré coordinates, the momenta are
defined as follows

L̃i = βi
√
G(m0 +mi)ai, G̃i = L̃i

√
1− e2i , H̃i = G̃i cos Ii.

The associated coordinates are the mean anomaly `i, the argument of the pericen-
ter ωi and the longitude of the node Ωi.

Delaunay variables are action-angle canonical variables, which are suitable for
integrable or quasi-integrable systems. Action-angle variables are a particular set
of momenta and coordinates, for which the Hamiltonian depends only on the
momenta and the solutions are contained in tori parametrized by the angle coordi-
nates. In the case of the two-body problem, for which only L̃ appears in the Hamil-
tonian, we have that L̃ = h defines a 1-dimensional torus which is parametrized
by `. In the perturbed problem, there are conditions for which some tori in the
space persist, if the perturbation is small enough (KAM theory).

The Delaunay variables have some singularities in their definition. In fact, when
we consider circular orbits (e = 0), the angle ω is not defined, instead for planar
orbits (I = 0 or I = π), Ω is not defined.

In order to remove these singularities, we can consider other canonical variables.
First of all we pass to an intermediate set of canonical variables, called modified
Delaunay variables, with new momenta

Li = L̃i, Gi = L̃i − G̃i, Hi = G̃i − H̃i, (2.9)

while the new coordinates are the mean longitude λ = ` +ω +Ω, minus the
longitude of pericenter $ = ω+Ω and minus the longitude of the node Ω.

In order to remove the singularities, we can use rectangular variables, which are
defined as follows

xi =
√
2Gi cos($i), yi =

√
2Gi sin($i),

ui =
√
2Hi cos(Ωi), vi =

√
2Hi sin(Ωi);

while Li and λi remain the same.
In the Delaunay variables the unperturbed Hamiltonian becomes

H0 = −

N∑
i=1

µ2iβ
3
i

2L2i
. (2.10)
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2.3 expansion of the perturbation

From (2.10), the mean motions are ni = µ2iβ
3
i /L

3
i .

2.3 expansion of the perturbation

From the celestial mechanics theory (see for example [10] or [34], Chapter 6), we
know that (2.6) can be expanded in a Fourier series of cosines only

R(i,k) = −
Gmimk
ak

∑
j∈N6

Cj(ai,ak, ei, ek, Ii, Ik) cos(j ·Θ), (2.11)

where j = (jl)l=1,6 is an integer vector and Θ = (λi, λk,$i,$k,Ωi,Ωk). The
expansion (2.11) is related to two generic bodies that orbit around the same object,
and we indicate the inner one with the letter i and the outer one with k.

Moreover, from geometric and invariance considerations, we know that not all
the terms of the series are allowed. Apart from restricting the expansion to cosines
only, the D’Alembert rules say that each term must verify:

1. the sum of the coefficients jl (l = 1, 6) is 0;

2. the sum of the coefficients of the variables Ω is even;

3. the minimum order in eccentricity (respectively inclination) of a term is equal
to the sum of the absolute values of the coefficients of $ (respectively Ω).

From the third law we have that the main term of Cj is

cj(ai/ak)e
|j3|
i e

|j4|
k s

|j5|
i s

|j6|
k .

where si = sin(Ii/2) (analogous formula for sk), and cj(ai/ak) depends on the
semi-major axes only, actually on their ratio ai/ak, and it is a combination of
functions called Laplace coefficients. In order to compute the various coefficients
cj, we refer to [34], Appendix B, which reports their exact formulas.

Since (2.11) is an expansion in e and sin(I/2), which in most of the cases are far
smaller than 1, we can stop the expansion at an order for which the terms become
small enough.

Once we consider (2.11), the Hamiltonian is in the form

H = H0 + εH1. (2.12)

In fact, we can separate H in the main and unperturbed part given by (2.10), and
a perturbative part linear in the small parameter ε.

In the next section we will see how we can eliminate most of the terms of (2.11)
through an operation of averaging.
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2.4 averaging

Since we want to pass to a secular theory, we need to remove all the short period
terms from the Hamiltonian. This is possible through an operation called aver-
aging, which is equivalent to calculate the mean of the Hamiltonian over the fast
angles.

We use an approach based on Lie series. They allow to eliminate the terms of
the expansion, through a canonical transformation (see [31]).

We showed that the Hamiltonian is in the form (2.12), where H0 is the Keple-
rian part and εH1 is the third-body perturbation. We can introduce a function
χ = εχ1 + ε

2χ2 + . . . that defines a canonical transformation φεχ such that, if we
indicate with H ′ = H ′0 + εH

′
1 + ε

2H ′2 + ε
3H ′3 + . . . , the new Hamiltonian is

H ′0 =H0,

H ′1 =H1 − {H0,χ1},

H ′2 =− {H0,χ2}− {H1,χ1}+ 1/2{{H0,χ1},χ1},

H ′3 = . . . (2.13)

Through this procedure, we want to remove all the short period terms from H1,
obtaining a new perturbative function H ′1 with secular terms only.

In (2.13) we used the Poisson’s brackets, which define the operation

{f,g} =
∑
i

( ∂f
∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)
.

Therefore, if we want to remove a term in H1 containing αλ2 − βλ1 in the argu-
ment of the cosine, for example

H
(α,β)
1 = A(a1,a2)e

|α−β|
2 cos(αλ2 −βλ1 − (α−β)$2),

we must define

χ
(α,β)
1 =

A(a1,a2)
αn2 −βn1

sin(αλ2 −βλ1 − (α−β)$2).
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2.4 averaging

In this way, since H0 depends on L1 and L2 only,

{H0,χ(α,β)
1 } = −

∂H0
∂L1

∂χ
(α,β)
1

∂λ1
−
∂H0
∂L2

∂χ
(α,β)
1

∂λ1

= −n1
A(a1,a2)
αn2 −βn1

e
|α−β|
2 cos(αλ2 −βλ1 − (α−β)$2)(−β)

−n2
A(a1,a2)
αn2 −βn1

e
|α−β|
2 cos(αλ2 −βλ1 − (α−β)$2)α

= −(αn2 −βn1)
A(a1,a2)
αn2 −βn1

e
|α−β|
2 cos(αλ2 −βλ1 − (α−β)$2)

= −A(a1,a2)e
|α−β|
2 cos(αλ2 −βλ1 − (α−β)$2) = −H

(α,β)
1 .

As shown in (2.13), this operation generates a new part H ′2, but formally it
is of the second order in the small parameter ε, then we can neglect it in an
approximated model.

Apart from modifying the Hamiltonian, we are also changing the variables. In
particular, when we conclude our operation of averaging, removing all the fast
angles, we have new variables called mean orbital elements, which are different
from the previous osculating elements.

The purpose of this procedure is to eliminate all the terms containing the mean
longitudes, since their variation is faster than that of the other angles ($i and Ωi,
which vary only under the action of the perturbations). However, because of mean
motion resonances, we have that some combinations αλ2 − βλ1 have smaller rate
than the mean longitudes alone.

Therefore, when we try to eliminate this term using Lie series, amongst the
second order terms we have

{{H0,χ(α,β)
1 },χ(α,β)

1 } = {−H
(α,β)
1 ,χ(α,β)

1 }.

The quantity χ(α,β)
1 contains the factor 1/(αn2 − βn1), and when we derive with

respect to L1 or L2 we obtain 1/(αn2 − βn1)
2. As we said, the frequencies of

the resonances are of the order of n
√
ε, therefore, at the denominator we have a

quantity that is near ε.
This is the problem of the small divisors and we cannot omit the terms contain-

ing these combinations without obtaining a bad approximation. In fact, in H ′2 we
find ε at the denominator, so that the real order of the associated function in the
small parameter is one and not two.

In the next section we will show some examples for which the mean motion
resonances have a very important impact in the evolution of the orbits.
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Figure 2.3.: The semi-major axis a of the asteroid Dirichlet (left) and the resonant angle σ =
2λ5 − λ−$ (right).

2.5 mean motion resonances

Orbital resonances are not uncommon in the Solar System. In the main belt of
asteroids between Mars and Jupiter, we can find several groups of asteroids in
mean motion resonance with Jupiter. In the literature there are several works
devoted to the study of resonant dynamics (see [33] and [36]).

If we take the acceleration of a main belt asteroid, we have a main term due
to the gravitational force of the Sun and a secondary term due to the third-body
perturbations of the planets. In particular, due to the great mass of Jupiter and the
asteroid’s position, we can consider just the perturbation due to the gas giant. In
certain regions of the belt, it happens that asteroids suffer a strong influence by
Jupiter. We know that the mean motion depends on the semi-major axis, therefore,
we take an asteroid with a semi-major axis such that

jn− kn5 ≈ 0,

for certain integers j and k greater than 0. The number 5 indicates Jupiter, fifth
planet of the Solar system. In this case, it is a mean motion resonance of ratio j : k
and order |j− k|.

If an asteroid is near to a resonance, then the terms of the series containing the
combination jλ−kλ5 have an important impact on the motion, inducing important
variations in the orbital elements. If the resonance is strong enough, there can
be angles that pass from circulation, i.e. a very small variation along [0, 2π], to
libration, i.e. an oscillation around a fixed value.

We reported as example the asteroid Dirichlet (number 11665), which is a main
belt asteroid in 1 : 2 resonance with Jupiter. Since the order of the resonance is
1, the resonant effects are quite strong. In fact, the main resonant term is linear
in e. For the propagation of the asteroid we used orbit9, a code included in the
OrbFit software and developed by the Celestial Mechanics Group of Pisa (see [30]).
As shown in Figure 2.3, the resonant angle is librating around 0 and the variation
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Figure 2.4.: Points from an integration of the asteroid 136120 in the plane (a,σ), with a the
semi-major axis of the asteroid and σ the resonant angle. In orange we reported the
points obtained by the numerical integration, while in black the same series after the
application of a low pass filtering.

of the semi-major axis is strongly influenced by the resonance, oscillating with an
amplitude of almost 0.05 au and the period of the libration. In this case the reso-
nant angle is 2λ5− λ−$, but how can we guess which it is? From the D’Alembert
rules, we know that the combination 2λ5−λmust be completed in such a way that
the sum of the coefficients is equal to 0. Since we search for terms with the mini-
mum order in eccentricities and inclinations, and the sum of the coefficients of Ω
angles must be even, the natural choice is −$ or −$5. However, the eccentricity
of Jupiter is generally smaller (almost 0.048) than the ones of the asteroids (in the
case of Dirichlet, it is almost 0.15), then the first attempt should be −$.

Resonances do not occur only for main belt asteroids, but also in other scenarios,
such as transneptunian asteroids (resonance with Neptune), exoplanets of a same
star (resonance between themselves) and satellites of a same planet (resonance
between themselves).

In [40], we studied the orbital evolution of some transneptunian objects in mean
motion resonance with Neptune. Also in this case we used orbit9 software for the
numerical propagation. We report just an example of a resonant asteroid, num-
bered with 136120, for which the resonance with Neptune has commensurability
1 : 3.

In the paper we used numerical integrations in order to find suitable initial
conditions for the secular model developed in [39]. In particular, applying a digital
filter to the semi-major axis of the asteroid and the resonant angle σ = 3λ−λ8−2$

(8 indicates Neptune, eighth and last planet of the Solar system), we found the
corresponding level curve of the semi-secular Hamiltonian. In the case of 136120,
as it is showed Figure 2.4, the mean elements (a,σ) follow a horse-shoe shape
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curve, librating around an unstable equilibrium point. One of the parameter we
had to calculate in order to use the secular model was the area contained inside the
level curve we found, which is related to the angular momentum of the asteroid
that is conserved for the adiabatic approximation.

In the case of the Galilean satellites we know that the system is near two 2 :

1 mean motion resonances, being n1 − 2n2 ≈ 0 and n2 − 2n3 ≈ 0. From the
D’Alembert rules, the resonant angles must contain also the longitudes of the
pericenters. In particular the following relations are verified

λ1 − 2λ2 +$1 ≈ 0◦,
λ1 − 2λ2 +$2 ≈ 180◦, (2.14)

λ2 − 2λ3 +$2 ≈ 0◦,

where the approximately equal signs indicate that the value of the angles is not
fixed, but they librate around it. The combinations (2.14) mean that whether Io and
Europa are in conjunction (λ1 = λ2), then Io is near its pericenter (first relation)
and Europa is near its apocenter (second relation); while, whether Europa and
Ganymede are in conjunction (λ2 = λ3), then Europa is near its pericenter (third
relation). From (2.14) we find that

φ = λ1 − 3λ2 + 2λ3 ≈ 180◦, (2.15)

which is the resonant angle related to the three-body mean motion resonance and
from which we obtain the classic relation on the mean motions

n1 − 3n2 + 2n3 ≈ 0. (2.16)

From (2.16) we have the inequality

ν = n1 − 2n2 ≈ n2 − 2n3, (2.17)

that nowadays is equal to 0.7395 rad/day, which is minus the current rate of
change of the longitudes of the pericenters $1 and $2.

The conditions (2.14) with equals instead of approximately equals, coupled with
the ulterior condition λ2 − 2λ3 +$3 = 180◦, characterize the so-called de Sitter
resonance. It is the special case, studied in [6], for the existence of periodic orbits
of the system composed by Io, Europa and Ganymede.

In Chapter 3 we implement a semi-analytical model of the motion of the Galilean
satellites, in order to study the main features of their dynamics, including the
three-body mean motion resonance.
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3 THE DYNAM ICAL MODEL

Dynamical models based on analytical expansions of the perturbative functions
were commonly used in the last century, in order to study the motion of the
Galilean satellites. For models that include a large number of terms, a numer-
ical integration of the resulting differential equations is necessary to obtain a
precise output from the model. For this reason this kind of models are called
semi-analytical.

In the introduction, we presented [6] as first example of sophisticated dynami-
cal model of the Galilean satellites’ motion. However, other works, such as [45],
developed and implemented more precise models in order to study the Laplace
resonance. After the discovery of the huge tidal friction within Io, some authors,
such as in [28] and [50], used a semi-analytical approach in order to investigate the
origin and the evolution of the system. More recently, in [5], the authors studied
the de Sitter resonance and the configurations near this state.

Although in the literature there are several Galilean satellites’ semi-analytical
models, we developed our own (presented in [27]) mainly for four reasons:

• to have a model we can modify as we want. We can add or remove single
terms in order to verify their effect in the dynamics; moreover, we can inves-
tigate by our own the evolution of the system due to the tidal dissipation.

• To have a good description of all the orbital elements. Generally, in the
papers of the past, it was supposed a planar motion; instead, we want to
take into account also the nodes and the inclinations of the moons.

• To add effects that in other models were not included. In fact, since the
interest was focused on the three inner Galilean satellites, generally Callisto
was not considered in the propagation. And more, since the inclinations
were set to 0, also the Sun was neglected. Both the two bodies are very
important to approximate well the actual dynamics of the moons.

• To show, by a comparison with numerical models, that a semi-analytical
model can really capture all the main resonant and secular features of the
dynamics.

The reason of the differences with previous models is due to their aims: the
Laplace resonance and the tidal effects involve mainly the three inner Galilean
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satellites; moreover, the inclinations do not give a direct contribution to the prob-
lem. However, the combination of all the effects can bring to some differences for
long period propagations; we will present the example of the mutual perturbation
between Ganymede and Callisto. Therefore, we preferred to implement a model
able to replicate all the details of the actual dynamics, in order to better describe
the mean and long-term evolution of the motion.

In order to develop our model, we use the theory presented in Chapter 2; in
particular, we fix an equatorial reference system and we consider Poincaré coor-
dinates and Delaunay variables. We know that if we consider just the two-body
dynamics of the moons and Jupiter, the unperturbed Hamiltonian is described
by (2.10), with N = 4. If H = H0, only λi change with time, while the other orbital
parameters remain constant. This is far from the actual dynamics of the Jovian
system. There are several additional forces that influence the satellites’ dynamics,
and some of them have very important effects on the motion.

3.1 perturbations

The choice of which forces to include into the model depends on its purpose.
If we want a dynamical model for very precise ephemerides or for predicting
very accurate observations (as for example spacecraft tracking data), we have to
consider a long list of perturbations. However, this is not the case of a semi-
analytical model, whose task is to capture the main features of the resonant and
secular motion. In the model we included the following perturbations:

• quadrupole moment J2 of the Jupiter’s gravitational field,

• mutual gravitational perturbation between the satellites,

• third-body perturbation of the Sun,

• octopole moment J4 of the Jupiter’s gravitational field.

In [20] it is shown that these forces are by far the most important perturbations
in the Jovian system. In particular, the following force in the list would be the
effect of the coefficient C22 of the Io’s gravitational field, whose effect on the mean
longitude of the little moon is more than ten times smaller than the one of J4.
Since the effect of J4 is quite limited, at least for the purpose of our model, we can
represent very well the actual dynamics with just the forces reported in the list.

3.1.1 Jupiter’s oblateness

Jupiter is not a perfect sphere, but it is more flat toward its equator. Therefore,
for a more realistic model, we cannot approximate its gravitational field as a point
mass only, but we have to take into account its shape.
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3.1 perturbations

In order to do this, we add the acceleration due to the gravitational anoma-
lies of an extended body, as described in [32]. We consider an expansion of the
gravitational potential in zonal harmonics

Uobl = −
Gm0
r

∞∑
l=2

Jl

(R0
r

)l
Pl(sinφ), (3.1)

where the coefficients Jl characterize the field, R0 is the radius of the planet (fixed
to 71398 km) and φ is the latitude of the body in an equatorial system. In the case
of Jupiter, the most important terms are the ones with J2 and J4; the values of the
parameters are respectively −0.01735 and 0.000588, as taken from the ephemerides
L3 of the IMCCE.

In order to add this perturbation into the model, we have to take its secular
part. In (3.1), we replace r with its expression in terms of the orbital elements
r = a(1+ e cos(E)), where E is the eccentric anomaly and it is related to the mean
anomaly by the relation ` = E− e sin(E).

Finally, we perform an averaging over the variable E. We do not report here the
details, which can be found in [34], Chapter 6. We add to the Hamiltonian the
resulting secular perturbative functions (i = 1, 4):

R
(i)
J =−

Gm0
ai

[1
2
J2

(R0
ai

)2
−
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J4

(R0
ai
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4
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(R0
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J4

(R0
ai

)4)
e2i

−
(3
4
J2

(R0
ai

)2
−
15

8
J4

(R0
ai

)4)
s2i

]
,

with si = sin(Ii/2).

3.1.2 Mutual perturbations

From (2.4), we know that each satellite is accelerated by the others. As shown in
Chapter 2, the perturbative function can be expanded in a Fourier series (2.11).
From the averaging operation we remain with long periodic, resonant and secular
terms; for this reason we define the model semi-secular, or resonant. We choose
to include all the terms up to order three in eccentricities and inclinations. Gen-
erally, for the Galilean satellites, expansions up to second order are enough to
have a good representation of the orbital elements, however, we noted that the
improvement given by the third order terms is worth being added to have a better
matching with the actual dynamics.

We avoid writing here the whole Hamiltonian of the mutual perturbations (that
can be found in Appendix A), however, as example, we write below the potential
between Io and Europa (for the sake of simplicity we reported the terms up to the

21



the dynamical model

second order). The only small divisor is 2n2 − n1, then we keep the terms with
arguments containing 2λ2 − λ1.

R(1,2) =−
Gm1m2
a2

{
c(0,0,0,0,0,0)(a1/a2)

+ c1(0,0,0,0,0,0)(e
2
1 + e

2
2) + c

2
(0,0,0,0,0,0)(s

2
1 + s

2
2)

+ c(0,0,−1,1,0,0)e1e2 cos($2 −$1) + c(0,0,0,0,−1,1)s1s2 cos(Ω2 −Ω1)

+ c(−1,2,−1,0,0,0)(a1/a2)e1 cos(2λ2 − λ1 −$1)

+ c(−1,2,0,−1,0,0)(a1/a2)e2 cos(2λ2 − λ1 −$2)

+ c(−2,4,−2,0,0,0)e
2
1 cos(4λ2 − 2λ1 − 2$1)

+ c(−2,4,0,−2,0,0)e
2
2 cos(4λ2 − 2λ1 − 2$2)

+ c(−2,4,−1,−1,0,0)e1e2 cos(4λ2 − 2λ1 −$1 −$2)

+ c(−2,4,0,0,−2,0)s
2
1 cos(4λ2 − 2λ1 − 2Ω1)

+ c(−2,4,0,0,0,−2)s
2
2 cos(4λ2 − 2λ1 − 2Ω2)

+ c(−2,4,0,0,−1,−1)s1s2 cos(4λ2 − 2λ1 −Ω1 −Ω2)
}

. (3.2)

The linear terms in ei influence strongly Io and Europa’s orbits; we will show
their effects in the next section. It is worth noting that only for their coefficients
and the first term c(0,0,0,0,0,0) we consider the dependence on the semi-major axes
in the derivation of the Hamilton’s equations, while the others cj are computed
at the beginning of the propagation and are left fixed. However, also second
order terms are necessary for a good representation of the motion. As we said,
third order terms add small details, that bring to an excellent comparison with
the actual dynamics, especially for the eccentricity of Io and the inclinations. The
terms can be classified in terms of their arguments:

0, $2 −$1, Ω2 −Ω1, secular;

2λ2 − λ1 −$1, 2λ2 − λ1 −$2, first order resonant;

4λ2 − 2λ1 − 2$2, 4λ2 − 2λ1 − 2$1,

4λ2 − 2λ1 −$2 −$1, 4λ2 − 2λ1 − 2Ω1,

4λ2 − 2λ1 − 2Ω2, 4λ2 − 2λ1 −Ω2 −Ω1, second order resonant.

The perturbation between Europa and Ganymede is similar to the previous,
while for the couple Io-Ganymede, since we truncate the expansion at the third
order, we have to consider the angles’ combinations containing 4λ3 − λ1. For all
the other couples (Io-Callisto, Europa-Callisto and Ganymede-Callisto) we keep
only the secular terms.
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3.2 forced eccentricities

3.1.3 Sun’s perturbation

The last perturbation that has a significant effect on the dynamics is the gravita-
tional perturbation of the Sun. In particular, the inclinations of the outer satellites
are strongly influenced by the star and if we did not consider it, the result would
be completely different from their actual behaviour.

We make the reasonable approximation for which the star is not affected by the
moons, so that for the Sun’s propagation we have to integrate a simple two-body
dynamics with Jupiter. As the planet is in the origin, we have the Sun orbiting
around the planet.

Since the period of revolution of the Sun around Jupiter is almost 11 years,
which is comparable to the resonant time scale, we have to pay attention to which
terms to keep in the expansion. We can use the same approach we adopted for the
mutual perturbation between the moons, but we cannot discard indiscriminately
the longitude of the Sun λs, since in the context of the Galilean satellites’ motion
it is a slow angle. However, we can eliminate all the arguments containing the
longitudes of the moons, as they are still short period terms. In the end, the terms
we have to include in the model are the secular ones and others we call mid-period
terms. Their arguments are:

0, $s −$i, Ωs −Ωi, secular;

λs −$i, 2λs − 2$i, 2λs −$s −$i,

2λs − 2Ωi, 2λs −Ωs −Ωi, mid-period.

3.2 forced eccentricities

Even if we will present the results of the model’s propagation in the next sec-
tions, we want to highlight the importance to have a model based on an analytical
expansion of the perturbations.

As in this section we want to show some important effects on the orbital ele-
ments, we do not use the Hamilton’s equations, but we consider the Lagrange
planetary equations (see [34], Chapter 6). They are differential equations of the
orbital elements obtained from the Lagrangian of the system.

In particular, we are interested in the differential equation for $1, considering
just the J2 perturbation and the linear term in e1 of the mutual perturbation be-
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tween Io and Europa (3.2). For these perturbations, the approximated Lagrange
equation is

$̇1 =
1

m1n1a
2
1e1

∂R

∂e1

=
1

m1n1a
2
1e1

(3
2

Gm0
a1

J2
R20
a21
e1 +

Gm1m2
a2

c(−1,2,−1,0,0,0)e1 cos(2λ2 − λ1 −$1)
)

≈ n1
(3
2
J2
R20
a21

+
m2
m0

a1
a2
c(−1,2,−1,0,0,0)

1

e1
cos(2λ2 − λ1 −$1)

)
.

From (2.14), we know that 2λ2− λ1−$1 is a resonant angle that librates around
0 and from (2.17) it must be $̇1 = 2n2 − n1 ≈ −0.7395 ◦/day. From the first
term of the second hand side we can estimate the contribution of J2, which is
almost 0.1256 ◦/day. Moving it over to the left-hand side of the equation, we get
$̇∗1 = $̇1 − 0.1256 = −0.8561. We invert the relation between $1 and e1 and we
find

e1 = n1
m2
m0

a1
a2
c(−1,2,−1,0,0,0)

1

$̇∗1
≈ 0.0045,

which is almost equal to the total mean value of Io’s eccentricity (see Table 1.1).
This shows that the orbital element is forced to its current value by the mean
motion resonance with Europa.

A similar analysis can be done for Europa, considering both the perturbation
with Io and the one with Ganymede. The forced eccentricity of Io due to the
resonance with Europa is essential to recover the huge tidal dissipation within the
satellite.

3.3 resonant variables

In (2.11) we have an expansion in eccentricities ei and sinus of inclinations si, but
we need to write the expansion in terms of canonical variables, in order to use the
Hamiltonian theory. The variables we choose are the ones defined in (2.9). As the
eccentricities and the inclinations are small, we consider the following approxima-
tions (for i = 1, 4)

ei ≈

√
2Gi
Li

, si ≈

√
Hi
2Li

.

As shown in Chapter 2, a generic N+ 1-body problem can be reduced to 3N
degrees of freedom. Therefore, since in the case of the Galilean satellites N = 4,
we start with 24 variables (6 per moon). Since the Sun motion is determined by
a simple two-body dynamics, we have constant values for all its orbital elements,
except for the mean longitude.
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3.3 resonant variables

Since we want to study the secular dynamics, we can make an ulterior reduc-
tion of the problem. In fact, once we write the whole Hamiltonian, we can check if
some variables are missing in the function or if we can perform canonical transfor-
mations in order to diminish the degrees of freedom of the problem. For example,
since for Callisto we considered secular terms only, λ4 is surely missing from the
Hamiltonian.

We make a change of variables in order to pass to slow variables: from the
Delaunay variables to a set of resonant variables. We define a suitable linear
generating function F:

F(q, P) =(2λ2 − λ1 −$1)Σ1 + (2λ2 − λ1 −$2)Σ2

+ (2λ3 − λ2 −$3)Σ3 −$4Σ4

+ (2λ2 − λ1 −Ω1)Ξ1 + (2λ2 − λ1 −Ω2)Ξ2

+ (2λ3 − λ2 −Ω3)Ξ3 −Ω4Ξ4

+ (λ1 − 3λ2 + 2λ3)Γ1 + (λ2 − 2λ3)Γ2

+ λ3Γ3 + λ4Γ4

The new angle variables can be obtained by Q = ∂F/∂P:

σ1 = 2λ2 − λ1 −$1, σ2 = 2λ2 − λ1 −$2,

σ3 = 2λ3 − λ2 −$3, σ4 = −$4,

ξ1 = 2λ2 − λ1 −Ω1, ξ2 = 2λ2 − λ1 −Ω2,

ξ3 = 2λ3 − λ2 −Ω3, ξ4 = −Ω4,

γ1 = λ1 − 3λ2 + 2λ3, γ2 = λ2 − 2λ3,

γ3 = λ3, γ4 = λ4.

As described in Chapter 2, the new momenta Σi, Ξi e Γi (with i = 1, 4) are defined
by p = ∂F/∂q,

Σi = Gi, Ξi = Hi, i = 1, 4

Γ1 = L1 +G1 +G2 +H1 +H2,

Γ2 = 3L1 + L2 +G1 +G2 +G3 +H1 +H2 +H3,

Γ3 = 4L1 + 2L2 + L3,

Γ4 = L4.

The coordinates γ3 and γ4 are missing in the new Hamiltonian, and conse-
quently the momenta Γ3 and Γ4 are constant. After the transformation, the dimen-
sion of the problem decreases to 20. Moreover, all the angle variables are slow
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Figure 3.1.: The three resonant angles γ1, σ1 and σ2 (radians, left) and their spectrum (right)
from the propagation of the semi-analytical model. The angles γ1 and σ2 are shifted
of π radians in order to make clear the amplitude of their libration.

with respect to the orbital periods, as they contain resonant combinations. We will
see that their periods of circulation or libration are over one year.

In order to simplify the Hamiltonian, we pass to rectangular variables: the new
momenta are xi (respectively ui) and the coordinates yi (vi), which are defined as
follows

xi =
√
2Σi cos(σi), yi =

√
2Σi sin(σi),

ui =
√
2Ξi cos(ξi), vi =

√
2Ξi sin(ξi).

We do not change instead the variables Γi e γi. They are very similar to the
rectangular coordinates defined in Chapter 2, for this reason we used the same
notation.

In this way we treat polynomials of xi and yi (respectively ui and vi), instead
of cos(σi) and sin(σi) (respectively cos(ξi) and sin(ξi)). The entire writing of the
Hamiltonian in terms of these variables is reported in Appendix A.
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3.4 initial conditions

3.4 initial conditions

The ephemerides, for example the ones of the JPL (last release JUP310) or IMCCE
(last release L3), provide the instantaneous positions and velocities of the bodies
for a time span of almost 100 years. From these tables we get the Galilean satellites’
osculating elements, which suffer the whole dynamics, short period effects too.
Therefore, we cannot use them as initial conditions for our semi-secular model,
since it contains the resonant and secular dynamics only. If we used osculating
elements as initial conditions, we could get values very distant from the mean
elements, compromising the propagation.

A possible solution is to filter the osculating elements, in order to remove the
short period terms from the numerical output. For this task we have to use a
filter that kills the high frequencies, called low pass filter. We will describe the
operation of filtering in the next chapter, when we will compare the results of the
semi-analytical model with the ones of the ephemerides.

3.5 propagation

From the Hamiltonian, we can calculate the Hamilton’s equations. Since the func-
tion comprehends a large number of terms, we use a symbolic manipulation soft-
ware in order to avoid undesired errors.

For the propagation we use an implicit three-stages Runge-Kutta-Gauss method,
which is a symplectic integrator. This property is very important, as it ensures to
remain in a Hamiltonian context. In fact, each pass of the integration is a canonical
transformation, where the new elements are the new variables of the Hamiltonian
(which is invariant). Since we passed to a slow dynamics, we can use a larger time
step for the integration: for our simulations we chose a pass of 2 days, which is
small enough to obtain accurate results.

As stated in the previous section, we take the initial conditions from the filtering
of the numerical output and we perform a 100 years integration. In this section
and in the next chapter we present the results we obtain for the semi-major axes,
the eccentricities, the inclinations and the resonant angles.

We start with the last ones: in Figure 3.1 we reported the evolution of γ1, σ1 and
σ2 and at their side the corresponding spectrum. In order to highlight the libration
periods we limited the time interval to 20 years. Apart from the common period
of 486.89 days, which is the period related to (2.17) and we can identify with the
period of circulation of γ2, each resonant angle has its proper frequency, which
is related to its libration. For σ1 we found a period of almost 403.82 days, for
σ2 almost 462.45 days and for γ1 almost 2047.85 days. These values are in good
agreement with the ones published in previous studies, in particular from [22]
they are respectively 486.81, 403.52, 462.51 and 2059.62.
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Figure 3.2.: In order from the top, the Ganymede’s semi-major axis (km), eccentricity, inclination,
longitude of the pericenter and longitude of the node (radians).
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3.5 propagation

In Figure 3.2 we report some elements of Ganymede as examples, although in
Chapter 4 we will show the output of the orbital elements of all the satellites for
the comparison with the ephemerides. We give a short description of the series,
using the explicit expression present in the Hamiltonian

• The mean semi-major axis oscillates with an amplitude of almost 3 km, that
is far smaller than the amplitude of the corresponding osculating element,
which is greater than 150 km. In its spectrum only resonant frequencies are
evident: the main feature is the beat between the two resonant frequencies
related to σ2 and γ2.

• The eccentricity has both resonant and secular signals in its spectrum. In the
figure it is dominant a hump, which is the sign of an effect with a period
longer than 100 years. With the semi-analytical model it is easy to prove
that it is due to the term e3e4 cos($4 −$3) of the mutual perturbation with
Callisto. In fact, using a longer propagation, we calculated the period of the
signal, which is 181.5 years. This period is very close to the computed value
for the circulation of $4 −$3 (almost 182.2 years).

• The inclination has a main term with a secular period of almost 137 years,
which is the period of circulation of Ω3, given mainly by the perturbation of
J2. Moreover, also the contribution of the Sun is very important, though as
an indirect effect, as we will explain in Chapter 4.

• The longitude of the pericenter has a linear rate of 4.62× 10−2 rad/year,
which does not verify the condition of the de Sitter resonance. This value
is given mainly by the effect of J2; however, because of the proximity to the
resonance, we find evident oscillations with the period of γ2.

• The longitude of the node has a linear rate of −4.59× 10−2 rad/day, given
mainly by the effect of J2, which influences the evolution of the inclination.
The decreasing of the angle is not perfectly linear, but there is an evident
oscillation given mainly by the term s2s3 cos(Ω3 −Ω2) of the perturbation
with Europa.

With the short analysis above, we showed the strength of the semi-analytical
model. Performing a frequency analysis, we manage to describe and to under-
stand the main aspects of the motion. All the frequencies in the output can be
explained looking at the single terms written explicitly into the Hamiltonian.

The analysis made for Ganymede can be replied for all the other moons. In this
section we chose Ganymede as example, since both resonant and secular features
are clear in the series of Figure 3.2. In Chapter 4 we will give a brief description
of the orbital elements of all the moons.
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4 COMPAR I SON WITH NUMER ICAL MODELS

In order to validate the semi-analytical model, we compare the results of its prop-
agation with the ephemerides of the moons. We choose the JUP310 ephemerides
of the JPL, which cover the time span between 1900 and 2100. In particular, we
will present the results of a 100 years propagation of our model, including the
filtered series of the ephemerides in the same figures, in order to show the good
level of accuracy we reached. For a validation on longer time scales we can use
some works present in the literature. For example, in [35] the authors developed
a numerical model for long propagation of the Galilean satellites, while in [22]
the authors presented a synthetic representation of the moons’ motion, providing
Fourier series for all the orbital elements. In this chapter we will compare the
amplitudes and the frequencies of the main terms of these series with the output
of a long-term propagation of the semi-analytical model.

As we stated for the initial conditions’ choice, also for the comparison with
numerical models, it is necessary to eliminate the short period effects present in
their output. This is possible thanks to a low pass filter for the ephemerides, while
for the synthetic representation of [22] we need just to remove the short period
terms from the series.

4.1 digital filtering

We can recover digitally the secular dynamics from a numerical model’s integra-
tion. We must apply a filter that kills the high frequencies from the output. In this
section we describe the digital filtering following [3], to which we refer for more
details.

A filter is a process that acts on the spectrum of the frequencies; a low pass
filter d is a filter that passes the band of frequencies lower than a certain cut-off
frequency fc, while it removes those higher. It can be represented as a function
that has value 1 for f < fc and 0 for f > fc. The result of the filtering on a sequence
(xk)

n
k=1 is a new series (yk)

n
k=1 obtained by a convolution

ym = (x ∗ d)m =

M∑
k=−M

dkxm−k,
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Figure 4.1.: Response of the filter we used for filtering the numerical output. In the x-axis it is
reported the period T and not the frequency f (they are inversely proportional T =
2π/f). The pass band is almost 300 days: the signals with period below 150 years are
removed, while the band between 150 and 300 is damped by a factor between 0 and 1.
The choice of the pass band is appropriate to preserve the resonant periods, which are
greater than 400 days.

where m indicates a generic element of the series, M is the length of the filter and
dk its elements.

In order to have an analytical filter, we cannot hope to have a response iden-
tically equal to 0 or 1, but we must have a behaviour like the one shown in Fig-
ure 4.1. The frequencies we want to eliminate are multiplied for numbers near 0
(less than 10−4), while the ones greater than fc remain almost unchanged. In the
middle there is a small band for which the filter takes values between 0 and 1. The
response in frequency is

d̂(f) =

M∑
k=−M

dk exp(−ikfTs),

where i is the imaginary unit and Ts is the period of sampling of the series we are
going to filter.

Short periods and secular periods are very distant one from each others, then
it is possible to choose a suitable filter that removes the high frequencies without
ruining the low frequency signal. However, it is possible that some intermedi-
ate frequencies are touched by the filter; in our case, since we want to keep the
resonant terms, we have to pay attention not to eliminate a band too large. As
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Figure 4.2.: In orange the Callisto’s eccentricity from the JPL ephemerides, in black the same output
after the application of the digital filtering.

we know the periods of the resonant angles, we can choose a suitable filter that
preserve them.

In the following analysis, we will consider a time span of 100 years, that allows
to fully show the resonant features of the dynamics, but also to recognize the sec-
ular dynamics. The low pass filter we use is chosen in order to eliminate periods
below 150 days, as shown in Figure 4.1. In fact, we need to eliminate the signals
up to 138 days, which is the maximum significant period we find in the numerical
output and not in the semi-analytical model. The period of the first significant
resonant signal is 255 days, which is almost at the end of the intermediate band;
therefore, the signal is damped by a factor between 0.8 and 0.9. However, its
contribution is quite limited and it will not affect the results.

In Figure 4.2 we reported an example of the filtering. In orange, we have the
eccentricity of Callisto obtained directly from JUP310 ephemerides, therefore in-
cluding also the short period effects. We applied a low pass filter in order to
preserve the resonant and secular frequencies. The result of the filtering is shown
in black: the wild high frequencies are removed from the numerical output, leav-
ing a signal more clear and readable.

When we apply a low pass filter on a numerical output, such as the one of the
JPL ephemerides, we smooth the signal. It is a sort of averaging, but performed a
posteriori. We get new elements that are (or should be) almost equal to the mean
elements we obtained with the semi-analytical resonant model, which builds on an
averaging of the Hamiltonian. In the next section we will show a full comparison
of the two models.
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Figure 4.3.: Galilean satellites’ semi-major axes (km) over 100 years starting from J2000. In black
we have the filtered elements taken from JUP310 ephemerides, while the thick coral line
is the output of the semi-analytical model. We do not report the semi-axis of Callisto,
since it is constant in the semi-secular model.

4.2 matching of the models

The dimension of the resonant model is 20, and even if it would be interesting to
show how good the comparison is for all the variables, there are elements that are
more significant than others. We decided to report the semi-major axes of Io, Eu-
ropa and Ganymede (Figure 4.3), the eccentricities of all the satellites (Figure 4.4),
the inclinations of all the satellites (Figure 4.5) and the three independent resonant
angles σ1, σ2 and γ1 (Figure 4.6).

From a first look at the figures, we can appreciate how the semi-analytical
model’s output matches with the ephemerides. In particular Figure 4.6, shows
that the resonant frequencies and amplitudes are captured almost perfectly. This

$̇1 $̇2 $̇3 $̇4 Ω̇1 Ω̇2 Ω̇3 Ω̇4

S-A -4.7102 -4.7102 0.0462 0.0117 -0.8407 -0.2086 -0.0459 *

Table 4.1.: Rates of change of the longitudes of the pericenters and of the nodes, computed
from a 10000 years propagation. (*) For Ω4 we did not find an evident linear
rate, but an oscillation with a very long period of almost 580 years.
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Figure 4.4.: Galilean satellites’ eccentricities over 100 years starting from J2000. In black we have
the filtered elements taken from JUP310 ephemerides, while the thick coral line is the
output of the semi-analytical model.

allows not to get undesired signals in the output of the orbital elements. In fact,
both eccentricities and semi-major axes, which suffer greatly the resonant effects,
are well represented, with small differences due to the approximations of the
model. Amongst the various resonant features, it is worth noting that the com-
mon signal in the semi-major axes and in the Europa’s eccentricity is due to the
beat of the resonant frequencies of σ2 and γ2.

Not only the resonant part, but also the secular dynamics is well represented
by the semi-analytical model. The main secular features can be observed in the
Ganymede and Callisto’s eccentricities and all the inclinations. We give a brief
description of all the elements reported in the figures and we try to explain all
signals in the series, simply looking at the frequencies and at the Hamiltonian of
the semi-analytical model.

We begin from the eccentricities of Figure 4.4. We know that, because of the
resonances, $̇1 and $̇2 are equal to −ν, whose period’s scale is resonant. The
longitudes of the pericenters of Io and Europa vary very fast, for this reason there

35



comparison with numerical models

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

 0  20  40  60  80  100

I 1

semi-analytical
filtered ephemerides

0.0072

0.0076

0.0080

0.0084

0.0088

0.0092

 0  20  40  60  80  100

I 2

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

 0  20  40  60  80  100

I 3

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

 0  20  40  60  80  100

I 4

years

Figure 4.5.: Galilean satellites’ inclinations (radians) over 100 years starting from J2000. In black
we have the filtered elements taken from JUP310 ephemerides, while the thick coral
line is the output of the semi-analytical model.

are not evident secular signals in the output of the two moons’ eccentricity. While
for Io the beat between the proper frequency of σ1 and γ2 is almost invisible
because of the small amplitudes of the first, for Europa the beat between the proper
frequency of σ2 and γ2 is the main feature. Instead, as described in Chapter 3, for
the Ganymede’s eccentricity we can see the hump due to the secular effects: the
same behaviour can be found in the eccentricity of Callisto, with an apparent
same period. This is due to the common term in the mutual perturbative function
e3e4 cos ($4 −$3), which produces an effect with a period of almost 181.5 that is
the period of circulation of $4 −$3. Another clear signal is the one with period
near 6 years in the Callisto’s eccentricity: it is due to the term e24 cos(2λs − 2$4)
of the Sun’s perturbation. In fact, the period is half the period of revolution of the
star around Jupiter.

From Figure 4.5 we can see that in the inclinations, resonant signals are very
weak. They are slightly visible just in the Io and Europa’s inclinations, as very
small oscillations. The main features are due to the secular periods of the circula-
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Figure 4.6.: The three resonant angles γ1, σ1 and σ2 (radians) over 100 years starting from J2000.
In black we have the filtered elements taken from JUP310 ephemerides, while the thick
coral line is the output of the semi-analytical model. The angles γ1 and σ2 are shifted
of π radians in order to make clear the amplitude of their libration.

tion of the longitudes of the nodes, whose rates are presented in Table 4.1. Since
Io is the closest to Jupiter, the effect of J2 is very strong and Ω1 is pretty fast, with
a period of circulation of almost 10 years, which is near the resonant scale. As
shown in Table 4.2 there are two main secular signals in Europa’s inclination: one
has the period of circulation of Ω2, while the other the period of circulation of
Ω3 −Ω2. The last one comes out from the term s2s3 cos (Ω3 −Ω2) of the pertur-
bative function between Europa and Ganymede.

It is very interesting to investigate the effect of the Sun on the inclinations. The
main effect is on the longitude of the node of Callisto: while we find it oscillating

e1 e2 e3 e4 I1 I2 I3 I4

S-A * * 181.52 181.67 9.94 30.19/38.63 137.44 580.06

Table 4.2.: Secular periods of the main signals in the eccentricities and inclinations, com-
puted from a 10000 years propagation. (*) We did not report any value for e1
and e2, since they are characterized by resonant effects mainly. For the inclina-
tion of Europa we have two values, since the contribution of the two signals is
almost equivalent.
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z1 z2 z3 z4

amp freq amp freq amp freq amp freq

S-A 1749 −0.0129030 6274 −0.0129030 1501 0.0001263 13874 0.0000320
15 0.0001263 138 0.0001263 825 0.0000320 289 0.0001263
8 0.0000320 123 0.0006766 634 −0.0129030 102 0.0028692
3 0.0026554 80 0.0000320 8 −0.0259323 37 0.0000000
2 0.0006766 10 −0.0259323 7 0.0006766 17 0.0014506
1 −0.0264826 5 −0.0258381 5 0.0027750 2 0.0027750

[22] 1752 −0.0129069 6282 −0.0129069 1530 0.0001273 13889 0.0000321
15 0.0001273 144 0.0001273 826 0.0000321 293 0.0001273
8 0.0000321 133 0.0006777 634 −0.0129069 102 0.0028683
6 0.0026643 81 0.0000321 7 −0.0259410 37 0.0000000
2 0.0006777 9 −0.0259410 7 0.0006777 17 0.0014502

5 −0.0258457 5 0.0027731 11 0.0043198∗

Table 4.3.: Frequency analysis of the variables zi = ei exp(i$). On the top we reported
the six main frequencies and the corresponding amplitudes of the signals we
found in a 10000 years propagation of the semi-secular model. On the bottom
we did the same with the terms written in the series in [22]. The amplitudes
are in km, as they are multiplied by the semi-major axis ai. (*) Signals we did
not find in our frequency analysis.

ζ1 ζ2 ζ3 ζ4

amp freq amp freq amp freq amp freq

S-A 132 −0.0023151 2736 −0.0005787 1734 −0.0001257 7246 0.0000000
42 −0.0005787 158 −0.0001257 910 0.0000000 4171 −0.0000306
8 0.0000000 114 0.0000000 368 −0.0000306 495 −0.0001257
7 −0.0001257 40 −0.0000306 164 −0.0005787 63 0.0029012
2 −0.0000306 8 −0.0023151 17 0.0029012 9 −0.0005787
2 −0.0252274 8 −0.0252274 2 −0.0252274 6 0.0029318

[22] 133 −0.0023151 2712 −0.0005692 1706 −0.0001249 7235 0.0000000
38 −0.0005692 147 −0.0001249 913 0.0000000 4228 −0.0000306
7 0.0000000 111 0.0000000 376 −0.0000306 490 −0.0001249
7 −0.0001249 39 −0.0000306 154 −0.0005692 63 0.0029004
2 −0.0000306 7 −0.0023151 17 0.0029004 9 −0.0014500∗

2 −0.0252445 7 −0.0252445 3 −0.0014500∗ 9 −0.0005692

Table 4.4.: Frequency analysis of the variables ζi = sin(Ii/2) exp(iΩ). On the top we
reported the six main frequencies and the corresponding amplitudes of the
signals we found in a 10000 years propagation of the semi-secular model. On
the bottom we did the same with the terms written in the series in [22]. The
amplitudes are in km, as they are multiplied by the semi-major axis ai. (*)
Signals we did not find in our frequency analysis.
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4.3 tidal dissipation

with a period greater than 500 years, if we did not consider the Sun’s perturbation,
it would circulate with a rate of almost −0.0097 rad/year. In this second case, the
main signal on the inclinations of Ganymede and Callisto would have a period
of almost 176 years, related to the circulation of Ω4 −Ω3, present in the term
s3s4 cos(Ω4 −Ω3) of the perturbative function. As shown in Table 4.2, it is far
from the values we obtain with a more complete model. For this reason, a model
without the Sun would get results on the inclinations very different from their
actual behaviour.

In the semi-major axes we do not have apparent secular effects, as it is shown in
the semi-analytical model. The main signal is due to the beat between the proper
frequency of σ2, which has the biggest amplitude amongst the resonant angles,
and γ2. In the semi-major axis of Io the contribution of γ1 is slightly visible, while
in the others it is completely hidden. In the semi-secular model the semi-major
axis of Callisto is constant, as λ4 is missing from the Hamiltonian and L4 does not
change.

For a long-term validation of our model, independent from the 100 years limita-
tion of the ephemerides, we compare the signals we find in the eccentricities and
inclinations output with the terms of the synthetic series presented in [22]. The
results of the frequency analysis are shown in Table 4.3 and 4.4: all the amplitudes
and frequencies are in good agreement with the results of the paper, from which
we can easily recognize the source of the signals thanks to the identified linear
combinations of the orbital angles reported in the article.

The semi-analytical model provides good results for all the orbital elements,
that authorize to investigate new aspects of the dynamics. We can consider other
significant effects that act on the system; in particular, we are interested in the
tidal forces. In the next section, we will add their secular effects and we will study
the evolution of the system.

4.3 tidal dissipation

During the billions years of their lives, the satellites’ orbits can change for several
reasons. One of the possible causes is the energy dissipation due to the tidal forces.
It is well known that it is for the tidal dissipation that the Moon looks at the Earth
always with the same face, like the majority of satellites does with their planet.
This configuration is called synchronous resonance and it is important to explain
the dissipative effects on Io.

The tides are a differential force that acts on an extended body: in particular, the
tidal force is defined as the difference between the gravitational force acting on a
point minus the gravitational force acting on the center of mass. Since the force is
not equal for all the points of the extended body, the tidal force is not trivial. We
consider an extended body 0 and a point mass 1. The points of the face of 0 closer
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0
2 1

θR r *

Figure 4.7.: Representation of an extended body 0 that suffers the gravitational force of a point
mass 1. With 2 we indicate a generic point of the first body.

to the body 1 suffer a greater force than the ones on the far side. Moreover, also
the direction of the force is different. This brings to a deformation of 0 along the
line of conjunction between the centers of mass of the two bodies, forming two
tidal bulges.

As shown in [19], in a reference frame centered in the deformed body, the po-
tential associated with the tidal force is

W(R, r∗) =
Gm

r∗

+∞∑
l=2

( R
r∗

)l
Pl(cos θ), (4.1)

where R is the position of a point of the body 0, r∗ is the position of the body 1
that raises the tides and θ is the angle between them (see Figure 4.7). The potential
W is expanded in Legendre polynomials Pl and we indicate with Wl the l-th term
of the series.

The deformation generates an additional field around the extended body, due to
the displacement of the original mass (see [19]). Generally, it is supposed a linear
response to the tidal potential (4.1):

Ul(r, r∗) = kl
(R
r

)l+1
Wl(R, r∗), (4.2)

with r the position of the external point where we calculate the induced potential
U and R the point on the surface of 0 on the same line of r. The parameters kl are
called Love numbers, and they quantify the deformation of the body, in particular,
how much strong it is the response to W. Since the first term, l = 2, is the most
important, in the next formulas we will consider just the effect of k2.

As we consider real bodies, we cannot assume an immediate response to the
tidal force (elastic tides). For a more realistic model we have to consider a time lag
in the response of the body to the deformation. Geometrically, we have an angle
of lag δ between the conjunction line of the two bodies and the direction of the
tidal bulges, as represented in Figure 4.8. This angle is related to the parameter Q,
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4.3 tidal dissipation

δ
Figure 4.8.: Anelastic tides; the tidal bulges are not aligned with the perturbing body (dash line),

but they differ for an angle δ (continue line).

called tidal quality factor, which describes the amount of energy dissipated during
a tidal cycle

1

Q
=

1

2πE0

∮
−
(dE
dt

)
dt.

In particular, for regular bodies, we have the following relation (see [9])

1

Q
= tan 2δ ≈ 2δ.

There are two main secular effects we have to take into account, one due to the
tides raised on the planet and the other one due to the tides raised on the satellite.
In both cases we are considering the effect of the tides directly on the body that
generates them; therefore, in (4.2), we take r = r∗

The tides that a satellite raises on the planet do not lie perfectly on the conjunc-
tion line between the two bodies, but they are dragged or slowed by the rotation
of the planet. In the case of Jupiter and Io, the spin of the planet is faster than the
mean motion of the moon, therefore, the tidal bulges are pushed ahead, forming
an angle of lag. As shown in Figure 4.9, the satellite acts a torque τ on the two
tidal bulges, which slows the spin of the planet:

τ = −
3

2

k2
Q

Gm2R5

a6
,

where k2, Q and R are the Love number, the tidal quality factor and the radius
of the planet, while m and a are the mass and the semi-major axis of the moon.
For the conservation of the total angular momentum, the satellite must change its
angular momentum J = m

√
G(m0 +m)a(1− e2) of the same quantity, but with

the opposite sign. The variation of the semi-major axis is

1

a

da

dt
=
2

J

dJ

dt
= −

2

J
τ,

therefore, the body moves away from its planet and decelerates.
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Jupiter
Io

Figure 4.9.: Tides on Jupiter. Because of the anelastic tides, the force that Io acts on the tidal bulges
generate a torque which slows the spin of the planet.

Also the tides that a planet raises on one of its moon change the orbit of the
satellite. If we have a satellite in synchronous resonance with an eccentricity dif-
ferent from zero, such as Io, it happens that the point of maximum tides moves
both radially and transversally on the surface, as shown in Figure 4.10. In fact,
the distance of the moon from the planet is not constant, and then tides’ height
changes during a whole orbit (radial tides). Moreover, the moon looks, as a first
approximation, at the empty focus during its rotation, so that the maximum tides
oscillate around a fixed point on the surface of the moon (librational tides). In [38],
the authors showed how this continuous compression produces energy dissipation
within the body, stealing energy E = −Gm0m/(2a) from the moon’s orbit.

dE

dt
= −

21

2

k2
Q

Gm20nR
5e2

a6
,

where k2, Q, R, n, e and a are the Love number, the tidal quality factor, the radius,
the mean motion, the eccentricity and the semi-major axis of the satellite.

In this case, the semi-major axis tends to decrease

1

a

da

dt
= −

1

E

dE

dt

and consequently the satellite accelerates along its orbit. Moreover, since only the
energy is dissipated, but the angular momentum must remain constant, we have
also an effect on the eccentricity

de

dt
=
1

2e

1

a

da

dt
.
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Io
Jupiter

Figure 4.10.: Tides on Io. We emphasized the radial tides (change in the height) and the librational
tides (libration around the black point).

In order to include these two effects into our model, we add the dissipative
terms into the differential equations of the semi-major axis and the eccentricity of
Io. Following the notation of [28] and [50], we write

da1
dt

=
2

3
c(1− 7De21)a1, (4.3)

de1
dt

= −
7

3
cDe1; (4.4)

where the coefficients c and D are

D =
k12
k02

(R1
R0

)5(m0
m1

)2Q0
Q1

,

c =
9

2

k02
Q0

m1
M0

(R0
a1

)5
n1.

In the formulas above the superscripts of k2 and Q indicate if they are referred to
Io or Jupiter. In (4.3) and (4.4) the terms with cD are related to the dissipation in
Io, while the terms with c alone are due to the tides on Jupiter.

We can translate the differential equations (4.3) and (4.4) in differential equations
for the modified Delaunay momenta L1 and G1:

Ġ1 = −
14

3
cDG1,

L̇1 =
1

3
cL1 −

14

3
cDG1.
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For the new momenta Γi (i = 1, 3) and Σ1, we have:

Σ̇1 = Ġ1,

Γ̇1 = L̇1 + Ġ1,

Γ̇2 = 3L̇1 + Ġ1,

Γ̇3 = 4L̇1.

Although we are considering a dissipation, i.e. a non conservative effect, we
continue to use Hamilton’s equations, as the tides are smaller than the other forces
in the system. At the end of the propagation we can check if the amount of
dissipated energy coincides with the variation of the Hamiltonian (which contains
the orbital energy of the moons).

It is well known that resonant interaction spreads the dissipation in the sys-
tem (see for example [34], Chapters 4 and 8, and [50]), affecting also Europa and
Ganymede’s orbits. We can perform a test with our semi-analytical model in order
to check how well it describes this aspect of the dynamics.

For the dissipative parameters k12/Q
1 and k02/Q

0, we consider the values re-
ported in [24], which are 0.015 and 1.102× 10−5 respectively.

The results we obtained as variation in the mean motions over mean motions
(unit 10−10 rad/year) are

ṅ1
n1

= 0.355,
ṅ2
n2

= −0.303,
ṅ3
n3

= −1.626 (4.5)

In Figure 4.11 we reported the difference in the semi-major axis between a sim-
ulation with dissipation and another one without dissipation. After a filtering
operation, it remains a linear term in the semi-major axes of the three Galilean
satellites; over 100 years they change few meters and the effect on the position
along the orbit is approximated by

Si =
1

2

dni
dt

(t− t0)
2ai.

It is worth noting that the effect is quadratic in time; although it appears as a
small effect in the short time, if we consider a time span large enough, it will be
detectable by the observations of the moons. In particular, after 100 years Io is 93
km ahead along its orbit, Europa 65 km and Ganymede 277 km behind. In [24] the
dissipative parameters were estimated considering almost 100 years of astrometric
observations. In 4 years, almost the nominal duration of the JUICE mission, the
shifts are of the order of hundreds of meters, with the maximum effect of almost
500 meters on Ganymede. This estimation is very important for the second part
of this thesis, where we investigate the possible determination of the dissipative
parameters from JUICE data.
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Figure 4.11.: Effect of the tidal dissipation on the Galilean satellites orbits over 1000 years integra-
tion. We reported the filtered difference in the semi-major axis between a simulation
with dissipation and another one without dissipation. We chose a time interval of
1000 years, instead of 100, in order to make the tidal effects clearer.

In order to validate the results we obtained, we add the dissipative effects to a
numerical model containing the same effects of the semi-secular one, considering
the force F that a body undergoes by the tides it raises on another body. The
formulation we use is taken from [29], which considers a lag in the position of the
first body in order to take into account the dissipation, and it is often used for the
investigation of the tidal evolution (see [9], [23] and [24]):

F = −3
k2Gm

2R5

r7
∆t
(
2

r
r

r · v
r2

+
r×ω+ v

r

)
, (4.6)

where m, r and v are the mass, position and velocity of the body that raises the
tides, while k2, R and ω are the Love number, radius and angular velocity of the
other body. The factor ∆t is the time lag and it contains the quality factor Q of the
deformed body,

∆t =
T

2π
arctan

( 1
Q

)
≈ T

2π

1

Q
,

where T is the period of one tidal cycle. Following [24] and denoting with n the
mean motion of the satellite, in the case of tides on the planet T = 2π/(2(|ω|−n)),
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which is the time that the moon takes to pass from a point over the planet’s surface
to its antipode, so that the tidal deformation comes back to its initial configuration.
Instead, for tides acting on a synchronous satellite T = 2π/n, which is the time
that the tidal deformation takes to complete a whole libration.

While for Jupiter we can consider a constant spin rotation, we cannot do the
same for Io, as we supposed a synchronous resonance. In [34], Chapter 4, the
authors expanded the tidal potential acting on a satellite locked in this kind of
resonance and obtained two main terms, one due to the radial oscillation of the
tides and the other due to the librational tides. Assuming that the satellites’ Q
is constant, the two tidal oscillations are linear and their contribution can be cal-
culated separately. They computed the work related to the tidal deformation for
both the terms and they found that the energy dissipated by the librational tides is
exactly 4/3 times the one of the radial tides. Therefore, for Io we adopt the follow-
ing approach: first we evaluate the dissipation due to the radial tides considering
ω = r× v/r2,

F = −3
k2Gm

2R5

r7
∆t
(
2

r
r

r · v
r2

+
1

r

(
r× r× v

r2
+ v
))

= −3
k2Gm

2R5

r7
∆t
(
2

r
r

r · v
r2

+
1

r

(r · (r · v) − v · (r · r)
r2

+ v
))

= −3
k2Gm

2R5

r7
∆t
(
3

r
r

r · v
r2

)
,

and then we add 4/3 of their effect for taking into account the contribution of the
librational tides. In the end we have a factor 7 inside the brackets, instead of 3

F = −3
k2Gm

2R5

r7
∆t
(
7

r
r

r · v
r2

)
(4.7)

The values for the variation of the mean motions we obtain with the numerical
model are close to the ones already presented for the semi-analytical model (see
Figure 4.11)

ṅ1
n1

= 0.343,
ṅ2
n2

= −0.306,
ṅ3
n3

= −1.629.

Although the qualitative behaviour is the same, the values we obtained are dif-
ferent from the ones published in [24], which are 0.14, −0.43 and −1.57 respectively.
The possible reason for this disagreement can be a different model of Io’s rotation.
In our dynamical models we considered Io perfectly locked in synchronous reso-
nance, but other models include physical or geometric librations, such as in [7]. In
the next future, it could be interesting to test different models of the rotation of
Io and to see how the orbital migration changes. However, it is worth noting that
the knowledge on the internal structure of Io is quite limited, therefore, it is not
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trivial to say which rotational model can better represent the actual rotation of the
satellite. For what concerns our assumptions, the results are optimal, since in the
same condition of synchronous rotation given by (4.7), we obtain almost the same
values from both the semi-analytical model and the numerical one.

Finally, in order to quantify the current evolution of the system we check how
the two-body resonances of the couples Io-Europa and Europa-Ganymede change.
Nowadays, the value of the quantity ν defined in (2.17) is greater than 0. The
variation of ν,

ν̇ = ṅ1 − 2ṅ2 = ṅ2 − 2ṅ3,

indicates if the resonances are going deeper in their state (ν̇ < 0), or they are
evolving outward (ν̇ > 0). With the values (4.5), we have ν̇ = 8.5×10−8 rad/year2,
which is close to 7.4× 10−8 of [24]. This quantity allows in part to describe how
the two 2:1 resonances varying, with a direct effect on the system (e.g. the value of
the moons’ forced eccentricities), but it does not describe the long-term evolution
of the Laplace resonance, for which a dedicated investigation on longer time scales
must be conducted.

These results depend on the values of the dissipative parameters k12/Q
1 and

k02/Q
0. We chose the last ones published, in order to compare the accelerations

we found with the ones of the paper. As we said, they were obtained from a fit
of 100 years of astrometric observations; it is possible that with new observations,
for example with the extremely precise data of the JUICE mission as we are going
to investigate in the next part of the thesis, a new independent estimation of the
parameters could describe a different evolution of the Laplace resonance.
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5 JU ICE SPACE M ISS ION

In 2004, the European Space Agency (ESA) called for new astrophysics and space
missions proposals to be launched between 2015 and 2025. The name of the pro-
gramme is Cosmic Vision and it comprehends different classes of missions: S
(small), M (medium) and L (large) classes. The most expensive and challenging
projects are classified with an L. In 2007, the JUICE mission was one of the candi-
dates for the first call of L-class missions and it was chosen in 2012.

The initial idea of the project came from another proposal, called EJSM/Laplace
(Europa Jupiter System Mission), that was intended as a joint ESA and NASA
mission. The collaboration stopped before the approval; while ESA is currently
working on JUICE, NASA is developing a new project called Europa Clipper, de-
voted to an extensive observation of Europa through multiple flybys.

Figure 5.1.: Model of the spacecraft, taken from ESA’s website.

The main task of JUICE is the exploration of the Galilean satellites of Jupiter. It
will encounter Europa, Ganymede and Callisto, avoiding Io, because of the huge
radiation in the regions closer to Jupiter, that could compromise the spacecraft’s
functionality. The mission comprehends both flybys of the moons and an orbiting
phase around Ganymede. A flyby is a close approach to a satellite: the spacecraft’s
orbit around Jupiter is designed in such a way that the spacecraft’s distance from
the satellites can reach few thousands of kilometers. Some of the flybys are very
low (few hundreds of kilometers from the surface), allowing to obtain pictures
with a great resolution and very accurate data. In the case of a flyby, if we center
our reference frame in the satellite, the orbit of the spacecraft is not elliptic, but
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Figure 5.2.: The interplanetary journey of JUICE, taken from ESA’s website. The total time to
arrive at the Jovian system will be over 8 years.

hyperbolic, because of the huge velocity of the probe that makes the satellite-
centric energy positive.

The description of all the instruments on-board the probe is not an aim of this
thesis and more information can be found in [17], which is the official report of
the mission. The objectives of the JUICE Science Team can be divided into two
main topics.

• Explore the habitable zone: Ganymede, Europa and Callisto. It comprehends
the study of the structure and the composition of the icy satellites.

• Explore the Jupiter system as archetype of gas giants. It comprehends the
study of the composition and the atmosphere of Jupiter, but also the moni-
toring of Io’s volcanic activity.

This part of the thesis is mainly related to the first point, although it cannot be
completely separated to the second one. In fact, the observations and measure-
ments of Io (for example of its heat flow) can help to understand better the energy
dissipation within the little moon. We know that tidal friction is the source of
energy that lets hope to find life on the satellites: liquid oceans can be preserved
by the tidal heating within the moons. The Laplace resonance and the tidal forces
could have played a synergic role to create the conditions for life. The amount
of energy released in the satellites depends on the magnitude of the dissipative
parameters; an improvement on their knowledge could provide new evidences
about the history and the future of the system.
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Figure 5.3.: Distance of the spacecraft from Jupiter during the orbiting phase around the planet.
Blue dots indicate the flybys: from their height it is possible to recognize the flybys
of Europa (the two lower dots), the flybys of Callisto (the twelve higher dots) and the
flybys of Ganymede (the remaining dots).

5.1 overview of the mission

According to the plan of the mission, the probe will be launched on June 2022. Be-
fore arriving at Jupiter, it will perform a series of gravity assists with some internal
planets: the spacecraft will encounter the Earth (May 2023, September 2024 and
November 2026), Venus (October 2023) and Mars (February 2025) in order to gain
the necessary speed to reach the Jupiter’s system without an excessive expense of
fuel. The arrival at Jupiter is expected on October 2029.

The tour in the Jovian system we are going to describe is taken directly from the
JUICE Spice Kernel

juice_mat_crema_3_2_20220601_20330626_v01.bsp,

which can be downloaded freely from the JUICE repository [18] in the ESA’s web-
site. It is worth noting that for the generation of this SPICE Kernel, the states of
the Galilean satellites were taken from the L3 ephemerides of the IMCCE. Their
denomination in the same repository is

noe-5-2017-gal-a-reduced.bsp,

and we used it for getting the initial conditions of the moons’ propagation.
Once performed the manoeuvre of insertion into the Jupiter system (JOI), JUICE

will orbit around Jupiter for almost three years. During this period, 23 flybys of
the moons are scheduled. They will be the most important occasions to observe
Europa and Callisto. In fact, after almost 900 days, the spacecraft will enter in
orbit around Ganymede for a nine months orbiting phase.

The exact series of flybys is shown in Figure 5.3, where it is also plotted the
spacecraft’s distance from the planet. In particular, at the beginning of the se-
quence, we have five flybys of Ganymede (the first one before the JOI manoeuvre).
Successively, the probe will encounter Europa two times, with a time gap of 15
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Figure 5.4.: Tracks of the two flybys of Europa over the moon’s surface, taken from [17]. The
different colours indicate the altitude from the surface.

days in the middle (see Figure 5.4). These will be the only opportunities to ex-
plore Europa directly, as the spacecraft will return to higher orbits.

After a flyby of Callisto and another one of Ganymede, a series of nine flybys
of Callisto will allow to collect direct observations of the moon. However, since
the spacecraft will encounter the satellite in the same point of Callisto’s orbit and
since the moon is in synchronous resonance with Jupiter, the explored surface will
be limited as shown in Figure 5.5, not allowing to obtain global data of the satellite.
Other three flybys of Ganymede and two flybys of Callisto will be the last close
approaches to the moons.

Some months after the last flyby of Callisto, JUICE will leave the gas giant to
enter in orbit around Ganymede. These last nine months of mission comprehend
two phases: GEO/GCO5000, where the spacecraft will pass from an highly elliptic
orbit to a central circular phase at 5000 kilometers of altitude and viceversa, and
GCO500, where the spacecraft will stay in a circular orbit 500 kilometers from the
surface.

It is clear that, because of the small quantity of flybys of Europa and the poor
changes in the Callisto’s flybys, Ganymede is the satellite for which the scientific
return will be greater. This is taken into account in the requirements of the mission
and we will follow them in our simulations.
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Figure 5.5.: Tracks of some flybys of Callisto over the moon’s surface, taken from [17]. The different
colours indicate the altitude from the surface.

5.2 flybys

When the spacecraft performs a flyby of a moon, it can collect important data
for the study of the body. Instruments like the laser altimeter provide data for the
reconstruction of the topography, cameras collect pictures of the surface and so on.
As we will see, tracking data provide important information for the gravitational
model of the satellite and its internal structure, but overall we are interested in
the dynamics of the moon. During each flyby, thanks to radioscience and VLBI
observations, we get information about the orbit of the satellite the spacecraft is
flybying; the collected observations are very important for determining the states
of the Galilean satellites and for a future improvement of their ephemerides.

For each flyby we can introduce some parameters that describe its geometry, as
shown in Figure 5.6. First, we consider the distance of the pericenter of the hy-
perbolic orbit from the target body’s center of mass; if it is small, the observations
will be more sensitive to the dynamical parameters of the Galilean satellite and
they will contain more information.

Secondly, we need a parameter that describes how the spacecraft’s orbit ap-
pears from the Earth; we define θG ∈ (0, 180◦) as the angle between the direction
W normal to the orbital plane and the direction passing from the Earth and the
spacecraft (line of sight). If θG is near 90◦, it means that from the Earth we see the
spacecraft’s orbit as a straight line (edge-on), while if the angle is near 0◦ or 180◦,
it means that the orbital plane looks perfectly toward the Earth (face-on). Both
these configurations can be a disadvantage for the radioscience observations, but
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Figure 5.6.: Representation of a flyby; the orbital plane is coloured by grey and it cuts the target
body along the line that the spacecraft flies over. We reported the orbital reference
frame (R, T ,W) for a particular point of the hyperbolic orbit and we draw also the
geometric angles formed with the line of sight.

thanks to VLBI observations also in these cases it will be possible to obtain a good
estimation of the parameters.

Another relevant geometric property is the position of the spacecraft with re-
spect to the satellite, as seen from the Earth. In fact, the spacecraft can pass in
front of or behind the target body; in the second case, the moon can cover the
probe during the flyby (especially closer to the body), leading to a loss of informa-
tion. We define βG as the angle between the line of sight and the position vector
R of the spacecraft with respect to the moon. If βG is near 0◦, then the spacecraft
passes behind the target moon, with a possible interruption of the tracking, while
if it is near 180◦, the spacecraft is in front of the body and it is completely exposed
toward the Earth.

In Table 5.1 we reported the values of these parameters, taken at the pericenter
of the spacecraft’s hyperbolic orbit. Since the radii of the Galilean satellites are
between 1500 and 2700 km, we can appreciate how the spacecraft will pass close
to their surface.

Looking at the table and at Figure 5.4, we can note that the two flybys of Europa
are very similar: the geometric properties are almost equal, although, as we can see
from the tracks on the Europa’s surface and the values of θG, once the spacecraft
will fly over the northern hemisphere, and the second time over the southern one.
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Flyby Day Target Body Distance (km) θG (◦) βG (◦)

1 10-06-2029 Ganymede 3032 80 105

2 05-09-2030 Ganymede 3032 93 120

3 07-05-2030 Ganymede 4346 98 105

4 08-13-2030 Ganymede 3429 95 44

5 09-03-2030 Ganymede 3914 95 38

6 09-17-2030 Europa 1964 126 123

7 10-01-2030 Europa 1964 56 124

8 10-13-2030 Callisto 2822 92 13

9 11-03-2030 Ganymede 5217 149 101

10 12-13-2030 Callisto 2611 30 70

11 12-30-2030 Callisto 2609 20 74

12 01-15-2031 Callisto 2609 21 70

13 02-01-2031 Callisto 2609 55 35

14 04-25-2031 Callisto 2609 131 138

15 05-12-2031 Callisto 2609 167 103

16 05-29-2031 Callisto 3436 170 100

17 06-14-2031 Callisto 3966 172 97

18 07-01-2031 Callisto 2609 135 134

19 07-20-2031 Ganymede 13553 80 150

20 08-24-2031 Ganymede 12469 80 144

21 09-10-2031 Ganymede 5803 100 11

22 09-27-2031 Callisto 2609 92 41

23 11-25-2031 Callisto 5823 93 75

Table 5.1.: Geometric parameters of the flybys.

5.3 tracking and vlbi data

The on-board instruments will allow to collect very different kinds of data. For the
simulations we are going to perform, we are interested in two experiments: 3GM
(Gravity and Geophysics of Jupiter and Galilean Moons) and PRIDE (Planetary
Radio Interferometer and Doppler Experiment).

The first one is the radioscience experiment. Thanks to the transponder mounted
on JUICE, it is possible to track the spacecraft from ground based stations. A radio
signal in Ka-band (uplink 34.3 GHz) is sent from the station, it arrives at JUICE
that remodulates and sends it back to the Earth (downlink 32.5 GHz). The time
span between the signal’s departure and arrival allow to obtain the distance of
the spacecraft from the tracking ground station (range). Instead, the variation of
frequency of the signal due to Doppler effect provides the variation of the range
(range-rate). The estimated accuracy is 20 centimeters for the range and 3× 10−4
centimeters per second for the range-rate (considering 2-way measurements).

A first study of the 3GM experiment’s performances was presented in [37].
The main objective of the work was the estimation of the gravitational field of
Ganymede and the state of the spacecraft. However, the simulations were limited
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Figure 5.7.: Representation of tracking and angular measurements. In particular, ρ = |ρ| is the
range, ρ̇ the range-rate, α the right ascension and δ the declination.

to the Ganymede orbiting phase only. Since we are interested in effects that in-
fluence the moons’s dynamics, such as the tidal dissipation, we need to take into
account the flybys phase and to deal with more challenging aspects of the mission.
For this reason we cannot limit our study to tracking data, but we have to include
other data sets.

PRIDE experiment will provide VLBI (very-long-baseline interferometry) data.
They consist in the measurements of the angular differences between the space-
craft and some known radar sources, such as quasars. In particular, it will be
possible to measure the right ascension α and the declination δ of the spacecraft
with respect to the Earth, as represented in Figure 5.7. Their accuracy is estimated
to be 10−9 radians, with the possibility to reach 10−10 radians level using the Ka
band (see [8]). In the first case, the linear accuracy at the Jovian system distance is
few hundreds of meters, while, in the second one, few tens of meters. Considering
the large available time for the improvement of the technique before JUICE will
arrive at Jupiter, in our study we will consider the best performance for VLBI.

Apart from 3GM and PRIDE, also the cameras can contribute to our experiments.
In fact, JANUS experiment comprehends two cameras that, in the windows of time
far from their main tasks, can take pictures of the Galilean satellites. In suitable
conditions, they can provide astrometric observations of the moons, as done in [47]
for the Cassini space mission. They consist in direct angular measurements of
the Galilean moons, whose accuracy, following [8], is set to 10−5 radians in our
experiments. In the range of distances we consider, it corresponds to a linear
accuracy of few kilometers.
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Moreover, we will consider also direct astrometric observations of the moons
from ground based stations. This kind of observations has been taken for centuries
and they have been the main data for the study of Galilean satellites’s ephemerides.
In our experiments, we will consider some sessions of astrometry from the Earth
during the four years of the mission. We set their accuracy to 10−7 radians, which
corresponds to tens of kilometers at the Jovian system’s distance.
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6 ORB IT DETERM INAT ION

The motion of a celestial body (like a planet, satellite or asteroid) depends on an
infinite number of effects and parameters, thus we cannot hope to have a complete
mathematical model of its dynamics. However, we can consider a model that
approximates the real motion to the best. The state y(t) of the body (position and
velocity, functions of the time t) is the solution of a differential equation

ẏ = f(y, t,µ), (6.1)

where µ is the vector of the dynamical parameters (e.g. the mass of a planet) and
f is the function that describes the model. In order to have a good approximation
of the motion, the function f must contain the main accelerations of the dynamics:
to know which are the forces we have to take into account, we must consider the
accuracy of the observations. If we have a small force, whose effect over the time
span we consider is some orders of magnitude below the observations sensitivity,
then we can neglect it in the model.

Given initial conditions y0 = y(t0), which are the position and the velocity of the
body at an initial time t0, we have a Cauchy problem. We define orbit a solution
of the problem, determined by y0 and f. The integral flow Φtt0(y0) is the solution
at the time t with initial conditions (t0, y0) and it allows to express all the possible
orbits of the problem.

In order to pass to an autonomous system, we introduce z = (y0, t− t0,µ)T ; in
this way (6.1) becomes

ż(t) = g(z(t)), (6.2)

where g = (f, 1, 0)T . From (6.2) we can compute z at the time we want. Since
we will need also partial derivatives with respect to the initial conditions, we
introduce the transition matrix

A(t, z0) =
∂z
∂z0

(t, z0), (6.3)
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which describes the variation of the parameters with respect to a change in the
initial values. Differentiating (6.2) with respect to z0, we obtain the variational
equation

∂

∂t
A(t, z0) =

∂g
∂z

(z(t, z0))A(t, z0), (6.4)

where the initial condition is A0 = I, since z = z0 at the initial time. In terms of y
and µ we translate (6.4) as 

d

dt

∂y
∂y0

=
∂f
∂y

∂y
∂y0

d

dt

∂y
∂µ

=
∂f
∂y
∂y
∂µ

+
∂f
∂µ

Since the aim of the orbit determination is to estimate the parameters that influ-
ence the orbit (or some of them), we need observations that constrain the motion of
the body. In this way we have two values of the same quantity: the observed one,
obtained by a direct measure, and the calculated one, obtained with our model.
Comparing them, we can get information about the parameters. A good number
of observations allows to obtain an estimation of the parameters we want to solve
for.

In the next sections we will introduce the main elements of the orbit determina-
tion’s theory, as presented in [32], focusing on the particular setting of the JUICE
mission.

6.1 theory

An observation is a quantity ri taken at a certain time ti. In order to perform an
orbit determination experiment, we need a function R for the prediction of that
observation; in this way we can compute the same observed quantity, we denote
as

r(ti) = R(y(ti), ti,ν). (6.5)

Apart from the time and the state vector, the function R depends also on some
parameters ν, called kinematical parameters. In (6.5), the dependence on µ comes
out from y(t).

From the list of parameters y0, µ and ν, we choose a sub-list of N elements we
denote with the vector x, which contains all the parameters we want to determine.
They are called fit parameters.

Generally, in the case of a space mission, the number of the observations is
much larger than the number of fit parameters. Therefore, we have to solve an
overdetermined system. However, the observations are not perfect measurements,
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in fact they have a nominal accuracy for which we admit a range of possible values.
The operation we must perform is a fit to the observations.

6.1.1 Least squares method

We define the vector of residuals ξ = (ξi)i=1,m, where ξi = ri − r(ti) (observed
minus calculated) and m is the number of the observations. As ξ depends on the
solution y(t) and the observation function, we can compute the partial derivatives
with respect to the fit parameters. We introduce the design matrix

B =
∂ξ

∂x
. (6.6)

The goal is to obtain new values of the fit parameters in such a way that the
residuals become as small as possible. We define the target function

Q(x) =
1

m
ξTWξ, (6.7)

where W is the weight matrix. This matrix consists of coefficients to assign to the
observations, so that all of them have a weight, which allows to compare them
together. A weight can be just a change in the units of measure, or a judgement
about the goodness of the measurement. The simplest way to define the weight
matrix is W = diag(wi) (i = 1,m), with wi = 1/s2i , where si is the accuracy of the
i-th observation.

In order to avoid writing W in all the following formulas, we rescale the residu-
als ξ→

√
Wξ.

Our objective is to minimize the target function, then we search for its stationary
points through the derivatives of (6.7)

∂Q(x∗)
∂x

= 0 → 2

m
BTξ = 0. (6.8)

Generally, (6.8) is non-linear, therefore we apply the Newton-Rhapson method
in order to find the solution. The matrix of the second derivatives of Q is

∂2Q(x)
∂x2

=
2

m
(BTB+ ξTH),

where H = ∂2ξ/∂x2. In a neighbourhood of the nominal solution x∗, we have the
following Taylor expansion

0 =
∂Q(x∗)
∂x

=
∂Q(xk)
∂x

+
∂2Q(xk)
∂x2

(x∗ − xk) + ...

63



orbit determination

We introduce the normal matrix Cnew = BTB+ ξTH and we obtain

Cnew(x − x∗) = −BTξ+ ... (6.9)

The residuals are small quantities, at least near x∗, then we can approximate
Cnew with its main term C = BTB. Moreover, we neglect the terms of higher
order in the expansion, so far indicated with continuation dots. Because of these
simplifications, in (6.9) we do not have x∗ anymore, but a new vector that we
denote with xk+1

C(xk+1 − xk) = D, (6.10)

where D = −BTξ is the constant term. This version of the Newton-Rhapson
method is called differential corrections. If the approximation is good enough,
then Q(xk+1) < Q(xk) and after few steps we obtain convergence.

We have two choices to decide that the procedure is convergent:

• the norm of the correction |xk+1 − xk|C = |∆x|C =
√
∆x ·C∆x/N to the fit

parameters is smaller than a tolerance εx;

• the relative change of the target function |Qk+1 − Qk| is smaller than a toler-
ance εq for a certain number of iterations nq.

In order to solve the linear system (6.10), we can adopt different approaches;
however, we need to compute Γ = C−1, called covariance matrix, as it contains the
uncertainties and the correlations of the fit parameters. In fact, apart from calcu-
lating new values of the fit parameters, we find their probabilistic variation in the
main diagonal of Γ , from which we can evaluate the reliability of the estimation.

6.1.2 Confidence ellipsoids

In order to estimate the reliability of the determination of the fit parameters, we
define the confidence region

Z(σ) = {x : |Q(x) −Q(x∗)| 6 σ2/m}. (6.11)

It depends on the choice of σ and it measures the accuracy of the solution. Apart
from the nominal solution x∗, the region Z(σ) contains all the values x we consider
acceptable. It is worth paying attention to the value of σ, in order not to have
a region too small (too optimistic uncertainty) or too large (degradation of the
result). Generally, the values most used are 1 (confidence 1-σ) and 3 (confidence
3-σ).
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Figure 6.1.: Representation of a confidential ellipsoid centered in the nominal solution [g∗, h∗].
With the dashed line we indicated the conditional ellipsoid with nominal values h =
h∗, while the projection of the ellipsoid on the g space is the marginal one.

Performing a Taylor expansion of the target function in a neighbourhood of x∗

and keeping only the main term, we can express the penalty ∆Q = Q(x) −Q(x∗) as
a quadratic function of x

m∆Q ≈ (x − x∗) ·C(x − x∗). (6.12)

The confidence region defined in (6.11) becomes an N− 1 dimensional ellipse,
called confidence ellipsoid

Z(σ) = {x : |(x − x∗) ·C(x − x∗)| 6 σ2}. (6.13)

Thanks to (6.13), we can give a geometric representation of the uncertainties
of the parameters, as shown in Figure 6.1. In fact, the acceptable parameters are
contained into the ellipsoid, but according to the direction they lie, they can be
closer or further to the nominal solution. The quantities 1/

√
λi, where λi are

the eigenvalues of C for i = 1,N, are the semi-axes of the ellipsoid; therefore, the
problem can have weak directions along which the ellipsoid can be very elongated
with respect to the other directions.

We can divide the vector of the fit parameters in two sub-vectors x = [g, h].
Consequently, we have the following subdivisions for C and Γ

C =

[
Cgg Cgh
Chg Chh

]
, Γ =

[
Γgg Γgh
Γhg Γhh

]
.
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The matrix Γgg is not equal to C−1
gg , unless the parameters g and h are uncorrelated,

i.e. Cgh = 0.
The expression of the penalty (6.12) becomes

m∆Q ≈(g − g∗) ·Cgg(g − g∗)

+ 2(g − g∗) ·Cgh(h − h∗) + (h − h∗) ·Chh(h − h∗).

The uncertainty of the parameters g depends on the role we choose for the other
variables h.

• Conditional ellipsoid for nominal values. We can suppose that the parame-
ters h are perfectly known h = h∗. In this case, they do not contribute in the
computation of the uncertainty

m∆Q ≈ (g − g∗) ·Cgg(g − g∗).

Since the covariance matrix Γg = C−1
gg is generally different from Γgg, the

confidence ellipsoid is smaller than the case of arbitrary h, as shown in 6.1.

• Marginal ellipsoid. We can consider h arbitrary and try to compute the co-
variance matrix for g. Geometrically, we project the ellipsoid on the subspace
of g, therefore we calculate the points of the ellipse with a tangent space par-
allel to h subspace

∂

∂h
(m∆Q) ≈ 2(g − g∗)TCgh + 2(h − h∗)TChh = 0.

We explicit the variation of h

(h − h∗) = −C−1
hhChg(g − g∗)

then we can rewrite the penalty as a function of g

m∆Q = (g − g∗) ·Cgg(g − g∗),

where Cgg = Cgg − CghC
−1
hhChg. As Cgg is non-negative and we have a

minus in the formula, the marginal ellipsoid contains the conditional one.

• Conditional ellipsoid for non-nominal values. Another assumption can be
to fix h to a certain h0, different from the nominal solution. The minimum
point becomes

g0 = g∗ −C−1
ggCgh(h0 − h∗).
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In this case, the conditional ellipsoid is smaller than the nominal case, be-
cause

m∆Q ≈ (g − g0) ·Cgg(g − g0) + (h0 − h∗) ·Chh(h0 − h∗),

where Chh = C−1
ggCgh.

6.1.3 Apriori observations

For some scenarios it can happen that we have a preliminary knowledge of the
parameters we want to estimate. Therefore, we can decide to add its contribution
into the estimation. Let xP be the values already determined for the fit parameters
and σi (i = 1,N) their uncertainties, we can consider them as new observations to
be added to the fit.

We define CP = diag(σ−2i ) the apriori normal matrix, for which we have the
normal equation

CPx = CPxP.

In the case we do not have apriori information for some parameters, we can set to
0 the corresponding weight in CP.

The new target function is

Q(x) =
1

N+m

(
(x − xP) ·CP(x − xP) + ξ · ξ

)
Thanks to the apriori observations, we add information to the normal matrix;

the new total normal matrix is

C = CP +B
TB.

This operation can help to solve possible inversion problems, arising from rank
deficiencies ([32], Chapter 6).

6.1.4 Multi-arc strategy

The motion of a body is determined by its equations of motion and initial con-
ditions. In principle, there exists a single initial condition vector for the whole
involved time span, that, in the case of a space mission, is its duration. Most of
the time a spacecraft is observed only during some sessions of tracking, sometimes
distant several days one from each other. Therefore, it is more convenient to divide
the mission in different periods of time, called arcs, and to consider single initial
conditions for each of them. This is the multi-arc strategy and it is frequently
used for the orbit determination of space missions (see [32], Chapter 15). As we
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will see in Chapter 7, in the case of a multiple flybys mission, it is unavoidable to
choose different initial conditions, because of the chaos that affects the orbit of the
spacecraft.

With this formulation, we can divide the vector of the unknown parameters x
in two sub-vectors: g, vector of the global parameters, and l, vector of the local
parameters. We call global parameters all the variables that are common to dif-
ferent arcs (for example the gravitational coefficients of Jupiter), and we call local
parameters the parameters that intervene only in a single arc (for example the
spacecraft’s initial conditions of that arc).

The vector l is composed by the local parameters of each arc li (i = 1,n, with
n the number of the arcs). We can suppose that the residuals of one arc are
independent of the local parameters of the other arcs, so that

B
j
li
=
∂ξj

∂li
= 0, i 6= j.

With the multi-arc approach, we are considering a bigger dimension of the nor-
mal matrix, since we take 6n variables as initial conditions, instead of 6. However,
the matrix has a simple structure, as the local parameters are independent if they
belong to different arcs

Clilj = BliBlj =
∂ξ

∂li
∂ξ

∂lj
= 0.

As a consequence, the matrix C is block diagonal

C =



Cgg Cgl1 Cgl2 . . . Cgln
Cl1g Cl1l1 0 . . . 0

Cl2g 0 Cl2l2
. . .

...
...

...
. . . . . . 0

Clng 0 . . . 0 Clnln


and in order to solve the differential correction step (6.10), we can adopt a suitable
strategy instead of inverting the matrix directly:{

Cgg∆g +Cgl∆l = Dg,

Clg∆g +Cll∆l = Dl.
(6.14)

In (6.14) we indicated ∆g the variation gk+1 − gk and with ∆l that of the l
parameters. Moreover, we separated the constant term D into two parts Dg and
Dl. The variation of the local parameters is given by

∆lj = C−1
ljlj

(Dlj −Cljg∆g).
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We substitute this expression in the first equation and we explicit the variation of
the global parameters

∆g = [Cgg −

n∑
j=1

CgljC
−1
ljlj
Cljg]

−1Dg −

n∑
j=1

CgljC
−1
ljlj
Dlj .

As we showed in the previous section, Γg = C−1
gg does not contain the total uncer-

tainties of the global parameters, but we have to take into account the contribution
of the uncertainty of the local parameters and the various correlations.

Up to now, we have presented the pure multi-arc method. Now we want to
introduce a more sophisticated strategy, called constrained multi-arc.

As we consider states of the same body (in particular the spacecraft), we can
constrain the initial conditions of one arc with the ones of the subsequent, since
they must belong to the same global orbit. Generally, this technique was studied
for planetary orbiters, such as the BepiColombo mission around Mercury ([1]), but
in the case of flybys distant in time for tens (sometimes hundreds) of days, this can
be not straightforward, not only because of the corrective manoeuvres performed
outside the sessions of tracking. In fact, as we will explain in Chapter 7, the flybys
have a strong impact on the spacecraft’s orbit around Jupiter, so that the linking
of different arcs must be done carefully.

The idea of the constrained multi-arc strategy is to add a new term to the tar-
get function, due to the discrepancy between the propagated states of two arcs
(indexes j and j+ 1) at a certain time of conjunction tjc

dj,j+1 = Φt
j
c

t
j+1
0

(yj+10 ) −Φt
j
c

t
j
0

(yj0), (6.15)

where Φ is the integral flow we have already presented. As the arcs are propa-
gated outside the observation sessions for times longer than in the pure multi-arc
strategy, we refer to them as extended arcs.

Since we want to minimize the jumps (6.15), the new target function will be

Q =
1

m+ 6(n− 1)
ξ · ξ+ 1

µ

1

m+ 6(n− 1)

n−1∑
j=1

dj,j+1 ·Cj,j+1dj,j+1, (6.16)

where µ is called penalty parameter and Cj,j+1 are the weight matrices for the
discrepancy vectors. Their definition depends on the interpretation we adopt;
in [1] two approaches are presented: the internally constrained and the apriori
multi-arc strategy. In the denominator we have 6(n − 1), which is the number
of constraints if we try to join n arcs. The vectors dj,j+1 depend on global and
local parameters of the considered arcs, therefore, when we compute the partial
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derivatives (6.8) of the target function, we have to take into account also their
contribution.

In this case we do not have a thin arrow shape normal matrix with only diagonal
blocks as in the pure multi-arc strategy, since local parameters of subsequent arcs
are not independent anymore:

Cljlj+1 = BljBlj+1 6= 0.

If the constraints are between subsequent arcs only, as in the case of the spacecraft,
we have a fat arrow shape (represented in [1]), as Cljlj , Cljlj+1 and Cljlj−1 are
different from 0.

Thanks to this added information, we can improve the conditioning of the nor-
mal matrix, so that we can reduce the uncertainties of the fit parameters. Moreover,
the use of the constrained multi-arc improves the determination of the parameters
in the case of a chaotic regime, as shown in [42] and as we will see in Chapter 8.

6.2 forces acting on the system

In the first part of the thesis we presented a secular model of the Galilean satellites
dynamics. Although it is very useful for the understanding of the main features of
the motion, it is not suitable in the context of the modern orbit determination. For
a space mission that operates for almost four years and that provides extremely
accurate data, we need a very precise model that takes into account several effects.
In a full numerical model this is straightforward, since we have just to add the for-
mulas of the accelerations to the right-hand side of the differential equations (6.1).

In this section we introduce the expressions of all the forces we include in the
dynamical models. As our task is to study the motion of the Galilean satellites and
of the spacecraft, we have to implement a model for both of them. Although the
bodies orbit in the same system, the models have important differences, mainly
due to two reasons:

• the Galilean satellites have non-negligible masses and we must consider
them as extended bodies;

• the ratio area-to-mass of the spacecraft is far from 0, then we have to include
non-gravitational forces.

For the Galilean satellites we refer to the dynamical model developed in [21],
where a list of perturbations is tested with their effect on the positions over one
hundred years of integration. Instead, for the spacecraft, we refer to models al-
ready provided for other space missions, such as the NASA mission Juno.

We work on reference systems centered in the main bodies, which can be Jupiter
or Ganymede during the orbiting phase, or a Galilean satellite in the case of a flyby.
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Since the system is not inertial, as the origin suffers forces that make it accelerate,
we have to take into account also the indirect effects.

In the next paragraphs we will present the accelerations acting on a generic
body of mass ms and position rs, considering a central body with mass mc. If
necessary, we will add some specifications in the case ms is the spacecraft or one
of the satellites.

6.2.1 Monopole term

The first force we introduce is the gravitational attraction between the point masses
ms and mc. From Chapter 2, we know that the expression for its potential is

U0 =
G(mc +ms)

rs
.

In the case of a spacecraft, its mass ms is so small with respect to mc, that we
can omit it in the formula. In the orbit determination experiments, we introduce
a parameter ∆C00 that describes the variation of the central body’s mass from its
standard value mc(1+∆C00).

It is not necessary that mc is the body that the spacecraft orbits around. For
example, during flybys we consider a reference frame with origin in the moon
that the probe encounters; if the spacecraft is enough far from the satellite, the
main acceleration is the one due to Jupiter and not the one of the monopole term.

6.2.2 Third-body accelerations

In the case there are other bodies in the system, we have to take into account also
the accelerations due to their gravitational attraction. As we described in Chapter
2, the third-body potential comprehends a direct term (first one in the parenthesis)
and an indirect term (second one)

U3b(rs) = Gmj
( 1
rsj

−
rs · rj
r3j

)
,

where j is the index of the new body, rj is its position and rsj = rj − rs.
In our models we consider the third-body accelerations due to the Jovian satel-

lites (including Amalthea and Thebe), the Sun and the planets.

6.2.3 Expansion of gravitational field

When ms is close to an extended body mc, the approximation of a point mass for
the gravitational field is not enough accurate for the determination of its motion.
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Figure 6.2.: Schematic representation of the gravitational harmonic with l = 4 and m = 3: we
have 1 parallel and 4 meridians where the value of the function is 0. The sphere is
divided in 8 sectors with different signs which describe the signature of the harmonic.
The combination of all the harmonics give a global description of the field.

In Chapter 3, we presented an expansion in zonal harmonics (3.1), which assumes
a symmetry of the field with respect to the z axis. If we want a more realistic model,
we have to consider the general case without symmetries. From [32], Chapter 12,
we have the new expansion in spherical harmonics

UJ(rs) =
Gmc

rs

∞∑
l=2

(Rc
rs

)l l∑
m=0

Plm(sin(φs))[Clm cos(mθs) + Slm sin(mθs)],

(6.17)
where Rc is the mean radius of the central body, while φs and θs are the latitude
and longitude of ms in a body fixed equatorial reference frame. Plm are the
associated Legendre functions of the expansion and the parameters Clm and Slm
are the coefficients that characterize the field (Cl0 = −Jl).

In order to compute the accelerations due to the gravitational harmonics, we
need to follow the rotation of the body mc. In fact, the gravitational field is
defined in a body-fixed reference frame: if we have a massive mountain or depres-
sion on the surface, it must follow the rotation of the celestial body. Therefore, we
pass to the body-fixed reference frame through a rotation, we compute the accel-
eration relative to (6.17) and then we apply the inverse transformation, in order to
return to the starting system. In Appendix B we describe the rotational models we
implemented for Jupiter and the Galilean satellites.

The gravitational expansion (6.17) is valid both for Jupiter and the Galilean satel-
lites’ fields; in Table 6.1 we reported their nominal values. Apart from the direct
action of the field, we have to take into account also indirect and secondary ef-
fects. The gravitational field of Jupiter acts on the Galilean satellites, but for the
third principle of dynamics, the planet must suffer the same force with opposite
direction. Since its mass is bigger than the ones of the satellites, the resulting ac-
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Parameter Jupiter Io Europa Ganymede Callisto

C20 -14735.0 -1845.9 -435.5 -127.8 -32.7
C22 -0.03 553.7 131.0 38.3 10.2
S22 -0.04
C30 0.2
C40 588.8
C60 -27.8

Table 6.1.: Nominal values of the harmonic coefficients of Jupiter and the Galilean satel-
lites, taken from the L3 ephemerides of the IMCCE.

celeration is much smaller, but not negligible. This acceleration, whose main term
is the indirect oblateness, must be included both in the Jupiter-centric dynamical
models of the spacecraft and the moons as an indirect term, then with a minus
sign

UJi(rs) = −

4∑
i=1

UJ(ri)
mi
m0

.

The expansion of the Galilean satellites’ gravitational field is surely necessary
for the spacecraft motion, when it is flybying or orbiting around one of the moon,
but it is important also for the satellites’ dynamics. In fact, as shown in [21], we
must consider additional accelerations on the moons due to their gravitational
anomalies. In particular, the effect of Jupiter as point mass on the oblate part of
the moons is a non-negligible perturbation; the potential associated is minus (6.17),
where Clm and Slm are the satellite’s gravitational coefficients, Rc is its radius
and rs is the Jupiter’s position in the moon’s body fixed reference system. Since it
describes the effect of Jupiter on the satellites, mc is the mass of the planet. Note
that this is not an inertial effect, even if we compute it in the inverse way: the
effect of the oblateness of the moons on the planet. In our model we omit the
effects of the satellites’ oblateness on the other satellites, as they are very small
perturbations (some hundreds of meters over 100 years, as shown in [21]).

6.2.4 Tides

We introduced the tides in the last section of the first part of the thesis. Briefly,
an extended body is deformed by the gravitational force due to an external point
mass, as its points suffer a force that is different both in direction and modulus.
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Parameter Jupiter Io Europa Ganymede Callisto

k2 0.37 0.45 0.3 0.3 0.3
k3 0.7 0.3 0.3 0.3 0.3
k4 0.7 0.3 0.3 0.3 0.3

Table 6.2.: Nominal values of the Love numbers of Jupiter and the Galilean satellites.

This displacement of mass generates an induced field around the deformed body
(see [19]) with potential

UT (rs) =
Gmj

rj

+∞∑
l=2

kl

(Rc
rs

)l+1(Rc
rj

)l
Pl(cos θ),

where rj is the position of the body that raises the tides and θ is the angle between
rs and rj.

For the Galilean satellites we know that the tidal interaction with Jupiter dissi-
pates energy. In our model we take into account this effect adding the accelera-
tion (4.6), which is proportional to the dissipative parameter k2/Q, but only for
the couple Io-Jupiter. However, for future works, it is worth noting that the dissi-
pative parameter of Jupiter cannot be taken as a constant parameter. In fact, the
anelastic tides we described in Chapter 4 are based on an simplified model of the
internal structure of the planet: for more realistic models it is necessary to con-
sider the different layers (solid and fluid) of the body. In [13] the authors assumed
a solid core covered by a fluid envelope and showed that both layers contribute
to the tidal dissipation in the body. This is very important, since it is possible
that in the fluid envelope tidal waves are in resonance with the orbital motion of
some moons; as presented in [11], this mechanism can increase the effect of the
planet’s tidal dissipation and speed up the tidal migration of the satellite locked
in resonance. In the investigation of the dissipative effects in the Saturn system
performed in [25] using data from the Cassini space mission, the authors found a
dissipative parameter of Saturn in the frequency of the Rhea’s orbit one order of
magnitude greater than the ones of the other satellites involved in the study. The
reason can be the proximity of Rhea to a resonance with the tidal waves in the
upper layers of Saturn.

6.2.5 Relativistic effects

When we consider masses in the space, the Newtonian formulation can be not
enough to reach the accuracy we desire. In the case of the Jovian system, the mass
of Jupiter is so big that the relativistic effects on the near bodies are not negligible.
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Earth
spacecraft

main body
Sun P

n
s β

ω
Figure 6.3.: Representation of the non-gravitational forces’ setting. The spacecraft looks toward the

Earth (direction n̂), while the photons arrive from the Sun, direction −ŝ. Moreover,
there are indirect effects due to the proximity to the main body: the point P of the
surface is illuminated by the Sun, then it reflects the radiation of the Sun (albedo), and
it releases infrared radiation.

Therefore, in our model we add an acceleration that takes into account the general
relativity correction to the motion

FGR(rs, vs) =
Gmc

c2r3s

(
(2(γ+β)

Gmc

rs
− v2s)rs + 2(1+ γ)(rs · vs)vs

)
,

where γ and β are two post-Newtonian parameters (see [49]). Since we do not
perform test on the violation of the general relativity theory, we fix them to their
conventional value, which is 1.

6.2.6 Non-gravitational forces

There are some effects in the space that do not have gravitational nature. They
are important when the ratio between area and mass of the object is far from 0;
generally this is not the case of celestial bodies of great dimensions, which are
very massive. However, for asteroids and spacecraft the area-to-mass A/ms is an
important parameter.

We assume a very simple model of the spacecraft: we consider a flat structure
composed by two solar arrays of 50 m2 and a central body of 10 m2, as repre-
sented in Figure 5.1. Since the antenna is pointed toward the Earth, the spacecraft
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is orthogonal to the direction spacecraft-Earth; we indicate this direction with n̂.
Instead, for the direction spacecraft-Sun we use ŝ; the position of the Sun is essen-
tial to describe non-gravitational forces, being their main source. In Figure 6.3, we
have a representation of the considered configuration.

The first force we take into account is the direct solar radiation pressure, due to
the photons that hit the spacecraft,

Fsrp = −
Φ�
c
A cosβŝ,

where β is the angle between the two directions n̂ and ŝ. It describes the inclination
of the photons with which they arrive at the flat surface (A cos(β) is called the
effective area). The other parameters are Φ�, which is the Sun’s radiation flux at
the distance of the Jovian system (almost 5× 104 erg/(cm2s)), and the light speed
c.

Moreover, we consider also indirect effects:

• if the spacecraft is near the central body, part of the radiation that arrives
at the surface is reflected and hits the probe. If we indicate with αP the
coefficient of absorption, then the fraction of bounced light is α = (1− αP),
which is called albedo coefficient. This effect must be considered only if
the spacecraft is exposed to points of the surface that are illuminated; the
formula for the force is

Fα = −
Φ�
c
αA cosω

x − P
|x − P|

,

where ω is the angle between the direction x − P and n̂.

• Moreover, the central body itself has a thermal emission, detectable as in-
frared radiation. In this case, it is not important that the point P is illumi-
nated, as it releases radiation that cumulates during its rotation. In this case,
the formula of the force is

FIR = −
ΦIR
c
A cosω

x − P
|x − P|

,

where ΦIR is the thermal flux of the central body.

In order to compute the indirect effects, we perform an integration over the visible
(from the spacecraft) surface of the planet.

Finally, since we will propagate the spacecraft also outside the tracking sessions,
we must consider manoeuvres performed using the on-board fuel. In first ap-
proximation, they can be studied as instantaneous change in the velocity; their
contributions is very important in order to allow corrections to the orbit and not
to miss the flybys during the tour.
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For modelling these manoeuvres, we follow [1]. We consider a total variation
in velocity of ∆v = (∆vR,∆vT ,∆vW), expressed in the orbital reference frame
(R, T ,W). In order to have a smooth formulation, we consider a piecewise acceler-
ation composed by two 5 degrees polynomials and a constant acceleration

a =


b4t

4 + b5t
5 if t 6 ∆s

b4∆s
4 + b5∆s

5 if ∆s < t < ∆h−∆s

b4(∆h− t)4 + b5(∆h− t)5 if t > ∆h−∆s

and whose integration over the time ∆h of the manoeuvre gives the requested ∆v.
Some manoeuvres are already scheduled in the mission plan reported in the

Spice Kernel: the biggest one is the JOI manoeuvre we already presented. How-
ever, we added small manoeuvres between each flyby, in order to recover a whole
pseudo-orbit of the spacecraft tour, as we will describe in Chapter 7.

6.3 observation models

In (6.5) we introduced the prediction function for the computation of the observa-
tions. Since we use different kinds of observations, we need a prediction function
for each of them. In Figure 5.7 we have a schematic representation of the range,
range-rate and angular observations; in this section we want to formalize their
computation.

As we will explain in Chapter 7, during the tracking sessions, we will consider
the state of the spacecraft with respect to the satellite that the probe is flybying or
orbiting around. We call this moon as the primary Galilean satellite and we use
its state in order to define the prediction functions.

6.3.1 Range and range-rate

The range is the distance from a ground based station to the spacecraft. In order
not to limit the visibility conditions, we assume that the observations are taken
from the center of the Earth. In Figure 6.4 we drew the position vectors we use to
define the range vector:

ρ = (xbjs + xjup + xgs + xsc) − xea. (6.18)

In particular, xbjs and xea are respectively the position of the BJS (Barycenter of
the Jovian System) and the Earth with respect to the SSB (Solar System Barycenter),
xjup is the position of the center of mass of Jupiter with respect to the BJS, xgs is
the position of the primary Galilean satellite with respect to Jupiter and xsc is the
position of the spacecraft with respect to the primary moon.
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Figure 6.4.: Range measurements are computed from the sum of various vectors, which are the
positions of the different bodies involved in the problem.

In the previous section we introduced the accelerations we use to propagate xgs
and xsc at the requested times. However, we need also the other vectors present
in (6.19). The vector xbjs is computed propagating a relativistic N-body problem,
implementing the EIH equations ([49]) and taking into account the Sun and all the
planets different from Jupiter. The vector xjup is derived from the positions of all
the Galilean satellites, assuming that their sum, weighted with the masses, must
give the barycenter of the system; in fact, all the other satellites contribute poorly
to the determination of the barycenter. Instead, the vector from SSB to the Earth
is taken from the JPL ephemerides. The choice not to propagate the Earth is due
to the fact we are not interested in improving the Earth’s orbit using JUICE data.

Since the range measurement is a scalar quantity, the expression of the predic-
tion function is

ρ = |(xbjs + xjup + xgs + xsc) − xea|+ S(γ), (6.19)

where the function S(γ) represents the Shapiro effect, which describes the delay
of the radio signal for the deformation of the space-time due to the presence of
massive bodies. For the setting of the JUICE mission, we have to consider the
deformation due to the Sun and Jupiter. From [48], the function S at the 1-PN
(Post-Newtonian) level is

S(γ) =
(1+ γ)Gmc

c2
ln
(rt + rr + r
rt + rr − r

)
, (6.20)
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where rt and rr are the distances of the transmitter and the receiver from the body
mc that generates the space-time deformation, and r is their mutual distance. The
contribution of the Shapiro effect of the Sun on the range measurements is of the
order of tens of kilometers and the one of Jupiter tens of meters. Since they are
greater than the accuracy of the radioscience observations, they must be taken
into account. Actually, for the processing of real data we should also consider
the expansion (6.20) up to the 2-PN order and the Shapiro effect due to the J2
of Jupiter, which becomes non-negligible when the signal pass very close to the
planet.

In order to predict real observations, we need to take the various vectors in (6.19)
at the right times. In fact, the radio signal has a finite velocity, which is the
light speed c, and it reaches the Jovian system after a certain travel time after its
departure. If we consider that the distance of the Earth from the Sun is almost 1
au and the distance of Jupiter is almost 5.2 au, we find that the order of this time
gap is 40 minutes.

Therefore, we have to consider three different times when we compute the range
measurements. There is a time of transmission tt, at which the signal leaves the
Earth; it arrives in the Jovian system at a time tb, called of bouncing, as it is
immediately redirected to the Earth; finally it returns to our planet at a time of
receiving tr. Therefore, for tracking data, we have to consider the 2-way trip, go
and return.

We know the time of receiving, as the station captures the signal, then we have
to recover the other two involved times. We have a downlink trip

ρdown = |(xbjs(tb) + xjup(tb) + xgs(tb) + xsc(tb)) − xea(tr)|+ Sdown(γ),

where the vectors in the brackets are computed at the time of bouncing, while the
position of the Earth at the time of receiving. The quantity Sdown is the Shapiro
effect on the down path of the signal; also for its computation we have to consider
rr and rt in (6.20) at the right times.

In order to obtain tb we perform an iterative process. We have a first guess for
tb given by the rough estimation we performed with a default distance between
the Earth and Jupiter; then we compute the vectors in the brackets at that time. We
obtain a first estimation of the downlink range, from which we have a new value
for the travel time of the signal and for tb. At the following iteration we use the
new value and we replicate the computation, and we continue until the variation
in tb is below 10−12 seconds. More details of the procedure can be found in [48].

Successively, we consider the uplink trip

ρup = |(xbjs(tb) + xjup(tb) + xgs(tb) + xsc(tb)) − xea(tt)|+ Sup(γ),
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Figure 6.5.: VLBI measurements are computed from goniometric functions applied to the range
vector coordinates.

where the position of the Earth is taken at the time of transmission. In order to
compute tt, we have to perform the same iterative process used for tb.

The final formulation we use for the range measurement is

ρ =
ρdown + ρup

2
,

in this way 2ρ provide the whole travel time of the signal.
For the range-rate the approach is equivalent: we consider its expression in

function of the velocity vectors of the bodies

ρ̇ = |(ẋbjs + ẋjup + ẋgs + ẋsc) − ẋea|+ Ṡ(γ), (6.21)

and we compute them at the right times. The function Ṡ(γ) is the time derivative
of the function (6.20) and represents the Shapiro effect on the range-rate (see [48]).

6.3.2 VLBI

VLBI data provide the angular positions of the spacecraft with respect to a certain
ground based station; also in this case we consider geocentric observations.
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The vectors that are involved in the computation are the same of the radioscience
data, then we express the angles using the same quantities

α = arctan

(√
ρ2x + ρ

2
y

ρ

)
,

δ = arcsin
(ρz
ρ

)
; (6.22)

where ρ is the vector defined in (6.18) and the subscript indicates a particular
component.

Differently from the range and range-rate, in this case we consider a 1-way
downlink trip. Therefore, we must consider just the time of receiving tr and the
time tb of departure of the signal from the spacecraft (we continue to use b as
subscript, even if the signal is not really bounced).

6.3.3 Astrometry and camera

Earth based astrometry and JANUS experiments provide the same kind of obser-
vations of VLBI (right ascension and declination), which we can model follow-
ing (6.22). However, in the case of the camera mounted on the spacecraft, the
vector ρ in (6.22) is not the same of ground based observations.

In fact, the spacecraft is orbiting in the Jovian system: the Earth, the BJS and
Jupiter’s positions are not involved in the computation. We assume that JANUS
will take astrometric pictures of the moons outside the tracking sessions and then
when the probe will be far from the satellites. For this reason, the vector ρ is
simply

ρ = xgs − xJsc,

where xgs is the target moon the camera is observing and xJsc is the Jupiter-centric
position of the spacecraft.

Both for astrometry and camera we use the prediction functions defined in (6.22).
As showed in [8], these kinds of observations will be very important to stabilize the
inversion of the normal matrix, being the only occasion to get direct measurements
of Io during the mission.
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7 METHODS

In this chapter we describe the code we implemented and the strategy we adopted
within ORBIT14 for the orbit determination experiments in the JUICE mission’
scenario. ORBIT14 is an orbit determination software developed by the Celestial
Mechanics Group of the University of Pisa. It is a mission designed code, it means
that the software has specific and separated parts in order to deal with different
space missions. The standard version of ORBIT14 contains orbit determination
tests for the BepiColombo mission to Mercury, the Juno mission to Jupiter and
Super Conjunction Events for a spacecraft in cruise behind the Sun. In this work
of thesis we developed a new branch of the code in order to add the new project
regarding the JUICE mission.

For all the missions there is a common core that deals with the basic elements of
propagation and orbit determination. However, the software is developed having
in mind that each space mission is different from the other, both for its tour and
its purposes. A strategy for an orbiter is not suitable for a multiple flybys mission,
just like a mission to Jupiter can be very different from a mission to Mercury. For
example, the code already written for the Juno mission lacks important aspects
for processing JUICE mission’s data. Moreover, it is very complicated to design
a software that can deal with all the possible scenarios; therefore, we prefer to
develop the software around the tasks of the current mission we are studying.

ORBIT14 counts more than 100000 rows of Fortran code: it comprehends mod-
ules and subroutines for the integration of differential equations, for reading plan-
etary ephemerides, simulating the rotation of the bodies and so on. The most of
the work for this thesis has been done on the modules that define the dynamical
models and the prediction functions. For example, before the JUICE project, in
ORBIT14 it was not present a module for the propagation of the Galilean satellites’
motion or for the computation of VLBI observations.

The project is structured in two main programs, a simulator and a corrector.
The first one is necessary when real observations are not available, as in the case
of the JUICE mission, that will begin to provide data only from 2029. It consists in
a simulation of the observables, performed with the dynamical and observational
models introduced in Chapter 6. We add a Gaussian noise to the observed data
with a standard deviation equal to the precision of the observations, in order to
take into account the limits of accuracy of the measurements. Moreover, we can
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choose to add systematic errors to the observations introducing bias or changing
the value of some dynamical parameters between simulation and correction. In
this way, the residuals will be different from zero and we will begin with a non-
trivial value for the target function.

In the corrector we generate the calculated data and we perform the differential
corrections, in order to find the minimum of the target function, function of the
fit parameters. In the next sections we will show which parameters we are inter-
ested in determining and the strategy we adopt for dealing with the critical issues
arising from treating a mission like JUICE.

7.1 requirements of the mission

In the description of the radioscience experiment presented in [17], the JUICE
Science Team listed the parameters that JUICE is going to determine. They are
mainly gravitational and tidal parameters, but with the adding of VLBI data it
is possible to obtain also results on the states of the Galilean satellites and the
dissipative parameters. The basic results that are required are

• determination of the gravitational field of Ganymede up to order 10;

• determination of the gravitational field of Callisto up to order 3;

• improvement of the gravitational field’s parameters C20 and C22 of Europa;

• determination of the time-dependence of gravity at degree 2 arising from the
eccentricity tide for Ganymede and Callisto;

• improvement of the ephemerides of the Solar System and the Jovian satel-
lites;

• improvement of the dissipative parameters.

In the orbit determination experiments we are going to perform, we will take
into account this list for the choice of the fit parameters. As we noted in Chapter 5

and it is clear from the mission’s requirements, Ganymede will be the moon whose
properties JUICE will investigate more deeply. In the analysis of the results of our
experiments, we will focus on the last two points, which are the main objectives
of investigation of this thesis.

It is worth noting that we are going to present a first analysis of the orbit de-
termination for JUICE, for which we are interested in preliminary results on the
uncertainties recovered in the covariance matrix. Dealing with real data is a more
complicated challenge and there are different adjustments of the software we need
to develop yet. However, with the current version of the code, we can perform a
first complete inversion of the JUICE data.
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Figure 7.1.: Spectral properties of the transition matrix (dimension 24× 24) of the Galilean satel-
lites: in red we reported the absolute value of the greatest eigenvalue, in green the
absolute value of the smallest eigenvalue and in blue the determinant.

7.2 critical issues

The JUICE mission has several complications, in particular due to its multiple
flybys phase. As we described in Chapter 5, during its tour around Jupiter, the
spacecraft will encounter the moons 23 times. For each flybys, the spacecraft will
fly over a predetermined region of the target moon, in order to fulfill the require-
ments of the different experiments of the mission. It means that the orbit must
be accurately calculated and it must be possible to correct the trajectory through
space manoeuvres. In this section we will show the impossibility to compute a
single global orbit for the spacecraft, because of the chaos.

Moreover, for the orbit determination, we are demanding a very strong capa-
bility: we want a strict control on a 4 years propagation, where with control we
mean that we are able to modify the initial conditions in order to change the prop-
agated body’s states of an amount of the requested order. For JUICE we would
be able to correct the initial conditions of the Galilean satellites without having
uncontrolled changes of the residuals. Actually, as we will see, this control is not
perfect. This will have repercussions especially for the jumps of the extended arcs
and the convergence of the differential corrections.

7.2.1 Convergence control

In order to improve the moons’ ephemerides and to determine the tidal dissipation
parameters, we have to propagate the Galilean satellites for the whole length of
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Flyby Target Body ∂x/∂ẋ0 ∂y/∂ẏ0

1 Ganymede -50.0 108.0
2 Ganymede -35.7 72.1
3 Ganymede -30.7 64.6
4 Ganymede -4.1 -84.6
5 Ganymede -3.9 -79.9
6 Europa -17.8 5.2
7 Europa -17.3 0.5
8 Callisto -49.9 -11.2
9 Ganymede -9.5 63.1
10 Callisto -18.7 11.2
11 Callisto -17.4 10.5
12 Callisto -15.9 9.8
13 Callisto -14.5 9.0
14 Callisto -8.1 5.5
15 Callisto -6.8 4.7
16 Callisto -5.5 4.0
17 Callisto -4.3 3.3
18 Callisto -2.9 2.6
19 Ganymede -2.0 4.7
20 Ganymede 0.7 -1.1
21 Ganymede 1.4 5.1
22 Callisto 10.4 0.4
23 Callisto -21.4 -2.4

Table 7.1.: Values (to be multiplied by 106) of some elements of the transition matrix of
the primary satellite at the times of the flybys. In particular, x and y are two
coordinates of the primary moon’s position at the time of the corresponding
flyby, while ẋ0 and ẏ0 are the initial conditions of the primary moon’s velocity.

the mission. We choose the initial time t0 in the middle of the time span and we
propagate forward and backward. The distance of the first flyby from t0 is almost
2 years.

The problems arise when we consider a change of the initial conditions of the
order of the machine error: since we use double precision, we refer to a change
in the sixteenth decimal digit. In order to study the variation of the state at a
certain time t, we can look at the transition matrix (6.3); in Figure 7.1 we plotted
the maximum and minimum eigenvalues of the moons’ transition matrix. The
value of the maximum at the end of the propagation is almost 104, which is quite
limited. However, if we look at single components of the matrix, we can find
greater values. In Table 7.1, we reported two elements, relative to the primary
moons, of the transition matrix at the time of the flybys. For the first flyby, we
have that a change δ in ẏ0 of Ganymede leads to a variation in y(t) greater than
108δ. This means that a change at the level of 10−15ẏ0 ≈ 10−9cm/s implies an
uncontrolled change of 10−1 cm in the state of Ganymede in the first flyby.
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Figure 7.2.: Semi-major axis of the spacecraft orbit during the flybys phase. Each jump or pulse is
due to a close encounters with one of the moons.

Since the range observations have an accuracy of the order of 10 centimeters,
when the residuals reach the level of the noise, the differential corrections have
some difficulties to change the parameters in order to control the value of the
target function at the order of ∆ξ2/w ≈ 10−2/10 = 10−3. This does not occur
just for the first flybys, but also for the furthest arcs of the Ganymede orbiting
phase. Therefore, instead of a perfect convergence, the parameters move around
a minimum point and the target function begins to oscillate around its minimum
value. The same computations and the same table can be done for the velocities
and the range-rate observations. In light of this behaviour, we will define suitable
convergence criteria.

It is worth noting that, as evidenced by Figure 7.1, this effect is linear with time;
therefore, it could be easily solved using quadruple precision, instead of double.
However, for a software like ORBIT14, which uses also external Fortran libraries
and a great number of modules developed during a wide time span, it is not
straightforward to pass to quadruple precision. Moreover, the time of execution
would increase dramatically.

7.2.2 Chaos in the JUICE orbit

The most challenging aspect of the mission regards the spacecraft’s orbit during
the flybys phase. As shown in Figure 7.2, at each flyby the probe suffers a sort of
kick that can change abruptly its orbit around Jupiter. For some flybys the semi-
major axis changes more than 4× 105 km, it means a change of the order of the
Io’s orbit. Near the close encounters a small change in the state of the spacecraft
can generate a completely different orbit: this is the phenomenon known as chaos.
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Figure 7.3.: On the top, spectral properties of the transition matrix of the spacecraft, taking the
initial condition at the 12th flyby: in red we reported the absolute value of the greatest
eigenvalue, in green the absolute value of the smallest eigenvalue and in blue the
absolute value of the determinant. On the bottom we show a piece of the spacecraft’s
orbit once again, in order to compare the divergence of the matrix with the occurrence
of the flybys.

Therefore, if the tour foresees a series of flybys accurately scheduled, any small
change can be catastrophic. Actually, it is possible to adjust the orbit thanks to
space manoeuvres, but the real problem is numerical.

In fact, it is over the machine’s capability to compute a whole orbit for the space-
craft starting from a single initial condition; this is a limitation due to the finite
representation of the numbers: after some flybys the divergence of the machine
error is propagated to thousands of kilometers, missing the following flyby. Differ-
ently from the divergence of the moons’ transition matrix, this effect is not linear,
but exponential; therefore, passing to quadruple precision would allow to catch
twice the flybys, but not to solve the problem. In order to show the effect of the
chaos, we refer to Figure 7.3. In the top picture we plotted the maximum and the
minimum eigenvalue of the transition matrix (6.3) of the spacecraft’s orbit, starting
from an initial condition taken at the 12th flyby. By comparison with the bottom
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picture, we can note the abrupt increment of the matrix’s divergence each time
that a flyby occurs: after the third flyby (both forward and backward, counting
also the flyby at the initial condition of the spacecraft) we find that the absolute
value of the maximum eigenvalue is greater than 108 and the absolute value of
the minimum eigenvalue is smaller than 10−8. Since the ratio is 1016, which is the
order of the machine error, the transition matrix becomes bad conditioned, and
from the value of the determinant, which should be 1 since the matrix is sym-
plectic (less than for small terms), we have a prove of the effects of the numerical
instability. In the next section, we will present an attempt to recover the whole
orbit and we verify the empirical computation horizon we found.

Although this could seem a problem only for the design of the mission, it af-
fects also the orbit determination. In [46], the authors studied a relatively simple
chaotic problem: they considered the dynamical model of a pendulum and they
discretized it with the standard map. They took the initial condition in a chaotic
region and they generated a chaotic orbit from which they obtained simulated
observations. During the correction operation they tried to estimate the initial
conditions and a dynamical parameter present in their formulation. They found
that the computation became unstable after a certain number of iterations of the
map, showing the existence of a computation horizon. Moreover, they proved that
the determination of the dynamical parameter produces a sharp degradation of
the initial conditions’ estimation. In fact, in the case of no determination of the
dynamical parameter, the uncertainty of the initial conditions decreased exponen-
tially with the number of map’s iterations, while when they added the parameter
to the fit parameters, the same uncertainty decreased just as a polynomial, because
of the correlations.

In [42], the authors tried to solve these limitations using a multi-arc approach.
This technique has been proved to break down the barrier of the computation
horizon; moreover, they showed that the constrained multi-arc strategy improves
the determination of the parameters in the case of a chaotic orbit. However, they
found that they could not demand too strict constraints for the jumps of the ex-
tended arcs; in fact, this request is almost the same of searching for a single orbit,
which leads to the same problem described in [46].

Although in the cited articles the authors studied a simple model, its relation
with JUICE is deep. In fact, we consider a spacecraft in a chaotic orbit and we want
to determine dissipative coefficients, that are dynamical parameters for which we
need the whole time span of the mission for obtaining a good estimation.

In light of these two papers, we give up the hope to find a global orbit and we
use the constrained multi-arc method in order to find new local initial conditions
for the spacecraft in such a way that the jumps (6.15) at the connection times
are smaller than the accuracy of the observations. Moreover, we will use the
constrained multi-arc strategy in the orbit determination experiments, but only
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for the flybys phase. In fact, as shown in [42], this strategy is advantageous in
the case of chaotic orbits, but in the ordered case, such as the Ganymede orbiting
phase, it does not really improve the estimation of the dynamical parameters.

7.3 switch of the dynamics

In Chapter 6, we described the accelerations that act on the spacecraft and the
Galilean satellites. In this section, we present the different dynamics we imple-
mented and the way we use them.

First, we have a dynamics for the Galilean satellites that we propagate for the
whole length of the mission. Instead, for the spacecraft, we abandoned the hope to
do the same, because of the chaos. During the flybys we choose to use a satellite-
centric dynamics, i.e. a dynamics defined in a reference system centered in the
primary moon, since we want that the satellite’s state is included in the prediction
functions (as presented in Chapter 6); while, far from the flybys, we prefer a
Jupiter-centric dynamics, i.e. defined in a reference system centered in Jupiter.

The definition of two dynamics has two main reasons: first, involving the states
of the moons in the prediction functions allows to obtain more information about
their orbits, while it has no sense to propagate the spacecraft’s state in a satellite-
centric reference system when JUICE is very distant from the moon. Moreover,
since we want to use a constrained multi-arc strategy and we have to calculate the
jumps (6.15), we need the spacecraft’ states in the same system.

For each arc of the flybys phase, we take the initial conditions at the pericenter
of the hyperbolic orbit and we propagate forward and backward with the satellite-
centric dynamics. After 12 hours, when the spacecraft is enough far from the
primary moon, we switch to a Jupiter-centric reference frame, as represented in
Figure 7.4. This switch is done using the transformationXJsc(ts) = Xsc(ts) + Xgs(ts),

∂XJsc
∂ci

(ts) =
∂Xsc
∂ci

(ts) +
∂Xgs
∂ci

(ts), i = 1,N
(7.1)

where ts is the time we perform the switch and ci (i = 1,N) are the fit parameters.
The vectors X represent the states of the bodies: XJsc is the state of the spacecraft
in the Jupiter-centric system, Xsc in the satellite-centric system and Xgs the state
of the primary Galilean moon with respect to Jupiter. The formulas (7.1) define a
Newtonian change of coordinates; for a more accurate transformation we should
use a relativistic formulation, as presented in [48], which involves also the times
of the different reference systems. Although in the simulations the use of (7.1) or
more sophisticated equations does not affect the results we are going to show, the
second ones will be necessary in the processing of real data.
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spacecraft

Jupiter

satellite
ts
ris
rirs

Figure 7.4.: Scheme of the switch of the dynamics: the vector ris is computed from the satellite-
centric dynamics dyn11x, while the vectors ri and rs from the Jupiter-centric dynam-
ics dyn10 and dyn11 respectively.

In the code we implemented three different modules:

• dyn10 is the Jupiter-centric dynamics of the Galilean satellites; the four moons
are propagated all together, therefore the total state vector has dimension 24
(6 coordinates per satellite).

• dyn11 is the Jupiter-centric dynamics of the spacecraft; it is used when the
spacecraft is far from all the Galilean satellites, and their local perturbations
are small.

• dyn11x (x = 1, 4) is the satellite-centric dynamics of the spacecraft; it is used
when the spacecraft is close to the x-th Galilean satellite, and the local per-
turbations become important.

In Table 7.2 we reported a scheme of the accelerations we take into account in
the different dynamics. Apart from implementing a precise dynamical model, we
want that the switching between a Jupiter-centric dynamics of the spacecraft to a
satellite-centric dynamics is as smooth as possible.

The accelerations that are considered only locally (i.e. only when the spacecraft
is propagated in the satellite-centric frame) are: the harmonic expansion of the
satellite’s field, the satellite’s tidal field, relativistic and non-gravitational effects
due to the presence of the satellite. Apart from them, the motion of the spacecraft
around Jupiter determined by dyn11 is perfectly the same of the sum of dyn11x and
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Effect Parameter dyn11 dyn10 dyn11x

Monopole Gmc × × ⊗
Third-body direct Gmj × × ×
Third-body indirect Gmj # # #
Jup gravitational field Clm,Slm × × ⊗
Gal gravitational field Clm,Slm ×
Indirect oblateness Clm,Slm # #
Jup point - Gal oblated Clm,Slm × #
Jup tides k2 × × ⊗
Gal tides k2 ×
Tidal dissipation (*) k2/Q × #
Jup Relativity Gm0 × × ⊗
Gal Relativity Gmi ×
Solar radiation Φ�,A × ×
Jup albedo Φ�,A,α × ×
Gal albedo Φ�,A,α ×
Jup thermal emission ΦIR,A × ×
Gal thermal emission ΦIR,A ×

Table 7.2.: Forces added in the models; Jup and Gal (abbreviation for Jupiter and Galilean
satellite respectively) indicate the body which produces the effect. With × we
indicate that the effect is direct, with # indirect, with ⊗ direct and indirect. (*)
As we consider tidal dissipation on Io only, and we do not have flybys of Io, we
did not added the indirect effect in dyn11x.

dyn10. We prove this statement taking the main terms of the dynamics: monopole,
third-body perturbations and Jupiter’s gravitational field.

Let be rs the spacecraft’s position in the Jupiter-centric frame, ris in the satellite-
centric frame and ri the satellite’s position in the Jupiter-centric frame, we want to
prove that

r̈s = r̈is + r̈i. (7.2)

We explicit the accelerations considering the mentioned forces. For rs we have

r̈s = −
Gm0rs
r3s

+

N∑
j6=0

Gmj

( rsj
r3sj

−
rj
r3j

)

= −
Gm0rs
r3s

+
Gmirsi
r3si

−
Gmiri
r3i

+

N∑
j6=0,i

Gmj

( rsj
r3sj

−
rj
r3j

)
.
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In the case of the satellite-centric frame

r̈is = −
Gmiris
r3is

+

N∑
j6=i

Gmj

( rsj
r3sj

−
rij
r3ij

)

= −
Gmiris
r3is

−
Gm0rs
r3s

+
Gm0ri
r3i

+

N∑
j6=0,i

Gmj

( rsj
r3sj

−
rij
r3ij

)
.

Finally, for the Galilean satellite

r̈i = −
G(m0 +mi)ri

r3i
+

N∑
j6=0,i

Gmj

( rij
r3ij

−
rj
r3j

)
.

It is easy to see that, summing the last two equations, we obtain

r̈i + r̈is = −
G(m0 +mi)ri

r3i
+

N∑
j6=0,i

Gmj

( rij
r3ij

−
rj
r3j

)

−
Gmiris
r3is

−
Gm0rs
r3s

+
Gm0ri
r3i

+

N∑
j6=0,i

Gmj

( rsj
r3sj

−
rij
r3ij

)

= −
Gm0rs
r3s

+
Gmirsi
r3si

−
Gmiri
r3i

+

N∑
j6=0,i

Gmj

( rsj
r3sj

−
rj
r3j

)
,

which proves (7.2). Therefore, the accelerations are equal and we can pass from a
formulation to the other without any change in the motion.

For the gravitational field of Jupiter we have

∇rsU(rs) = ∇riU(ri) +∇rsU(rs) −∇riU(ri),

where for the satellite-centric acceleration we have two components: the first is the
direct term, acting on the spacecraft, while the second is the indirect term, due to
the fact we are using a non-inertial frame.

For the other forces we have similar equalities, apart from the local forces that
we consider in dyn11x only. The advantage of this approach is to consider these
forces only when their contribution has a real impact on the orbit, i.e. when the
spacecraft is close to the Galilean satellites (during the flybys for example), while
we omit them when the probe is orbiting around Jupiter and is far from the moons.

The choice to switch the dynamics is suitable in the code for another reason:
we can easily associate a different time step for each dynamics, so that for dyn11x
(i.e. during the flybys) we will use a very short integration step, while during the
orbiting phase we can relax it.
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7.3.1 Pseudo-orbit of the spacecraft

Since we gave up the hope to obtain a whole orbit of the spacecraft during the
flybys phase, for limitations in the computation, we have to make a different choice.
If a whole orbit, given by the propagation of a single initial condition, is out of
reach, then we can build something that seems it, whose difference from a real
orbit is invisible to the observations’ accuracy we are considering.

For this task, we take advantage of the theory presented in [46]. First we intro-
duce the notion of pseudotrajectory: a δ-pseudotrajectory of a dynamical system
Φ, is a sequence of points ζ = {xk}k such that it holds

d(Φ(xk), xk+1) < δ,

where d is the distance function of the space where Φ is defined. It means that a
point of the pseudotrajectory is mapped by Φ in a neighbourhood of the following
point of the sequence.

Generally, a pseudotrajectory is the result of numerical methods applied to ob-
tain orbits of the dynamical system Φ. It is said that a point x ε-shadows a pseu-
dotrajectory ζ if for every k it holds

d(Φ(x)k, xk) < ε.

Given the previous definitions, we have the following result:

Shadowing Lemma. Let be Λ a hyperbolic set for a diffeomorphism Φ, then there exists
a neighbourhood W of Λ such that for all ε > 0 there exists δ > 0 such that for any
δ-pseudotrajectory with initial conditions ζ ∈W there is a point x that ε-shadows ζ.

In light of this theory, we can try to generate a pseudotrajectory for JUICE, in-
stead of a real orbit. It is not straightforward to prove that the spacecraft’s orbit
belongs to a hyperbolic set; moreover, it is not even simple to compute the value
of δ and ε. However, what is really important is that operatively this pseudotrajec-
tory, called pseudo-orbit since we are in the context of celestial mechanics, is not
something different from a real orbit, being the discrepancy much smaller than
the accuracy of the observations.

For generating the pseudo-orbit, we can patch single arcs at the conjunction
times between the flybys. The dynamical models we use are very elaborated,
therefore, we cannot just perform a patch of conic curves, as for example hyper-
boles and ellipses in the case of simplified models. This is useful for the initial
design of the mission, but we need something more sophisticated.

We want to link the arcs of the flybys phase (23 in total, therefore 22 connections),
at a level that the observations cannot see the jumps between them; for example
at a level of almost 2 order of magnitude smaller than the accuracy of range and
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Linked arcs Distance (days) |d| position (10−1 cm) |d| velocity (10−6 cm/s)

1-2 214.68 4.06 0.16
2-3 57.21 0.20 0.01
3-4 38.30 0.38 0.09
4-5 21.46 0.12 0.06
5-6 13.82 0.03 0.02
6-7 14.24 0.12 0.33
7-8 11.75 0.06 0.04
8-9 21.50 0.29 0.07
9-10 39.54 1.45 1.13
10-11 16.69 0.10 0.05
11-12 16.68 0.02 0.01
12-13 16.68 0.11 0.05
13-14 83.44 0.24 1.12
14-15 16.68 0.20 0.09
15-16 16.68 0.05 0.01
16-17 16.68 0.08 0.04
17-18 16.66 0.13 0.05
18-19 18.38 0.02 0.01
19-20 35.76 0.70 0.58
20-21 16.36 0.04 0.01
21-22 17.02 0.05 0.01
22-23 59.24 0.47 0.19

Table 7.3.: Jumps in the flybys’ extended arcs with the computed pseudo-orbit.

range-rate observations. This means a jump of 10−1 cm in position and 10−6

cm/s in velocity. For this task, we apply the constrained multi-arc strategy. Our
objective is to find new values for the local initial conditions in such a way that
the jumps are reduced to the mentioned level.

In fact, we cannot use initial conditions from the SPICE kernel, propagate them
and hope to find a perfect linkage. Actually, the difference can be also some hun-
dreds of kilometers for the couples of flybys more distant. Moreover, as described
in Chapter 6, we have to take into account the manoeuvres, both the ones present
in the mission plan and the ones we added. Therefore, in this preliminary step, we
start with 23 initial conditions (one per flyby), taken from the SPICE kernel, and to
default values for the manoeuvres. Then we perform the differential corrections
in order to reach jumps at the connection times smaller than the level we fixed.

The result of this procedure is presented in Table 7.3 and 7.4. In the first table we
can appreciate how the jumps are very below the order we demanded, with only
few cases of the order of 10−1 cm and 10−6 cm/s. In the second table we reported
the differences between positions and velocities of the new initial conditions and
the SPICE kernel. In most of the cases the change is smaller than 10 km, sometimes
smaller than 1 km; in just two flybys we find a variation greater than 10 km (23 and
36 km respectively), which compared to the distance of thousands of kilometers
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Flyby Target Body Position (cm) Velocity (cm/s)

1 Ganymede 536 1

2 Ganymede 432766 124

3 Ganymede 225071 79

4 Ganymede 2381474 409

5 Ganymede 3656631 399

6 Europa 38592 39

7 Europa 80533 28

8 Callisto 124652 24

9 Ganymede 252149 110

10 Callisto 167594 50

11 Callisto 286078 29

12 Callisto 35018 13

13 Callisto 71560 23

14 Callisto 33580 66

15 Callisto 23275 54

16 Callisto 73337 41

17 Callisto 611216 88

18 Callisto 53520 23

19 Ganymede 200866 27

20 Ganymede 386355 29

21 Ganymede 17162 23

22 Callisto 133052 72

23 Callisto 262786 97

Table 7.4.: Changes in the initial conditions with respect to the SPICE kernel. For the first
flyby we have a very small shift, since the JOI manoeuvre is just few hours later
and the correction affects mainly the manoeuvre.

to the moon’s center of mass or hundreds to the moon’s surface, does not disrupt
the plan of the mission.

Unfortunately, this step must be performed each time we modify the dynamical
models, as any small change brings to jumps greater than the level we demand.
However, we do not need to start from the SPICE kernel’s initial conditions every
time, but, as the modification is generally small, we can take as first guesses the
previously calculated initial conditions.

We can try to pass from the computed pseudo-orbit to a whole single orbit, in
light of the small jumps presented in Table 7.3. In Figure 7.5 we show an attempt
to generate the whole orbit of the spacecraft, starting with one of the new initial
conditions we found with the described method. We can see that, even if the
difference in the first jump is below the level of the centimeter, after four flybys
(both forward and backward, counting also the flyby at the initial condition of
the spacecraft) the spacecraft misses the other close encounters of the moons and
its orbit becomes completely different from the planned tour. The divergence we
found is in agreement with the computation horizon we presented in Figure 7.3.
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Figure 7.5.: Orbit of JUICE during the flybys phase: with the black line as given by the SPICE
kernel, with the coral line as computer in the attempt to recover the whole orbit from
a single propagation. The accordance with the mission’s plan lasts for few flybys, then
the orbit changes completely.

7.4 description of the main programs

Once we obtain the new local initial conditions X(k)
sc (k = 1,n) that provide the

pseudo-orbit of the JUICE mission, we have all the elements we need to perform
the orbit determination experiments. In this section we give the details about
the main programs js_sim and js_cor we implemented for the processing of the
JUICE mission data.

In the simulator js_sim we take the initial conditions of the spacecraft for each
arc; for the flybys they are the new computed states, while for the arcs of the
Ganymede orbiting phase we can take the states from the SPICE kernel. From the
time of the first arc to the time of the final one, we have approximately the time
span of the mission. For this interval of almost 4 years, we need the positions of the
planets and the Jovian satellites, which intervene in the propagation of the probe.
Apart from the Galilean satellites, we propagate also the BJS, Saturn, Uranus and
Neptune. All the other bodies are taken from the corresponding ephemerides.

The task of the simulator is to generate the observations, therefore, we can in-
tegrate the spacecraft’s motion just during the tracking sessions. The duration of
the tracking is almost 8 hours, therefore, we integrate JUICE for 4 hours forward
and 4 hours backward from the initial time, taken at the pericenters of the flybys
or at an arbitrary time for the other arcs.

From the numerical propagation and the ephemerides we get all the state vec-
tors we need for the computation of the observations, using the mathematical
models defined in the prediction functions (6.19), (6.21) and (6.22). We create
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a list of observations’ times: for the range-rate we consider an interval of 30
s between one observation and the other, with a consequent 2-way accuracy of√
1000/30× 3× 10−4 ≈ 1.7× 10−3 cm/s, while for range and VLBI 300 s, with

an accuracy of
√
1000/300 × 20 ≈ 36 cm and 10−10 radians respectively. This

makes 1076 observations per arc, if there is not any interruption of visibility: 827
range-rate observations, 83 range and 166 VLBI (right ascension and declination).
Since we want to simulate realistic data, we add a Gaussian noise to the simu-
lated observables, with mean 0 and standard deviation equal to the accuracy of
the measurements.

Finally, we prepare output files that will be handled by the corrector. We store
the simulated observations, the values of the parameters and the initial conditions
of the different bodies, in order to have suitable input files for the second program.

The corrector js_cor takes all these information and prepare the setting up for
the differential corrections. First, we choose the fit parameters x and we save the
values we used in the simulator in the vector of the true parameters xT . For the
iterative process we need a first guess x0 for the values of the fit parameters. We
can decide to begin directly from the true values x0 = xT or we can decide to add
systematic errors in the correction, starting with different values.

Just like in the simulator, we have to propagate the planets, the Galilean satellites
and the spacecraft, in order to have their states for the computation of the observa-
tions. Moreover, since we need the values of the various partial derivatives ∂X/∂c,
we have to integrate the variational equation (6.4). It is worth noting that, if c is an
unknown parameter that intervene both in the spacecraft and Galilean satellites’
dynamics, the derivative of the target function R is

∂R

∂c
=

∂R

∂Xsc
∂Xsc(t)
∂c

+
∂R

∂Xgs
∂Xgs(t)
∂c

.

Moreover, since the spacecraft dynamics depends on the Galilean satellites’ states,
for the partial derivatives of the spacecraft’s acceleration we have to consider two
terms:

∂Ẋsc
∂c

=
∂Ẋsc(t)
∂c

+
∂Ẋsc
∂Xgs

∂Xgs(t)
∂c

.

Therefore, if we propagate the spacecraft also outside the tracking sessions, we
need to store the values of the partial derivatives of the moons for the whole
length of the mission, with a hard occupation of computer memory. In fact, the
number of the variables is not just the sum of the dimension of the states, but
it must be multiplied by the number of the fit parameters. In the case of JUICE,
the number of the fit parameters is quite large, therefore, the orbit determination
problem has a very big dimension.

Since we use a constrained multi-arc strategy, we propagate the spacecraft for
very long times, at least during the flybys phase. The propagation must be con-

98



7.5 setting up of the experiments

tinued until the conjunction time between the arcs: for this reason, though in the
simulator the arcs’ length was just few hours, in the corrector we have extended
arcs that can be longer than 100 days.

Once we have the simulated and calculated observables, we can make the dif-
ference and obtain the residuals. The target function (6.16) is the sum of the
normalized residuals, divided by the number of the observations, plus the part
due to the jumps.

Following the theory presented in Chapter 6, we apply the differential correc-
tions for the least squares method. We compute the design matrix B, the normal
matrix C and we invert it in order to solve the correction step (6.10). In this way,
we obtain the covariance matrix Γ , with the uncertainties and the correlations be-
tween the fit parameters, and new values for x, that will be used in the following
iteration of the method.

We stop the iterative method at convergence and we save the last values ob-
tained. In Chapter 8, we will present an analysis of the orbit determination’s
results.

7.5 setting up of the experiments

Each flyby is a great occasion to obtain information about the Galilean satellites;
moreover, their extension in time allows to investigate effects whose contribution
increases most with time, such as the tidal dissipation. For these reasons, in order
to get as much information as possible, in the following experiments we consider
both radioscience and VLBI data for all the flybys.

Apart from these first 23 arcs, we must define a observations’ plan during the
Ganymede orbiting phase. In [17], the radioscience experiment is scheduled each
day of the mission. This means almost other 280 8-hours tracking arcs; not for
all of them we can consider VLBI observations, since this technique is much more
expensive than the tracking. Following [8], we fix a VLBI session a day every ten.

In this section we define all the necessary elements for running the experiments.

7.5.1 Fit parameters

Following the requirements of the mission we presented at the beginning of this
chapter, and taking into account the effects introduced into the dynamics, we
consider the following fit parameters:

• initial conditions of the spacecraft for each arc (6 coordinates per 300 arcs);

• manoeuvres (3 coordinates per 23 manoeuvres);

• initial conditions of the BJS (6);
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• initial conditions of the Galilean satellites (24);

• masses of Europa, Ganymede and Callisto (3);

• gravitational field of Europa, only C(2)
20 , C(2)

22 (2);

• gravitational field of Callisto up to degree 3 (13);

• gravitational field of Ganymede up to degree 10 (117);

• mass of Jupiter (1);

• gravitational field’s parameter Jl (l = 2, 6) of Jupiter (5);

• k2 of Europa, Ganymede and Callisto, k3 and k4 of Ganymede (5);

• dissipative parameters k2/Q of Jupiter and Io (2).

Considering one set of initial conditions and one manoeuvre, the total dimen-
sion of the vector x of the fit parameters is 187, where the first two points of the
list refer to local parameters, while the others to global parameters. For some of
them we will consider apriori observations which will help the inversion of the
normal matrix. Actually, we are not interested in all the parameters of the list. For
example, the gravitational field of Jupiter will be studied extensively by the Juno
mission and it is not an objective of JUICE. However, we want to consider their
contribution to the uncertainties of the other parameters.

Also the mass of Io and its gravitational coefficients C(1)
20 and C(1)

22 should be in-
cluded in the list, because of their important role in the Galilean dynamics. How-
ever, due to the fact that the spacecraft will not perform any flyby of the moon,
in this first preliminary study we decided not to add them in the fit parameters.
Differently from the same coefficients of the other satellites, the most of the infor-
mation of these parameters we can obtain with JUICE data comes from their effect
on the orbits of the other moons. For this reason, we choose not to solve for any
physical parameters of Io (except k2/Q) and to leave for a future analysis a more
complete study including them, as well as the parameters describing the rotation
of the moons (such as the pole direction).

Moreover, another important task will be to introduce the dissipative effects for
all the Galilean satellites. In this way we could try to estimate the dissipative
parameters of the other moons and the one of Jupiter for each of their orbital
frequencies, as done in [25] for the Saturn system. However, since the tidal dis-
sipation in the couple Io-Jupiter is far greater than for the other moons and it is
also spread to Europa and Ganymede, it could be not easy to separate the var-
ious similar effects, with a consequent presence of rank deficiencies in the orbit
determination.
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Parameter Body Uncertainty Reference

∆C00 Europa 6.2× 10−6 Galileo mission and others [15]
C20 Europa 8.2× 10−6 Galileo mission [41]
C22 Europa 2.5× 10−6 Galileo mission [41]
∆C00 Ganymede 3.0× 10−6 Galileo mission and others [15]
C20 Ganymede 2.9× 10−6 Galileo mission [41]
C22 Ganymede 0.9× 10−6 Galileo mission [41]
∆C00 Callisto 1.4× 10−6 Galileo mission and others [15]
C20 Callisto 0.8× 10−6 Galileo mission [41]
C22 Callisto 0.3× 10−6 Galileo mission [41]
∆C00 Jupiter 1.6× 10−8 Juno mission [14]
J2 Jupiter 1.4× 10−8 Juno mission [14]
J3 Jupiter 1.0× 10−8 Juno mission [14]
J4 Jupiter 0.4× 10−8 Juno mission [14]
J5 Jupiter 0.8× 10−8 Juno mission [14]
J6 Jupiter 0.9× 10−8 Juno mission [14]
xgs Galilean satellite 100 km L3 Ephemerides
ẋgs Galilean satellite 10 m/s L3 Ephemerides

Table 7.5.: Apriori uncertainty of some fit parameters.

It is worth noting that the simplest way to proceed would be to estimate the
gravitational field of Ganymede, considering just the orbiting phase around the
moon. Then we can use its coefficients as known quantities and we omit them in
the fit parameters once we process the data of the whole mission. However, since
we want to show that a complete inversion of the data is possible, we consider all
the parameters together.

7.5.2 Apriori knowledge

The Jupiter’s system has been widely explored during the last century, both thanks
to astrometric observations and previous space missions. The Galileo mission
had the opportunity to perform some flybys of the moons, from which it was
determined the masses of the moons and their gravitational coefficients C20 and
C22. The uncertainties for these parameters are taken from [15] and [41]. Their
values and the ones of the other parameters we consider in this paragraph are
reported in Table 7.5.

Moreover, Juno mission is already providing extraordinary results about the
gravitational field of Jupiter, as presented in [14]. The current estimation for the
zonal coefficients is of the order of 10−8. We add these information to the normal
matrix.

Finally, from past observations moons’ ephemerides were computed, with a
nominal accuracy of tens of kilometers for the satellites as stated in L3 ephemerides.
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Obs. Time Target body Distance (km)

1 11-23-2030 Io 9.7× 105
2 01-29-2031 Io 9.1× 105
3 03-24-2031 Io 8.7× 105
4 06-10-2031 Io 8.7× 105
5 08-06-2031 Io 8.2× 105
6 09-19-2031 Io 4.9× 105
7 12-16-2031 Io 8.8× 105
8 02-07-2032 Io 9.6× 105
9 04-07-2032 Io 9.0× 105
10 06-26-2032 Io 8.1× 105

Table 7.6.: Selected JANUS observations.

This apriori uncertainty is greater than the formal uncertainties we will obtain for
the Galilean satellites’ initial conditions with JUICE, but, although they will con-
tribute poorly to the estimation, they will anchor these states at their true values
once we add systematic errors.

7.5.3 Scheduling of camera and astrometry observations

Since we do not have direct observations of Io, but the information about its state
is contained just in the orbits of the other moons, we have to deal with a weak
determination. This lack of information brings to inversion problems, which, fol-
lowing [8], can be solved with the addition of new observations. In Chapter 5 and
Chapter 6 we presented camera and astrometric observations: their main motiva-
tion and contribution is to stabilize the estimation of Io’s orbit.

For ground based astrometry we consider two observations session every year;
each session corresponds to two days where right ascension and declination of all
the four moons are captured, for a total of 16 observations (2 couples per moon).
Their contribution is quite limited, due to their poor linear accuracy, at least with
respect to the other kinds of observations.

For JANUS observations we take a list of 10 observations times for which Io is in
a suitable position for the acquisition of astrometric picture with the camera. No
one of the considered times is contained in the time span of the Ganymede orbiting
phase, since it is supposed that JANUS will observe the icy moon. In particular,
6 observations are taken during the flybys phase, far from the close encounters,
and the other 4 during the empty period between the two main phases of the
mission. In Table 7.6 we reported the ten observations, with the related time and
the distance from the target body. As the nominal precision of the camera is set to
10−5 radians, the linear accuracy is between 5 and 10 kilometers. Although it is
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Linked arcs ∂xl/∂ẋ0 ∂yl/∂ẏ0 ∂xr/∂ẋ0 ∂yr/∂ẏ0

1-2 -6999.3 -36623.3 5392.4 -20266.6
2-3 -1004.9 -4285.2 1483.6 -2876.1
3-4 -542.3 -2496.5 -996.9 960.1
4-5 266.7 1108.1 -480.6 438.2
5-6 205.1 489.9 34.3 4.4
6-7 14.5 -69.2 34.6 -1.9
7-8 14.7 -63.8 -115.7 30.8
8-9 381.1 -6.4 152.5 -774.4
9-10 1111.0 1592.0 -945.8 -102.7
10-11 -149.2 -39.2 188.3 -2.6
11-12 -124.8 -36.9 162.7 1.0
12-13 -93.9 -34.3 124.8 3.7
13-14 31.4 106.1 -35.7 -55.6
14-15 -49.6 -18.9 61.6 1.9
15-16 -52.1 -16.3 60.6 0.3
16-17 -46.9 -13.6 51.1 -0.7
17-18 -38.4 -11.0 39.0 -1.0
18-19 -29.6 -8.4 18.1 -29.1
19-20 86.7 -108.9 28.6 -25.7
20-21 4.3 6.4 15.6 -12.9
21-22 7.9 -70.4 -0.9 3.5
22-23 -32.1 5.8 -53.6 27.1

Table 7.7.: Values (to be multiplied by 106) of some partial derivatives of the spacecraft’s
state at the time of the jumps. In particular, xl and yl(respectively xr and yr)
are two coordinates of the spacecraft at the conjunction time obtained from the
initial conditions of the left arc (respectively right), while ẋ0 and ẏ0 are two
initial conditions’ components of the primary moon.

larger than in the case of range measurements, the camera’s observations will be
of great value in the orbit determination.

7.5.4 Control on the jumps

As we showed in the critical issues of the JUICE mission, the uniform accuracy
required for 4 years of the mission is very small, and some problems arise from
the limitations of machine computation. An example is the control on the moons’
states for times far from the initial conditions: we showed that a change of the
order of the machine error in the initial state of the moons leads to a non-negligible
variation in the residuals.

The same issue affects the jumps of the spacecraft’s orbit. As presented in the
previous sections, we computed an initial pseudo-orbit in such a way that the
jumps between the extended arcs are at the level of 10−1 cm and 10−6 cm/s.
In the target function we would add a constraint to the jumps of the level of the
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radioscience observations’ accuracy, i.e. 10 cm and of 10−3 cm/s. In this way at the
end of the correction we would find again a pseudo-orbit with a uniform and strict
bound, at least smaller than the nominal accuracy of the observations. However,
this is not straightforward; in fact, in the case we solve for parameters involved in
the Galilean satellites’ dynamics (such as their initial conditions or the dissipative
parameters), we do not have the control on the jumps we desire. As shown in
Table 7.7, for the flybys furthest from the moons’ initial conditions, a change of δ in
the velocity of the primary moon’s initial conditions can lead to a change of more
than 1010δ in the position of the spacecraft at the time of conjunction. This means
a control on the jumps of the order of 10 cm for the furthest flybys. The same
computation can be done for the velocities. The requested level of control is too
strict and it undermines the convergence of the differential corrections, therefore
we have to relax it.

This divergence of some partial derivatives of the spacecraft state occurs when
we estimate simultaneously the initial conditions of the spacecraft and of the
Galilean satellites. In this case, the chaotic effects on the spacecraft are ampli-
fied by a change in the state of the primary satellite at the time of the flyby. In
fact, moving the position of the moon during the flyby, is like shifting the space-
craft itself. This change of position is not just at the level of machine error, but
far greater, since it is propagated from the time of the moons’ initial conditions
(see Figure 7.1). For this reason the jumps associated to flybys further from the
initial state of the satellites are the ones with the larger divergence, as clear from
the values of Table 7.7.

We adopt the apriori constrained multi-arc approach presented in [1] with a
small modification: we choose a fixed weight matrix

Cj,j+1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 108 0 0

0 0 0 0 108 0

0 0 0 0 0 108


,

while we define the penalty parameter µ in such a way that it depends on the
number of the iteration and on the flybys we are considering. In the case µ = 1,
since in (6.16) Cj,j+1 defines a quadratic form in the jumps, it would follow that
we demand jumps of the order of 1 cm and 10−4 cm/s, a bound too strong as we
explained. For the first iterations we define softer weight matrices, in order not
to demand a too strict constraint abruptly, while for the following iterations we
increase the contribution of the jumps in the target function. In light of the values
reported in Table 7.7, we implement an empirical non-uniform constraint of the
jumps. We divide them in three groups: the first one comprehends just the first
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jump, the second group is composed by the jumps number 2, 3, 4, 5, 8 and 9, while
the others form the last group. For the first group, which is the furthest from the
initial conditions’ time of the Galilean satellites, we define µ equal to 1010 for the
first iteration, 108 for the second iteration, and 106 for the following iterations. For
the jumps of the second group, following the same strategy, we fix µ equal to 108,
106 and 104, while for the others 106, 104 and 102. Finally, we are demanding
jumps in position of the order of ten meters (first group), 1 meter (second) and 10
centimeters (third).

Unfortunately, these values take us away from the concept of pseudo-orbit we
defined in the previous sections. In fact, if in simulation we have jumps invisible
from the observations, in correction we demand and we find jumps greater than
the range and range-rate accuracy. This is done to ensure the convergence of
the differential corrections. What we obtain at the end of the correction is not a
pseudo-orbit, because of the lack of a small uniform bound on all the jumps, but
23 arcs whose differences at the conjunction times increase when we move away
from the initial time. However, although this is a theoretic issue which shows the
limitation of the procedure for a complicated scenario like the one of JUICE, it
does not have a dramatic impact in the orbit determination experiments. Apart
from the first jump, which is very distant both in space (from Jupiter, because of
the very eccentric initial orbit) and in time (from the two involved flybys), we have
a uniform bound on the other jumps at least of the order of the meter, which is
not so different from the initially requested values. Moreover, for what concerns
the observations and the residuals, this non-uniform treatment of the jumps does
not have repercussions. In fact, as we will show in the next chapter, we manage
to fit the data at the level of the noise for all the flybys, meaning that also with a
weaker constraint on the jumps we obtain good results.

As we already mentioned, in [42] the authors showed that the constrained multi-
arc do not improve the estimation of the dynamical parameters when we are in
ordered regions; therefore, for the arcs of the Ganymede orbiting phase, we do not
apply the constrained multi-arc, or equivalently Cj,j+1 = 0 for j > 23.

7.5.5 Systematic errors

As we noted in the previous section, if we start with x0 = xT , the residuals will
contain only the Gaussian noise added to the simulated observables. In this case,
the target function would start close to 1 and the differential corrections will bring
to a minimum whose value is generally slightly below the initial one.

It is interesting to see the response of the differential corrections when we add
some sources of errors. Apart from the Gaussian noise on the simulated observ-
ables, for our experiments we choose to consider systematic errors, taking first
guesses such that x0 6= xT . This is the case of real experiments, where we do

105



methods

not know which are the true values of the parameters and we start from the best
approximation we have.

Since we are mostly interested in the determination of the Galilean satellites’
states and the dissipative parameters, we perform tests for which only the initial
guesses of these parameters are different from their true values. For the Galilean
satellites’ positions we will add to each component a random quantity with stan-
dard deviation equal to 100 meters, while for their velocity 10−1 cm/s. They seem
very small changes, and in fact they are, but we must remember that the accuracy
of the measurements is 102-103 times smaller and that we propagate these states
for almost 2 years. From Table 7.1 we know that a change of 10−1 cm/s in ẏ0 of
Ganymede leads to an initial error in y(t) of 100 kilometers in the first flyby, and
we can verify that the same happens for a change of 100 meters in position.

Instead, for the dissipative parameters, we start from a first guess equal to 0,
and we want to see if the method converge to their true values, set to 0.015 and
1.1 · 10−5 respectively.

Because of these systematic errors, the target function will have an initial value
of the order of 1010-1011. In Chapter 8, we will see how the differential corrections
bring Q at the level of the observations’ precision.

7.5.6 Convergence criteria

As we mentioned in the previous sections, the convergence of the differential cor-
rections suffer the strict control we demand for the whole length of the mission.
From the simulations, we find that once we arrive at the level of the noise, the or-
der of the fit parameters’ variation |∆x|C does not change and they move around
the minimum of Q.

For this reason we relax the convergence criteria, also in light of the systematic
errors which makes the target function begin from a value very distant from 1. Fol-
lowing the notation of Chapter 6, in our experiments we consider the differential
corrections convergent if one of the two following conditions occurs:

• the norm of the change in the fit parameters is less than εx = 5× 10−1;

• the target function changes less than εq = 3× 10−3 for nq = 2 consecutive
iterations.

In Chapter 8, we will show the value of the target function for all the iterations,
in order study the convergence speed.
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In this chapter we present the results we obtain with the orbit determination exper-
iments we described in Chapter 7, in particular we report the formal uncertainties
(1-σ) and the true errors of the fit parameters we find at the convergence of the
differential corrections. We perform ten experiments (Ei, i = 1, 10), using all the
times different random seeds both for simulation and correction, in order to verify
that the differential corrections converge for various systematic errors of the order
we fixed.

In Table 8.1 we reported the random quantities added to the true values of the
Galilean satellites’ initial conditions, in order to start with a non-trivial first guess
x0. For the same reason, as we already mentioned, we take 0 as first guess for the
dissipative parameters.

Because of the wide time span we consider, the number of the arcs and the
great number of fit parameters we solve for, the computation time is very large:
the corrector takes some hours per iteration. In particular, the propagation of the
moons for the time of the whole mission and the propagation of the spacecraft
outside the tracking sessions, especially for the furthest flybys, are the parts of the
processing that require more time. Moreover, since we store the Galilean satellites’
states and partial derivatives for each step of their integration, the occupation of
the RAM is an issue we have to pay attention to. For the future, it will be necessary
to change some strategies in the code, starting with a parallelized computation for
different arcs.

From Table 8.2 we can appreciate how, after the first iteration of the differential
corrections, the target function decreases abruptly. It means that the iterative pro-
cess moves rapidly the parameters toward a minimum of Q. We note that in the
third iteration the value of Q can increase: this is due to the change of the jumps’
weight matrices, whose values are greater than in previous iterations. Starting
with an initial value of Q of the order of 1010-1011, we need between 8 and 10

iterations to arrive at convergence, apart from E1 which is more rapid. For all the
experiments the final value of the target function is below the level of the noise,
which is almost 1, meaning that we arrived near the nominal minimum of the
problem. Apart from experiments E3 and E8, the convergence is determined by
the small correction of the parameters in the last iteration, below the tolerance’s
value 0.5. It is worth noting that, because of the convergence issues we presented
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Coord. E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

x1 0.19 -0.07 -1.19 1.61 1.72 -1.09 -0.65 -0.10 -0.27 -0.22

y1 -0.86 0.00 0.19 -0.58 1.72 -1.33 0.81 0.24 -0.10 -0.80

z1 0.05 -0.08 -0.91 0.81 0.69 0.64 -0.51 0.22 1.16 -1.39

x2 -0.24 -0.44 1.81 -0.03 -1.39 0.06 -0.22 -0.01 -0.99 -0.32

y2 -0.30 0.97 -0.80 1.43 1.40 -0.96 -0.34 -0.95 -0.00 -0.49

z2 2.28 -0.39 -0.71 2.19 -0.95 -2.19 0.78 -0.16 1.17 -0.24

x3 -0.40 -1.67 0.91 0.25 -0.89 -0.79 -1.05 0.20 1.21 -2.12

y3 -0.80 0.98 1.68 -0.03 1.35 -0.25 0.25 0.09 -2.97 0.77

z3 -0.57 -0.33 -1.18 0.65 -0.32 -0.91 -0.21 1.58 -0.20 -0.04

x4 0.61 -0.68 0.12 0.25 1.92 -0.15 -0.05 -0.22 1.11 -0.75

y4 0.58 -0.11 -0.72 -1.63 -1.86 -0.75 -0.55 0.66 -0.47 0.69

z4 1.11 0.51 -1.24 -1.52 -0.25 0.80 -0.82 0.49 0.37 1.91

ẋ1 0.76 -0.02 0.67 0.65 -2.15 -1.33 -0.96 0.95 0.92 0.58

ẏ1 0.03 0.03 0.65 0.31 0.00 0.49 0.21 -1.73 -0.70 1.75

ż1 0.75 -0.55 0.85 1.76 1.58 1.42 -1.11 -0.70 -0.46 -0.67

ẋ2 -0.81 0.01 -0.93 -0.89 0.99 -1.72 0.53 -0.21 1.62 0.14

ẏ2 1.08 0.89 0.07 -0.32 0.63 -0.19 1.51 -0.19 2.81 -0.55

ż2 0.68 0.92 -0.52 -0.74 0.12 -2.26 -0.35 -0.99 0.38 1.87

ẋ3 1.53 -0.91 -1.12 0.20 0.75 -1.17 1.17 0.50 0.58 0.68

ẏ3 -1.39 -1.73 -1.31 -0.96 -2.24 -0.09 0.40 -1.23 1.58 -0.05

ż3 0.50 0.86 -0.21 0.82 -0.22 -0.19 -1.38 0.25 -0.88 -1.46

ẋ4 1.30 -0.70 0.14 0.03 1.09 -0.81 1.44 -0.51 -0.85 0.69

ẏ4 -0.29 -0.47 0.29 0.16 2.04 -0.58 -1.42 -0.55 0.37 -0.76

ż4 2.16 -1.05 -1.27 1.65 -1.97 2.09 -0.28 -0.18 0.32 0.86

Table 8.1.: Systematic errors for each component of the initial vector state of the Galilean
satellites (units of measure 100 meters for the position and 10−1 cm/s for the
velocity). For every experiment Ei (i = 1, 10) we have different values.

in Chapter 7, if we continued the iterative process, the value of the target function
would begin to oscillate around its minimum value and x would move around the
nominal solution. A hint of this behaviour can be found in experiments E3 and
E8, for which the convergence is given by the stabilization of the value of Q.

It is interesting to compare Table 8.1 and 8.2, in order to verify the effect of
the systematic errors on the different simulations. The experiments with a bigger
initial value of Q are the ones with a greater error in the initial conditions of
Ganymede, in particular for the components x, y, ẋ and ẏ. This is due to the
fact that Ganymede’s state is involved in most of the arcs and that the motion
takes place mainly on the xy plane and a change in these components is amplified
quickly.

Although we use non-uniform constraints on the jumps between the flybys, we
manage to obtain uniform results on the residuals of all the arcs. In Figure 8.1, 8.2
and 8.3 we reported the residuals obtained at convergence; in order to compare
together the residuals of the different kinds of observations, we normalized them
dividing for their weight. All the points are at the level of the noise, meaning
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Figure 8.1.: Normalized residuals of the first eight flybys. The violet crosses are the residuals
of range-rate observations, blue asterisks for range, red squares and green circles for
VLBI (right ascension and declination respectively). The residuals are taken at the last
iteration of the differential corrections of the experiment E5 reported in the tables.
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Figure 8.2.: Normalized residuals of the eight flybys in the middle of the phase. The violet crosses
are the residuals of range-rate observations, blue asterisks for range, red squares and
green circles for VLBI (right ascension and declination respectively). The residuals are
taken at the last iteration of the differential corrections of the experiment E5 reported
in the tables.

110



results

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=-0.006
    std=1.013

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 17

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=0.011
    std=0.952

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 18

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=-0.001
    std=1.014

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 19

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=-0.002
    std=0.998

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 20

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=0.001
    std=0.997

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 21

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=0.016
    std=0.973

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 22

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

mean=-0.009
    std=1.020

n
o
rm

a
liz

e
d
 r

e
s
id

u
a
ls

hours

flyby 23

Figure 8.3.: Normalized residuals of the last seven flybys. The violet crosses are the residuals
of range-rate observations, blue asterisks for range, red squares and green circles for
VLBI (right ascension and declination respectively). The residuals are taken at the last
iteration of the differential corrections of the experiment E5 reported in the tables.
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It. E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

1 1.4d10 5.2d11 7.1d10 7.2d9 3.3d11 5.7d10 3.2d9 2.2d10 5.5d11 1.6d11

2 1.3d3 6.2d5 1.4d6 2.7d6 9.7d6 1.4d6 9.1d4 1.2d5 2.8d7 1.7d4

3 2.1d3 2.8d5 1.2d7 1.4d7 4.3d7 7.0d6 6.4d5 7.4d5 5.4d7 1.9d3

4 1.0d2 5.0d4 7.3d5 4.6d5 1.1d6 1.7d5 1.4d4 9.9d3 1.4d5 4.9d2

5 1.10 1.2d2 4.8d3 7.9d3 4.4d4 2.2d3 7.7d1 9.5d1 1.9d2 1.77

6 .996 6.53 1.5d2 9.0d1 2.7d2 3.4d1 3.98 2.89 7.16 1.03

7 1.00 1.86 1.85 5.30 1.22 1.01 1.03 .992 .994

8 .995 .999 .994 1.05 1.02 .997 1.00 .992

9 1.00 .997 .990 .994 1.00

10 1.00 .992 1.00

It. E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

1 1.4d6 8.4d6 3.1d6 9.9d5 6.7d6 2.8d6 6.6d5 1.7d6 8.6d6 4.6d6

2 4.2d2 9.1d3 1.4d4 1.9d4 3.6d4 1.4d4 3.5d3 4.0d3 6.1d4 1.5d3

3 5.3d2 6.1d3 4.1d4 4.3d4 7.6d4 3.1d4 9.3d3 1.0d4 8.5d4 5.1d2

4 1.2d2 2.6d3 9.9d3 7.9d3 1.2d4 4.9d3 1.4d3 1.2d3 4.3d3 2.6d2

5 3.80 1.3d2 8.1d2 1.0d3 2.4d3 5.4d2 1.0d2 1.1d2 3.2d3 1.0d1

6 .416 2.7d1 1.4d2 1.1d2 1.9d2 6.7d1 2.0d1 1.6d1 1.6d2 2.17

7 1.21 1.1d1 1.1d1 2.4d1 5.58 1.52 2.27 2.9d1 .663

8 .401 .697 .355 2.80 2.14 .722 .782 .330 .478

9 .845 .927 .372 .433 .938

10 .952 .319 1.12

Table 8.2.: On the top, values of the target function Q for all the iterations of the ten exper-
iments. On the bottom, the norm of the correction ∆x.

that the fit worked well: the mean of the residuals is close to 0 and the standard
deviation is close to 1 for all the arcs. Just few points have absolute value greater
than 3 and none of them exceeds 4. It is worth noting that there are not clear
differences between the flybys, so that we do not have worse or better results for
further or closer arcs.

In the following sections we will give the details about the formal uncertainties
σ, obtained from the covariance matrix, and the true errors ε, calculated as com-
ponents of x − xT , with x vector of the fit parameters at convergence. While the
formal uncertainties are almost identical for all the experiments, the true errors
depend on the first guess of the fit parameters and the Gaussian noise added to
the simulated observables. The results we will show are the averages of the ten
experiment we performed; in particular, we consider the absolute value of ε. Be-
cause of the operation of mean, we will find values for ε close to σ, and generally
smaller.
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8.1 gravitational and tidal parameters

8.1 gravitational and tidal parameters

Gravitational anomalies and Love numbers are essential to understand the internal
structure and the geological history of the bodies, therefore their knowledge is a
point we cannot omit in our investigation. Since we consider a large number of
fit parameters, we compress the information of the moons’ gravitational fields in
a single value per each degree l. In this way, instead of presenting more than 100
values for the coefficients of the Ganymede’s gravitational field, we summarize
the results in just 10 more significant numbers. Given a degree l, we compute

σl =

√∑l
m=0(σ

2
l,m,0 + σ

2
l,m,1)

2l+ 1
,

where σl,m,0 is the formal uncertainty of the coefficient Slm, while σl,m,1 the one
of Clm. We use an analogous formula for the true error εl. Since for Europa we
estimate just two parameters, we have 2 at the denominator instead of 2l+ 1.

As shown in Figure 8.4, the true errors are not distant from the formal uncer-
tainty, meaning that the differential corrections converged to acceptable values.
Moreover, apart from the number of degrees determined for Ganymede, the dif-
ferences in the estimation between the three moons are clear from the height of the
points plotted in the figure. The lower harmonics of Ganymede are determined
with an uncertainty one order of magnitude better than the ones of Callisto and
two orders than the ones of Europa. This is evident also from Table 8.3, where we
reported the main coefficients of the gravitational fields: ∆C00, C20 and C22. For
all the moons we find an important improvement with respect to the estimation of
the Galileo mission (see Table 7.5); moreover, the number of estimated harmonic
coefficients is far greater and the true errors should be smaller.

In Table 8.3 we present also the results on the gravitational parameters of Jupiter
and the moons’ Love numbers. The nominal values we used in simulation can be
found in Table 6.1 and Table 6.2.

The formal uncertainty of the higher harmonics of Jupiter is completely deter-
mined by the apriori constraints we added, since the orbits we consider are higher
than the pericenters of the Juno mission and then JUICE data do not contribute to
the parameters’ estimation. However, for J2 and J3 we find a slight improvement,
due to the wide time span we are considering. With the acquisition of new data,
the level of knowledge that the Juno mission will reach for these harmonics will
allow to omit them in our estimation. Surprisingly, we obtain an extraordinary
result on the mass of Jupiter, improving its uncertainty of more than two orders
of magnitude; this is probably due to the length of the mission and the fact we
can check its effect not just on the spacecraft’s orbit but also on the orbits of the
moons.
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Figure 8.4.: Formal uncertainties σl and true errors εl of the gravitational field’s coefficients of
Europa, Ganymede and Callisto.

Finally, with the JUICE mission data we manage to determine with a good
accuracy the k2 parameters of all the moons and we obtain a discrete estimation
of k3 of Ganymede. Instead, the uncertainty of k4 is well over its true value,
meaning that we are not able to constrain it with the data considered in the orbit
determination.

8.2 ephemerides and dissipative parameters

As we mentioned in Chapter 7, one of the objective of the JUICE mission is to
improve the planetary and Galilean satellites’ ephemerides. In our experiments we
take into account these requirements estimating their initial conditions, expressed
in an Ecliptic coordinate system.

The BJS initial conditions intervene mainly as kinematical parameter in the pre-
diction functions of the observables. Since it is present in almost all the observa-
tions, it is very important to add it in the fit parameters in order to include its
contribution in the formal uncertainties of the other parameters. From Table 8.4
we can appreciate how the level of the estimation is extremely good, reaching the
order of few centimeters in position (x and y coordinates) and 10−7 cm/s in veloc-
ity (ẋ and ẏ). The reason why the x and y coordinates are determined better than
z is due to the fact the radioscience experiments capture better these components,
while VLBI experiment is more sensitive to the last one. In fact the orbital motion
of the BJS and the Galilean satellites takes place mainly on the plane xy, being in
an Ecliptic system. The result on the BJS will allow to improve the ephemerides of
all the planets, since a better knowledge on the position of the Jovian System will
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8.2 ephemerides and dissipative parameters

Eu Ga Ca

∆C00 C20 C22 ∆C00 C20 C22 ∆C00 C20 C22

σ 1.3d-8 2.1d-6 1.0d-6 4.5d-9 1.1d-8 5.5d-9 5.9d-9 2.8d-7 1.4d-7
|ε| 7.1d-9 1.7d-6 8.6d-7 3.1d-9 1.3d-8 6.7d-9 5.3d-9 1.5d-7 7.2d-8

Eu Ga Ca

k2 k2 k3 k4 k2

σ 8.4d-3 1.2d-4 2.7d-2 8.9 1.5d-2
|ε| 7.1d-3 1.4d-4 2.4d-2 8.4 8.1d-3

Jup

∆C00 J2 J3 J4 J5 J6

σ 3.3d-11 4.9d-9 9.0d-9 4.0d-9 8.0d-9 9.0d-9
|ε| 2.1d-11 3.2d-9 3.1d-9 1.0d-11 7.6d-11 7.6d-13

Table 8.3.: Formal uncertainties and true errors of the dynamical parameters. In the top ta-
ble we reported the results for the main coefficients of the moons’ gravitational
fields; in the middle table the results for the tidal coefficients; in the bottom
table the results for the spherical harmonics of Jupiter.

imply a better determination of the other bodies’ states. In this context, it would
be interesting to try to obtain direct estimation of the other planets’ orbits and pa-
rameters using JUICE data; obviously, to do this, it will be necessary to consider
past observations of these bodies. This is a point we will take up for the Galilean
satellites.

The accuracy of the moons’ ephemerides is of the order of tens of kilometers in
positions. The results we obtain on the initial conditions of the Galilean satellites
is several orders of magnitude smaller, as shown in Table 8.4. In particular for Io
we obtain a total formal uncertainty of tens of meters, for Europa some meters, for
Ganymede few tens of centimeters and for Callisto few meters. This is due to the
extremely accurate data we are considering and the intensive plan of observations
scheduled for JUICE. It is worth noting that, in case of real data, the order of
the true error is probably too optimistic, especially for Ganymede, whose formal
uncertainty in the x and y components is just few centimeters. However, despite
of the systematic errors on the first guess, in our experiments we find that all the
true errors are inside the 3-σ interval.

The formal uncertainties we reported in the Table 8.4 are not a global estimation
of the moons’ orbits accuracy, but the formal uncertainties we obtained on the
initial conditions chosen for the JUICE mission. An objective for the future will
be to include JUICE data to a wider set of observations, in order to quantify their
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BJS

x y z ẋ ẏ ż

σ 1.4d1 5.8d0 1.8d2 1.6d-7 2.7d-7 3.7d-6
|ε| 9.8d0 4.3d0 1.6d2 1.0d-7 2.2d-7 3.5d-6

Io Eu

x y z x y z

σ 2.5d2 1.9d3 8.8d3 3.4d2 1.3d3 7.5d2

|ε| 1.6d2 8.7d2 6.0d3 1.9d2 7.1d2 6.0d2

ẋ ẏ ż ẋ ẏ ż

σ 7.8d-2 1.8d-2 4.9d-1 2.7d-2 6.7d-3 8.0d-3
|ε| 3.2d-2 1.0d-2 2.8d-1 1.4d-2 3.5d-3 4.3d-3

Ga Ca

x y z x y z

σ 5.2d0 1.1d1 9.9d1 9.8d1 1.4d1 3.6d2

|ε| 3.5d0 5.9d0 7.2d1 9.8d1 1.1d1 2.0d2

ẋ ẏ ż ẋ ẏ ż

σ 1.1d-4 4.9d-5 8.8d-4 1.5d-4 2.6d-4 1.4d-3
|ε| 8.5d-5 2.7d-5 6.2d-4 1.4d-4 2.6d-4 9.2d-4

Table 8.4.: Formal uncertainties and true errors of the initial conditions parameters (units
of measure cm for the position and cm/s for the velocity). On the top we
reported the results relative to the BJS state, while on the bottom the values
relative to the moons’ initial positions and velocities.

real contribution on the determination of the moon’s orbits, with the generation
of more accurate ephemerides.

Finally, in Table 8.5, we reported the formal uncertainties of the dissipative pa-
rameters, compared with the values published in [24]. They are the most impor-
tant results of the estimation and the main objective of this part of the thesis: for
k2/Q of Io we obtain σ = 4.7× 10−4, while for k2/Q of Jupiter 2.1× 10−6. The
correlation between the two parameters is 0.9549, due to the similar (and opposite)
effect they have on the orbit of Io. For the dissipative parameters we obtain true
errors inside the 1-σ value for every experiment and a mean value for |ε| three
times smaller than σ, which shows that the estimation works very well for these
parameters.

The result we achieved is significant, since the formal uncertainty for k2/Q of
Io is almost one order of magnitude better than the one published in [24] and
k2/Q of Jupiter is determined at the same level of the paper. This shows that
the total inversion we performed, using the constrained multi-arc strategy in the
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8.3 contribution of the constrained multi-arc method

Io Jup

k2/Q k2/Q

σ [24] 3.0d-3 2.0d-6
σ 4.7d-4 2.1d-6
|ε| 1.6d-4 7.5d-7

Table 8.5.: Formal uncertainties and true errors of the dissipative parameters. In the first
row we reported the formal uncertainties obtained in [24], in order to make a
comparison.

flybys phase, allows to obtain results better than the ones already presented in [8]
for JUICE. Therefore, we found that the potential total information of the JUICE
mission data is equivalent or greater than the one contained in more than 100 years
of astrometric observations. It means that JUICE could provide an independent
estimation of the same level of [24] and that we could compare the results obtained
with the two different data sets. Moreover, as mentioned for the ephemerides, it
will be important to combine all the available observations of the Galilean satellites,
in order to obtain a new and more precise estimation.

8.3 contribution of the constrained multi-arc method

In order to assess the actual advantage due to the inclusion of the jumps in the
target function, we performed a covariance analysis, adding constraints one by
one and looking at the improvement of the formal uncertainty of the dissipative
parameters. We do not perform complete orbit determination experiments, but we
stop the simulations once we invert the normal matrix.

Since we consider constraints only between some flybys and not all of them, it
is worth noting that we cannot solve for all the manoeuvres. For example, if we
constrain just the last two fybys, we must solve for the manoeuvre between them,
while the others are invisible to our simulation.

We start to consider jumps from the last flybys, until to reach the first one. In
Figure 8.5 we show the formal uncertainty of Io’s k2/Q (the behaviour of the
Jupiter’s dissipative parameter is identical) as we add constraints between the
flybys: on the left we reported the result in case we use the constraints’ values
adopted in the thesis, while on the right the case of ideal stricter constraints, set
to 1 cm in position and 10−4 cm/s in velocity for all the flybys.

As represented in the figure, the uncertainty decreases in a significant way, un-
til to reach half its initial value in the more convenient set up (ideal constraints
and no estimation of the manoeuvres). Unfortunately, in a realistic estimation we
cannot avoid to consider the manoeuvres as fit parameters and we must take into
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Figure 8.5.: Formal uncertainty of the dissipative parameter (k2/Q) of Io as function of the num-
ber of constrained couples of flybys. In 0 we put the value in the non-constrained case,
while from 1 to 22 the values obtained constraining from arcs 23◦ − 22◦ to 23◦ − 1◦.
In the figure on the left we showed the result with the constraints we adopted in the
thesis, while on the right we used ideal values. In each figure we reported the case
we solve for manoeuvres between constrained flybys (blue line) and the case we do
not solve for them (red line), in order to better understand the contribution of the
constrained multi-arc strategy.

a account the critical issues arising from using too strict constraints for the jumps.
In the set up chosen for the experiments of the thesis we pass from 5.4× 10−4 to
4.7× 10−4, which is the final value we reported in the results. Although in this
case the gain can seem quite limited, looking at the other simulations there is room
for increasing it.

It is interesting to see for which flybys we obtain larger decreases of the formal
uncertainty of the dissipative parameters. In the case we solve for manoeuvres, we
find that the estimation improves more when flybys of Ganymede and Europa are
involved, while during the long series of flybys of Callisto it reduces its descent.
This is due to the fact that the energy dissipation of Io affects mostly the other
two moons in resonance. However, in the case we do not consider manoeuvres
in the fit parameters, we obtain an important improvement also constraining one
of the jumps located between the close encounters of Callisto. This conjunction is
different from the others of the same phase, since it is in the middle of two very
distant flybys (almost 100 days). In this case the information contained in the jump
manages to give a greater contribution to the determination of k2/Q.

It is also possible that the scheduled times of the manoeuvres can affect the
contribution of the constrained multi-arc to the orbit determination and that other
configurations can provide better estimation of the parameters. A more suitable
disposition of the manoeuvres, or the elimination of them during some flybys, is
worth being investigated in the future.
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8.4 conclusion

In this thesis we presented a preliminary study of orbit determination experiments
with JUICE mission data. Although the project is at its initial stage, for the first
time it has been performed a global inversion of the data, estimating both dynam-
ical parameters, recovered from the spacecraft’s motion, and the satellites’ orbits.
We investigated the contribution of the JUICE mission data to the improvement
of the knowledge of the Galilean satellites’ structure and dynamics, using all the
different data provided by the mission and fitting a large number of parameters.
Since one of the main objective of JUICE is to reconstruct a gravitational model of
the moons, especially for Ganymede, we included the coefficients Clm and Slm of
the satellites in the fit parameters, considering also high degrees parameters for
fulfilling the requirements of the mission. We estimated the Ganymede’s field up
to degree ten, but it is easy to prove that better resolutions can be achieved, espe-
cially if an extension of the mission at lower altitudes will be approved. Moreover,
we showed that, thanks to the flybys, JUICE can improve the knowledge of the
low harmonics of Europa and Callisto.

However, considering also the first part of the thesis, we focused our study on
the dissipative parameters and the moons’ orbits. From the values presented in the
previous section, we found that thanks to JUICE we could reach an independent
estimation of the dissipative parameters, which could be used for a validation of
the past theories (see Table in the Introduction). In particular, the JUICE observa-
tions alone can provide an independent result that can be compared with the ones
presented in [16] and [24], solving the riddle about the amount of dissipation in
the system.

Although this is a very promising result, in the future we cannot limit the esti-
mation of the dissipative effects considering just the JUICE data, but we have to
include all the past observations of the Galilean satellites. In fact, we must aim to
a solution of the motion that fits also the past astrometric data. In this way, we can
relate this work to the ones we cited, as [24], and we can verify the result with a
larger time span, and not limited to a small portion of time. Therefore, one of the
objectives for the next future will be to perform new simulations not limited just
to the JUICE observations, but adding other data sets. Moreover, also the planets
could be involved in this general improvement of the ephemerides.

Since the astrometric data accuracy is some orders of magnitude larger than
the one of radioscience experiments (almost some tens of kilometers), the linear
divergence of the Galilean satellites’ transition matrix, shown in Figure 7.1, should
not cause problems in the combined estimation. In fact, small changes in the
moons’ initial conditions of the order of the machine error will be propagated to
few meters maximum, a variation almost negligible for astrometric data. Instead,
considering also Galileo mission data could be more challenging, being the time
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between the two missions greater than 40 years; in this case the control on the
residuals of the two data sets is more problematic. The same issue arises for
Europa Clipper data, the future NASA mission to Europa. Moreover, since the
number of the scheduled flybys of Europa is 45, the numerical instability arising
from the chaos in the spacecraft’s orbit, well represented in Figure 7.3, will be even
more amplified with respect to JUICE.

Finally, a lot of work still misses for improving our simulations and for process-
ing the future real data of JUICE; amongst them we cite:

• improvement of the dynamical models. Regarding the dissipation, it will be
important to add the dissipative effects of the other moons, taking into ac-
count the different values of k2/Q of Jupiter at the satellites’ orbital frequen-
cies. For the spacecraft, we will need more sophisticated non-gravitational
models, which take into account the actual shape of the probe. Since we
propagate the spacecraft for tens of days outside the tracking sessions, these
forces are not negligible. Moreover, we must implement a model for the
atmospheric drag during the low altitude phase around Ganymede.

• Addition of aberration effects on the prediction functions. In the range and
range-rate functions we added the Shapiro time delay of the radio signal,
due to the deformation of the space near Jupiter and the Sun. However,
we did not studied aberration effects on VLBI and astrometric data, whose
contribution on the observables must be taken into account.

• Verification of the setting we used for the experiments. Although it is very
improbable that the tour of the mission will change at this stage of the plan,
it is possible that the scheduling of the observations can suffer some modifi-
cations. For example, as VLBI observations are more expensive than radio-
science experiments because they must involve a network of ground-based
stations, their sessions could be reduced in number. Moreover, the avail-
ability of astrometric observations of the JANUS camera must be confirmed
officially yet.

Despite of some critical issues we had to deal with, we managed to carry out
a first study of the complete performances of the radioscience experiment for the
JUICE mission. It is important to quantify which is the reliability of the formal
uncertainties we obtained, especially for the determination of the moons’ initial
conditions. However, the preliminary results are more than satisfying. Since the
results depend strongly on the scheduling of the observations, as witnessed by
the necessity of camera’s observations of Io, it is very important to encourage
a synergy between the various experiments of the mission. In fact, the results
we showed are a combination of efforts between different experiments and in-
struments, all of them essential to reach the positive parameters estimation we
obtained in the numerical simulations.
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A COMPLETE SEM I -ANALYT ICAL MODEL

In the first part of the thesis we presented a semi-analytical model of the Galilean
satellites’ dynamics. Because of the length of the Hamiltonian, we avoided report-
ing its whole expression in Chapter 3, but we chose to give the details in this
appendix. In particular, in the next sections we present all the coefficients and all
the terms we added to the model.

a.1 laplace coefficients

In Chapter 2 we showed the expansion of the third-body perturbation (2.11) and
we indicated with cj the coefficients of the terms. Each term is a combination of
other objects, called Laplace coefficients. Their general expression is

bjs(α) =
1

π

∫2π
0

[1− 2α cosψ+α2]−s cos (jψ)dψ,

where j is an integer, s a real number and α is the ratio of the semi-major axes
of the two satellites and it is a number between 0 and 1 (in the case of a 2 : 1

resonance, α is near 0.63).
We can get a new formula using a Taylor expansion in α

1

2
bjs(α) =

s(s+ 1) . . . (s+ j− 1)

1 · 2 · 3 . . . j
αj

×
[
1+

s(s+ j)

1(j+ 1)
α2 +

s(s+ 1)(s+ j)(s+ j+ 1)

1 · 2(j+ 1)(j+ 2)
α4 + ...

]
.

The coefficients cj contain also the derivatives of the Laplace coefficients; because
of the simple structure of the Taylor expansion, we can use a recursive formula

Dnbjs = s
(
Dn−1b

j−1
s+1 − 2αD

n−1b
j
s+1 +D

n−1b
j+1
s+1 − 2(n− 1)Dn−2bjs+1

)
where D is the derivative with respect to α and n is the order of the derivation.

From [34], Appendix B, we have the formulas for all the coefficients we need in
the model. Following the cited book, we use the notation Aj = b

(j)
1/2

and Bj = b
(j)
3/2

.

121



complete semi-analytical model

• For the mutual perturbation between satellites (up to the second order)

c(0,0,0,0,0,0) = (1/2)A0

c1(0,0,0,0,0,0) = (1/8)(2αD+α2D2)A0

c2(0,0,0,0,0,0) = −(1/2)αB1

c(0,0,−1,1,0,0) = (1/4)(2− 2αD−α2D2)A1

c(0,0,0,0,−1,1) = αB1

c(−1,2,−1,0,0,0) = (1/2)(−4−αD)A2

c(−1,2,0,−1,0,0) = (1/2)(3+αD)A1 − (1/2)(1/α2)

c(−2,4,−2,0,0,0) = (1/8)(44+ 14αD+α2D2)A4

c(−2,4,0,−2,0,0) = (1/8)(38+ 14αD+α2D2)A2

c(−2,4,−1,−1,0,0) = (1/4)(−42− 14αD−α2D2)A3

c(−2,4,0,0,−2,0) = (1/2)αB3

c(−2,4,0,0,0,−2) = (1/2)αB3

c(−2,4,0,0,−1,−1) = −αB3

• For the mutual perturbation between satellites (third order)

c1(−1,2,−1,0,0,0) = (1/16)(28+ 5αD− 6α2D2 −α3D3)A2

c2(−1,2,−1,0,0,0) = (1/8)(64+ 6αD− 8α2D2 −α3D3)A2

c3(−1,2,−1,0,0,0) = (1/4)(5α+α2D)(B1 +B3)

c1(−1,2,0,−1,0,0) = (1/8)(−12+ 4αD+ 7α2D2 +α3D3)A1 +α

c2(−1,2,0,−1,0,0) = (1/16)(−28+ 4αD+ 9α2D2 +α3D3)A1 + (3/2)α

c3(−1,2,0,−1,0,0) = (1/4)(−4α−α2D)(B0 +B2) + 2α

c(−3,6,−3,0,0,0) = (1/48)(−804− 279αD− 30α2D2 −α3D3)A6

c(−3,6,−2,−1,0,0) = (1/16)(825+ 291αD+ 31α2D2 +α3D3)A5

c(−3,6,−1,−2,0,0) = (1/16)(−832− 302αD− 32α2D2 −α3D3)A4

c(−3,6,0,−3,0,0) = (1/48)(816+ 312αD+ 33α2D2 +α3D3)A3

c(−3,6,−1,0,−2,0) = (1/4)(−9α−α2D)B5

c(−3,6,−1,0,0,−2) = (1/4)(−9α−α2D)B5

c(−3,6,0,−1,−2,0) = (1/4)(12α+α2D)B4

c(−3,6,0,−1,0,−2) = (1/4)(12α+α2D)B4

c(−3,6,−1,0,−1,−1) = (1/2)(9α+α2D)B5

c(−3,6,0,−1,−1,−1) = (1/2)(−12α−α2D)B4

c(−1,4,−3,0,0,0) = (1/48)(−136− 93αD− 18α2D2 −α3D3)A4

c(−1,4,−2,−1,0,0) = (1/16)(147+ 101αD+ 19α2D2 +α3D3)A3

c(−1,4,−1,−2,0,0) = (1/16)(−152− 108αD− 20α2D2 −α3D3)A2

c(−1,4,0,−3,0,0) = (1/48)(142+ 114αD+ 21α2D2 +α3D3)A1 − (16/3)α
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c(−1,4,−1,0,−2,0) = (1/4)(−5α−α2D)B3

c(−1,4,−1,0,0,−2) = (1/4)(−5α−α2D)B3

c(−1,4,0,−1,−2,0) = (1/4)(8α+α2D)B2

c(−1,4,0,−1,0,−2) = (1/4)(8α+α2D)B2

c(−1,4,−1,0,−1,−1) = (1/2)(5α+α2D)B3

c(−1,4,0,−1,−1,−1) = (1/2)(−8α−α2D)B2

c(−1,2,−2,1,0,0) = (1/16)(−105− 19αD+ 7α2D2 +α3D3)A3

c(−1,2,1,−2,0,0) = (1/16)(−10αD− 8α2D2 −α3D3)A0

c(−1,2,1,0,−2,0) = (1/4)(−α−α2D)B1

c(−1,2,1,0,0,−2) = (1/4)(−α−α2D)B1

c(−1,2,0,1,−2,0) = (1/4)(−4α+α2D)B2

c(−1,2,0,1,0,−2) = (1/4)(−4α+α2D)B2

c(−1,2,−1,0,1,−1) = (1/2)(−5α−α2D)B1

c(−1,2,−1,0,−1,1) = (1/2)(−5α−α2D)B3

c(−1,2,1,0,−1,−1) = (1/2)(α+α2D)B1

c(−1,2,0,−1,1,−1) = (1/2)(4α+α2D)B0 − 4α

c(−1,2,0,−1,−1,1) = (1/2)(4α+α2D)B2

c(−1,2,0,1,−1,−1) = (1/2)(4α−α2D)B2

• For the perturbation of the Sun (additional terms)

c(0,1,−1,0,0,0)) = (1/2)(−2−αD)A1 + (3/2)α

c(0,2,−2,0,0,0)) = (1/8)(6+ 6αD+α2D2)A2

c(0,2,−1,−1,0,0)) = (1/4)(−6− 6αD−α2D2)A1 + 3α

c(0,2,0,0,−2,0)) = (1/2)αB1

c(0,2,0,0,0,−2)) = (1/2)αB1

c(0,2,0,0,−1,−1)) = −αB1

It is worth noting that, generally, these coefficients are calculated at the begin-
ning of the propagation and they are left constant, since their variation does not
change in a significant way the dynamics. In the case of the Galilean satellites, in
order to obtain a very good approximation of the resonant motion, we consider
the dependence of c(0,0,0,0,0,0), c(−1,2,−1,0,0,0) and c(−1,2,0,−1,0,0) on the semi-major
axes and we compute their contribution into the Hamilton’s equations. Another
important point to be clarified is the indirect term that we find in some cj: it is
the part which does not involve the Laplace coefficients. Generally its expression
depends on whether we are considering a perturbation due to an outer or inner
body. For example, for c(−1,2,0,−1,0,0) the first version is −2α, while the second
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complete semi-analytical model

is −1/(2α2). Fortunately, for a 2 : 1 resonance, all the indirect terms we consider
have almost the same value, because of the particular α of the resonance. How-
ever, since for c(−1,2,0,−1,0,0) we must compute the derivative with respect to the
semi-major axes, the two choices are not equivalent. In the model, we considered
the expression given considering an inner perturber, since the corresponding term
of the Hamiltonian is more related to the evolution of the outer body, containing
$2 in the argument of the cosine.

a.2 hamiltonian

In Chapter 3 we presented the various elements of the Hamiltonian that defines
the semi-analytical model of the Galilean satellites’ dynamics. In this section we
collect all the terms in five main parts.

(1) Keplerian term

H0 = −µ2
1β

3
1/(2L

2
1)−µ2

2β
3
2/(2L

2
2)−µ2

3β
3
3/(2L

2
3)+nsLs

For the sake of simplicity we use Li instead of their expressions in terms of the
new variables. The last addendum describes the dynamics of the Sun: ns is its
mean motion, which is constant, and Ls is the momentum relative to its longitude.

(2) Jupiter’s gravitational field

Hobl = j1;1/L
6
1 + j2;1/L

6
2 + j3;1/L

6
3

+ j1;2(x21 +y21 −u2
1 − v21)+ j2;2(x22 +y22 −u2

2 − v22)

+ j3;2(x23 +y23 −u2
3 − v23)+ j4;2(x24 +y24 −u2

4 − v24)

+ j1;3/L
10
1 + j2;3/L

10
2 + j3;3/L

10
3

+ j1;4(x21 +y21 −u2
1 − v21)+ j2;4(x22 +y22 −u2

2 − v22)

+ j3;4(x23 +y23 −u2
3 − v23)+ j4;4(x24 +y24 −u2

4 − v24)

In the coefficients ji;l, i indicates the involved Galilean satellite and l is the num-
ber of the coefficient.

(3) Mutual perturbation satellites (up to the second order)

Hmut = a1,2;1

+a1,2;2(x21 +y21)+a1,2;3(x22 +y22)+a1,2;4(x1x2 +y1y2)

+a1,2;5(u2
1 + v21)+a1,2;6(u2

2 + v22)+a1,2;7(u1u2 + v1v2)

+a1,2;8x1/
√
L1 +a1,2;9x2/

√
L2

+a1,2;10(x21 −y21)+a1,2;11(x22 −y22)+a1,2;12(x1x2 −y1y2)

+a1,2;13(u2
1 − v21)+a1,2;14(u2

2 − v22)+a1,2;15(u1u2 − v1v2)

+a2,3;1(L2/L3)

+a2,3;2(x22 +y22)+a2,3;3(x23 +y23)+a2,3;4[(x2x3 +y2y3)cos(γ1)− (x3y2 −x2y3)sin(γ1)]

+a2,3;5(u2
3 + v23)+a2,3;6(u2

2 + v22)+a2,3;7[(u2u3 + v2v3)cos(γ1)− (u3v2 −u2v3)sin(γ1)]

+a2,3;8[x2cos(γ1)−y2sin(γ1)]/
√
L2 +a2,3;9x3/

√
L3
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+a2,3;10[(x22 −y22)cos(2γ1)− 2x2y2sin(2γ1)] +a2,3;11(x23 −y23)

+a2,3;12[(x2x3 −y2y3)cos(γ1)− (x3y2 +x2y3)sin(γ1)]

+a2,3;13[(u2
2 − v22)cos(2γ1)− 2u2v2sin(2γ1)] +a2,3;14(u2

3 − v23)

+a2,3;15[(u2u3 − v2v3)cos(γ1)− (u3v2 +u2v3)sin(γ1)]

+a1,3;1(L1/L3)

+a1,3;2(x21 +y21)+a1,3;3(x23 +y23)+a1,3;4[(x1x3 +y1y3)cos(γ1)− (x3y1 −x1y3)sin(γ1)]

+a1,3;5(u2
1 + v21)+a1,3;6(u2

3 + v23)+a1,3;7[(u1u3 + v1v3)cos(γ1)− (u3v1 −u1v3)sin(γ1)]

+a1,4;1(L1/L4)

+a1,4;2(x21 +y21)+a1,4;3(x24 +y24)+a1,4;4[(x1x4 +y1y4)cos(γ1 +γ2)− (x4y1 −x1y4)sin(γ1 +γ2)]

+a1,4;5(u2
1 + v21)+a1,4;6(u2

4 + v24)+a1,4;7[(u1u4 + v1v4)cos(γ1 +γ2)− (u4v1 −u1v4)sin(γ1 +γ2)]

+a2,4;1(L2/L4)

+a2,4;2(x22 +y22)+a2,4;3(x24 +y24)+a2,4;4[(x2x4 +y2y4)cos(γ1 +γ2)− (x4y2 −x2y4)sin(γ1 +γ2)]

+a2,4;5(u2
2 + v22)+a2,4;6(u2

4 + v24)+a2,4;7[(u2u4 + v2v4)cos(γ1 +γ2)− (u4v2 −u2v4)sin(γ1 +γ2)]

+a3,4;1(L3/L4)

+a3,4;2(x23 +y23)+a3,4;3(x24 +y24)+a3,4;4[(x3x4 +y3y4)cos(γ2)− (x4y3 −x3y4)sin(γ2)]

+a3,4;5(u2
3 + v23)+a3,4;6(u2

4 + v24)+a3,4;7[(u3u4 + v3v4)cos(γ2)− (u4v3 −u3v4)sin(γ2)]

In the coefficients ai,k;l, i and k indicate the involved Galilean satellites and l is
the number of the coefficient. The coefficients with l = 1, 8, 9 are not constant, but
we consider their dependence on the variables Li.

(4) Mutual perturbation satellites (third order)

Hmut3 = a31,2;1(x21 +y21)x1 +a31,2;2(x22 +y22)x1 +a31,2;3(u2
1 + v21)x1 +a31,2;4(u2

2 + v22)x1

+a31,2;5(x21 +y21)x2 +a31,2;6(x22 +y22)x2 +a31,2;7(u2
1 + v21)x2 +a31,2;8(u2

2 + v22)x2

+b1,2;1(x31 − 3x1y
2
1)+b1,2;2[(x21 −y21)x2 − 2x1y1y2]

+b1,2;3[(x22 −y22)x1 − 2x2y2y1] +b1,2;4(x32 − 3x2y
2
2)

+b1,2;5[(u2
1 − v21)x1 − 2u1v1y1] +b1,2;6[(u2

1 − v21)x2 − 2u1v1y2]

+b1,2;7[(u1u2 − v1v2)x1 −(v1u2 +u1v2)y1] +b1,2;8[(u1u2 − v1v2)x2 −(v1u2 +u1v2)y2]

+b1,2;9[(u2
2 − v22)x1 − 2u2v2y1] +b1,2;10[(u2

2 − v22)x2 − 2u2v2y2]

+b1,2;11[(x21 −y21)x2 + 2x1y1y2] +b1,2;12[(x22 −y22)x1 + 2x2y2y1]

+b1,2;13[(u2
1 − v21)x1 + 2u1v1y1] +b1,2;14[(u2

1 − v21)x2 + 2u1v1y2]

+b1,2;15[(x1u2 −y1v2)u1 +(y1u2 +x1v2)v1] +b1,2;16[(x1u1 −y1v1)u2 +(y1u1 +x1v1)v2]

+b1,2;17[(u1u2 − v1v2)x1 +(v1u2 +u1v2)y1] +b1,2;18[(x2u2 −y2v2)u1 +(y2u2 +x2v2)v1]

+b1,2;19[(x2u1 −y2v1)u2 +(y2u1 +x2v1)v2]

+b1,2;20[(u1u2 − v1v2)x2 +(v1u2 +u1v2)y2] +b1,2;21[(u2
2 − v22)x1 + 2u2v2y1]

+b1,2;22[(u2
2 − v22)x2 + 2u2v2y2]

+a32,3;1(x21 +y21)[x2cos(γ1)−y2sin(γ1)] +a32,3;2(x22 +y22)[x2cos(γ1)−y2sin(γ1)]

+a32,3;3(u2
1 + v21)[x2cos(γ1)−y2sin(γ1)] +a32,3;4(u2

2 + v22)[x2cos(γ1)−y2sin(γ1)]

+a32,3;5(x21 +y21)x3 +a32,3;6(x22 +y22)x3 +a32,3;7(u2
1 + v21)x3 +a32,3;8(u2

2 + v22)x3

+b2,3;1[(x32 − 3x2y
2
2)cos(3γ1)− (3x22y2 −y32)sin(3γ1)]

+b2,3;2[((x22 −y22)x3 − 2x2y2y3)cos(2γ1)− (2x2y2x3 +(x22 −y22)y3)sin(2γ1)]

+b2,3;3[((x23 −y23)x2 − 2x3y3y2)cos(γ1)− (2x3y3x2 +(x23 −y23)y2)sin(γ1)] +b2,3;4(x33 − 3x3y
2
3)

+b2,3;5[((u2
2 − v22)x2 − 2u2v2y2)cos(3γ1)− (2u2v2x2 +(u2

2 − v22)y2)sin(3γ1)]

+b2,3;6[((u2
2 − v22)x3 − 2u2v2y3)cos(2γ1)− (2u2v2x3 +(u2

2 − v22)y3)sin(2γ1)]

+b2,3;7[((x2u2 −y2v2)u3 −(y2u2 +x2v2)v3)cos(2γ1)− ((y2u2 +x2v2)u3 +(x2u2 −y2v2)v3)sin(2γ1)]

+b2,3;8[((x3u2 −y3v2)u3 −(y3u2 +x3v2)v3)cos(2γ1)− ((y3u2 +x3v2)u3 +(x3u2 −y3v2)v3)sin(2γ1)]

+b2,3;9[((u2
3 − v23)x2 − 2u3v3y2)cos(γ1)− (2u3v3x2 +(u2

3 − v23)y2)sin(γ1)]

+b2,3;10[(u2
3 − v23)x3 − 2u3v3y3]

+b2,3;11[((x22 −y22)x3 + 2x2y2y3)cos(2γ1)− (2x2y2x3 −(x22 −y22)y3)sin(2γ1)]
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+b2,3;12[((x23 −y23)x2 + 2x3y3y2)cos(γ1)− (2x3y3x2 −(x23 −y23)y2)sin(γ1)]

+b2,3;13[((u2
2 − v22)x2 + 2u2v2y2)cos(γ1)− (2u2v2x2 −(u2

2 − v22)y2)sin(γ1)]

+b2,3;14[((u2
2 − v22)x3 + 2u2v2y3)cos(2γ1)− (2u2v2x3 −(u2

2 − v22)y3)sin(2γ1)]

+b2,3;15[(x2u3 −y2v3)u2 +(y2u3 +x2v3)v2]

+b2,3;16[((x2u2 −y2v2)u3 +(y2u2 +x2v2)v3)cos(2γ1)− ((y2u2 +x2v2)u3 −(x2u2 −y2v2)v3)sin(2γ1)]

+b2,3;17[(u2u3 − v2v3)x2 −(v2u3 +u2v3)y2]

+b2,3;18[((x3u3 −y3v3)u2 +(y3u3 +x3v3)v2)cos(γ1)+ ((y3u3 +x3v3)u2 −(x3u3 −y3v3)v2)sin(γ1)]

+b2,3;19[((x3u2 −y3v2)u3 +(y3u2 +x3v2)v3)cos(γ1)− ((y3u2 +x3v2)u3 −(x3u2 −y3v2)v3)sin(γ1)]

+b2,3;20[((u3u2 − v3v2)x3 +(v3u2 +u3v2)y3)cos(γ1)− ((v3u2 +u3v2)x3 −(u3u2 − v3v2)y3)sin(γ1)]

+b2,3;21[((u2
3 − v23)x2 + 2u3v3y2)cos(γ1)+ (2u3v3x2 −(u2

3 − v23)y2)sin(γ1)]

+b2,3;22[(u2
3 − v23)x3 + 2u3v3y3]

+b1,3;1[(x31 − 3x1y
2
1)cos(2γ1)− (3x21y1 −y31)sin(2γ1)]

+b1,3;2[((x21 −y21)x3 − 2x1y1y3)cos(γ1)− (2x1y1x3 +(x21 −y21)y3)sin(γ1)]

+b1,3;3[(x23 −y23)x1 − 2x3y3y1] +b1,3;4[(x33 − 3x3y
2
3)cos(γ1)+ (3x3y

2
3 −y33)sin(γ1)]

+b1,3;5[((u2
1 − v21)x1 − 2u1v1y1)cos(2γ1)− (2u1v1x1 +(u2

1 − v21)y1)sin(2γ1)]

+b1,3;6[((u2
1 − v21)x3 − 2u1v1y3)cos(γ1)− (2u1v1x3 +(u2

1 − v21)y3)sin(γ1)]

+b1,3;7[((x1u1 −y1v1)u3 −(y1u1 +x1v1)v3)cos(γ1)− ((y1u1 +x1v1)u3 +(x1u1 −y1v1)v3)sin(γ1)]

+b1,3;8[(x3u3 −y3v3)u1 −(y3u3 +x3v3)v1] +b1,3;9[(u2
3 − v23)x1 − 2u3v3y1]

+b1,3;10[((u2
3 − v23)x3 − 2u3v3y3)cos(γ1)+ (2u3v3x3 +(u2

3 − v23)y3)sin(γ1)];

In the coefficients a3i,k;l and bi,k;l, i and k indicate the involved Galilean satellites
and l is the number of the coefficient.

(5) Sun’s perturbation

Hsun = s1;1(L1/Ls)

+ s1;2(x21 +y21)+ s1;3[(x1ks −y1hs)cos(γ1 +γ2)− (ksy1 +x1hs)sin(γ1 +γ2)]

+ s1;4(u2
1 + v21)+ s1;5[(u1qs − v1ps)cos(γ1 +γ2)− (qsv1 +u1ps)sin(γ1 +γ2)]

+ s1;6[cos(λs +γ1 +γ2)x1 − sin(λs +γ1 +γ2)y1]

+ s1;7[cos(2λs + 2γ1 + 2γ2)(x21 −y21)− sin(2λs + 2γ1 + 2γ2)(2x1y1)]

+ s1;8[cos(2λs +γ1 +γ2)(ksx1 +hsy1)− sin(2λs +γ1 +γ2)(ksy1 −x1hs)]

+ s1;9[cos(2λs + 2γ1 + 2γ2)(u2
1 − v21)− sin(2λs + 2γ1 + 2γ2)(2u1v1)]

+ s1;10[cos(2λs +γ1 +γ2)(qsu1 +psv1)− sin(2λs +γ1 +γ2)(qsv1 −u1ps)]

+ s2;1(L2/Ls)

+ s2;2(x22 +y22)+ s2;3[(x2ks −y2hs)cos(γ1 +γ2)− (ksy2 +x2hs)sin(γ1 +γ2)]

+ s2;4(u2
2 + v22)+ s2;5[(u2qs − v2ps)cos(γ1 +γ2)− (qsv2 +u2ps)sin(γ1 +γ2)]

+ s2;6[cos(λs +γ1 +γ2)x2 − sin(λs +γ1 +γ2)y2]

+ s2;7[cos(2λs + 2γ1 + 2γ2)(x22 −y22)− sin(2λs + 2γ1 + 2γ2)(2x2y2)]

+ s2;8[cos(2λs +γ1 +γ2)(ksx2 +hsy2)− sin(2λs +γ1 +γ2)(ksy2 −x2hs)]

+ s2;9[cos(2λs + 2γ1 + 2γ2)(u2
2 − v22)− sin(2λs + 2γ1 + 2γ2)(2u2v2)]

+ s2;10[cos(2λs +γ1 +γ2)(qsu2 +psv2)− sin(2λs +γ1 +γ2)(qsv2 −u2ps)]

+ s3;1(L3/Ls)

+ s3;2(x23 +y23)+ s3;3[(x3ks −y3hs)cos(γ2)− (ksy3 +x3hs)sin(γ2)]

+ s3;4(u2
3 + v23)+ s3;5[(u3qs − v3ps)cos(γ2)− (qsv3 +u3ps)sin(γ2)]

+ s3;6(cos(λs +γ2)x3 − sin(λs +γ2)y3)

+ s3;7[cos(2λs + 2γ2)(x23 −y23)− sin(2λs + 2γ2)(2x3y3)]

+ s3;8[cos(2λs +γ2)(ksx3 +hsy3)− sin(2λs +γ2)(ksy3 −x3hs)]

+ s3;9[cos(2λs + 2γ2)(u2
3 − v23)− sin(2λs + 2γ2)(2u3v3)]

+ s3;10[cos(2λs +γ2)(qsu3 +psv3)− sin(2λs +γ2)(qsv3 −u3ps)]

+ s4;2(x24 +y24)+ s4;3(x4ks −y4hs)

+ s4;4(u2
4 + v24)+ s4;5(u4qs − v4ps)
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A.2 hamiltonian

+ s4;6[cos(λs)x4 − sin(λs)y4]

+ s4;7[cos(2λs)(x
2
4 −y24)− sin(2λs)(2x4y4)]

+ s4;8[cos(2λs)(ksx4 +hsy4)− sin(2λs)(ksy4 −x4hs)]

+ s4;9[cos(2λs)(u
2
4 − v24)− sin(2λs)(2u4v4)]

+ s4;10[cos(2λs)(qsu4 +psv4)− sin(2λs)(qsv4 −u4ps)]

In the coefficients si;l, i indicates the involved Galilean satellite and l is the num-
ber of the coefficient. The other parameters are the mean longitude of the Sun λs
and its equinoctial elements hs = es cos($s), ks = es sin($s), qs = ss cos(Ωs)
and ps = ss sin(Ωs). The coefficients with l = 1 are not constant, but we consider
their dependence on the variables Li.

The list of the coefficients is

µik = −Gmimk/ak

ji;1 = −(1/2)µ4
iβ

7
iR

2
0J2 ji;2 = −(3/4)µ2

iβ
3
i (R0/ai)

2J2/L
3
i

ji;3 = (3/8)µ7
iβ

11
i R40J4 ji;4 = (15/8)µ2

iβ
3
i (R0/ai)

4J4/L
3
i

ai,k;1 = µikc(0,0,0,0,0,0) ai,k;2 = µikc
1
(0,0,0,0,0,0)/Li

ai,k;3 = µikc
1
(0,0,0,0,0,0)/Lk ai,k;4 = µikc(0,0,−1,1,0,0)/

√
LiLk

ai,k;5 = µikc
2
(0,0,0,0,0,0)/(4Li) ai,k;6 = µikc

2
(0,0,0,0,0,0)/(4Lk)

ai,k;7 = µikc(0,0,0,0,−1,1)/(4
√
LiLk) ai,k;8 = µikc(−1,2,−1,0,0,0)

ai,k;9 = µikc(−1,2,0,−1,0,0) ai,k;10 = µikc(−2,4,−2,0,0,0)/Li

ai,k;11 = µikc(−2,4,0,−2,0,0)/Lk ai,k;12 = µikc(−2,4,−1,−1,0,0)/
√
LiLk

ai,k;13 = µikc(−2,4,0,0,−2,0)/(4Li) ai,k;14 = µikc(−2,4,0,0,0,−2)/(4Lk)

ai,k;15 = µikc(−2,4,0,0,−1,−1)/(4
√
LiLk)

a3i,k;1 = µikc
1
(−1,2,−1,0,0,0)/

√
L3i a3i,k;2 = µikc

2
(−1,2,−1,0,0,0)/(Lk

√
Li)

a3i,k;3 = µikc
3
(−1,2,−1,0,0,0)/(4

√
L3i ) a3i,k;4 = µikc

3
(−1,2,−1,0,0,0)/(4Lk

√
Li)

a3i,k;5 = µikc
1
(−1,2,0,−1,0,0)/(Li

√
Lk) a3i,k;6 = µikc

2
(−1,2,0,−1,0,0)/

√
L3k

a3i,k;7 = µikc
3
(−1,2,0,−1,0,0)/(4Li

√
Lk) a3i,k;8 = µikc

3
(−1,2,0,−1,0,0)/(4

√
L3k)

bi,k;1 = µikc(3−j,j,−3,0,0,0)/

√
L3i bi,k;2 = µikc(3−j,j,−2,−1,0,0)/(Li

√
Lk)

bi,k;3 = µikc(3−j,j,−1,−2,0,0)/(Lk
√
Li) bi,k;4 = µikc(3−j,j,0,−3,0,0)/

√
L3k

bi,k;5 = µikc(3−j,j,−1,0,−2,0)/(4
√
L3i ) bi,k;6 = µikc(3−j,j,−1,0,0,−2)/(4Li

√
Lk)

bi,k;7 = µikc(3−j,j,−1,0,−1,−1)/(4Li
√
Lk) bi,k;8 = µikc(3−j,j,0,−1,−1,−1)/(4Lk

√
Li)

bi,k;9 = µikc(3−j,j,0,−1,−2,0)/(4Li
√
Lk) bi,k;10 = µikc(3−j,j,0,−1,0,−2)/(4

√
L3k)

bi,k;11 = µikc(−1,2,−2,1,0,0)/(Li
√
Lk) bi,k;12 = µikc(−1,2,1,−2,0,0)(Lk

√
Li)

bi,k;13 = µikc(−1,2,1,0,−2,0)/(4
√
L3i ) bi,k;14 = µikc(−1,2,0,1,−2,0)/(4Li

√
Lk)

bi,k;15 = µikc(−1,2,−1,0,1,−1)/(4Li
√
Lk) bi,k;16 = µikc(−1,2,−1,0,−1,1)/(4Li

√
Lk)

bi,k;17 = µikc(−1,2,1,0,−1,−1)/(4Li
√
Lk) bi,k;18 = µikc(−1,2,0,−1,1,−1)/(4Lk

√
Li)

bi,k;19 = µikc(−1,2,0,−1,−1,1)/(4Lk
√
Li) bi,k;20 = µikc(−1,2,0,1,−1,−1)/(4Lk

√
Li)

bi,k;21 = µikc(−1,2,1,0,0,−2)/(4Lk
√
Li) bi,k;22 = µikc(−1,2,1,0,0,−2)/(4

√
L3k)

si;1 = µisc
1
(0,0,0,0,0,0)/Li si;2 = µisc(0,0,−1,1,0,0)/

√
Li

si;3 = µisc
2
(0,0,0,0,0,0)/(4Li) si;4 = µisc(0,0,0,0,−1,1)/(2

√
Li)

si;5 = µisc(0,1,−1,0,0,0)/
√
Li si;6 = µisc(0,2,−2,0,0,0)/Li

si;7 = µisc(0,2,−1,−1,0,0)/
√
Li si;8 = µisc(0,2,0,0,−2,0)/(4Li)

si;9 = µisc(0,2,0,0,−1,−1)/(2
√
Li)
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In the case of the couples Io-Europa and Europa-Ganymede, in the coefficients
bi,k;l, with l = 1, 10, j is equal to 6, while for Io-Ganymede, j is equal to 4.
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B ROTAT ION MODELS

As we introduced in Chapter 6, if we want to compute the acceleration due to the
gravitational field’s anomalies, we need a model for the rotation of the extended
bodies. In fact, the harmonic expansion is defined in a body-fixed reference frame
and we have to perform a change of coordinates that follows the rotation to use it.

The rotation of the bodies is assumed around an axis defined by two angles αR
and δR (see Figure B.1). In order to pass to a reference frame that rotates with
the body, first we need to bring the z axis along the spin axis. This is performed
through two rotations as shown in the figure: the first one of 90◦ + αR around z
and the other one of 90◦ − δR around the new axis x ′.

At this point we just need to rotate the system in order to have the zero meridian
on the x positive axis. This meridian is defined at a conventional time t0 (for ex-
ample J2000). If the angular velocity ω is constant, the angle of the zero meridian
at a certain time t is simply

φ = φ0 +ω(t− t0).

αR
δR

90 -δ° R

90 +α° R yx
y' x'

z''z
y''

Figure B.1.: The rotation axis z ′′ and the angles αR and δR.
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rotation models

satellite

planetempty focus2ae
Ã

Figure B.2.: Example of satellite in synchronous resonance; the body looks at the empty focus,
defining an angle ψ with the conjunction satellite-planet.

Therefore we have to perform a rotation of φ around the new z axis if we want the
body-fixed reference frame at the time t.

We consider also secular precession and nutation effects on the axis. Actually,
we do not develop a model of the rotation, but we implement directly the rotation
models presented in [2].

They are defined by the formulas

αR = α0 + paT + aa sin(Ja) + ba sin(Jb) + ca sin(Jc) + da sin(Jd) + ea sin(Je),

δR = δ0 + pdT + ad cos(Ja) + bd cos(Jb) + cd cos(Jc) + dd cos(Jd) + ed cos(Je), (B.1)

φ = φ0 +ωd

where α0 and δ0 are the constant values of the angles, pa and pd are the secular
precession terms and T is the time after J2000 in centuries, φ0 is the zero meridian
at J2000, ω is the spin angular velocity and d the time after J2000 in days. All the
other parameters describe librational movements.

In Table B.1 we reported the values of the various parameters involved in (B.1).
The effect of precession and nutation are very small, but it is important to consider
them in order to be aligned to the models implemented for the design of the JUICE
mission.

b.1 synchronous resonance

For the Galilean satellites we do not assume a constant angular velocity, but we
model the rotation in order to have a perfect synchronous rotation of the moons.
As described in Chapter 4 and shown in Figure B.2, a satellite in synchronous
resonance looks, as a first approximation, at the empty focus of its orbit.
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B.1 synchronous resonance

Parameter Jupiter Io Europa Ganymede Callisto

α0 (◦) 268.056595 268.050 268.080 268.200 268.720
δ0 (◦) 64.495303 64.500 64.510 64.570 64.830
φ0 (◦) 284.950000 200.390 36.022 44.064 259.510
ω (◦/day) 870.536000 202.489 101.375 50.318 21.571
pa (◦/day) -0.006499 -0.009 -0.009 -0.009 -0.009
pd (◦/day) 0.002413 0.003 0.003 0.003 0.003

Table B.1.: Values for the rotational models of Jupiter and Galilean satellites. These num-
bers are taken from [2], which is the official report of the IAU Working Group
on Cartographic Coordinates and Rotational Elements and it contains rotational
parameters for planets and satellites.

We define the first meridian as the meridian aligned with the empty focus. If
we denote with λJ the longitude of Jupiter in the body-fixed reference frame of the
satellite, we have that

φ = λJ +ψ, (B.2)

where ψ is the offset angle from the focus occupied by Jupiter and the empty one.
As it is clear from Figure B.2, ψ depends on the eccentricity of the orbit and on
the position of the satellite. In particular,

ψ = −2e sin(`),

where e is the eccentricity of the moon and ` its mean anomaly.
For a more sophisticated model we can add a libration to the right hand side

of (B.2), as done in [7] considering a geometric libration angle. This is particularly
important in the case we want to investigate the rotation properties of the moons.
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