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Abstract

We show that random quotients of acylindrically hyperbolic groups, obtained by
taking a quotient of the group by the nth steps of a finite collection of independent
random walks, are again acylindrically hyperbolic asymptotically almost surely. Our
main tools come from spinning families and projection complexes, which we relate to
random walks and develop further. Furthermore, we show that a random quotient of a
hierarchically hyperbolic group is again hierarchically hyperbolic asymptotically almost
surely. The same techniques also yield that a random quotient of a non-elementary hy-
perbolic group (relative to a finite collection of peripheral subgroups) is asymptotically
almost surely hyperbolic (relative to isomorphic peripheral subgroups).

Oh, many a shaft at random sent
Finds mark the archer little meant!
And many a word at random spoken
May soothe, or wound, a heart that’s
broken!

Sir Walter Scott, Lord of the Isles
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1 Introduction
Two important classes of groups with strong negative curvature features are acylindrically
hyperbolic groups and hierarchically hyperbolic groups. Acylindrically hyperbolic groups
were introduced by Osin [Osi16] as a generalization of non-elementary hyperbolic and rela-
tively hyperbolic groups. This broad class includes non-exceptional mapping class groups,
non-virtually cyclic CAT(0) groups that do not split as direct products, OutpFnq for n ě 2,
the Cremona group, and any group that admits a presentation with at least two more gener-
ators than relators. Hierarchically hyperbolic groups (HHG) were introduced by Behrstock,
Hagen, and Sisto in [BHS17b] to generalize the subsurface projection machinery of mapping
class groups [MM99, MM00] to a wider class of groups, including right-angled Artin and
Coxeter groups [BHS17b] and, more generally, most cubulated groups, and most 3-manifold
groups [BHS19, HRSS25]. There is a large overlap between these two classes of groups:
any HHG that is not quasi-isometric to a non-trivial product or a line is acylindrically
hyperbolic. While acylindrical hyperbolicity is known to be fairly common, evidence has
recently been mounting that hierarchical hyperbolicity is also widespread, as it has been
shown for a large class of Artin groups, graph products, lattices, and group extensions
[BHS17a, BR22, HMS24, Hug22, HV24, Rus21, FFMS25].

In this direction, one can ask which quotients of an acylindrically hyperbolic group
(resp., HHG) are themselves acylindrically hyperbolic (resp., HHG). Indeed, quotients are
a common tool for constructing negatively curved groups. Random groups in both the
few relators model and the density model (with small enough density) are hyperbolic with
overwhelming probability [Gro93, Ol’92, Oll04]. Moreover, Delzant showed that quotients
of hyperbolic groups by elements with large translation length are again hyperbolic [Del96].
In fact, Groves and Manning, and independently Osin, generalized Thurston’s hyperbolic
Dehn filling theorem to show that all peripheral quotients of relatively hyperbolic groups
whose kernels avoid a finite set of elements are again relatively hyperbolic. These quotients
are also typically hyperbolic; see [GM08, Theorem 7.2] and [Osi07, Theorem 1.1].

This paper is a continuations of the above themes. More precisely, we consider quotients
by the nth steps of finitely many independent random walks w1,n, . . . , wk,n associated to
permissible probability measures µ1, . . . , µk. We postpone the definition of a permissible
probability measure to Definition 5.1, but the reader should have in mind the case when µ
is supported on a finite, symmetric generating set for G. The quotient G{ xxw1,n, . . . , wk,nyy

is a random quotient of G. Given a property P , we say that a random quotient of G has
property P asymptotically almost surely (a.a.s.) if the probability that G{ xxw1,n, . . . , wk,nyy

has property P approaches 1 as n tends to infinity.
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Theorem A. Let G be an acylindrically hyperbolic group, and let µ1, . . . , µk be permissible
probability measures on G. A random quotient of G is a.a.s. acylindrically hyperbolic.

Moreover, when G is hierarchically hyperbolic, we obtain a stronger structural result
for a random quotient, providing further evidence that hierarchically hyperbolic groups are
common:

Theorem B. Let G be an acylindrically hyperbolic (relative) HHG, and consider k permissi-
ble probability measures µ1, . . . , µk on G. A random quotient of G is a.a.s. an acylindrically
hyperbolic (relative) HHG.

Considering only acylindrically hyperbolic HHGs is necessary, as product HHGs include
groups such as the Burger–Mozes group, which is simple and so has no non-trivial quotients.

Theorem B is already new for random quotients of mapping class groups. In this setting,
the explicit description of the HHG structure has already been used by the third author to
prove that random quotients of mapping class groups are quasi-isometrically rigid, in the
sense that if a finitely generated group is quasi-isometric to such a quotient, then it is weakly
commensurable to it [Man23]. Other hierarchically hyperbolic quotients of mapping class
groups include quotients by suitable powers of all Dehn twists [BHMS24]; by suitable powers
of a pseudo-Anosov element, for surfaces without boundary [BHS17a] and for the four-
strand braid group [FFMS25]; and by deep enough subgroups of certain convex-cocompact
subgroups [BHS17a].

In the case of non-elementary hyperbolic groups, we can deduce stronger results about
the random quotient.

Corollary C. Let G be a non-elementary hyperbolic group, and let µ1, . . . , µk be permissible
probability measures on G. A random quotient of G is a.a.s. non-elementary hyperbolic.

To the best of our knowledge, this result is not explicitly written down in the literature.
However, it follows quickly from a theorem of Delzant [Del96, Théorème I] (originally stated
by Gromov [Gro87, Theorem 5.5.D]), combined with the fact that the translation length of
each wi,n is a.a.s. linear in n.

Using that Theorem B holds for the larger class of relative HHGs, which includes rel-
atively hyperbolic groups, we also show that random quotients preserve non-elementary
relative hyperbolicity:

Corollary D. Let G be a group that is non-elementary hyperbolic relative to a collection
tH1, . . . Hℓu of finitely generated, infinite subgroups. If G is a random quotient of G, then
the following hold a.a.s.

1. Each Hi embeds in G, with image Hi.

2. The quotient G is non-elementary hyperbolic relative to tH1, . . . ,Hℓu.

It was recently shown that a version of Corollary D holds for random quotients of free
products using a density model of randomness [EMM`25, Theorem 1.2]. Although the
notions of randomness are different, both frameworks for random quotients yield relatively
hyperbolic structures on the quotient with the same peripheral subgroups. In contrast,
Dehn filling quotients of relatively hyperbolic groups are obtained by taking the quotient by
sufficiently deep subgroups of the peripherals, and therefore never preserve the peripheral
structure.
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In [Man24], the third author introduced short HHGs, a particularly simple class of
non-relatively-hyperbolic HHGs, which includes extra-large type Artin groups, numerous
RAAGs, and non-geometric graph manifolds groups. In the spirit of Corollary C and Corol-
lary D, we expect that one could deduce from Theorem B that random quotients of short
HHGs are themselves short HHGs a.a.s. As a consequence, such quotients would be fully
residually hyperbolic [MS24, Corollary H].

Outline of the arguments.
For much of the paper, we work in the following general context. Let G be a group with a
non-elementary action on a hyperbolic space X. Assume there exist quasiconvex, geomet-
rically separated subspaces Y1, . . . , Yk Ď X with metrically proper, cobounded actions of
subgroups H1, . . . ,Hk, and denote by pX the cone-off of X with respect to the translates of
the Yi. These assumptions allow one to build a projection complex, as defined by Bestvina,
Bromberg, and Fujiwara [BBF15], with respect to the translates of Yi; see Section 2.3 for
generalities on projection complexes. In fact, we show in Corollary 2.22 that one can build
a projection complex with respect to pXp0q, that is, with respect to the union of points in
X and translates of Yi. We also require several additional assumptions to hold, namely
Hypothesis 2.19 and Hypothesis 3.1, which ensure that the subgroups H1, . . . ,Hk form a
“sufficiently” spinning family with respect to the action of G on pX. Spinning families are
defined precisely in Section 3, but can be thought of as a geometric/dynamical generalization
of satisfying a small cancellation condition.

Clay and Mangahas [CM22] and Clay, Mangahas, and Margalit [CMM21] studied spin-
ning families in actions on projection complexes. In particular, Clay and Mangahas showed
(among other things) that if a collection of subgroups Hi ď G form an equivariant spin-
ning family with respect to the action of G on a projection complex P, then the quotient
P{ xxH1, . . . ,Hkyy is hyperbolic [CM22, Theorem 1.1]. In a similar fashion, in Section 3 we
prove hyperbolicity of pX{N and establish a criterion for acylindrical hyperbolicity of the
quotient; see Theorem 3.13 and Corollary 3.16, respectively. The core of the proof of The-
orem 3.13 is to produce a closed lift T Ď pX of a given geodesic triangle T Ď pX{N . Since pX
is hyperbolic, the triangle T is uniformly slim, and therefore so is T , as the quotient map
pX Ñ pX{N is 1–Lipschitz. In turn, in order to find a closed lift of T , we start with an open
lift of the triangle T and define a “bending procedure” that eventually yields a closed lift; see
Lemma 3.11 and the surrounding discussion. The main ingredient in the above procedure
is the existence of a shortening pair (Proposition 3.8), which can be thought of as a version
of Greendlinger’s Lemma for a spinning family [Gre60, CM22]. An analogous procedure
shows that we can also lift quadrangles from pX{N to pX, which we use to prove that acylin-
drical hyperbolicity is preserved under taking quotients by sufficiently spinning families.
Similar ideas of lifting polygons from quotients by collections of subgroups satisfying similar
small-cancellation-like conditions appear in [Dah18, DHS21, BHMS24, MS25, MS24, CM22].
Indeed, our arguments follow similar lines as those of Clay–Mangahas, with necessary ad-
justments to handle the fact that pX itself is not a projection complex.

In Section 4, we focus on the case that G is a hierarchically hyperbolic group. Hierar-
chically hyperbolic groups are defined precisely in Definition 4.7, but we describe a few key
aspects here. Roughly, an HHG structure on a group G consists of a collection of projections
from G onto hyperbolic spaces tCU | U P Su indexed by a set S. There are three relations
on S: nesting, transversality, and orthogonality. Intuitively, the projections onto hyperbolic
spaces encode “hyperbolic pieces” of G, while the relations encode how the various pieces
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fit together to build the entire group. The most relevant relation for this outline is nesting,
which is a partial order on S with a unique largest element, typically denoted by S and
called the top-level domain. The hyperbolic space associated with the top-level domain is
called the top-level space.

The main technical result of Section 4 is Theorem 4.13, which states that the quotient
of a HHG pG,Sq by the normal closure N of a sufficiently spinning family of subgroups
tH1, . . . ,Hku is a HHG. We present an informal version of this result and a brief description
of the HHG structure of the quotient here; see Construction 4.26 for further details on the
structure.

Theorem E. Let pG,Sq be a (relative) HHG with top-level coordinate space X. Suppose
there exist quasiconvex, geometrically separated subspaces Y1, . . . , Yk Ď X with metrically
proper, cobounded actions of subgroups H1, . . . ,Hk. If the subgroups H1, . . . ,Hk form a
sufficiently spinning family with respect to a certain cone-off of X, then the quotient of G
by N “ xxH1, . . . ,Hkyy is a (relative) HHG, with the following structure.

• The set of domains is S{N “ tU | U P Su.

• If U ‰ S, then the associated hyperbolic space is isometric to CU for some (equiva-
lently, any) representative U P S of U .

• The top-level domain is pX{N , where pX is the cone-off of X with respect to the trans-
lates of tY1, . . . , Yku. Furthermore, pX{N is quasi-isometric to X{N .

• Two domains U, V P S{N are orthogonal or nested if they admit orthogonal or nested
representatives, respectively, and are transverse otherwise.

The key idea in showing that the above candidate structure satisfies the axioms of
an HHG is to define preferred representatives of elements of G{N , pX{N , and S{N in
G, pX, and S, respectively. For this, we introduce the notion of minimal representatives
in Definition 3.10. Briefly, if x, y P pX{N , for example, then representatives x, y of x, y,
respectively, are minimal if d

xX
px, yq “ d

xX{N
px, yq. For domains, the rough idea is that

U, V P S are minimal representatives if the distance between the images of ρUS and ρVS in pX
is minimal among all possible representatives. The relationship (i.e., nesting, transversality,
or orthogonality) between domains in S{N is then defined to be the relationship between
minimal representatives of those domains in S, and we similarly use minimal representatives
to define the various projections. To verify each axiom, the general strategy is to use minimal
representatives to ‘lift’ the setup of the axiom from pG{N,S{Nq to pG,Sq, where the axiom
is satisfied, and then push the result back down to pG{N,S{Nq. The technicalities involved
in “lifting” the setup of the axioms are dealt with in Section 4.4 and Section 4.5, and the
axioms themselves are verified in Section 4.6.

Finally, in Section 5, we study random walks on an acylindrically hyperbolic group. We
show that subgroups generated by finitely many independent random elements a.a.s. satisfy
Hypothesis 2.19, Hypothesis 3.1, and the assumptions of Corollary 3.16, thus proving The-
orem A. Under then additional assumption that the group is an HHG, we show that such
subgroups a.a.s. satisfy the assumptions of Theorem 4.13, and this is then used to prove
Theorem B, Corollary C, and Corollary D in Section 5.3.
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Comparison with very rotating quotients
Theorem 4.13 should be compared to [BHS17a, Theorem 6.1], which implies the same result
for a very rotating family of subgroups, rather than a sufficiently spinning family. While
spinning families and rotating families capture similar behavior, it is not clear that [BHS17a,
Theorem 6.1] can be used to prove that random quotients of HHGs are HHGs. The key
difference in the construction of a HHG structure on the quotient in each case is the rela-
tionship between the various constants involved.

In [BHS17a], the first step is to modify the top-level hyperbolic space CS by gluing on
“hyperbolic cones” as in [DGO17] to obtain a new hyperbolic space xCS. The collection of
random subgroups xwi,ny would then have to be an r–rotating family with respect to xCS for
sufficiently large r. The problem with using this construction is controlling the growth of r
as n tends to infinity. Precisely how large the constant r needs to be is not completely clear,
but a careful reading of the proofs in [BHS17a] shows that it depends at least linearly on the
geometric separation constant of the hyperbolic cones. Roughly, to be an r–rotating family,
the translation length of the random walks must be sufficiently large with respect to r, and,
in fact, exponential in r [DGO17, Theorem 6.35]. Work of Maher–Tiozzo [MT18, MT21]
and Maher–Sisto [MS19] show that the geometric separation constant of the random walk
grows linearly in n, as discussed in Section 5.1, and so the translation length of the random
walk would need to grow exponentially in n to be able to use this construction. However,
the translation length grows only linearly in n [MT18].

If one could improve the geometric separation constants of the random walk to grow
logarithmically in n, it might be possible to use [BHS17a, Theorem 6.1] to obtain the
results in this paper, though one would still need a better understanding of the precise
relationship between r and the geometric separation constant. Instead, in this paper we use
the more straight-forward cone-off procedure described above and replace rotating families
with spinning families. With this construction, we show that the collection of random
subgroups xwi,ny needs to to be an L–spinning family for a constant L that is again linear
in the geometric separation constant of the random walks; see Remark 3.2. To form an
L–spinning family, however, we only need the translation length to be linear in L, which
holds by Theorem 5.12.

Since the precise constants are critical in this paper, we have included a summary of
their definitions and relative dependencies in Appendix A. We suggest keeping it handy
while reading through the paper.
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2 Background

2.1 Hyperbolic spaces
In this section we review some basic properties of metric spaces, including hyperbolicity.
More details can be found in [BH99]. Most lemmas in this section are standard, but we
provide proofs for completeness and to make explicit all constants, as they will play an
important role later in the paper.

In what follows we consider subsets of a fixed space X with metric d “ dX . Every metric
space (possibly equipped with an action of a group G by isometries) is (G-equivariantly)
quasi-isometric to a simplicial graph, by e.g. [CdlH16, Lemma 3.B.6], so we can and will
assume that all metric spaces we consider are simplicial graphs.

Given a subspace A Ď X, the closed R-neighborhood of A in X is denoted by NX
R pAq,

or simply NRpAq when the ambient space is understood. Let λ ě 1 and c ě 0. A map
f : pX, dXq Ñ pY, dY q of metric spaces is a pλ, cq–quasi-isometric embedding if for all x, y P

X, we have that

λ´1dXpx, yq ´ c ď dY pfpxq, fpyqq ď λdXpx, yq ` c.

A quasi-isometry is a quasi-isometric embedding which is also coarsely surjective, meaning
that Y Ď NRpfpXqq for some constant R ě 0.

A pλ, cq–quasigeodesic in X is a pλ, cq–quasi-isometric embedding of an interval into X.
When the constants λ and c are the same, we simply call such path a λ-quasigeodesic. A
geodesic is a p1, 0q-quasigeodesic, that is, an isometric embedding of an interval. Given
points x, y P X, we denote a geodesic from x to y by rx, ysX ; if the space X is clear from
context we simply write rx, ys.

A metric space is geodesic (resp. pλ, cq-quasigeodesic) if any two points are connected by
a geodesic (resp. pλ, cq-quasigeodesic). For δ ě 0, a geodesic metric space X is δ–hyperbolic
if, for every three points x, y, z P X, we have rx, ys Ď Nδprx, zsYrz, ysq; we say that geodesic
triangles in a δ-hyperbolic space are δ-slim. If the particular choice of δ is not important,
we simply say that X is hyperbolic. The boundary BX of a hyperbolic space is the set of
quasigeodesic rays r0,8q Ñ X up to bounded Hausdorff distance (see e.g. [BH99, III.H.3]).

In this paper, all quasigeodesics γ : I Ñ X will be continuous. In a hyperbolic space,
this is no loss of generality by [BH99, Lemma III.H.1.11]. We denote the length of the
quasigeodesic γ in X by ℓXpγq.

Hyperbolic spaces satisfy the following Morse property, which states that quasigeodesics
with the same endpoints remain in a uniform neighborhood of each other (see, e.g., [BH99,
III.H.1.7]). This is also known as quasigeodesic stability.

Lemma 2.1. For all δ, c ě 0, λ ě 1, there is a constant Φ “ Φpλ, c, δq ě 0 satisfying the
following. Let X be a δ–hyperbolic space, and let γ1, γ2 be pλ, cq–quasigeodesics with the
same endpoints in X Y BX. Then the Hausdorff distance between γ1 and γ2 is at most Φ.

A subspace Y of a hyperbolic space X is K-quasiconvex if for any x, y P Y we have
rx, ys Ă NKpY q.

Lemma 2.2. Let X be δ-hyperbolic, and let Z Ď X be a subset of diameter E. For every
A ě 0, the neighborhood NApZq is p2δ ` Eq-quasiconvex.

Proof. Let x, y P NApZq, and let x1, y1 P Z be such that dpx, x1q ď A and dpy, y1q ď A. From
the definition of hyperbolicity, it readily follows that geodesic quadrangles in X are 2δ-slim.
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Hence any geodesic rx, ys is in the 2δ-neighborhood of geodesics rx, x1s Y rx1, y1s Y ry1, ys.
Since diampZq ď E, rx, ys is actually in the p2δ ` Eq-neighborhood of rx, x1s Y ry1, ys, and
these two geodesics lie in NApZq.

From now on, we assume that X is a δ-hyperbolic graph, and every point in X is thought
of as a vertex, so that distances between points are integer-valued. If Y Ď X is quasiconvex,
then for every z P X one can define a coarse closest point projection πY : X Ñ Y by mapping
every z P X to the collection

πY pzq “ ty P Y | dpz, Y q “ dpz, yqu. (1)

For any such Y Ď X and every A,B Ď X we set dπY pA,Bq “ diampπY pAq Y πY pBqq.

Lemma 2.3 (Closest point projections are uniformly Lipschitz). Let X be a δ–hyperbolic
graph, Y Ď X a K–quasiconvex subspace, and πY : X Ñ Y a coarse closest point projection.
Let x, y P X be such that dpx, yq ď 1. Then dπY px, yq ď J – 2K ` 10δ ` 2. In particular,
for any w, z P X,

dπY pw, zq ď J maxtdXpw, zq, 1u.

Proof. Let x1 P πY pxq and y1 P πY pyq, and consider a geodesic quadrangle with vertices
tx, x1, y1, yu. Towards a contradiction, if dpx1, y1q ą J , we can find a point z P rx1, y1s such
that both dpx1, zq and dpy1, zq are at least K ` 5δ. Let z1 P Y be such that dpz, z1q ď K,
which exists as Y is K–quasiconvex. Since quadrangles in X are 2δ–slim, there exists
w P rx1, xs Y rx, ys Y ry, y1s within distance 2δ from z. If w P rx1, xs then

dpx, x1q “ dpx,wq ` dpw, x1q ě dpx,wq ` dpz, x1q ´ dpw, zq ě dpx,wq ` K ` 3δ,

while
dpx, z1q ď dpx,wq ` dpw, z1q ď dpx,wq ` K ` 2δ.

This would contradict the definition of x1 as a closest point to x in Y . For the same reason, w
cannot lie on ry, y1s, and so w P rx, ys´tx, yu. However, this is impossible, as dpx, yq ď 1.

Lemma 2.4 ([CDP90, Proposition 10.2.1]). Given δ,K ě 0, there is a constant Ω “ Ωpδ,Kq

such that the following holds. Let Y be a K-quasiconvex subset of a δ-hyperbolic graph X.
For any pair of points x, y P X, any x1 P πY pxq, and any y1 P πY pyq, if dpx1, y1q ě Ω, then
the nearest point path rx, x1s Y rx1, y1s Y ry1, ys is a p1,Ωq-quasigeodesic.

A collection Y of quasiconvex subspaces of X is geometrically separated if for every ε ą 0,
there exists R ą 0 such that diampNεpY 1q X Y q ď R whenever Y ‰ Y 1 P Y.

Lemma 2.5. Let Y be a collection of K-quasiconvex subspaces of the δ-hyperbolic graph X.
Suppose there exists M0 ą 0 such that diampN2K`2δpY 1q XY q ď M0 whenever Y, Y 1 P Y are
distinct. Then Y is geometrically separated. More precisely, for every t ě 0,

diampNtpY
1q X Y q ď Mptq – M0 ` 2K ` 2t ` 4δ ` 2. (2)

If the assumption of Lemma 2.5 holds, we say that the collection Y is M0-geometrically
separated.
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Proof of Lemma 2.5. Let x, y P NtpY
1q X Y , and let x1, y1 P Y 1 realize the distance between

Y 1 and x, y, respectively. If dpx, yq ď 2t ` 4δ ` 1 there is nothing to prove. Otherwise,
consider a geodesic quadrangle rx, ys Y ry, y1s Y ry1, x1s Y rx1, xs, and let a P rx, ys be such
that t ` 2δ ď dpx, aq ď t ` 2δ ` 1. Notice that dpa, yq ě dpx, yq ´ dpx, aq ě t ` 2δ as well.
Since this geodesic quadrangle is 2δ-slim, there exists a1 P ry, y1s Y ry1, x1s Y rx1, xs such that
dpa, a1q ď 2δ. Notice that a1 cannot lie in the interior of rx, x1s, as otherwise the reverse
triangle inequality would give that dpx, x1q ą dpa1, xq ě dpx, aq ´ dpa, a1q ě t. For the same
reason, a1 does not lie in the interior of ry, y1s, so we must have that a1 P rx, ys Ď NKpY 1q.
Hence a P NK`2δpY 1q. In turn, as a lies on a geodesic rx, ys with endpoints in Y , there is
some p P Y such that dpa, pq ď K. Thus we have found a point p P Y X N2K`2δpY 1q such
that dpx, pq ď dpx, aq ` dpa, pq ď t ` 2δ ` K ` 1. An analogous argument produces a point
q P Y XN2K`2δpY 1q such that dpy, qq ď t` 2δ `K ` 1. Since p, q P N2K`2δpY 1q X Y , which
has diameter at most M0, we have

dpx, yq ď dpx, pq ` dpp, qq ` dpq, yq ď M0 ` 2K ` 2t ` 4δ ` 2.

From now on, we shall say that a function f , depending on some constants c1, . . . , cn, and
M0, is bounded linearly in M0 if there are positive functions apc1, . . . , cnq and bpc1, . . . , cnq

such that |fpM0, c1, . . . , cnq| ď apc1, . . . , cnqM0 ` bpc1, . . . , cnq.

Lemma 2.6. Let X be a δ-hyperbolic graph, and let Y be an M0-geometrically separated
collection of K-quasiconvex subspaces. There exists B “ Bpδ,K,M0q which is bounded
linearly in M0 and such that diamπY 1 pY q ď B for every Y ‰ Y 1 P Y.

Proof. We claim that it suffices to take B “ Mp2K ` 7δ ` 1q, where M is the geometric
separation function from (2), which is bounded linearly in M0. Let x, y P Y , and let
x1 P πY 1 pxq and y1 P πY 1 pyq. If dpx1, y1q ď 2K ` 10δ ` 2 we are done, as the latter is less
than Mp2K ` 7δ ` 1q. Otherwise consider a geodesic quadrangle with vertices tx, x1, y1, yu.
Let z1 P rx1, y1s be such that K ` 5δ ď dpx1, z1q ď K ` 5δ ` 1. By slimness of quadrangles,
one can find a point w P rx1, xs Y rx, ys Y ry, y1s within distance 2δ from z. Arguing exactly
as in Lemma 2.3, one sees that w must belong to rx, ys, or it would violate the fact that x1

(resp. y1) realizes the distance between Y 1 and x (resp. y). Therefore

dpx1, Y q ď dpx1, zq ` dpz, wq ` dpw, Y q ď 2K ` 7δ ` 1,

where we used that Y is K-quasiconvex to bound dpw, Y q. The same argument works for
y1, so the two points lie in Y 1 X N2K`7δ`1pY q. By Lemma 2.5, the diameter of the latter is
bounded by Mp2K ` 7δ ` 1q, as required.

2.2 Cone-offs of graphs

Let Y be a collection of subgraphs of a connected hyperbolic graph X. We denote by pX
the graph obtained from X as follows: add a vertex vY for each Y P Y, and add edges from
vY to each vertex in Y . Note that X is naturally a subspace of pX. We say that pX is the
cone-off, or electrification, of X with respect to Y, and we call the vertices vY cone vertices.

In what follows, the endpoints of a path γ : r0, 1s Ñ X are denoted by γ´ “ γp0q and
γ` “ γp1q, and α ˚ β denotes the concatenation of two paths α and β such that α` “ β´.

Definition 2.7. Let pX be the cone-off of X with respect to a family of subgraphs Y. Let
γ “ u1 ˚ e1 ˚ ¨ ¨ ¨ ˚ en ˚ un`1 be a concatenation of geodesic segments where each ei is a
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concatenation of two edges sharing a common cone vertex and the ui are (possibly trivial)
segments contained in X. A de-electrification rγ of γ is the concatenation u1˚η1˚¨ ¨ ¨˚ηn˚un`1,
where each ηi is a geodesic in X connecting the endpoints of ei. If ei connects points of
Y P Y, then ηi is a Y -component of rγ.

We are particularly interested in the case that Y is a collection of uniformly quasiconvex
subgraphs.

Lemma 2.8 ([KR14, Proposition 2.6]). Let X be a δ-hyperbolic graph, and let Y be a
collection of K-quasiconvex subspaces. There exists pδ “ pδpδ,Kq such that pX is pδ-hyperbolic.

Moreover, de-electrifications of geodesics in pX are uniformly close to geodesics in X.

Lemma 2.9 ([Spr18, Corollary 2.23]). Let X be a δ-hyperbolic graph, let Y be a collection
of K-quasiconvex subsets of X, and let pX be the cone-off of X with respect to Y. Then there
exists a constant D “ Dpδ,Kq such that, for any pair of points x, y P X, every geodesic
rx, ysX , and every geodesic γ from x to y in pX, we have

rx, ys Ď NX
D prγq,

where rγ is a de-electrification of γ.

Remark 2.10. [Spr18, Corollary 2.23] is stated for connected subgraphs; however, the
latter hypothesis is only used to ensure that de-electrifications of geodesics exist, which
is true under the requirement that X is hyperbolic (in particular geodesic, hence path-
connected). Moreover, the cone-off X 1 of X used in [Spr18] is slightly different: there, an
edge is added between any two vertices lying in a common Y P Y. There is a map from X 1

to pX sending an edge to a concatenation of two edges between the same pair of points, and
it is immediate that de-electrifications rγ of a geodesic in X 1 agree with de-electrifications of
the image of γ in pX. Hence Lemma 2.9 still holds for pX.

Lemma 2.9 leads to the following corollary.

Corollary 2.11. In the setting of Lemma 2.9, let x, y, w P X, and let γ be an pX–geodesic
from x to y. For any t ě 0, if dXpw, rx, ysXq ď t, then d

xX
pw, γq ď t ` D ` K ` 1.

Proof. Let rγ be the de-electrification of γ. Let w1 P rx, ysX satisfy dXpw,w1q ď t. By
Lemma 2.9, there is a point z P rγ with dXpw1, zq ď D. Either z lies on γ, in which case we
have proven the bound, or z lies on a Y –component of rγ for some Y P Y. In the latter case,
the K–quasiconvexity of Y implies that there exists z1 P Y such that dXpz, z1q ď K, and
there is an edge from z1 to vY in pX. The cone vertex vY lies on γ by construction, and so
d
xX

pw, γq ď t ` D ` K ` 1, as desired.

Definition 2.12. For every Y P Y there is a set-valued projection pX´tvY u Ñ 2Y , which we
still denote by πY , defined as follows. For every x P X the projection is πY pxq, and for every
U P Y other than Y we set πY pvU q – πY pUq, where πY pUq is as defined in (1), considering
U as a subspace of X. For every x, y P pX ´ tvY u, we set dπY px, yq “ diampπY pxq Y πY pyqq.

The following strengthening of the bounded geodesic image property describes how cone
points relate to geodesics joining a pair of points.
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Lemma 2.13 (Strong bounded geodesic image). In the setting of Lemma 2.9, suppose
further that the family Y is M0-geometrically separated, in the sense of Lemma 2.5. There
exists a constant C “ Cpδ,K,M0q bounded linearly in M0 such that for every Y P Y and
x, y P pX ´ tvY u, if a pX–geodesic γ does not pass through vY then dπY px, yq ď C.

Proof. Assume first that x, y P X. Set R “ 2δ ` 2K ` D ` 2, where D “ Dpδ,Kq is the
constant from Lemma 2.9. Our first goal is to prove that if dπY px, yq ą J , where J “ Jpδ,Kq

is the constant from Lemma 2.3, then γ intersects the R-neighborhood of vY in pX. To that
end, let rx, ys be an X-geodesic between x and y. Since dπY px, yq ą J , we can argue as in
Lemma 2.3 to find some z1 P Y such that dXpz1, rx, ysq ď K ` 2δ. Corollary 2.11 then gives

d
xX

pvY , γq ď 1 ` d
xX

pz1, γq ď 1 ` dXpz1, rx, ysq ` D ` K ` 1 ď 2δ ` 2K ` D ` 2 “ R.

Next, let a, b be the first and last vertices of γ X X contained in the pR ` 2q-neighborhood
of vY . Notice that d

xX
pa, vY q ě R ` 1, and similarly for b, since no two points on γ ´ X

are adjacent. Hence by the above argument both dπY px, aq and dπY pb, yq are at most J .
Moreover, if we let a “ a0, a1, . . . , an “ b be the subsegment of γ between a and b, then
n ď d

xX
pa, bq ď 2R ` 4. Finally, for every 0 ď i ď n ´ 1, we have dπY pai, ai`1q ď maxtJ,Bu,

where B “ Bpδ,K,Mq is the constant from Lemma 2.6. Indeed, either ai, ai`1 are X-
adjacent, and therefore dπY pai, ai`1q ď J , or ai “ vU for some U ‰ Y and ai`1 P U (or vice
versa), so diampπY pai`1q YπY paiqq ď diampπY pUqq ď B. The triangle inequality thus yields

dπY px, yq ď dπY px, aq `

n´1
ÿ

i“0

dπY pai, ai`1q ` dπY pb, yq ă C0 – 2J ` p2R ` 4qmaxtB, Ju,

concluding the proof of Lemma 2.13 for points in X.
Finally, let x, y P pX be any two points, let γ be an pX-geodesic between them which does

not pass through vY , and let x1 and y1 be the first and last points of γ XX, respectively. In
particular, either x “ x1 or x “ vU for some U P Y containing x1, and similarly for y. Note
that dπY px1, xq, dπY py, y1q ď B, and dπY px1, y1q ď C0 by the above argument, so the triangle
inequality yields that dπY px, yq ď C – C0 ` 2B. The constant C is bounded linearly in M0,
as so are C0 and B.

2.3 Projection complexes
In this section, we recall the machinery of projection complexes, first introduced by Bestvina,
Bromberg, and Fujiwara in [BBF15]. Let Y be a collection of metric spaces. Suppose that
for each Y P Y there is a projection πY from the elements of Y ´ tY u to subsets of Y . Then
we may define a “distance function” dπY : pY ´ tY uq2 Ñ r0,8q by

dπY pU, V q “ diam pπY pUq Y πY pV qq .

(Note that this is precisely what we did in Definition 2.12). The map dπY is usually not a
true distance function since we may have dπY pU,Uq ą 0.

Definition 2.14 ((Strong) projection axioms). Given a collection Y and distance functions
tdπY uY PY as above, as well as a constant θ ě 0, the projection axioms for Y with constant θ
are

(I) dπY pU, V q “ dπY pV,Uq;
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(II) dπY pU,W q ď dπY pU, V q ` dπY pV,W q.

(III) dπY pU,Uq ď θ;

(IV) mintdπY pU, V q, dπV pU, Y qu ď θ; and

(V) for all U, V P Y, the set tY P Y | dπY pU, V q ě θu is finite.

The strong projection axioms for Y with constant θ were defined in [BBFS19], and are
obtained by replacing Item (IV) by the following stronger statement:

(IV’) If dπY pU, V q ą θ then dπV pU,W q “ dπV pY,W q for all W P Y ´ tV u.

Bestvina–Bromberg–Fujiwara–Sisto show that functions dπY satisfying the projection axioms
can be modified to satisfy the strong projection axioms:

Theorem 2.15 ([BBFS19, Theorem 4.1]). Assume that Y is a collection of metric spaces
together with functions tdπY uY PY satisfying the projection axioms with constant θ. Then
there are functions dY : pY ´ tY uq2 Ñ r0,8q satisfying the strong projection axioms with
constant 11θ, and such that for all Y P Y,

dπY ´ 2θ ď dY ď dπY ` 2θ.

Definition 2.16. Suppose that pY, tdπY uY PYq satisfy the projection axioms with constant θ,
and let tdY uY PY be the modified distance functions. For any � ě 0, the projection complex
P�pYq is defined as follows. The vertices of P�pYq are Y, and two vertices U, V P Y are
joined by an edge if dY pU, V q ď � for all Y P Y ´ tU, V u. When the collection Y is
unimportant or clear from context we use the notation P�.

We recall some facts about projection complexes.

Lemma 2.17 (Bounded path image, [BBFS19, Corollary 3.4]). If � ě 33θ and a path
U1, . . . , Uk in P� does not intersect the 2-neighborhood of a vertex Y , then dY pU1, Ukq ď 11θ.

Corollary 2.18 (Strong bounded geodesic image). If � ě 33θ and a geodesic U1, . . . , Uk

in P� does not contain a vertex Y , then dY pU1, Ukq ď 22θ ` 6�.

Proof. Let Ui, Uj be the first and last point of the geodesic within distance 3 from Y . Then
j ´ i “ dpUi, Ujq ď 6. Thus

dY pU1, Ukq ď dY pU1, Uiq ` dY pUi, Ui`1q ` . . . ` dY pUj´1, Ujq ` dY pUj , Ukq.

Both dY pU1, Uiq and dY pUj , Ukq are at most 11θ by Lemma 2.17. Furthermore, for every
i ď n ď j ´ 1 we have that dY pUn, Un`1q ď � by definition of the distance in P�pYq, and
the bound follows.

2.3.1 A projection complex from a separated family of quasiconvex subspaces

Quasiconvex subsets of hyperbolic spaces naturally give rise to projection complexes (see for
example [BBF15]). For the rest of the section, we will work under the following hypothesis.

Hypothesis 2.19. Let X be a connected graph and Y a collection of subsets of X. Assume
there are constants δ,K,M0 ą 0 such that the following hold.
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1. X is δ-hyperbolic.

2. Each Y P Y is K–quasiconvex in X.

3. Y is M0–geometrically separated, in the sense of Lemma 2.5.

When the above are satisfied, we say that pX,Yq satisfies Hypothesis 2.19 with respect to
pδ,K,M0q. We omit the constants when they are unimportant or clear from context.

The goal of this subsection is to prove the following:

Proposition 2.20. Suppose pX,Yq satisfies Hypothesis 2.19 with respect to pδ,K,M0q.
There exists θ “ θpδ,K,M0q such that pY, tdπY uY PYq satisfies the projection complex axioms
(Definition 2.14) with constant θ. Moreover, θ is bounded linearly in M0.

Proof. We determine lower bounds on θ one item at a time. Item (I) and Item (II) follow
immediately from the fact that dπY is defined in terms of diameters of projections, and
Item (III) holds with θ ě B by Lemma 2.6.

We now move to Item (IV). Let θ1 “ 2B`Jp2δ`K`1q, where J is the Lipschitz constant
from Lemma 2.3. Let U, V,W P Y be such that dπW pU, V q ą θ1. Fix a P U , and let b P πV paq,
ca P πW paq, and cb P πW pbq. Then dpca, cbq ě dπW pU, V q ´ diamπW pUq ´ diamπW pV q ě J .
As in Lemma 2.3, there thus exists w P ra, bs within distance at most 2δ ` K from W . In
turn dpπV pwq, πV pW qq ď Jp2δ ` Kq as projections are J-Lipschitz. Notice that b P πV pwq,
as w lies on ra, bs and b P πV paq, so

dpπV pUq, πV pW qq ď dpb, πV pW qq ď diampπV pwqq ` dpπV pwq, πV pW qq ď Jp2δ ` K ` 1q.

Hence

dπV pU,W q ď diamπV pUq ` dpπV pUq, πV pW qq ` diamπV pW q ď 2B ` Jp2δ ` K ` 1q “: θ1,

so Item (IV) holds if θ ě θ1.
Now let D0 “ 2K ` 4δ ` Mp2K ` 4δq ` 1, which again is bounded linearly in M0, and

let θ “ 3JD0 ` 2B ` 2Jp3δ ` 1q, which is greater than θ1. We are left to prove Item (V),
i.e., that for every U ‰ V P Y the set tY P Y | dπY pU, V q ě θu is finite.

Let γ be a geodesic from u to v, where u P U and v P V . For every Y as above, dπY pu, vq ě

θ´2B ě 2Jp3δ`1q, so let a, b P γ be the last point such that dπY pu, aq ď Jp3δ`1q and the first
point such that dπY pb, vq ď Jp3δ`1q, respectively. See Figure 1. Let ra, bs be the subsegment
of γ between a and b, and let u1 P πY puq and v1 P πY pvq. By slimness of quadrangles, every
w P ra, bs is 2δ-close to some point z P ru, u1s Y ru1, v1s Y rv1, vs. If z P ru, u1s then u1 P πY pzq,
so dπY pu,wq ď J ` dπY pz, wq ď Jp2δ ` 1q, contradicting the fact that w is between a and b.
For the same reason, z cannot lie on rv, v1s, so ra, bs Ď N2δpru1, v1sq Ď NK`2δpY q. Now,

dπY pa, bq ě pdπY pu, vq ´ 2Jp3δ ` 1qq ě pθ ´ 2B ´ 2Jp3δ ` 1qq “ 3JD0 ą J,

so by Lemma 2.3 we have that dpa, bq ě 1
J dπY pa, bq ě 3D0. Thus, if we cover γ by finitely

many segments γ1, . . . , γℓ, each of length D0, we must have that γi Ď ra, bs Ď NK`2δpY q for
some i ď l.

It is enough to show that if γi Ď NK`2δpY q X NK`2δpY 1q for some Y, Y 1 P Y, then
Y “ Y 1, because then the set tY P Y | dπY pU, V q ě θu will have cardinality at most l. To see
this, notice that γi has length D0, so there exist p, q P Y X NK`2δpγiq Ď Y X N2K`4δpY 1q

such that dpp, qq ě D0 ´ 2pK ` 2δq “ Mp2K ` 4δq ` 1. Since Y is M0-separated, this means
that Y “ Y 1, as required.
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Figure 1: The domains and geodesic involved in the proof of Item (V) in Proposition 2.20.
The geodesic ru, vs has a long subsegment in a uniform neighborhood of Y , and the endpoints
a and b of this subsegment project to Y close to the endpoints of the whole geodesic.

2.3.2 Adding points to the projection complex

We now define a projection complex structure on pXp0q itself, provided that the collection Y
coarsely covers X. That is, we will build the structure using both the points in X and the
spaces in Y. This will serve as a unified framework for studying projections between spaces
in Y and from X to spaces in Y.

For every x P X let πx : X Ñ txu be the constant map, and for every cone point vY ,
let πvY be the map πY : X Ñ 2Y . For every Y P Y and x P pX, set πxpvY q “ πxpY q, as in
Definition 2.12. Equip the set pXp0q with distance functions dπxpy, zq “ diampπxpyq Y πxpzqq.

Definition 2.21. Fix a constant R ě 0. If x P X, let VRpxq “ tY P Y | dXpx, Y q ď Ru be
the collection of nearest subspaces to x. If x “ vY for some Y P Y, we set VRpxq “ tY u.

Corollary 2.22. Suppose pX,Yq satisfies Hypothesis 2.19 with respect to pδ,K,M0q, and
suppose there exists R ě 0 such that X “

Ť

Y PY NRpY q. There exists Θ “ Θpδ,K,M0, Rq

such that p pXp0q, tdπxu
xPxX

q satisfies the projection complex axioms (Definition 2.14) with
constant Θ. Moreover, Θ is bounded linearly in M0.

Proof. By Proposition 2.20, pY, tdπY uY PYq satisfies the axioms with some constant θpδ,K,M0q,
which is bounded linearly in M0. We will show the result holds with Θ “ θ`2pB`JRq`J .

Item (I) and Item (II) are clear from the construction. Furthermore, for every x, y P pX,
we have dπy px, xq ď J ď Θ if x P X, and dπy px, xq ď θ ď Θ if x “ vU for some U P Y, so
Item (III) holds.

We next prove Item (IV). If x, y, z P pX, then mintdπxpy, zq, dπy px, zqu “ 0 unless x “ vU
and y “ vV for some U, V P Y. If z “ vW for some W P Y, then the bound follows from the
corresponding axiom for pY, tdπY uY PYq. Otherwise z P X, and let Z P VRpzq. If Z P tU, V u,
say without loss of generality that Z “ U , then dπY pU, zq “ dπY pZ, zq ď B ` JR, as πY is
J-Lipschitz. If instead Z R tU, V u, then

mintdπU pV, zq, dπV pU, zqu ď mintdπU pV,Zq, dπV pU,Zqu ` B ` JR ď θ ` B ` JR ď Θ.

For Item (V), let x, y P pX, let U P VRpxq, and let V P VRpyq. If Z P Y is such that
Θ ď dπZpx, yq ď dπZpU, V q ` 2pB ` JRq, then dπZpU, V q ě θ, and there are finitely many such
Z. This suffices to prove Item (V) as, if z P X, then dπz px, yq “ 0.
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3 Hyperbolic quotients from spinning families
Recall that an isometric action of a group G on a space X is R-cobounded for some constant
R ě 0 if X “ NRpG ¨ xq for every x P X. In this section, we work under the following
standing assumption, which introduces a group action into the framework of Section 2.

Hypothesis 3.1. Let pX,Yq satisfy Hypothesis 2.19 with respect to pδ,K,M0q. Let M
be the geometric separation function from Equation (2). Let J “ Jpδ,Kq be the Lipschitz
constant of tπY uY PY from Lemma 2.3, let B “ Bpδ,K,M0q be the bound on the diameter
of projections from Lemma 2.6, and let C “ Cpδ,K,M0q be the bounded geodesic image
constant from Lemma 2.13.
Let G be a group acting by isometries on X. Suppose that the following hold.

4. The G-action on X is R-cobounded, for some R ě 0; and

5. the collection Y is G–invariant, that is, for each Y P Y every translate gY is in Y.

In particular X “
Ť

Y PY NRpY q. Let Θ “ Θpδ,K,M0, Rq be the constant from Corol-
lary 2.22. Set rΘ “ maxtΘ, 2pJR`B`Θq{33u and � “ 33rΘ, and let P – P�p pXp0qq be the
associated projection complex, as in Definition 2.16. Let Lhyp “ LhyppPq be the threshold
from [CM22, Theorem 1.1], and set

L “ maxtLhyp, 40C, 10p2pB ` JRq ` 2J ` 1qu. (3)

Finally, suppose that the following hold.

6. For each Y P Y there is a non-trivial subgroup HY ď StabGpY q such that gHY g
´1 “

HgY for each g P G; and

7. There exists L ą L such that, for any Y P Y, any x ‰ vY P pX, and any nontrivial
h P HY , we have dπY px, hxq ą L.

If the above are satisfied, we say pX,Y, G, tHY uY PYq satisfies Hypothesis 3.1 with respect to
pδ,K,M0, R, Lq. We omit the constants when they are unimportant or clear from context.

We emphasize that the projection complex P in Hypothesis 3.1 is formed using all of the
points in pXp0q, not just the set Y.

Remark 3.2 (Linear dependence of Lhyp on M0). By inspection of [CM22], one sees that
the constant Lhyp is bounded linearly in M0. Indeed, Clay and Mangahas first introduce
constants Ce, Cp, Cg such that the following hold.

• Whenever x, y are adjacent in P, then dπz px, yq ď Ce for every x ‰ z ‰ y. The
definition of P and Theorem 2.15, which states that dπz and dz differ by at most 2Θ,
ensures that we can choose Ce “ � ` 2Θ.

• Whenever x, y are joined by a path in P which does not pass through the 2-neighborhood
of z, then dπz px, yq ď Cp. By Lemma 2.17 we can choose Cp “ 11rΘ ` 2Θ.

• Whenever x, y are joined by a geodesic in P which does not pass through z, then
dπz px, yq ď Cg. By Corollary 2.18 we can use Cg “ 22rΘ ` 6� ` 2Θ.

From here, they set:
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• m “ 11Ce ` 6Cg ` 5Cp and L0 “ 4pm ` Θq ` 1 [CM22, Lemma 2.1];

• Lshort “ maxtL0, 5m, 14Θu [CM22, Proposition 3.2];

• Lliftp0q “ maxtLshort, 40Cgu [CM22, Proposition 4.3];

• Lhyp “ Lliftp0q [CM22, Theorem 1.1].

In the end, Lhyp is a piecewise linear function of rΘ and Θ, both of which are bounded
linearly in M0. We also stress that, as pointed out in [CM22, Lemma 2.1], Lhyp ě L0 is also
greater than the constant LpPq from [CMM21, Theorem 1.6], so all results of that paper
concerning only the action G ñ P still hold in our setting.

3.1 Properties of spinning families

For each x P pX, define Hx “ HY if x “ vY for some Y P Y, and define Hx “ t1u if x P X.
The collection of subgroups tHxu

xPxX
form a spinning family, a notion introduced by Clay,

Mangahas, and Margalit [CMM21, Section 1.7].

Definition 3.3 (Spinning family). Let P be a projection complex, and let G be a group
that acts on P by isometries. For each vertex x P P, let Hx be a subgroup of the stabilizer
of x in G. Let L ą 0. The family of subgroups tHxu is an equivariant L–spinning family of
subgroups of G if it satisfies the following two conditions:

• Equivariance: If g P G and x is a vertex of P, then gHxg
´1 “ Hgx.

• Spinning: For any x ‰ y P P and any non-trivial h P Hy, we have dπy px, hxq ą L.

Notice that G acts on P by isometries, as the projections tπY uY PY and tπxuxPX are G-
equivariant. The following lemma is immediate.

Lemma 3.4. If pX,Y, G, tHY uY PYq satisfies Hypothesis 3.1 with respect to pδ,K,M0, R, Lq,
then the family of subgroups tHxu

xPxX
forms an equivariant L–spinning family.

We gather here some facts about spinning families from [CMM21, CM22]. First, the main
theorem of [CMM21] states that the subgroup N – xxHxyy

xPxX
“ xxHY yyY PY normally

generated by the spinning family is a (generally infinite) free product:

Theorem 3.5. Let pX,Y, G, tHY uY PYq be as in Hypothesis 3.1, and let O be any set of
orbit representatives for the action of N on Y. Then N – ˚ZPO HZ .

We can use Theorem 3.5 to characterize stabilizers in N :

Corollary 3.6. Let pX,Y, G, tHY uY PYq be as in Hypothesis 3.1. For Y P Y we have that
N X StabGpY q “ HY .

Proof. Let O be a collection of N -orbit representatives including Y . Since HY is a non-trivial
free factor of N – ˚ZPO HZ , it is malnormal in N , i.e., it intersects any of its conjugates
trivially. Furthermore, if n P N fixes Y , then it normalizes HY by Hypothesis 3.1.(6), and
so n P HY by malnormality, as required.
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Remark 3.7 (Complexity). There is a partial order ă on elements of N , called complexity,
which is invariant under conjugation by elements of N . The only facts we will need about this
partial order is that it has the identity as its unique minimal element, and that descending
chains have finite length; this will allow for inductive arguments on the complexity of an
element. We omit the full definition and refer the reader to [CM22, Section 3] for details.

Proposition 3.8 ([CM22, Lemma 3.2]). Assume that pX,Y, G, tHY uY PYq satisfies Hypoth-
esis 3.1. Let x P pX and h P N be such that hx ‰ x. Then there exist Y P Y and hY P HY

such that the following hold.

1. Either vY P tx, hxu or dπY px, hxq ą L{10; and

2. hY h ă h.

We say that pY, hY q is a shortening pair for px, hq.

Clay and Mangahas further investigated the properties of spinning families and showed that
P{N is hyperbolic, provided that L ą Lhyp [CM22, Theorem 1.1]. In Section 3.2, we use
these properties to prove that pX{N , rather than the quotient of P, is uniformly hyperbolic,
regardless of the choice of L (as long as L is bigger than the constant L from Equation (3)).

We conclude the subsection with the following Corollary, which is crucial in the appli-
cation to quasi-isometric rigidity of random quotients of mapping class groups [Man23]:

Corollary 3.9 (Large injectivity radius). Under the assumptions of Proposition 3.8 let
τ “ pL{10 ´ 2pB ` JRqq{J ě 2. For every x P X and every h P N ´ t1u, we have
dXpx, hxq ą τ . In particular, N acts freely on X.

Proof. Following Definition 2.21, let Vpxq “ VRpxq be the set of nearest subspaces of Y. This
set is non-empty as the action is R-cobounded, so let Y P Vpxq. If hY “ Y , then h P HY

by Corollary 3.6. Hence dY px, hxq ą L ą J by Hypothesis 3.1, and so dXpx, hxq ą L{J by
Lemma 2.3.

Suppose instead that hY ‰ Y . Then by Proposition 3.8 there exists U P Y such that
dU pY, hY q ą L{10. Since projections are J-Lipschitz and x is R-close to Y , we have that
dU px, hxq ą L{10´2pB`JRq ą J , since L is greater than the constant L from Equation (3).
Hence again Lemma 2.3 yields that dXpx, hxq ą pL{10 ´ 2pB ` JRqq{J .

3.2 Hyperbolicity of the quotient graph

We now turn our attention to the quotient X – pX{N . Let q : pX Ñ X be the quotient map.
We say that a subgraph T Ď pX lifts a subgraph T Ď X if q restricts to an isometry between
T and T . To avoid confusion, we will denote points in X by x and points in pX (and X)
simply by x. By an abuse of notation, we consider points in X to be equivalence classes of
points in pX: if qpxq “ x, we will write x P x and say x is a representative of x. We first
define a certain class of representatives.

Definition 3.10. Given x, y P X, two points x P x and y P y are minimal distance repre-
sentatives, or simply minimal, if

d
xX

px, yq “ inf
x1Px, y1Py

d
xX

px1, y1q.
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Lemma 3.11. Let x, y P X, and let x P x, y P y be minimal representatives. Suppose
α “ α1 ˚ α2 is a geodesic in pX from x to y with endpoints pα1q` “ vY “ pα2q´ for some
Y P Y. For any hY P HY , the path α1 “ α1 ˚ hY α2 is also a geodesic in pX.

Proof. Since hY P StabpY q, we have hY vY “ vY . Therefore α1 has the same length as α,
and so d

xX
px, hY yq ď d

xX
px, yq. On the other hand, since x and y are minimal and hY y is

also a representative of y, the distance from hY y to x is at least the distance from y to x.
Together, this implies that d

xX
px, yq “ d

xX
px, hY yq, and so α1 is a geodesic in pX.

We say that we bend the path α along vY to obtain the path α1 “ α1 ˚ hY α2, and we call
α1 a bent path. Notice that, since the endpoints of α are minimal, the image in the quotient
qpαq is a geodesic between x and y, and both α and α1 are lifts of qpαq.

The leitmotiv of many arguments throughout this paper is that, if one combines Propo-
sition 3.8 with the strong bounded geodesic image Lemma 2.13, then many combinatorial
configurations lift from X to pX. We showcase this in the next Proposition, where we prove
that geodesic quadrangles admit lifts. The “moreover” part will be relevant in Section 3.3
to ensure that the image of certain WPD elements of G remain WPD elements of G{N .

Proposition 3.12. Let Q Ď X be a geodesic quadrangle with vertices v1, v2, v3, v4. Then
there exists a geodesic quadrangle Q Ď pX which lifts Q.

Moreover, if the geodesics rv1, v2s and rv3, v4s of Q have lifts rv1
1, v

1
2s and rv1

3, v
1
4s, respec-

tively, such that supY PY dπY pv1
1, v

1
2q ď L{40 and supY PY dπY pv1

3, v
1
4q ď L{40, then the lifts of

rv1, v2s and rv3, v4s contained in Q can be chosen to be N–translates of rv1
1, v

1
2s and rv1

3, v
1
4s,

respectively.

Proof. Lift each geodesic side of Q to a geodesic in pX. Up to replacing each lift by some
N -translate, this produces a concatenation of four geodesics γ1 “ rv1, v2s, γ2 “ rv2, v3s,
γ3 “ rv3, v4s, and γ4 “ rv4, v5s, where v5 “ hv1 for some h P N . Under the hypothesis of
the “moreover” part, we can choose γ1 and γ3 to be N–translates of rv1

1, v
1
2s and rv1

3, v
1
4s,

respectively. We call this configuration an open lift of T .
Recall that, by Remark 3.7, descending chains in ă have finite length, so we proceed by

induction on the complexity of h. If h “ 1, or more generally if hv1 “ v1, then the union
γ1 Y . . . Y γ4 is already a geodesic quadrangle Q lifting Q, as required. Otherwise, we show
that we can find another open lift of Q where the new endpoints differ by some h1 ă h,
reducing the complexity. Indeed, since hv1 ‰ v1, Proposition 3.8 provides a shortening pair
pY, hY q for pv1, hq. There are two cases to consider.

• Suppose first that vY “ vj for some 1 ď j ď 5. For every i ě j, replace γi by hY γi.
This results in another open lift of T , made of N -translates of the original γis, but
now v1 and hY hv1 differ by hY h, which has lower complexity than h by definition of
the shortening pair.

• Now suppose that vY ‰ vj for all j, so that all projections from vj to Y are defined.
By Proposition 3.8 we have that dπY pv1, hv1q ą L{10, and the triangle inequality yields
that at least one of dπY pv1, v2q, dπY pv2, v3q, dπY pv3, v4q, and dπY pv4, hv1q is larger than
L{40. We assume that dπY pv4, hv1q ą L{40; an analogous argument holds in the other
cases. Since we chose L greater than the constant L from Equation (3), the quantity
L{40 is greater than the constant C from the bounded geodesic image Lemma 2.13.
It follows that vY lies on the geodesic γ4. Bend γ4 at vY by hY ; in other words, apply
hY to every vertex of the open lift between vY and hv1. See Figure 2. Since the bent
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path is still a geodesic lift of rv4, v1s, this operation produces a new open lift of Q.
Moreover, as before, v1 and hY hv1 now differ by hY h ă h. Notice that, in the setting
of the “moreover” part, both dπY pv1, v2q and dπY pv3, v4q are at most L{40, hence the
bending procedure replaces each of γ1 and γ3 by an N–translate.

In both cases, we conclude by induction: after finitely many steps, we have obtained a
geodesic quadrangle Q that lifts Q, and, in the “moreover” setting, the lifts of rv1, v2s and
rv3, v4s contained in Q are N -translates of rv1

1, v
1
2s and rv1

3, v
1
4s, respectively.

Figure 2: The open lift from the proof of Proposition 3.12, and its bending at the shortening
vertex (here, the dashed line).

Theorem 3.13. If pX,Y, G, tHY uY PYq satisfies Hypothesis 3.1, then X is pδ-hyperbolic,
where pδ “ pδpδ,Kq is the hyperbolicity constant of pX from Lemma 2.8.

Proof. Let T Ď X be a geodesic triangle, which we see as a degenerate quadrangle, and let
T Ď pX be a lift of T . Given any point p P T let p P T be its lift. By slimness of triangles in
pX, there exists q P T on one of the other sides such that d

xX
pp, qq ď pδ. But then, since the

projection map q : pX Ñ X is 1-Lipschitz, we have that dXpp, qq ď d
xX

pp, qq ď pδ, where q is
the projection of q. This proves that T is pδ-slim, as required.

3.3 Preserving acylindrical hyperbolicity
In this subsection, we show that quotients of acylindrically hyperbolic groups by spinning
families are acylindrically hyperbolic. We go about this by showing that if G ñ X admits
independent loxodromic WPD elements whose axes are “transverse” to the collection Y, then
the quotient G{N does, as well.

Recall that, given an isometric action of a group G on a hyperbolic space X, an element
g P G is loxodromic if for every x P X the map Z Ñ X mapping n to gnpxq is a quasi-
isometric embedding. In this case, the limit set of xgy consists of the two endpoints of the
quasigeodesic tgnpxqunPZ inside BX, which do not depend on x. Two loxodromic isometries
of a hyperbolic space are independent if their limit sets are disjoint. Furthermore, following
[BF02], a loxodromic element g P G is weakly properly discontinuous, or WPD, if for every
ε ą 0 and every x P X there exists M P N such that

ˇ

ˇ

␣

h P G | dX px, hxq ď ε, dX
`

gMx, hgMx
˘

ď ε
(
ˇ

ˇ ă 8.

19



The core of the arguments in this subsection is the following lemma.

Lemma 3.14. Let x, y P X be such that supY PY dπY px, yq ď L{20. Then

1

L{20 ` 2C
dXpx, yq ď d

xX
px, yq “ dXpx, yq. (4)

Proof. Let γ be an pX-geodesic connecting x to y, and let rγ be its de-electrification in X.
Clearly the length of rγ is at least dXpx, yq; hence the inequality on the left of (4) follows if
we bound the length of rγ by pL{20 ` 2Cq-times the length of γ. In turn, by the definition
of the de-electrification, it suffices to show that whenever γ has a two-edge subsegment of
the form tc, vY , du, where Y P Y and c, d P Y , then dXpc, dq ď L{20 ` 2C. To see this,
assume that c is closer to x than d. Since γ|rx,cs does not pass through vY , dπY pc, xq ď C by
Lemma 2.13, and symmetrically dπY pd, yq ď C. Therefore, since c, d P Y , we have that

dXpc, dq “ dπY pc, dq ď dπY pc, xq ` dπY px, yq ` dπY py, dq ď L{20 ` 2C.

For the equality on the right of (4), suppose x and some y1 P y are minimal and let η be an
pX-geodesic connecting x to y1. We claim that γ and η have the same length. To see this,
let h P N be such that hy “ y1. We proceed by induction on the complexity of h. If h fixes
y we are done. Otherwise, let pY, hY q be a shortening pair for py, hq, as in Proposition 3.8.
We have that

L{10 ă dπY py, y1q ď dπY py, xq ` dπY px, y1q ď L{20 ` dπY px, y1q.

Since L{10 ´ L{20 “ L{20 ą C, Lemma 2.13 implies that vY lies on η. Bending η at vY ,
we conclude by induction.

We are now ready to prove the main technical result of this subsection.

Proposition 3.15. Let f, g P G be independent loxodromic isometries for the action on X,
and let x P X be such that

sup
Y PY

sup
m,nPZ

dπY pfmx, gnxq ď L{40.

Then f, g P G{N are independent loxodromics for the action on X. Moreover, if f is a
WPD element, then so is f .

Proof. The hypotheses, together with Lemma 3.14, imply that dXpx, f
n
xq and dXpx, gnxq

both grow linearly in n, so f and g are loxodromic. Moreover, the same Lemma 3.14 yields
that

dHauspxfyx, xgyxq ě
1

L{20 ` 2C
dHauspxfyx, xgyxq “ 8,

so f and g are indeed independent.
Now suppose that f is a WPD element with respect to the action of G on X. By

hypothesis, a quasiaxis for f can fellow travel along a subspace Y P Y only for a uniformly
bounded amount, so [MMS24, Theorem 2.4] implies that f is a WPD element with respect
to the action of G on pX. Now fix ε ą 0 and x P X, let x P pX be a lift of x, and let M ą 0
be such that the set

∆ “ th P G | d
xX

px, hxq ď ε, d
xX

pfMx, fgMxq ď εu
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is finite. Let D denote the size of ∆.
Suppose there exist distinct elements g1, . . . , gp P G{N such that

dXpx, gixq ď ε and dXpf
M
x, gif

M
xq ď ε.

Consider the geodesic quadrilateral Q in X with vertices x, f
M
x, gif

M
x, and f

M
x. By the

“moreover” statement of Proposition 3.12, there exist gi P gi such that the quadrilateral Q
lifts to a geodesic quadrilateral Q of pX with vertices x, fMx, gif

Mx, and gix. In particular,
we have

d
xX

px, gixq “ dXpx, gixq ď ε and, similarly, d
xX

pfMx, gif
Mxq ď ε.

It follows that gi P ∆ for each 1 ď i ď p, and hence p ă D. This shows that the element f
is WPD with respect to the action of G{N on X, as required.

Corollary 3.16. Let pX,Y, G, tHY uY PYq satisfy Hypothesis 3.1. Suppose there exist inde-
pendent loxodromics f, g P G as in Proposition 3.15, and that f is a WPD element. Then
G{N is acylindrically hyperbolic.

Proof. By Proposition 3.15, G{N acts with independent loxodromic isometries on X and
so is not virtually cyclic. Furthermore, f is a loxodromic WPD element for this action.
Therefore G{N is acylindrically hyperbolic by [Osi16, Theorem 1.2].

4 Hierarchical hyperbolicity of spinning quotients
Up until this point, we have worked with an arbitrary hyperbolic graph X with a group
action, along with an equivariant collection of uniformly quasiconvex subspaces. In this
section, we specialize to the case when X arises as the top level hyperbolic space in a
(relative) hierarchically hyperbolic group structure.

4.1 Background on hierarchical hyperbolicity
This subsection gathers definitions and properties of (relative) hierarchically hyperbolic
spaces and groups introduced in [BHS19]; see [Rus20, Definition 2.8] for this formulation of
some of the axioms.

Definition 4.1 (Relative hierarchically hyperbolic space). Let E ą 0, and let X be an
pE,Eq–quasigeodesic space. A relatively hierarchically hyperbolic space (relative HHS) struc-
ture with constant E for X is an index set S and a set tCW | W P Su of geodesic spaces
pCW, dW q such that the following axioms are satisfied.

(1) (Projections.) For each W P S, there exists a projection πW : X Ñ 2CW that is a
pE,Eq–coarsely Lipschitz, E–coarsely onto, E–coarse map.

(2) (Nesting.) If S ‰ H, then S is equipped with a partial order Ď and contains a unique
Ď–maximal element. When V Ď W , we say V is nested in W . For each W P S, we
denote by SW the set of all V P S with V Ď W . Moreover, for all V,W P S with
V Ĺ W there is a specified non-empty subset ρVW Ď CW with diampρVW q ď E.
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(3) (Finite complexity.) Any set of pairwise Ď–comparable elements has cardinality at
most E.

(4) (Orthogonality.) The set S has a symmetric relation called orthogonality. If V and
W are orthogonal, we write V K W and require that V and W are not Ď–comparable.
Further, whenever V Ď W and W K U , we require that V K U . We denote by SK

W

the set of all V P S with V K W .

(5) (Containers.) For each W P S and U P SW with SW X SK
U ‰ H, there exists

Q P SW such that V Ď Q whenever V P SW X SK
U . We call Q the container for U

inside W .

(6) (Transversality.) If V,W P S are neither orthogonal nor Ď-comparable, we say V
and W are transverse, denoted V &W . Moreover, for all V,W P S with V &W , there
are non-empty sets ρVW Ď CW and ρWV Ď CV , each of diameter at most E.

(7) (Consistency.) For all x P X and V,W,U P S:

• if V &W , then min
␣

dW pπW pxq, ρVW q, dV pπV pxq, ρWV q
(

ď E, and

• if U Ď V and either V Ĺ W or V &W and W M U , then dW pρUW , ρVW q ď E.

(8) (Hyperbolicity) For each W P S, either W is Ď–minimal or CW is E–hyperbolic.

(9) (Bounded geodesic image.) For all V,W P S and for all x, y P X , if V Ĺ W and
dV pπV pxq, πV pyqq ě E, then every CW–geodesic from πW pxq to πW pyq must intersect
NEpρVW q.

(10) (Partial realization.) If tViu is a finite collection of pairwise orthogonal elements of
S and pi P CVi for each i, then there exists x P X so that:

• dVipπVipxq, piq ď E for all i;

• for each i and each W P S, if Vi Ĺ W or W&Vi, we have dW pπW pxq, ρVi

W q ď E.

(11) (Uniqueness.) There is a function θ : r0,8q Ñ r0,8q so that for all r ě 0, if x, y P X
and dX px, yq ě θprq, then there exists W P S such that dW pπW pxq, πW pyqq ě r.

(12) (Large links.) For all W P S and x, y P X , there exists tV1, . . . , Vmu Ď SW ´ tW u

such that m is at most EdW pπW pxq, πW pyqq ` E, and for all U P SW ´ tW u, either
U P SVi

for some i, or dU pπU pxq, πU pyqq ď E.

We use S to denote the relative HHS structure, including the index set S, spaces tCW :
W P Su, projections tπW : W P Su, and relations Ď, K, &. We call an element U P S
a domain, the associated space CU its coordinate space, and call the maps ρVW the relative
projections from V to W . The number E is called the hierarchy constant for S; notice that
every E1 ě E is again a hierarchy constant for S, so we are often free to enlarge E by a
bounded amount.

A relative HHS is called a hierarchically hyperbolic space (HHS) if for every W P S the
space CW is E–hyperbolic, in this case we say S is a HHS structure on X .

A quasigeodesic space X is a (relative) HHS with constant E if there exists a (relative)
HHS structure on X with constant E. The pair pX ,Sq denotes a (relatively) HHS equipped
with the specific HHS structure S.
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The large links axiom (Definition 4.1.(12)) can be replaced with the following, which is
traditionally called passing up.

(12’) (Passing up). For every t ą 0, there exists an integer P “ P ptq ą 0 such that if
V P S and x, y P X satisfy dUipx, yq ą E for a collection of domains tUiu

P
i“1 with

Ui P SV , then there exists W P SV with Ui Ĺ W for some i such that dW px, yq ą t.

It was shown in [BHS19, Lemma 2.5] that every HHS satisfies the passing up axiom. The fol-
lowing lemma, which is the converse implication, is stated explicitly in [Dur23, Section 4.8],
but the strategy behind the proof appears in [PS23, Lemma 5.3]. The proof is written for
a HHS, but it does not use the hyperbolicity of the spaces CW , and so it also applies to a
relative HHS.

Lemma 4.2. If pX ,Sq satisfies axioms (1)–(11) from Definition 4.1, as well as the passing
up axiom (12’), then pX ,Sq is a relative HHS. If moreover the spaces CW are E–hyperbolic
for all W P S, then pX ,Sq is a HHS.

The following is a combination of [BHS17a, Lemma 1.8] and the consistency axiom (7).

Lemma 4.3. Let pX ,Sq be a relative HHS. If U, V P SW are not transverse, then dSpρUW , ρVW q

is at most 2E.

A hallmark of hierarchically hyperbolic spaces is that every pair of points can be joined
by a special family of quasigeodesics called hierarchy paths, each of which projects to a
quasigeodesic in each of the spaces CW .

Definition 4.4. A λ–hierarchy path γ in a HHS pX ,Sq is a λ–quasigeodesic with the
property that πW ˝ γ is an unparametrized λ–quasigeodesic for each W P S.

Theorem 4.5 ([BHS19, Theorem 6.11]). Let pX ,Sq be a relative HHS with constant E.
There exist λ ě 1 depending only on E so that every pair of points in X is joined by a
λ–hierarchy path.

Given A,B,C,D P R, write A ĺC,D B to mean that A ď BC ` D, and A —C,D B if
B ĺC,D A ĺC,D B. Let ttAuuB be the quantity which is A if A ě B, and is 0 otherwise.

Theorem 4.6 (Distance formula, [BHS19, Theorem 6.10]). Let pX ,Sq be a relative HHS.
There exists s0 such that for all s ě s0, there exist k1, k2 so that for all x, y P X ,

dX px, yq —k1,k2

ÿ

UPS

ttdU px, yquus .

We next introduce the notion of a hierarchically hyperbolic group.

Definition 4.7 (Hierarchically hyperbolic group). Let G be a finitely generated group and
X be the Cayley graph of G with respect to some finite generating set. We say G is a
(relatively) hierarchically hyperbolic group (HHG) if the following hold.

(i) The space X admits a (relative) HHS structure S with hierarchy constant E.

(ii) There is a Ď–, K–, and &–preserving action of G on S by bijections such that S
contains finitely many G–orbits.

(iii) For each W P S and g P G, there exists an isometry gW : CW Ñ CpgW q satisfying the
following for all V,W P S and g, h P G.
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• The map pghqW : CW Ñ CpghW q is equal to the map ghW ˝ hW : CW Ñ CphW q.

• For each x P X, gW pπW pxqq and πgW pg ¨ xq are at distance at most E in CpgW q.

• If V &W or V Ĺ W , then gW pρVW q and ρgVgW are at distance at most E in CpgW q.

The structure S satisfying (i)—(iii) is called a (relative) hierarchically hyperbolic group
structure on G. We use pG,Sq to denote G equipped with a specific (relative) HHG structure
on G. In Item (iii) we often drop the subscript on the isometry gW and simply write g when
the domain W is clear from context.

Remark 4.8. The second and third bullet points in Item (iii) imply that the isometry gW
is coarsely equivariant with respect to projections πW and the ρ–maps. In fact, we can
assume that these isometries are genuinely equivariant; see [DHS20, Section 2.1]. That is,
we assume that for all W P S, all g P G, and all V P S with V &W or V Ĺ W , we have:

• gW pπW pxqq “ πgW pg ¨ xq, and

• gW pρVW q “ ρgVgW .

Remark 4.9 (Convention on CS). In a HHS structure, one can assume that CW is a graph
for every W P S, as it can always be StabGpW q-equivariantly replaced by a graph (see, e.g.,
[CdlH16, Lemma 3.B.6]). Furthermore, if G is a HHG, the projection πS : G Ñ CS can be
assumed to be a bijection. This is because, since πS is E-coarsely onto and G-equivariant,
G acts coboundedly on CS, so CS is G-equivariantly quasi-isometric to a Cayley graph of
G with respect to some possibly infinite generating set. Hence we can (and will) identify
points of CS with elements of G. Finally, if CS is bounded, we will always assume that the
HHG constant E is larger than diampCSq.

For the next lemma, recall that the action of a group G on a metric space X is acylindrical
if for all ε ą 0 there exist constants R “ Rpεq ě 0 and N “ Npεq ě 0 such that for every
x, y P X with dpx, yq ě R, we have

#tg P G | dpx, gxq ď ε and dpy, gyq ď εu ď N.

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a
hyperbolic space, that is, an acylindrical action that contains two independent loxodromic
isometries.

Lemma 4.10. If pG,Sq is a (relative) HHG whose top-level coordinate space X – CS is
hyperbolic, then G acts acylindrically on X. As a consequence, if G is not virtually cyclic and
X is unbounded, then G is acylindrically hyperbolic, and we say pG,Sq is an acylindrically
hyperbolic (relative) HHG.

Proof. This is [BHS17b, Corollary 14.4], which is stated for HHGs but whose proof does
not use the hyperbolicity of non-maximal elements of S.

The following lemma follows immediately from the distance formula; see also [ABD21] in
the case of a HHG.

Lemma 4.11. Let pG,Sq be a relative HHG and suppose H ď G is pλ, cq–quasi-isometrically
embedded by the orbit map G Ñ CS. There is a constant ℵ “ ℵpS, λ, cq such that the diam-
eter of πU pHq is at most ℵ for all U P S ´ tSu.
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4.2 Statement of the main result
Given a metric space X and a group G, we say that an isometric action G ñ X is geometric
if it is cobounded and metrically proper, i.e., for every x P X and every R ą 0 the set
tg P G | dpx, gxq ď Ru is finite. For the rest of the section, we shall work under the
following strengthening of Hypothesis 3.1:

Hypothesis 4.12. Let G be a (relative) HHG, with top-level coordinate space X and HHG
constant E ą 0. Assume that pX,Y, G, tHY uY PYq satisfy Hypothesis 3.1 with respect to
pE,K,M0, R, Lq. Notice that we can always choose R “ 0 by Remark 4.9. Furthermore,
suppose that:

7. G acts cofinitely on Y;

8. For each Y P Y, the subgroup HY acts geometrically on Y ; and

9. L ą rL, where rL “ rLpE,K,M0q is defined in Equation (6) below and is bounded
linearly in M0.

We say that the collection pX,Y, G, tHY uY PYq satisfies Hypothesis 4.12 with respect to
pE,K,M0, Lq. We drop the constants when unimportant or clear from context. Let N –

xxHY yyY PY be the normal subgroup generated by the spinning family.

Our main result is a technical formulation of Theorem E that quotients of (relative) HHGs
by subgroups forming a sufficiently spinning family are (relative) HHGs.

Theorem 4.13. If G is a (relative) HHG such that pX,Y, G, tHY uY PYq satisfies Hypothe-
sis 4.12, then G{N is a (relative) HHG.

Remark 4.14. Notice that Theorem 4.13 holds trivially when G is not an acylindrically
hyperbolic (relative) HHG. Indeed, by Lemma 4.10, either such a G is virtually cyclic, or its
top-level coordinate space X is bounded. In the first case, any quotient of G is still virtually
cyclic, hence hierarchically hyperbolic. In the second case, since rL ě E by Equation (6),
and since we are assuming that E ě diampXq by Remark 4.9, then the only L-spinning
family of subgroups of G is the trivial family, so that N “ t1u and G{N “ G. In light of
this, the bulk of work is to deal with the case that X is non-elementary hyperbolic, which
we shall assume for the remainder of the section.

Assuming that G is acylindrically hyperbolic does not guarantee that the quotient is
again acylindrically hyperbolic. For example, if G is a surface group, X is a Cayley graph of
G, Y “ X, and H is a normal subgroup of sufficiently large finite index, then pX,Y,G,Hq

satisfies Hypothesis 4.12, but the quotient is finite. However, under the additional as-
sumption that there exist two independent loxodromics whose axes have uniformly bounded
projections to all Y P Y, Proposition 3.15 will ensure that G{N is again an acylindrically
hyperbolic HHG. We note that this condition is equivalent to G having two independent
loxodromic elements for the action on G ñ pX, where pX, defined in the next subsection, is
a slight modification of the cone-off from Definition 2.7.

4.3 A modified cone-off
In describing the quotient hierarchy structure, we will use both projections coming from the
relative HHS structure and the projection complex structure described in Corollary 2.22. It
will be convenient to first modify the space X by a quasi-isometry that introduces new cone
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points for each domain U P S ´ tSu that will serve as an anchor for canonically defining
projections and the quotient action. We first set

A – maxtK, 3Eu ` 4E ` D (5)

where D “ DpE,maxtK, 3Euq is defined as in Lemma 2.9. Let X 1 be formed from X by
coning off the collection of subspaces tNApρUS q | U P S´ tSuu such that the cone point over
NApρUS q is vU . Then G acts acylindrically, 1-coboundedly, and by isometries on X 1.

Furthermore, the natural inclusion map X Ñ X 1 is a uniform quality quasi-isometry,
since the sets we are coning off have diameter which is bounded in terms of E and K;
in particular X 1 is E1pE,Kq–hyperbolic. For the same reason, each Y P Y, identified
with its image under the inclusion, is K 1pE,Kq–quasiconvex in X 1, so there is a projection
π1
Y : X 1 Ñ Y which differs from πY : X Ñ Y by a uniformly bounded amount, depending

on E and K. As a consequence, using that π1
Y is uniformly Lipschitz with respect to E and

K, for every U P S, the set π1
Y pvU q is within uniformly bounded Hausdorff distance from

πY pρUS q. We thus expand the domain of the projection πY to the whole X 1 by setting

πY pvU q – πY pρUS q.

Notice also that Y is M 1
0–geometrically separated in X 1, for some M 1

0 which differs from M0

by a uniform amount; in particular, M 1
0 is bounded linearly in M0. Hence pX 1,Yq again

satisfies Hypothesis 2.19 with respect to the constants pE1,K 1,M 1
0q. With a little abuse of

notation, we once and for all replace E with the maximum of E1 and the original E, and
similarly for K and M0, so that pX 1,Yq satisfies Hypothesis 2.19 with respect to pE,K,M0q.
This allows us to define the constants B, J , etc. from Section 2.1, all of which are bounded
linearly in M 1

0 and therefore in M0.
Let pX be formed by coning off Y in X 1 (not in X), and let vY denote the cone points over

Y P Y. Then pX satisfies the strong bounded geodesic image property: applying Lemma 2.13
in X 1, there is a constant C 1 “ C 1pE,K,M0q which is bounded linearly in M0, and such
that if x, y P X 1 satisfy dπ

1

Y px, yq ą C 1, where the projection to Y is measured in X 1, then
any pX geodesic rx, ys passes through the cone point vY . However, as the projections in X 1

and X differ by a uniform amount (depending on E and K), we immediately obtain the
following version of strong bounded geodesic image property, no longer mentioning X 1 and
π1
Y :

Lemma 4.15. There is a constant C “ CpE,K,M0q which is bounded linearly in M0, such
that for every Y P Y and x, y P pX ´ tvY u, if dπY px, yq ě C (where the projection distance is
measured in X), then any pX–geodesic rx, ys passes through the cone point vY .

With a slight abuse of notation we still call the above constant C, as the one from
Lemma 2.13, since we can just take C to be the maximum of the two constants and ensure
that both lemmas hold.

Notice that the collection tHY uY PY is still an L1–spinning family on X 1 (with respect
to the original projections πY ), for some constant L1 which differs from L by a bounded
amount X “ XpE,Kq. In particular, there exists some constant L1pE,K,M0q, which is
bounded linearly in M0, such that if L ą L1 then L1 satisfies Hypothesis 3.1, so that all the
consequences from Section 3 still hold for X 1 and pX (with respect to the original projections
πY ). Set

rL “ maxtL1, 100C ` X, 20pC ` EJq ` Xu, (6)
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which is still bounded linearly in M0. From now on we assume that L ą rL, and in particular

L1 ě L ´ X ą maxt100C, 20pC ` EJqu. (7)

We conclude this subsection with some remarks about the construction.

Remark 4.16 (Projection to domains). Recall that, by Remark 4.9, we are assuming that
the vertex set of X coincides with G. In particular, for every x P X, the projection πU pxq

is well-defined for every U P S.

Remark 4.17 (HY –orbits have bounded projection). Since each HY acts geometrically on
the corresponding Y Ď X, and since G acts on Y with finitely many orbits, Lemma 4.11
implies the existence of a constant ℵ such that diampπU pHY ¨ yqq ď ℵ for every Y P Y, every
y P Y , and every U P S ´ tSu.

Remark 4.18. For every U P S ´ tSu, the set NApρUS q is 3E–quasiconvex by Lemma 2.2,
regardless of the value of A. Hence pX can be seen as the cone-off of X with respect to the
family H “ tNApρUS quUPS´tSu Y Y, whose elements are maxtK, 3Eu-quasiconvex. Hence
Lemma 2.9 implies that, for every x, y P X, every X-geodesic rx, ys, and every pX-geodesic
γ with the same endpoints, we have rx, ys Ď NX

D prγq, where rγ is the de-electrification of γ
with respect to H and D “ DpE,maxtK, 3Euq is as in the definition of A.

4.4 Minimal representatives for points in the quotient
The main goal of this subsection is to define canonical lifts of pairs of points in the quotient
and to verify that they are well-behaved with respect to projections; see Proposition 4.24
and Proposition 4.25.

Let X – pX{N . The composition X
i

ãÝÑ pX
q

ÝÑ X, where i is the inclusion map and q is
the quotient map, is 1–Lipschitz as both i and q are. For each point x P pX, including the
case x “ vY , vU P pX, let x – qpxq. For each U P S we denote its image in S{N by U ; as
we will see in Section 4.5, S{N will be the index set for the (relative) HHG structure on
G{N . The following is the analogue of Definition 3.10:

Definition 4.19 (Minimal representatives). Let x, y P X. We say tx, yu are minimal
distance representatives, or simply minimal, if

d
xX

px, yq “ min
x1Px, y1Py

d
xX

px1, y1q.

If in the above definition we replace x by vU , for some U P S ´ tSu, we say that tU, yu are
minimal. If we also replace y by vV for some V P S ´ tSu, we say that tU, V u are minimal.

Our first goal is to show that if tx, Uu and tx1, Uu are minimal, then there is a uniform bound
on dU px, x1q. We begin with some preparatory lemmas which investigate the uniqueness of
certain lifts in pX.

Lemma 4.20. Let x, y P pX be adjacent vertices. For every x1 P x and y1 P y which are
adjacent in pX, there exists n P N mapping x to x1 and y to y1. In other words, an edge of
X admits a unique N–orbit of lifts.
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Proof. Up to the action of N , we assume that y “ y1. Let h P N be such that x1 “ hx,
and let γ be the path x, y, x1. Suppose that hx ‰ x and let pY, hY q be a shortening pair,
as in Proposition 3.8, so that L1{10 ă dπY px, x1q. If vY R tx, y, x1u then using the bounded
geodesic image Lemma 4.15, we have

L1{10 ă dπY px, x1q ď dπY px, yq ` dπY py, x1q ď 2C.

However this contradicts the lower bound on L1 from Equation (7). Hence it must be
that vY P tx, y, x1u. If we apply hY to all vertices of γ between vY and x1, we obtain a
new configuration of N -translates of tx, yu and ty, x1u, where the new x and x1 differ by
hY h ă h. We conclude by induction on the complexity of h.

Lemma 4.21. Let γ be a concatenation of two pX-geodesics, and suppose that no point on
γ is of the form vY for some Y P Y, except possibly the endpoints x and x1. If x “ x1 then
x “ x1.

In other words, the only way to get distinct minimal representatives in the same orbit is to
bend a geodesic at a cone point.

Proof. Let h P N be such that x1 “ hx. If hx “ x, for example, when h “ 1, we are
done; otherwise let pY, hY q be a shortening pair, as in Proposition 3.8. If vY R tx, x1u, then
neither of the geodesics forming γ passes through vY , so the diameter of the projection of
each geodesic is at most C by Lemma 4.15. Thus L1{10 ď 2C, contradicting Equation (7).
Therefore we must have that vY P tx, x1u. Bend the path γ at vY . Note that if vY “ x, then
we are applying hY to all of γ, and x is fixed, while if vY “ x1, then we are only applying
hY to x1, and the whole path γ is fixed. In either case, we have applied an isometry to γ,
and so dpx, x1q “ dpx, hY x

1q. Since hY h ă h, induction shows that we eventually obtain a
path with both endpoints at x. Therefore, dpx, x1q must have been zero at every step of the
process, so in particular x1 “ x.

Lemma 4.22. Let x, x1 P X, let γ be an pX–geodesic between them, and let V P S ´ tSu be
such that dV px, x1q ą E. Then d

xX
pvV , γq ď 2.

Proof. Since dV px, x1q ą E, the bounded geodesic image in pG,Sq Definition 4.1.(9) implies
that, for every X–geodesic α from x to x1, there exists w P α with dXpw, ρVS q ď E. In turn,
by Remark 4.18, α is contained in the D–neighborhood of rγ the de-electrification of γ, so
we can find z1 P rγ such that dXpz1, ρVS q ď E ` D. If z1 belongs to γ X rγ, then there is an
edge rz1, vV s in pX connecting z1 to vV , since we chose A ě D`E in Equation (5). If instead
z1 R γ, then z1 lies along a de-electrified segment for some subspace Z P H with vZ P γ;
here vZ “ vW if Z “ NApρWS q for some W P S ´ tSu. Since Z is maxtK, 3Eu–quasiconvex,
there exists z2 P Z with dXpz1, z2q ď maxtK, 3Eu. The situation is depicted in Figure 3,
and again by our choice of A in Equation (5) there are edges rvZ , z

2s and rz2, vV s in pX.

Lemma 4.23. Let x P G and U P S ´ tSu be such that tx, Uu are minimal, and let
V P S ´ tSu be such that dXpρUS , ρ

V
S q ď 2E; we include the case U “ V . Let Y P Y be such

that vY lies on a geodesic γ from x to vU in pX, and let x1 P γ be the vertex of γ before vY .
Then dV px, x1q ď E.
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Figure 3: Proof of Lemma 4.22, in the case z1 does not lie on γ.

Proof. Apply Lemma 4.22 to x, x1, and the subsegment of γ between them. As in the
proof, this produces some z, belonging to either γ X rγ or some Z P H where vZ P γ,
such that dXpz, ρVS q ď D ` E ` maxtK, 3Eu. By assumption, we have dXpρUS , ρ

V
S q ď 2E,

so dXpz, ρUS q ď D ` 4E ` maxtK, 3Eu ď A. As above, it follows that vU is in the 2-
neighborhood of the subsegment of γ between x and x1. However, the subpath of γ from x1

to vU has length at least 3, since it must contain vY and vU , which are distance at least 2
apart. Hence we contradict the fact that γ is a geodesic between x and vU .

Proposition 4.24. Let x P G, x1 P x̄, and U P S´ tSu be such that tx, Uu and tx1, Uu are
minimal, and let V P S´ tSu be such that dXpρUS , ρ

V
S q ď 2E, where we allow U “ V . Then

dV px, x1q ď 2ℵ ` 9E,

where ℵ is the constant from Remark 4.17.

Proof. We may assume x ‰ x1, as otherwise there is nothing to prove. Let γ, γ1 be pX–
geodesics from x and x1 to vU , respectively. Since x, x1 P x, there is some h P N such that
hx “ x1 ‰ x.

Let x0 “ x and x1
0 “ x1, and similarly let γ0 “ γ and γ1

0 “ γ1. By Proposition 3.8
there exists a shortening pair pY, hY q such that hY h ă h and dπY px0, x

1
0q ą L1{10. By the

triangle inequality, one of dπY px0, vU q and dπY pvU , x
1
0q is at least L1{20; we focus on the case

dπY px0, vU q ą L1{20, as the other is dealt with analogously. Since L1{20 is greater than the
constant C from Lemma 4.15, the cone point vY lies on γ0. Now bend γ0 at vY by h´1

Y , and
call this γ1 with endpoint x1 “ h´1

Y x0. Then set γ1
1 “ γ1

0 and x1
1 “ x1

0. Notice that x1 and
x1
1 differ by hhY , which is an N -conjugate of hY h and so still has complexity strictly less

than that of h. Moreover, both geodesics still have vU as an endpoint.
Repeat the argument with x1, x

1
1 and the associated geodesics. We proceed inductively

until xk “ x1
k for some k P N; we call this point x2. In other words, we eventually produce

two geodesics γk and γ1
k, both with endpoints vU and x2 P x. Notice that x2 and vU are

minimal, as their distance is still the length of γ. Since γk is obtained by successively
bending γ while fixing the endpoint vU , there exists vY P γ X γk. Moreover, if z P γ is the
vertex before vY , then there exists n P N such that the vertex of γk before vY is nz. By
Lemma 4.20, we can actually choose n P StabG vY , and the latter is HY by Corollary 3.6;
hence dV pz, nzq ď ℵ by Remark 4.17. The situation is therefore as in Figure 4.
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Figure 4: The geodesics from the proof of Proposition 4.24. After bending γ and γ1 a
finite number of times, their endpoints coincide. Notice that γ and γk must overlap on the
segment of γ connecting vU to the first vertex of the form vY for some Y P Y, as bending
can occur only at cone points.

By Lemma 4.23 applied to the minimal pairs tx, Uu and tx2, Uu, V , and Y , we obtain

dV px, x2q ď dV px, zq ` diamπV pzq ` dV pz, nzq ` diamπV pnzq ` dV pnz, x2q ď ℵ ` 4E.

Symmetrically, we obtain dV px2, x1q ď ℵ`4E, completing the proof as diamπV px2q ď E.

A similar statement holds for pairs of minimal domains:

Proposition 4.25. Let V P S ´ tSu and U,U 1 P U P S{N ´ tSu be such that tU, V u and
tU 1, V u are minimal.

• If U and V are not transverse then U “ U 1.

• Otherwise dV pρUV , ρ
U 1

V q ď 2ℵ ` 25E.

Proof. Suppose first that d
xX

pvU , vV q “ 2. This occurs, in particular, if U and V are not
transverse, since dXpρUS , ρ

V
S q ď 2E ď 2A by Lemma 4.3. Then the union of any two geodesics

rvU , vV s Y rvV , vU 1 s does not contain any cone point vY for Y P Y, as vV is only pX-adjacent
to points in X, and so Lemma 4.21 gives that U “ U 1. This proves the first bullet point.

For the second bullet, the above argument lets us assume that d
xX

pvU , vV q ě 3, which in
particular means that dXpρUS , ρ

V
S q ą 2A. First, we prove that diamπV pNApρUS qq ď 5E. To

see this, let p P NApρUS q, and fix q P ρUS , so that dpp, qq ď A ` E. If a geodesic rp, qs in X
passed E-close to ρVS , then dXpρUS , ρ

V
S q ď A ` 2E, and this is at most 2A by Equation (5),

contradicting our assumption. Thus the bounded geodesic image axiom for S yields that
dV pp, qq ď E. Hence πV ppq Ď N2EpπV pqqq, from which the claim follows.

Now let γ and λ be geodesics connecting vU (resp. vU 1) to vV , and let p (resp. q) be
the first point of γ after vU (resp. the first point of λ after vU 1). Since U,U 1 P U , we may
shorten the concatenation as in Proposition 4.24 to produce two geodesics, γ2 and λ2, each
joining vV to a single point vU2 P vU , and such that γ2 is obtained by bending γ while λ2

is obtained by bending λ. If p2 is the first point of γ2 after vU2 , then p2 P p, and, as in the
proof of Proposition 4.24, we obtain dV pp, p2q ď ℵ ` 4E.
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Now let r P X be such that dXpr, ρUS q ď E and dV pr, ρUV q ď E, which exists by the
partial realization axiom Definition 4.1.(10). Since r, p P NApρUS q, we have that

dV pρUV , p
2q ď E ` dV pr, p2q ď E ` diamπV pNApρUS qq ` dV pp, p2q ď ℵ ` 10E.

Symmetrically, there exists q2 P NApρU
2

S q such that dV pρU
1

V , q2q ď ℵ` 10E, thus concluding
the proof as diamπV pNApρU

2

S qq ď 5E.

4.5 The quotient structure and projections
We are now ready to define the relative HHG structure on G{N . Recall that, by Remark 4.9,
we are assuming that X is a Cayley graph for G. In particular, if we fix a word metric dG
on G with respect to a finite generating set, the projection map πS : G Ñ X is bijective at
the level of vertices.

Construction 4.26. Fix a finite generating set T for G which induces a word metric dG,
let T be its image in G{N , and let dG{N be the word metric on G{N induced by T . The
relative HHG structure on G{N has the following components.

• Index set: S{N . Recall that we denote the image of U P S by U P S{N .

• Hyperbolic spaces: The top-level space CS is X as defined in Section 4.4. For each
U P S{N ´ tSu, we set

CU “

¨

˝

ď

UPU

CU

˛

‚{N.

Notice that, for every U P U , the projection map CU Ñ CU is an isometry. Indeed,
by Corollary 3.9 N acts freely on X 1, and in particular no non-trivial n P N can fix
vU (hence U).

• Relations: Every domain in S{N nests into S. The relation between U, V P S{N´tSu

is the same as the relation between any minimal pair tU, V u with U P U and V P V .
In particular, U is Ď-minimal in S{N if and only if every representative U P U is
Ď-minimal in S.

• Projection maps: We identify G with X via the projection πS , and we consider it
as a subspace of pX via the inclusion i : X ãÑ pX. This way, G{N can be seen as a
subgraph of X. For every g P G{N define πS : G{N Ñ X by πSpgq – g; moreover,
given U P S{N ´ tSu set

πU pgq –

¨

˚

˚

˝

ğ

gPg, UPU
tU,gu minimal

πU pgq

˛

‹

‹

‚

{N.

• Relative projections: Set ρV
S

“ vV for some (equivalently, any) V P V . Furthermore,
given U, V P S{N ´ tSu with U&V or V Ĺ U , define

ρV
U

–

¨

˚

˚

˝

ğ

UPU,V PV
tU,V u minimal

ρVU

˛

‹

‹

‚

{N.
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Remark 4.27. Let U Ĺ S and g P G be minimal. An immediate consequence of how the
projections are defined is that

πU pgq Ď πU pgq.

Similarly, if U, V Ĺ S are minimal and non-orthogonal, then

ρVU Ď ρV
U
.

These convenient facts are useful for comparing the hierarchical structure for pG,Sq and
that of pG{N,S{Nq.

Remark 4.28. Let U, V P S{N ´tSu, and fix a representative U P U . If there exists V P V
such that dXpρUS , ρ

V
S q ď 2A (for example if U and V are not transverse, by Lemma 4.3),

then there can be at most one such domain V P V , as we argued in the proof of Proposi-
tion 4.25. As a consequence, for every other V 1 P V we have that dXpρUS , ρ

V 1

S q ą 2A ą E, so
V 1&U . This proves that the relations Ď and K in S{N are well-defined, as either there is a
unique minimal pair including U , or every pair tU, V u is transverse. This also shows that
U and V are orthogonal (resp. nested) if and only if they admit orthogonal (resp. nested)
representatives U and V , as such representatives are minimal.

4.5.1 Lifting minimal configurations

Before we prove that the above construction yields a hierarchy structure on G{N , we record
a few technical lemmas about projections and minimal collections. We first argue that
certain configurations admit pairwise minimal representatives.

Lemma 4.29 (Lifting triples). Given x, y, z P G{N , there exist representatives x P x, y P y,
and z P z such that tx, y, zu are pairwise minimal. Furthermore, the same holds when any
of the elements of G{N are replaced with domains in S{N ´ tSu.

Proof. Fix x P x. Considering x, y, z as vertices of X, pick geodesics in X to form a geodesic
triangle. By Proposition 3.12 we can lift this to a geodesic triangle in pX based at x P x. The
vertices of this triangle are pairwise minimal by construction. The same argument holds if
we replace any vertex of the triangle in X with the image of the cone point over a domain
in S ´ tSu, thus proving the “furthermore” part of the statement.

Lemma 4.30. Let x, y P G{N and U1, . . . , Uk P S{N ´ tSu. There exist representatives
tx, y, U1, . . . , Uku such that tx, y, Uiu are pairwise minimal for every i ď k.

Proof. We proceed by induction on k. The base case k “ 1 is Lemma 4.29. Suppose
that tx, y, U1, . . . , Uk´1u are as in the statement. There are tx1, y1, Uku pairwise minimal
representatives by Remark 4.28, where x1 P x and y1 P y. Up to the action of N , we can
assume that x “ x1. Let h P N map y to y1. For every i ď k´1, consider a geodesic triangle
with vertices tx, y, vUi

u, and also consider a geodesic triangle with vertices tx, y1, vUk
u, as

in Figure 5.
If hy “ y, we are done. Otherwise, by Proposition 3.8 there exists a shortening pair

pY, hY q, so that dπY py, y1q ą L1{10. By triangle inequality, one of dπY py, xq and dπY px, y1q is
at least L1{20.

If dπY py, xq ą L1{20, then for every i ď k ´ 1, one of dπY py, vUi
q and dπY pvUi

, xq is at least
L1{40 ą C. Lemma 4.15 then implies that vY lies both on every geodesic rx, vUi

s and every
geodesic rx, ys. In particular, vY is a cut vertex of the triangle with vertices tx, y, vUiu. For
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Figure 5: The various lifts from the proof of Lemma 4.30 (for k “ 3).

the same reason, if dπY px, y1q ą L1{20, then vY is a cut vertex of the triangle with vertices
tx, y1, vUk

u. In either case, applying hY to the every vertex in the configuration from Figure 5
between vY and y1 reduces the complexity of h, and we conclude by induction.

If the given domains are all non-transverse to some domain, the lifts from Lemma 4.30 can
be chosen to be pairwise minimal:

Lemma 4.31. Let tU0, . . . , Uku be a collection of domains in S{N ´ tSu such that U i and
U0 are not transverse for any i ‰ 0, and let x, y P G{N . Then there exist pairwise minimal
representatives tx, y, U0, . . . , Uku.

Proof. We first prove the existence of pairwise minimal representatives of the domains alone.
Fix U0 P U0. Since U i is not transverse to U0 for any i, by Remark 4.28 there is a unique
representative Ui P U i such that tU1, U0u are minimal, and ρUi

S at distance at most 2E

from ρU0

S by Lemma 4.3. Since dXpρUi

S , ρ
Uj

S q ď 5E ď 2A, it follows from Remark 4.28 that
tUi, Uju are minimal for all i ‰ j.

Next, we prove by induction on k that there exist minimal representatives tx, U0, . . . , Uku.
If k “ 0, there is nothing to prove. Assume now that there exist pairwise minimal represen-
tatives tx, U 1

0, . . . , U
1
k´1u, and let tU0, . . . , Uku be pairwise minimal representatives, whose

existence is guaranteed by the above argument. Up to the action of N we can assume that
U0 “ U 1

0, and by Proposition 4.25 this implies that Ui “ U 1
i for every i ď k ´ 1 (but pos-

sibly x and Uk are not yet minimal). Let x1 P x be minimal with respect to Uk. Consider
geodesics from x to every vUi for i ď k ´ 1, from vUi to vUj for every i, j, and from vUk

to
x1, as in Figure 6. Notice that each such geodesic lifts a geodesic of X, as its endpoints are
minimal.

Let h P N be such that hx “ x1. We proceed by induction on the complexity of h. If
hx “ x we are done, as then x and Uk are already minimal. Otherwise, there is pY, hY q a
shortening pair by Proposition 3.8. If dπY pvUk

, x1q ą C then vY lies on the geodesic between
vUk

and x1. In this case, we bend this geodesic at vY , and conclude by induction since hY x
1

differs from x by hY h ă h. If instead dπY pvUk
, x1q ď C, then for every i ď k´1 we have that

dπY px, vUi
q ě dπY px, x1q ´ dπY pvUi

, vUk
q ´ dπY pvUk

, x1q ě L1{10 ´ 2C ą C.

Here, we used that, since Ui and Uk are not transverse, they lie at distance 2 in pX, so any
pX–geodesic connecting them belongs to X 1 and cannot pass through vY . Hence vY lies on
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Figure 6: The various lifts from the first part of the proof of Lemma 4.31 (with k “ 2).
Each edge in the picture is a geodesic with whose endpoints are minimal.

the geodesic between x and each vUi
, so we bend each of these geodesics at vY by applying

hY to the geodesic connecting vY to x1. Again hY x
1 differs from x by hY h ă h, and we

conclude by induction.
Finally, let tx, U1, . . . , Uku and ty, U 1

1, . . . , U
1
ku be pairwise minimal collections, which

exist by the above argument. As before, up to N -translation we can actually assume that
Ui “ U 1

i for every i. Consider geodesics from x to vUi
for every i, from vUi

to vUj
for every

i ‰ j, from vUi
to y for every i, and from y to some x1 P X such that ty, x1u are minimal.

The situation is as in Figure 7.

Figure 7: The various lifts from the final part of the proof of Lemma 4.31 (with k “ 1).

The argument to find pairwise minimal representatives is now very similar to the one
with x alone. Let h P N map x to x1. If hx “ x we are done; otherwise let pY, hY q be
a shortening pair. If dπY py, x1q ą C then vY lies on the geodesic between y and x1; in this
case we bend this geodesic at vY and conclude by induction. If instead dπY py, x1q ď C then
dπY px, yq ě L1{10 ´ C ą 3C, where we used Equation (7). In turn, for every i, j ď k one of
dπY px, vUi

q and dπY pvUj
, yq is greater than C, as otherwise we would have that

dπY px, yq ď dπY px, vUi
q ` dπY pvUi

, vUj
q ` dπY pvUj

, yq ď 3C.

In particular, this means that either dπY px, vUiq ą C for every i, or the same holds with y
replacing x. In other words, by Lemma 4.15, vY lies on either every geodesic coming out
of x, or every geodesic ending at y. In either case vY is a cut point of the configuration
from Figure 7, so we can apply hY to every point between vY and x1 and again conclude by
induction.

34



4.5.2 Bounded projections

Our next goal is to provide some bounds on the projections from Construction 4.26. We
first show that the new maps π˚ and ρ˚

˚ send points to uniformly bounded sets.

Proposition 4.32. Let ℶ “ 2ℵ` 27E, where ℵ is the constant from Remark 4.17. For any
x P G{N and U P S{N , the projection πU pxq has diameter at most ℶ in CU . Analogously,
if U, V P S{N satisfy U&V or V Ď U , then ρV

U
has diameter bounded by ℶ in CU .

Proof. If U “ S, then πSpxq “ x, seen as a point in X, and we have nothing to prove. Thus
suppose U ‰ S. Since being minimal is an N–equivariant relation, it suffices to consider a
fixed U P U , so that we can identify CU with CU . By Proposition 4.24, if x, x1 P x are both
minimal with U , then dU px, x1q ď 2ℵ ` 9E, so diampπU pxq Y πU px1qq ď 2ℵ ` 11E ď ℶ.

For the second statement, if U “ S then ρV
S

“ vV is a point. Otherwise fix U P U ,
and suppose tV 1, Uu and tV,Uu are both minimal, with V, V 1 P V . The result follows by
applying Proposition 4.25 and using that ρVU , ρV

1

U have diameter at most E.

Lemma 4.33. Let x, y P X, and suppose U P S ´ tSu. If tU, x, yu are pairwise minimal,
then

dU px, yq ´ 2ℶ ď dU px, yq ď dU px, yq and dXpx, yq ď dXpx, yq.

Moreover, if V P S{N ´ tSu satisfies U&V or V Ĺ U and tx, U, V u are pairwise minimal
representatives, then

dU px, ρVU q ´ 2ℶ ď dU px, ρV
U

q ď dU px, ρVU q and dXpx, vV q ď dXpx, ρVS q ` 1.

Proof. For any pair tx, yu, we have that dXpx, yq ď d
xX

px, yq ď dXpx, yq. When y P y is
replaced with V P V ‰ S, we have dXpx, vV q ď d

xX
px, vV q ď dXpx, ρVS q ` 1.

Furthermore, by definition of the projections πU and the fact that CU is identified with
CU , we have πU pxq Ě πU pxq by Remark 4.27, so dU px, yq ě dU px, yq. On the other hand, by
Proposition 4.32, πU pxq and πU pyq have diameter bounded by ℶ, so dU px, yq ě dU px, yq´2ℶ.
Analogously, ρV

U
contains ρVU and has diameter at most ℶ, so the second statement follows

analogously.

Finally, we prove that if x P G and U P S are “almost” minimal, then the projection of
x to U is almost the projection of a minimal element:

Lemma 4.34. Let x P X, y P pX and U P S ´ tSu. Suppose that tx, yu are minimal and
d
xX

pvU , yq ď 2. Then there exists x˚ P x such that tx˚, Uu are minimal and

dU px, x˚q ď 9ℵ ` 28E.

Proof. If tx, Uu are already minimal, there is nothing to prove, so we henceforth assume the
contrary. Let γ “ ry, xs be an pX–geodesic, and up to replacing y by some point on γ, we
can assume that γ X N2pvU q “ tyu (notice that d

xX
px, vU q ě 2, or they would be minimal).

If η “ rvU , ys is an pX–geodesic, then y is the only point of η which can be of the form vY
for some Y P Y, because the link of vU in pX belongs to X.

We now describe an algorithm to find the required x˚ P x. To initialize the procedure,
set γ0 “ γ and x0 “ x; furthermore, let rx0 P x be minimal with U , let σ0 be an pX-geodesic
connecting vU to rx0, and let h0 P N map x0 to rx0.
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Suppose we are given geodesics γi “ ry, xis and σi “ rvU , rxis, where xi, rxi P x and the
endpoints of both geodesics are minimal. Suppose hi P N maps xi to rxi. If rxi “ xi, then
set x˚ “ xi and stop the algorithm. Otherwise, let pY, hY q be a shortening pair, as in
Proposition 3.8. Then vY must lie on one of σi or γi since L1{10 ą 3C; notice that it cannot
lie in the interior of η, which is a single point in X.

1. If vY P σi, let rxi`1 “ hY rxi, and let σi`1 “ rvU , rxi`1s be obtained by bending σi at vY
by hY . Set γi`1 “ γi, xi`1 “ xi, and hi`1 “ hY hi ă hi. We now repeat the procedure
with the data indexed by i ` 1.

2. Suppose instead that vY P γi. Let xi`1 “ h´1
Y xi, and let γi`1 “ ry, xi`1s be obtained

by bending γi at vY by h´1
Y . There are two sub-cases to consider.

(a) If γi`1 X N2pvU q “ tyu, we set ηi`1 “ ηi, rxi`1 “ rxi, and hi`1 “ hihY , which is
conjugate to hY hi ă hi and therefore has the same complexity. We now repeat
the procedure with the data indexed by i ` 1.

(b) If instead γi`1 X N2pvU q contains some other point z, we stop the algorithm.

 

x0

y y y

vU
vU vU

Ăx0

Ăx1 “ hY Ăx0

vY

x1 “ x0
vY

x2 “ h´1
Y x1

Ăx1

vY

Ăx2 “ Ăx1

x1 – x3 “ h´1
Y x2

y1 – z

x2

Figure 8: An example of the algorithm in the proof of Lemma 4.34. From left to right, we
applied step 1, then step 2(a), and finally step 2(b), at which point we reached a bad ending
and stopped the algorithm. We would next apply the algorithm to the points x1 and y1.

Good ending. When running the above algorithm, if we never encounter the termi-
nation condition from Item 2b, then each step reduces the complexity of hi. Since the
complexity is a good ordering, we must eventually find some n P N such that x˚ “ xn “ rxn,
which is minimal with U . Since γn is obtained by successively bending γ0, there exists Y P Y
such that vY P γ0 X γn. Let t P γ0 be the vertex after vY , so that the first vertex of γn after
vY is of the form hY t for some hY P HY (to see this, we can argue exactly as in the proof
of Proposition 4.24). Then

dU px, x˚q ď dU px, tq ` diamπU ptq ` dU pt, hY tq ` diamπU phY tq ` dU phY t, x
˚q.

The third term is at most ℵ by Remark 4.17. Moreover the segment of γ0 between t and
x does not pass 2-close to vU , so Lemma 4.22 gives that the first term is bounded by E.
Similarly, since we never encountered the termination condition from Item 2b, the last term
is also bounded by E. Therefore

dU px, x˚q ď ℵ ` 4E, (9)

which satisfies the requirement of the statement.

Bad ending. Suppose instead that the algorithm terminated because some z P γi`1´tyu

is within distance 2 from vU . We can assume that d
xX

pz, vU q “ 2. Notice that the above
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argument applies to x and xi, giving that dU px, xiq ď ℵ ` 4E. Moreover, since xi`1 differs
from xi by an element in some HY , we have that

dU px, xi`1q ď dU px, xiq ` diamπU pxiq ` dU pxi, xi`1q ď 2ℵ ` 5E. (10)

Now set x1 “ xi`1 and y1 “ z, and notice that d
xX

py1, x1q ă d
xX

py, xq. If we repeat the
whole procedure with tx1, y1, Uu, we either obtain a good ending or find some tx2, y2u with
d
xX

py2, x2q ă d
xX

py1, x1q, and so on. We cannot keep falling into the termination condition
from Item 2b more than four times in total. Indeed, if so, then we would have

d
xX

py5, x5q ă d
xX

py4, x4q ă . . . ă d
xX

px, yq,

and so d
xX

py5, x5q ď d
xX

px, yq ´ 5. In turn,

dXpvU , xq ď d
xX

pvU , x
5q ď 2 ` d

xX
py5, x5q ď d

xX
px, yq ´ 3.

However this would be a contradiction, since

dXpvU , xq ě dXpx, yq ´ dXpvU , yq ě d
xX

px, yq ´ 2,

where we used that tx, yu are minimal and that dXpvU , yq ď d
xX

pvU , yq ď 2.
Since the process must have a good ending after at most four bad endings, there exists

j ď 4 and some x˚ P x which is minimal with U , such that dU pxj , x˚q ď ℵ ` 4E. We then
use (9) and (10) to conclude that

dU px, x˚q ď dU px, x1q ` diamπU px1q ` . . . ` dU pxj´1, xjq ` diamπU pxjq ` dU pxj , x˚q ď

ď 4p2ℵ ` 5E ` Eq ` ℵ ` 4E “ 9ℵ ` 28E,

as required.

4.6 The quotient satisfies the HHG axioms
We are now ready to show that G{N is a relative HHG. More precisely, we shall check that
each axiom from Definition 4.1 is satisfied by the structure described in Construction 4.26
for some choice of the hierarchy constant. We shall then set E to be the maximum of these
constants, thus ensuring that all axioms hold. We advise the reader to keep the list of all
constants from Appendix A at hand throughout the proof.

Proof of Theorem 4.13. We check each axiom in turn.

(1) Projections: The maps πU for U P S{N send points to uniformly bounded diameter
sets by Proposition 4.32. We now check that πU is coarsely Lipschitz with respect to the
fixed word metric dG{N induced by dG. Given g, h P G{N such that dG{N pg, hq “ 1, we will
uniformly bound dU pg, hq. Let g, h P G be such that dGpg, hq “ dG{N pg, hq “ 1, so that for
every V P S we have that dV pg, hq ď 2E, as projections in pG,Sq are E-coarsely-Lipschitz.
If U “ S then

dXpπSpgq, πSpgqq “ dXpg, hq ď dXpg, hq ď 2E.

Now suppose U ‰ S, and let T Ď X be a geodesic triangle with vertices tg, h, vUu.
Lift T to a geodesic triangle T in pX with vertices tg, h1, vUu, where h1 P h, and consider
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Figure 9: The configuration in the proof of the Projection axiom. In the picture, straight
lines are pX-geodesics, while the zig-zag path λ is an X–geodesic of length at most 2E.

an X-geodesic λ from g to h, whose length (in X, hence also in pX) is at most 2E. The
situation is as in Figure 9.

Notice that g, h1, vU are minimal, so dU pg, hq ď dU pπU pgq, πU ph1qq. If h “ h1, then
dU pπU pgq, πU ph1qq “ dU pπU pgq, πU phqq ď 2E, and we are done. Otherwise we proceed by
induction on the complexity of the element n P N mapping h to h1. By Proposition 3.8,
there exists a shortening pair pY, hY q. If dπY ph1, gq ď 2C then dπY ph1, hq ď 2C ` 2EJ ,
as every two consecutive points of λ are X–adjacent and πY is J Lipschitz. But then
Equation (7) gives that dπY ph1, hq ď L{10, contradicting the definition of a shortening pair.
Thus we must have that dπY ph1, gq ą 2C, so one of dπY ph1, vU q and dπY pvU , gq is at least
C by the triangle inequality. In other words, vY is a cut vertex for T by Lemma 4.15.
Apply hY to the connected component of T ´ tvY u containing h1. After this procedure, g,
the image of vU , and hY h

1 are again minimal, and now hY h
1 differs from h by hY n ă n.

Proceeding inductively, we eventually find some U 1 P U such that tg, h, vU 1 u are minimal
and dU 1 pg, hq “ dU pg, h1q ď 2E, so dU pg, hq ď dU 1 pg, hq ď 2E.

(2) Nesting: The nesting relation Ď and the subsets ρV
W

for V Ĺ W are defined in
Construction 4.26. These sets have uniformly bounded diameter by Proposition 4.32.

(3) Finite complexity: If U1 Ď U2 Ď . . . then by Lemma 4.31 we may choose pairwise
minimal representatives U1 Ď U2 Ď . . . of the U i. Finite complexity in pG,Sq then implies
that both sequences are eventually constant.

(4) Orthogonality: The relation K is defined in Construction 4.26, and by construction
has the same properties as K in pG,Sq. Thus the axiom holds by the orthogonality axiom
in pG,Sq.

(5) Containers: To show containers exist, let T P S{N , and consider U P pS{NqT such
that V :“ tV P pS{NqT | V K Uu ‰ H.

If T “ S, let U P U , and let W be the container for U in S. Now every V which is
orthogonal to U has a representative V which is orthogonal to U and therefore nested in
W . Then V Ď W by Remark 4.28, proving that W is the container for U in S.

Now assume that T ‰ S, and choose tU, T u minimal representatives of U and T . Since
U Ď T , we have dXpρUS , ρ

T
S q ď E by consistency in S. By Remark 4.28, each V P V

has a unique representative V which is orthogonal to U . Let V be the collection of such
representatives. Notice that dXpρVS , ρ

U
S q ď 2E by Lemma 4.3. Combining this with the

previous inequality yields that dXpρVS , ρ
T
S q ď 4E ď 2A, so V and T are minimal. Since
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V Ď T , the minimal representatives V and T must be nested. Now let W be the container
for U in T , which contains every V P V. It then follows from Remark 4.28 that W Ĺ T and
W contains every V P V, as required.

(6) Transversality: The relation & and the sets ρU
W

Ď CW and ρW
U

Ď CU are defined in
Construction 4.26. These sets have uniformly bounded diameter by Proposition 4.32.

(7) Consistency: Let x P G{N , and let U, V P S{N satisfy U&V . By Lemma 4.29, we
may choose x P x, U P U , and V P V such that tx, U, V u are pairwise minimal. By the
definition of the relation & in S{N , we have U&V . It follows from the consistency axiom
in pG,Sq that

mintdU px, ρVU q, dV px, ρUV qu ď E.

The first consistency inequality now follows immediately from Lemma 4.33.
For the second statement, suppose that U Ď V and either V Ĺ W , or V &W and W M U .

Suppose first that W ‰ S. We may choose U P U , V P V , and W P W with tU, V,W u

pairwise minimal by Lemma 4.29, and the same relations hold between U, V, and W as
between U, V ,W . It follows from the consistency axiom in pG,Sq that ρUW is coarsely equal
to ρVW in CW “ CW , and the result again follows from Lemma 4.33.

If instead W “ S let U P U and V P V be nested representatives. Then dXpρUS , ρ
V
S q ď E

by consistency in S. As E ď 2A, we have dXpvU , vV q ď d
xX

pvU , vV q ď 2.

(8) Hyperbolicity: If pG,Sq is a HHG, then CU is hyperbolic for all U P S by definition
if U ‰ S and by Theorem 3.13 if U “ S. If pG,Sq is only a relative HHG, then the spaces
associated to all domains that are not Ď–minimal in S{N are E–hyperbolic for the same
reason.

(9) Bounded geodesic image: Let W P S{N , let V Ĺ W , and let x, y P G{N satisfy
dV px, yq ą E. Let γ be a geodesic in CW from πW pxq to πW pyq. We will show that a
uniform neighborhood of ρV

W
intersects γ.

Suppose first that W ‰ S, so that CW “ CW . Since V Ĺ W , Lemma 4.31 implies
that there exist pairwise minimal representatives tx, y, V,W u. Since tx, V u are minimal and
CV “ CV , we have πV pxq Ď πV pxq, and similarly for y. Thus dV px, yq ě dV px, yq ą E. By
Remark 4.27 we have ρVW Ď ρV

W
, so the bounded geodesic image axiom in pG,Sq provides

a point w P NEpρVW q Ď NEpρV
W

q which lies on any geodesic λ connecting πW pxq to πwpyq.
Connect the endpoints of λ to the endpoints of γ with two geodesics, each of whose length
is at most diampπW pxqq ď ℶ because πW pxq Ď πW pxq and similarly for y. Since geodesic
quadrangles in CW are 2E-slim, we obtain dW pw, γq ď 2E `ℶ, so γ XN3E`ℶpρV

W
q ‰ H, as

desired.
Now suppose W “ S. In this case, γ is a geodesic in X from x to y. Complete

γ to a geodesic triangle T with vertices tx, y, vV u, and let T be a lift of T to pX with
vertices tx, y, vV u. Let γ be the lift of γ inside T . Since tx, y, V u are pairwise minimal,
dV px, yq ě dV px, yq ą E, so Lemma 4.22 yields that d

xX
pvV , γq ď 2, concluding the proof of

the bounded geodesic image axiom.
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(10) Partial realization: Let tV ju be a collection of pairwise orthogonal domains of
S{N , and fix pj P CV j for each j. If tV ju “ tSu, then the unique given point is p P pX{N .
Choose any representative p P p, and let x P X Ď pX be at distance at most one from p.
Since vertices of X are all elements of G, we can consider x as an element of G{N . Note
that πSpxq “ x, which is at distance 1 from p in pX{N . Hence the first bullet point of the
partial realization axiom holds, and the other two vacuously hold.

Thus suppose that V j ‰ S for all j. Since the V j are pairwise orthogonal, Lemma 4.31
provides a collection tVju of pairwise orthogonal, pairwise minimal representatives Vj P V j .
As CV j “ CVj in this case, we have pj P CVj . Let x P G be the point provided by the partial
realization axiom in pG,Sq. Since S Ľ Vj for each j, we have that dXpx, ρSVj

q ď E. Thus
tx, Vju is a minimal pair for each j, since x P NApρSVj

q and therefore x and vVj are joined
by an edge. We will show that x P G{N satisfies the conclusions of the partial realization
axiom, Item (10).

The first bullet point of Item (10) holds because CV j “ CVj and tx, Vju is minimal for
each j, which implies that dV j

px, pjq ď dVj px, pjq ď E by Lemma 4.33.
For the second bullet point of the axiom, fix W P S{N such that V j Ĺ W or V j&W

for some j, and for simplicity let V “ V j . We will uniformly bound dW px, ρV
W

q. If W “ S

then dXpx, ρV
S

q ď dXpx, ρVS q ` 1 ď E ` 1 by Lemma 4.33. Otherwise, by Lemma 4.29, there
exist W P W and V 1 P V such that tx, V 1,W u are pairwise minimal. By Lemma 4.20,
we can also assume that V 1 “ V , as vV and x are joined by an edge. Hence tx, V,W u are
pairwise minimal, which in particular means that the relation between V and W is the same
as that between V and V . Hence, by minimality and the realization axiom in S we have
that dW px, ρV

W
q ď dW px, ρVW q ď E, concluding the proof.

(11) Uniqueness: Let x, y P G{N and r ě 0, and suppose that dU px, yq ď r for every
U P S{N . We will show that dG{N px, yq is uniformly bounded by a constant depending only
on r. Let tx, yu be minimal representatives with x P x and y P y.

Recall that pX is the cone-off of X with respect to the family H “ Y Y tNApρUS quUĹS of
maxtK, 3Eu-quasiconvex subsets. By [Spr18, Proposition 2.27], there exists ξ “ ξpE,Kq ě 1

and a ξ–quasigeodesic γ from x to y in pX such that any de-electrification rγ is itself a ξ–
quasigeodesic from x to y in X. By construction, we have

rγ “ σ1 ˚ η1 ˚ ¨ ¨ ¨ ˚ σk ˚ ηk ˚ σk`1,

where each σi is a ξ-quasigeodesic in X contained in γ, while each ηi is a geodesic in X
connecting points in some subspace Yi P Y or in the A-neighborhood of some ρUi

S . Let
α be (the image in X of) a λ–hierarchy path in G from x to y, whose existence is guar-
anteed by Theorem 4.5. By Lemma 2.1, the unparameterized λ-quasigeodesic α and the
ξ-quasigeodesic rγ are at Hausdorff distance at most Φ, where Φ depends only on λ, ξ, and
E, and so ultimately on E and K.

Let Ψ be such that each subgroup HY has a Ψ–cobounded action on Y , which exists by
Hypothesis 4.12, and fix

ℸ ą 2Φ ` 2Ψ ` 3E ` 2A. (11)

We will consider only the collection of paths ηi1 , . . . , ηim whose endpoints are at distance
greater than ℸ in X, that is, such that dXppηij q´, pηij q`q ą ℸ. In particular, since ℸ ą

2A ` E “ diampNApρUS qq, the endpoints c1
j “ pηij q´ and d1

j “ pηij q` must belong to some
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Y P Y. Let cj , dj P Y be points in the same HY -orbit at distance at most Ψ from c1
j and

d1
j , respectively. Let aj , bj P α be points at distance at most Φ from c1

j , d
1
j respectively, so

that dXpaj , cjq ď Φ ` Ψ and dXpbj , djq ď Φ ` Ψ. See Figure 10.
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Figure 10: The setup for the proof of the Uniqueness Axiom, in the space X. The de-
electrification rγ is in purple, while the black path is the λ-hierarchy path α. In this example,
dYi

px, yq ě ℸ for i “ 1, 4.

Let ω1 “ α|rx,a1s Y ra1, c1s; for 1 ă i ď m, let ωi “ rdi´1, bi´1s Yα|rbi´1,ais Y rai, cis; and
let ωm`1 “ rdm, bms Y α|rbm,ys. See Figure 11.

Recalling that each vertex of X represents an element of G, the path

ω1 Y rc1, d1s Y ω2 Y rc2, d2s Y ¨ ¨ ¨ Y rcm, dms Y ωm`1

from x to y shows that we can write the element x´1y P G as

x´1y “ px´1a1q ¨ pa´1
1 c1q ¨ pc´1

1 d1q ¨ pd´1
1 b1q ¨ ¨ ¨ ¨ pb´1

m yq.

Since cj , dj are in the same coset of some HY , the element c´1
j dj belongs to N . In particular,

we have
x´1y P w1N ¨ w2N ¨ ¨ ¨ ¨ ¨ wm`1N, (12)

where w1 “ x´1c1, and similarly wj “ d´1
j´1cj for 1 ă j ď m and wm`1 “ d´1

m y.
Recall that the word metric dG (resp. dG{N ) is induced by the finite generating set T

(resp. T ). In general, if w is a word in the product of cosets pd1Nqpd2Nq . . . pdmNq, then
|w|T ď

řm
i“1 |di|T . Applying this fact to the representation of x´1y in Equation (12), we see

that it suffices to bound the T –lengths of the coset representatives wj . Each is constructed
as a product of elements of G, so we bound the T –length of each factor individually.

We proceed via a sequence of claims. The first two show that the T –lengths of the
coset representatives is approximated by the lengths of the appropriate paths in X. We first
consider factors in coset representatives that lie on α.

Claim 4.35. There exist constants k1, k2 such that if a, b P α, then dGpa, bq —k1,k2
dXpa, bq.
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Figure 11: The red segments are the subpaths ωi in the setup for the proof of the Uniqueness
Axiom.

Proof of Claim 4.35. Recall that α is a hierarchy path between x and y, which are minimal.
Let rx, ys be an pX-geodesic. Since x and y are minimal, any two points on rx, ys are minimal,
as otherwise we could find closer lifts of x and y. We first prove that dU px, yq is uniformly
bounded for all U Ĺ S. Indeed, suppose there exists U Ĺ S with dU px, yq ą E. By
Lemma 4.22, there exists z P rx, ys such that d

xX
pvU , zq ď 2. In turn, since tz, xu and tz, yu

are minimal, Lemma 4.34 provides the existence of x˚ P x and y˚ P y such that tx˚, Uu and
ty˚, Uu are minimal and maxtdU px, x˚q, dU py, y˚qu ď 9ℵ ` 28E. Hence

dU px, yq ď dU px, x˚q ` diamπU pxq ` dU px, yq ` diamπU pyq ` dU py, y˚q ď 18ℵ`2ℶ`56E ` r.

Since α is a λ–hierarchy path in G, if dU px, yq is uniformly bounded, then the diameter
of πU pαq is at most some uniform constant s1. Therefore diamπU pta, buq ď s1 whenever
a, b P α. Applying the distance formula (Theorem 4.6) with s “ maxts1 ` E ` ℵ ` 1, s0u

yields constants k1, k2 so that dGpa, bq —k1,k2 dXpa, bq, as required. We note that, for
later purposes, we deliberately chose s to be bigger than maxts1, s0u, though the latter
threshold would have been sufficient to apply the distance formula and conclude the proof
of Claim 4.35.

We next consider factors in coset representatives labeling paths from α to some Yj .

Claim 4.36. For i “ 1, . . . ,m, we have

dGpai, ciq —k1,k2
dXpai, ciq ď Φ ` Ψ,

and similarly
dGpbi, diq —k1,k2

dXpbi, diq ď Φ ` Ψ.

Proof of Claim 4.36. We prove the first statement, as the second follows symmetrically. Let
U P S ´ tSu be such that dU pai, ciq ą E, so that rai, cis Y NEpρUS q ‰ H by the bounded
geodesic image axiom. Let rai, cis Y rci, dis Y rdi, bis Y rbi, ais be a geodesic rectangle in
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X. It follows from the definition of ℸ in Equation (11) that the side rci, dis has length
greater than 2Φ ` 2Ψ ` 3E. Thus NEpρUS q cannot intersect rbi, dis non-trivially, as it al-
ready intersects rai, cis. Therefore dU pbi, diq ď E by the bounded geodesic image axiom.
Moreover, diamπU ptci, diuq ď ℵ by Remark 4.17, and by the proof of Claim 4.35, we see
that diamπU ptai, biuq ď s1, since ai, bi lie on α. Thus

dU pai, ciq ď diamπU pta, buq ` dU pbi, diq ` diamπU ptci, diuq ď s1 ` E ` ℵ.

The claim follows by applying the distance formula (Theorem 4.6) with the same threshold
s ą s1 ` E ` ℵ as in Claim 4.35, and using that rai, cis and rbi, dis each have X–length at
most Φ ` Ψ by construction.

The final claim relates the sum of the lengths of the subpaths of α to d
xX

px, yq.

Claim 4.37. There is a constant Ξ ě 1 such that

dXpx, a1q `

m´1
ÿ

i“1

dXpbi, ai`1q ` dXpbm, yq ď Ξ.

Proof of Claim 4.37. For convenience, let b0 “ x and am`1 “ y, so that the sum we are
interested in bounding is

řm
i“0 dXpbi, ai`1q. By the triangle inequality, for each 1 ď i ď m´1

we have that dXpbi, ai`1q ď dXpbi, d
1
iq ` dXpd1

i, c
1
i`1q ` dXpc1

i`1, ai`1q. Hence

dXpbi, ai`1q ď 2Φ ` ℓXprγ|rd1
i,c

1
i`1sq ď 2Φ `

ÿ

j

ℓXpσij q `
ÿ

j

ℓXpηij q, (13)

where the sums are taken over indices ij so that each ηij and σij are contained in the
subpath of rγ from d1

i to c1
i`1. See Figure 12.

1

for

σ2

η2
σ3

η3

σ4

Y2 Y3

d1 d1
1

c1
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b1 a2

ď Φ
ď Φ

Figure 12: Using the triangle inequality to obtain the bound (13) on dXpb1, a2q in the proof
of Claim 4.37. The purple path is the subpath of the de-electrification rγ from d1

1 to c1
2.

Similarly
dXpb0, a1q ď Φ `

ÿ

j

ℓXpσ0j q `
ÿ

j

ℓXpη0j q (14)
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and
dXpbm, am`1q ď Φ `

ÿ

j

ℓXpσmj q `
ÿ

j

ℓXpηmj q, (15)

where the sums are taken over indices ij so that each ηij and σij are contained in the
subpath of rγ from x to c1

1 and from d1
m to y, respectively.

By our choice of c1
i, d

1
i, each subpath ηij in any of the sums in (13), (14), and (15) has

X–length at most ℸ. Moreover, the total number of paths σi and ηi is at most the pX–length
of the ξ–quasigeodesic γ, which is in turn bounded by ξd

xX
px, yq`ξ “ ξpr`1q. In particular,

m ď ξpr ` 1q, and the sums
řm

i“1

ř

j ℓXpσij q and
řm

i“1

ř

j ℓXpηij q, where the inner sums
are as in (13)–(15), each have at most ξpr ` 1q terms. Combining this with the observation
that each σi is a subpath of the ξ–quasigeodesic γ, we obtain

m
ÿ

i“0

dXpbi, ai`1q ď 2lΦ `

m
ÿ

i“0

˜

ÿ

j

ℓXpσij q `
ÿ

j

ℓXpηij q

¸

ď 2ξpr ` 1qΦ `

m
ÿ

i“0

˜

ÿ

j

ℓXpσij q `
ÿ

j

ℸ

¸

ď ξpr ` 1qp2Φ ` ℸq `

m
ÿ

i“0

ÿ

j

ℓXpσij q

ď ξpr ` 1qp2Φ ` ℸq ` ℓ
xX

pγq

ď ξpr ` 1qp2Φ ` ℸ ` 1q.

Thus setting Ξ “ ξpr ` 1qp2Φ ` ℸ ` 1q completes the proof of the claim.

We are now ready to bound the sum of the lengths of the coset representatives. It follows
from Claim 4.35 and Claim 4.36 that for 2 ď i ď m, we have

|wi|T “ dGpdi´1, ciq ď dGpdi´1, bi´1q ` dGpbi´1, aiq ` dGpai, ciq

—k1,k2 dXpdi´1, bi´1q ` dXpbi´1, aiq ` dXpai, ciq

ĺk1,k2 2Φ ` 2Ψ ` dXpbi´1, aiq.

For i “ 1, . . . ,m ` 1, a similar argument yields |w1|T “ dGpx, c1q ĺk1,k2
Φ ` Ψ ` dXpx, a1q

and |wm`1|T “ dGpdm, yq ĺk1,k2 Φ ` Ψ ` dXpbm, yq. Putting this all together, along with
the fact that m ď ξpr ` 1q as described in the proof of the previous claim, we have

m`1
ÿ

i“1

|wi|T ĺk1,k2 dXpx, a1q ` Φ ` Ψ `

m
ÿ

i“2

p2Φ ` 2Ψ ` dXpbi´1, aiqq ` dXpbm, yq ` Φ ` Ψ

ĺk1,k2
ξpr ` 1qp2Φ ` 2Ψq ` dXpx, a1q `

m
ÿ

i“2

dXpbi´1, aiq ` dXpbm, yq

ĺk1,k2 ξpr ` 1qp2Φ ` 2Ψq ` Ξ,

where the final inequality follows by Claim 4.37. This bound is independent of the choice
of x and y, completing the proof of the uniqueness axiom.
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(12) Large links: By Lemma 4.2, instead of checking the large link axiom, it suffices to
prove that the passing up axiom (12’) (Passing up) holds for pG{N,S{Nq, for a suitable
choice of the hierarchy constant. To this end we let t ą 0, and we fix the following constants
(see Appendix A for a list of where all involved quantities are defined):

c0 “ t ` 4ℵ ` 20E ` 2ℶ,
c1 “ 2A ` 3E ` 2C ` JpK ` D ` 2Eq ` Ψ,

c2 “ 2c1 ` 2D ` 2K,

c3 “ c0 ` c2 ` 12E ` 2.

Set P ą maxtP pc0q, pt ` 1qP pc3qu, where P : Rą0 Ñ N is the function provided by the
passing up axiom applied to pG,Sq (with hierarchy constant E).

Let V P S{N and x, y P G{N , and let tU1, U2, . . . , UP u Ď pS{NqV be such that
dUi

px, yq ą 5E for all i “ 1 . . . , P . Our goal is to find a domain W Ď V and an index i such
that Ui Ĺ W and dW px, yq ą t.

Case 1: V ‰ S. Let tx, y, V, U1, . . . , UP u be pairwise minimal representatives, which
exist by Lemma 4.31. Since dUi

px, yq ě dUi
px, yq by Lemma 4.33, the passing up axiom for

pG,Sq provides a domain W P SV containing some Ui such that dW px, yq ą c0. Without loss
of generality, suppose U1 Ĺ W . Notice that U1 Ĺ W Ĺ V , as pointed out in Remark 4.28.
By Lemma 4.29 there exist x1 P x and U 1

1 P U i such that tx1,W,U 1
1u are pairwise minimal,

and we must have that U1 “ U 1
1 by Proposition 4.25. Then Proposition 4.24 applied to

x, x1, U,W yields that dW px, x1q ď 2ℵ ` 9E. For the same reason, there exists y1 P y with
ty1,W u minimal such that dW py, y1q ď 2ℵ ` 9E. Thus, by Lemma 4.33 we have that

dW px, yq ě dW px1, y1q ´ 2ℶ ě dW px, yq ´ diamπW px1q ´ diamπW py1q ´ 4ℵ ´ 18E ´ 2ℶ ą t.

Case 2: V “ S. Towards a contradiction, assume that dW px, yq ď t for every W which
properly contains some U i, so that, in particular, dXpx, yq ď t. As in Lemma 4.30, let
tx, y, U1, . . . , UP u be such that tx, y, Uiu is pairwise minimal for each i. As P ą P pc0q by
assumption, the passing up axiom for pG,Sq provides a domain W P S properly containing
some Ui such that dW px, yq ą c0. If W ‰ S then, arguing as in Case 1, we obtain dW px, yq ą

t, contradicting our assumption. Hence we must have that dXpx, yq ą c0, while dW px, yq ď

c0 for every non-maximal domain W properly containing some Ui. Let rx, ys be an X–
geodesic between x and y. By minimality dUi

px, yq ě dUi
px, yq ą E, and so the bounded

geodesic image axiom (Definition 4.1.(9)) provides a point pi P rx, ys X NEpρUi

S q for every
i “ 1, . . . , P . Let P be the collection of such points. The set P must be “well-distributed”
along rx, ys, in the following sense.

Claim 4.38. If a subset P1 Ď P has diameter at most c2, then |P1| ď P pc3q.

Proof of Claim 4.38. If minzPP1 dXpx, zq ď 6E let a “ x. Else, let a P rx, ys be the vertex
such that dXpx, aq “ tmintdXpx, zq | z P P1u ´ 6Eu, where t¨u denotes the integer part. In
particular, dpa,Pq P r6E, 6E ` 1s. Similarly, if minzPP1 dXpy, zq ď 6E let b “ y; otherwise
let b P rx, ys be the point such that dXpy, bq “ tmintdXpy, zq | z P P1u ´ 6Eu. See Figure 13.

Notice that dUi
px, aq ď E for every i such that pi P P1. This is vacuously true if a “ x;

otherwise dXprx, as, ρUi

S q ą E, or else the segment between a and minP1 would have length
at most 3E. The required inequality now follows from the bounded geodesic image axiom.
A symmetric argument holds for y and b, so dUi

pa, bq ě dUi
px, yq ´ 4E ą E.
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Figure 13: The construction of the points a and b with respect to the subset P1 (in red) in
the proof of Claim 4.38.

If P1 contained more than P pc3q points, then the passing up axiom for pG,Sq would
imply that dW pa, bq ą c3 for some W containing some Ui; say U1 Ĺ W . Notice that W
cannot be S, because

dXpa, bq ď diamP1 ` 12E ` 2 ď c2 ` 12E ` 2 ď c3.

Furthermore, if x ‰ a then dXprx, as, ρWS q ą E, as otherwise we would have that

dXpa,minP1q ď 2E ` diampρWS Y ρU1

S q ď 5E

by the consistency axiom Definition 4.1.(7). Thus dW px, aq ď E by the bounded geodesic
image axiom, and the same inequality holds for b and y. Hence we again obtain

dW px, yq ě dW pa, bq ´ 4E ą c0,

contradicting our assumption that x and y are c0–close in every domain W ‰ S.

Now let γ be an pX–geodesic between x and y, let rγ be a de-electrification of γ, and let
γ0 be the vertices of γ lying in X. Note that γ0 consists of at most t ` 1 vertices, since
by minimality d

xX
px, yq “ dXpx, yq ď t. Let Q Ď P consist of all points in the pc2{2q–

neighborhood of γ0. which therefore contains at most pt ` 1qP pc3q points by Claim 4.38.
Since P ą pt ` 1qP pc3q, there must be some U 1 P tU1, . . . , UP u such that the corresponding
vertex p1 P P does not belong to Q, that is, dXpp1, γ0q ą c2{2 “ c1 ` D ` K.

Since p1 P rx, ysX , Lemma 2.9 produces a point q1 P rγ such that dXpp1, q1q ď D. Fur-
thermore p1 R Q, which implies that q1 lies on a geodesic segment rc, ds of rγ ´ γ0 such that
mintdXpc, q1q, dXpd, q1qu ą c1 ` K; see Figure 14. Since c1 ą 2A ` E, the vertices c, d do
not belong to NApρVS q for any V P S such that vV P γ. Hence there exists Y P Y such that
vY P γ and c, d P Y . Let r1 P πY pq1q. Since Y is K–quasiconvex, we have dXpr1, q1q ď K,
and so mintdXpc, r1q, dXpd, r1qu ą c1.

Using the triangle inequality and that πY is J–Lipschitz, we have that

dπY pc, vU 1 q ě dπY pc, r1q ´ dπY pr1, vU 1 q

ě dXpc, r1q ´ J
´

dXpr1, ρU
1

S q ` diamρU
1

S

¯

ą c1 ´ JpK ` D ` 2Eq ě 2C.

Moreover dπY px, cq ď C, since the geodesic subsegment of γ between x and c does not contain
vY , so by triangle inequality dπY px, vU 1 q ą dπY pc, vU 1 q´dπY px, cq ą C. Lemma 4.15 thus yields
that every geodesic between x and vU 1 must pass through vY . In particular d

xX
px, vU 1 q “

d
xX

px, vY q ` d
xX

pvY , vU 1 q, so the path ηx “ γ|rx,vY s ˚ rvY , r
1s ˚ rr1, vU 1 s is a geodesic as it
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Figure 14: The configuration from the proof of the passing up axiom, as seen from pX (on
the left) and from X (on the right).

realizes the distance between x and vU . Similarly, the path ηy “ γ|ry,vY s ˚ rvY , r
1s ˚ rr1, vU 1 s

is also a geodesic.
Since HY acts Ψ–coboundedly on Y , there exists hY P HY such that d1 – hY d is at

distance at most Ψ from c. Bend the geodesic tripod with sides γ Y ηx Y ηy at vY by hY .
Let η1

y be the image of ηy after bending, and let y1 “ hY y. Notice that, since we bent a
geodesic triangle, tx, y1, U 1u are again minimal, as so were tx, y, U 1u. The situation is as in
Figure 15.

As c is the last point on the geodesic ηx before vY , Lemma 4.23 implies that dU 1 px, cq ď E.
The same argument applied to η1

y yields that dU 1 pd1, y1q ď E. Finally, we must have that
dU 1 pc, d1q ď E. Indeed, if this was not the case then the bounded geodesic image axiom
for pG,Sq would give that dXpρU

1

S , rc, d1sq ď E for any X–geodesic rc, d1s. But this would
contradict the fact that p1 R Q, as we would have that

dXpp1, cq ď diamNEpρU
1

S q ` dXpc, d1q ď 3E ` Ψ ă c1.

Combining the above inequalities, we obtain

dU 1 px, y1q ď dU 1 px, cq ` diamπU 1 pc1q ` dU 1 pc, d1q ` diamπU 1 pd1q ` dU 1 pd1, y1q ď 5E.

However this is a contradiction, because tx, y1, U 1u are pairwise minimal and therefore
dU 1 px, y1q ě dU 1 px, yq ą 5E. This concludes the proof of the passing up axiom.

Relative HHG structure: In order to complete the proof of Theorem 4.13, it remains
to check that S{N is a relative hierarchically hyperbolic group structure on G{N . The
cofinite G–action on S induces a cofinite action of G{N on S{N . The action preserves the
relations Ď and K, since we noticed in Remark 4.28 that two domains in S{N are nested
(resp. orthogonal) if and only if they admit nested (resp. orthogonal) representatives.
Furthermore, the isometries g : CU Ñ CpgUq in pG,Sq descend to isometries g : CU Ñ CpgUq.
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Figure 15: The configuration from the proof of the Passing up axiom, after bending the
geodesic connecting y to vU 1 . The points tx, y1u are still minimal with U 1.

That these isometries satisfy the conditions from Definition 4.7 follows immediately from
the fact that they satisfy those conditions in pG,Sq, along with the fact that all projections
and relative projections between domains are defined in terms of minimal representatives,
which are permuted by the G–action on pX.

5 Quotients by random walks
This section introduces background on random walks on acylindrically hyperbolic groups
and connections with spinning families. These tools will then be used to provide proofs for
Theorem B, Corollary C, and Corollary D.

5.1 Background on random walks
Let µ be a probability distribution on a group G. We denote by Supppµq the support of µ,
that is, the set of elements g P G such that µpgq ą 0. Let Γµ be the semi-group generated
by the support of µ. If Γµ is, in fact, a subgroup of G, then µ is called reversible. We say
µ is countable if Supppµq is countable, is finitely supported if Supppµq is finite, and has full
support if Γµ “ G. Given a fixed acylindrical action of G on a hyperbolic metric space X,
the probability distribution µ is bounded if some (equivalently, every) orbit of Supppµq is a
bounded subset of X and non-elementary if the action of Γµ on X is non-elementary.

Given a reversible, non-elementary probability distribution µ on an acylindrically hyper-
bolic group G, there exists a unique maximal finite subgroup of G normalized by Γµ [Hul16,
Lemma 5.5]. We denote this subgroup by EGpµq, or just Epµq when G is understood. We
note that Epµq will always contain the maximal finite normal subgroup of G, which we
denote by EpGq.
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Definition 5.1. The measure µ is permissible (with respect to X) if it is bounded, count-
able, reversible, non-elementary, and Epµq “ EpGq.

Remark 5.2. A canonical example of a permissible probability measure is when G is finitely
generated and the support of µ is a finite symmetric generating set of G. In this case µ will
be finitely supported, hence countable and bounded for any action of G. In addition, such µ
will have full support and hence be reversible and non-elementary for any non-elementary,
acylindrical action of G. The fact that Γµ “ G also implies that Epµq “ EpGq.

Hypothesis 5.3. Throughout this section, we fix a group G, a cobounded, acylindrical
action of G on a δ–hyperbolic space pX, dq, and a basepoint x0 P X. Let µ1, . . . , µk be
k permissible probability measures, and let w1,n, . . . wk,n be independent random walks of
length n, starting at x0, where the step of each wi,n is chosen according to µi. When n
is fixed, we often suppress the n in the notation for a random walk for simplicity, writing
wi “ wi,n. If, moreover, a statement applies to all i, we may simply write w for wi,n. We
say that a property holds asymptotically almost surely, or a.a.s, if it holds with probability
approaching 1 as n Ñ 8.

Proposition 5.4 ([MT18, Theorem 1.2]). For all i, there exists ∆i “ ∆ipG,µiq ą 0, called
the drift of the random walk, such that limnÑ8

1
ndpx0, wi,nx0q “ ∆i almost surely.

For an isometry g of a hyperbolic space X, the asymptotic translation length of g is

τpgq “ lim
kÑ8

1

k
dpx0, g

kx0q.

An element with non-zero asymptotic translation length is a loxodromic isometry, and thus
the following proposition implies that wi,n is asymptotically almost surely loxodromic.

Proposition 5.5 ([MT18, Theorem 1.4]). For each i, τpwi,nq ą ∆in a.a.s.

Since the G-action on X is acylindrical, [DGO17, Lemma 6.5] implies the existence of
a maximal virtually cyclic subgroup Epwq of G containing w, which consists of all the
elements that stabilize any quasi-axis for w up to finite Hausdorff distance. We call Epwq

the elementary closure of w. The following proposition states that the elementary closure
of a random element is as small as possible:

Proposition 5.6 ([MS19, Proposition 5.1]). For every i, Epwiq “ EpGq ¸ xwiy a.a.s.

We now construct a p2, δq–quasi-axis for wi, which we call αi. Let y P X be such that
dpy, wiyq ď infxPX dpx,wixq ` δ. Given any geodesic ry, wiys, define

αi –
ď

rPZ
wr

i ry, wiys.

Notice that αi is wi-invariant by construction. Moreover, if the translation length of wi is
sufficiently large with respect to δ (which happens a.a.s. by Proposition 5.5), then αi is a
7δ-quasiconvex p2, δq-quasigeodesic, by [Cou16, Corollary 2.7 and Lemma 3.2].

It is also useful to fix a geodesic γi in X from x0 to wix0. If we are considering a single
random walk w, we denote the quasi-axis αi by α, and the geodesic γi by γ.

An important tool in the study of random walks on hyperbolic spaces with a G–action
is matching estimates. We adapt to quasigeodesics the definition of matching from Maher–
Sisto [MS19].

49



Definition 5.7. Let A,B ě 0 and g P G. Two quasigeodesics p and q in X have an
pA,B, gq–match if there are subpaths p1 Ď p and q1 Ď q of diameter at least A such that
dHauspgp1, q1q ď B. If in addition p “ q, then p has a pA,B, gq-self-match; in this case, we
say that p has a disjoint pA,B, gq-self-match if p1 and q1 are disjoint. We often drop the
element g and/or the constants pA,Bq when they are not relevant, and simply speak of a
match between p and q.

For the rest of the section, let ∆ “ mini ∆i be the minimum drift among all random walks.

Proposition 5.8 ([MT21, Corollary 9.13]). Let w1, w2 be independent random walks of
length n with respect to permissible probability measures. For any 0 ă ε ă 1 and any Q ě 0,
γ1 and γ2 do not have a pε∆n,Qq–match a.a.s.

We note that [MT21, Corollary 9.13] is stated for disjoint subpaths of a single random walk,
but the same argument, with only the obvious changes, proves our proposition as stated.
We next control the matches of overlapping segments of γ.

Proposition 5.9. Let w be a random walk of length n with respect to a permissible prob-
ability measure. For any 0 ă ε ă 1 and any Q ě 0, if γ has a pε∆n,Q, gq-self-match then
g P Epwq a.a.s.

Notice that EpGq might act trivially on X, so we cannot forbid self-matches tout-court.

Proof. This is [AH21, Lemma 2.13], which is stated in the case when EpGq “ t1u but whose
proof runs verbatim in the general case.

The following proposition can most likely be extracted from [MT21, Section 11], but we
provide a proof for clarity and self-containment.

Proposition 5.10. Let w1, w2 be independent random walks of length n, with respect to
permissible probability measures. For every 0 ă ε ă 1 and every Q ě 0, the following hold
a.a.s.:

• the axes α1 and α2 do not have a pε∆n,Qq–match; and

• if α1 has a pε∆n,Q, gq-self-match, then g P Epw1q.

Proof. Let Ω “ Ωpδ, 7δq be the constant from Lemma 2.4, and let Φ “ Φp2,maxtΩ, 20δu, δq

be the Morse constant provided by Lemma 2.1. Note that Ω and Φ depend only on δ.
Now, assume the following hold for i “ 1, 2.

(a) τpwi,nq ą ∆n.

(b) γ1 and γ2 do not have a pε1∆n,Q ` 4Φq–match, and γ1 does not have a pε1∆n,Q `

4Φ, gq–self-match unless g P Epw1q.

These properties hold a.a.s. by Proposition 5.5 and, respectively, Proposition 5.8 and Propo-
sition 5.9. Now choose ε1 P p0, ε{4q, and fix n sufficiently large so that the following hold.

(1) ∆n ą Ω.

(2) ε∆n{4 ´ 3Q ´ 4Φ ą ε1∆n.
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The first is possible because Ω does not depend on n, while the second is possible by our
choice of ε1 ă ε{4 and the fact that Φ does not depend on n.

We shall show that, if α1 and α2 have a pε∆n,Qq–match, then γ1 and γ2 have a pε1∆n,Q`

4Φq–match, contradicting (b). With minimal differences in the proof one can also show that,
if α1 has a pε∆n,Q, gq–self-match with g R Epw1q, then γ1 has an pε1∆n,Q ` 4Φ, gq–self-
match. Hence we shall only highlight the parts where the arguments diverge.

First, notice that αi is contained in N2Φ

´

Ť

jPZ w
j
i γi

¯

. To see this, let yi P παipx0q

belong to the closest point projection of x0 onto αi. Since αi is invariant under wi, it
follows that wiyi P παi

pwix0q; see Figure 16. Furthermore, since αi is 7δ-quasiconvex and
dpy, wiyq ě τpwiq ą ∆n ą Ω, Lemma 2.4 yields that any nearest point path rx0, yis Y

ryi, wiyis Y rwiyi, wix0s is a p1,Ωq–quasigeodesic, and therefore lies in the Φ-neighborhood
of γi. In turn, the p2, δq-quasigeodesic αi|ryi,wiyis is contained in the Φ–neighborhood of
ryi, wiyis, and therefore in the 2Φ-neighborhood of γi. By applying wj

i for any j, we see
that αi|rwj

i yi,w
j`1
i yis

is contained in the 2Φ–neighborhood of wj
i γi, as desired.

 

JW

x0 wix0

w´1
i γi γi wiγi

w2
i x0

yi
αi

wiyi w2
i yi

ď 2Φ ď 2Φ

Figure 16: The axis αi (here, the horizontal line) and the red subpaths of
Ť

jPZ w
j
i γi are at

Hausdorff distance at most 2Φ.

Since α1 and α2 have an pε∆n,Qq–match, there are subpaths q Ď α1 and p Ď α2 of
diameter ε∆n and g P G such that dHauspq, gpq ď Q. In the case of a self-match, p, q Ď α1

and g R Epw1q. See Figure 17.
We will consider the orbits xw1y ¨ y1 and xwg

2y ¨ gy2. There are several cases to consider,
depending on how these orbits intersect q and gp. Note that w1 translates points on α1 by
at least τpw1q ě ∆n. Since q has diameter ε∆n ă ∆n, at most one orbit point wj

1y1 can lie
on q. Similarly, the intersection between the orbit xwg

2y ¨ gy2 and gp consists of at most one
point.

If no orbit point lies on either q or gp, then q and gp are each contained in the 2Φ–
neighborhood of some wj1

1 γ1 and gwj2
2 γ2, respectively. Up to replacing g by g1 “ w´j1

1 gwj2
2 ,

we can assume that q Ď N2Φpγ1q and p Ď N2Φpγ2q. In the case of a self-match, use g1 “

w´j1
1 gwj2

1 , which again does not belong to Epw1q. Thus γ1 and γ2 have an pε∆n ´ 4Φ, Q `

4Φ, g1q–match. By (2), they therefore have an pε1∆n,Q ` 4Φ, g1q–match, contradicting (b).
Now suppose without loss of generality that an orbit point wj

1y1 lies on q. Then wj
1yi

divides q into two subpaths, q1 and q2, and one of these has diameter at least ε∆n{2.
Suppose without loss of generality that it is q1, and let z P gp be a point at distance at most
Q from wj

1y1. Consider the subpath gp1 of gp from its initial point to z. This subpath is at
Hausdorff distance at most Q from q1 and has diameter at least ε∆n{2 ´ 2Q. If no orbit
point lies on gp1, then γ1 and γ2 have a pε∆n{2 ´ 2Q ´ 4Φ, Q ` 4Φq–match; in the case of
a self-match, this is realized by some g1 R Epw1q. Again by (2), this contradicts (b).
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Finally, suppose that an orbit point gwj1

2 y2 lies on gp1. Then this point divides gp1 into
two subpaths, gp1,1 and gp1,2, one of which has diameter at least ε∆n{4 ´ Q. Without loss
of generality, assume it is gp1,1; see Figure 17. Let z1 be a point on q1 at distance at most Q
from gwj1

2 y2. The subpath of q1 from its initial point to z1 is at Hausdorff distance at most
Q from gp1,1, so it has diameter at least ε∆n{4 ´ 3Q. Again by (2), this contradicts (b).

In all possible configurations of orbit points, we have reached a contradiction with (b),
so the proof is complete.

 

JW

q Ď α1

gp Ď α2

wj
1γ1 wj`1

1 γ1

gwj1

2 γ2 gwj1
`1

2 γ2

gp1

gp1,1

q1,1

gwj1

2 y2

z1

ď Q
wj

1y1

q2

ď Q

z

q1

Figure 17: The proof of Proposition 5.10 in the case that a cone point lies on both q and
gp. The red subpaths of translates of γ1 and γ2 form an pε1∆n,Q ` 4Φq–match.

5.2 Random walks and spinning families
In this Section we prove Theorem A from the introduction. We first set some notation.

Notation 5.11. Let G be an acylindrically hyperbolic group, so that there exists a cobounded,
non-elementary acylindrical action on some hyperbolic space X. Up to replacing X via an
equivariant quasi-isometry, we can assume that X is a Cayley graph for G with respect
to a (possibly infinite) generating set, so that the action is transitive. Let µ1, . . . , µk be
permissible probability measures for this action, and consider independent random walks
w1,n, . . . , wk,n of length n with respect to these probability measures. For every i “ 1, . . . , k,
let Yi “ EpGq ¨ αi; notice that Epwiq acts on Yi a.a.s., since Epwiq “ EpGq ¸ xwiy a.a.s by
Proposition 5.6. Let Y be the union of the G-orbits of the Yi, and for every translate gYi

let HgYi
“ gxwiyg

´1. Finally, let N “ xxHYi
yyi“1,...,k. We often drop the indices when they

are not relevant.

The following theorem is a more precise version of Theorem A.
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Theorem 5.12. In the setting of Notation 5.11, there are constants E,K,M0, R, L, where
M0 and L depend on n, such that the collection pX,Y, G, tHY uY PYq a.a.s. satisfies Hypothe-
sis 3.1 and the assumption of Corollary 3.16 with respect to pE,K,M0, R, Lq. In particular,
G{N is a.a.s. acylindrically hyperbolic.

Proof. Hypothesis 4.12 extends Hypothesis 2.19, so we first verify the latter. First, by
assumption X is E-hyperbolic for some E ě 0. Moreover, there exists a constant K “ KpEq

such that every Y is K–quasiconvex. To see this, first notice that, as a consequence of, e.g.,
[DGO17, Lemma 6.5 & Theorem 6.14], for every g P EpGq the translate gα is a p2, Eq–
quasigeodesic with the same ideal endpoints as α. Hence any two EpGq translates of α lie
at Hausdorff distance at most Φ “ Φp2, E,Eq by Lemma 2.1. By E–slimness of triangles in
X, this implies that every geodesic rx, ys with x, y P Y is in the pE ` Φq–neighborhood of
a geodesic between points in the same translate of α. Since α is 7E–quasiconvex, it follows
that Y is K–quasiconvex, where K “ p8E ` Φq.

Now fix a constant 0 ă ε ă 1 to be determined later, and let

M0 “ ε∆n ` 4K ` 4E ` 2Φ. (16)

We claim that the family Y is a.a.s. M0-geometrically separated, as defined in Lemma 2.5.
In other words, we have to show that the diameter of N2K`2EpY q X Y 1 is at most M0 for
every Y ‰ Y 1 P Y. Up to translation and relabeling, we may assume Y “ EpGq ¨ α1 and
Y 1 “ gEpGq ¨ αi, where if i “ 1 then g R Epw1q. Notice that

N2K`2EpY q X Y 1 Ď N2K`2E`Φpα1q X NΦpgαiq.

If diampN2K`2EpY q X Y 1q ě M0, then α1 and gαi would have a pε∆n, 2K ` 2E ` 2Φ, gq-
match, and by Proposition 5.10 this a.a.s. does not occur.

We now prove Hypothesis 3.1. By assumption the action G ñ X is transitive, i.e.,
R-cobounded for R “ 0. Moreover, both Y and the associated collection tHY uY PY of non-
trivial subgroups are G-invariant by construction. The next claim shows that we can choose
the spinning constant L greater than any given constant which is bounded linearly in M0.
Applying the claim with L “ L from Equation (3) will then prove Hypothesis 3.1.(7).

Claim 5.13. Let LpE,K,M0q be a constant which is bounded linearly in terms of M0.
There exist 0 ă ε ă 1 and L ě 0 such that the following hold a.a.s.:

• L ą maxtLpE,K,M0pεqq, ε∆nu, where M0 depends on ε as in Equation (16); and

• for any Y P Y, any x ‰ vY P pX, and any h P HY ´ t1u, we have dπY px, hxq ą L.

Proof of Claim 5.13. Up to the action of G, assume that Y “ Yi for some i P t1, . . . , ku, so
that h “ wr

i,n for some r P Z ´ t0u. By Proposition 5.5, if y P Yi then dpy, wr
i,nyq ą ∆n.

As a consequence, for every x P pX ´ tvYiu we have that dYipx,w
r
i,nxq ą ∆n ´ 2B, where

B “ BpE,K,M0q is the constant from Lemma 2.6 that bounds the diameter of πYi
pxq.

Since K “ KpEq, and both B and L are bounded linearly in M0, we can find constants
apEq ą 0, bpEq, and b1pEq such that

L ` 2B ď apEqM0 ` bpEq “ apEqε∆n ` b1pEq.

Now choose ε in such a way that 1 ´ apEqε ą ε, and set L “ ∆n ´ 2B. By construction
L ě maxtL, ε∆nu for all sufficiently large values of n, as required.
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We now check the assumption of Corollary 3.16. Let wk`1 and wk`2 be random walks of
length n with respect to µ1 such that tw1, . . . , wk`2u are pairwise independent. Let αk`1 and
αk`2 be the quasi-axes as in Section 5.1, and let h, h1 P G be such that x0 P hαk`1 Xh1αk`2.
Such elements exist because G acts transitively on X. Finally, let f “ hwk`1h

´1 and
g “ h1wk`2ph1q´1, which are a.a.s. loxodromic by Proposition 5.5 and therefore WPD as
the action G ñ X is acylindrical.

We first claim that f and g are a.a.s. independent. If f and g share an ideal endpoint
ξ P BX, then by Lemma 2.1 the sub-rays η Ď hαk`1 and η1 Ď h1αk`2 connecting x0 to ξ
would satisfy dHauspη, η1q ď Φ. In particular, αk`1 and αk`2 would have a p∆n,Φq–match,
contradicting Proposition 5.10.

We now show that the axes of f and g are “transverse” to those of the other random
walks, in the following sense:

Claim 5.14. supY PY supmPZ dπY px0, f
mx0q ă L{80 a.a.s., and similarly for g.

Proof of Claim 5.14. Suppose toward a contradiction that there exist n P Z, i P t1, . . . , ku,
and g P G such that dπgYi

px0, f
mx0q “ diamπgYiptx0, f

mx0uq ě L{80. Notice that diamπgYipx0q

does not depend on n, but only on the (uniform) constants E and K, while L grows linearly
in n. In particular, if n is sufficiently large it must be the case that m ‰ 0. Let y P πgYi

px0q

and y1 P πgYi
pfmx0q be such that dpy, y1q ě L{80 ´ 1. By Lemma 2.4, if n is sufficiently

large then the nearest point path rx0, ysYry, y1sYry1, fmx0s is a p1,Ωq-quasigeodesic, where
Ω only depends on E. In turn, since x0 and fmx0 belong to hαk`1, Lemma 2.1 yields
that y, y1 P NΦ1 phαk`1q, where Φ1 “ Φp2,Ω, Eq. Let y2 P Y belong to the same trans-
late of αi as y, chosen in such a way that dpy1, y2q ď Φ. Then dpy, y2q ě L{80 ´ 1 ´ Φ.
Setting Φ2 “ maxtΦ,Φ1u, we have y, y2 P N2Φ2 phαk`1q. Therefore αk`1 and αi have
a pL{80 ´ 5Φ2 ´ 1, 2Φ2q–match. Since L ą ε∆n, there exists 0 ă χ ă 1 such that
L{80 ´ 5Φ2 ´ 1 ą χ∆n for large enough values of n. In particular, αk`1 and αi have
a pχ∆n, 2Φ2q–match, contradicting Proposition 5.10.

As a consequence of Claim 5.14, f and g are a.a.s. independent loxodromic WPD elements
satisfying

sup
Y PY, l,mPZ

dπY pfmx0, g
lx0q ď sup

Y PY,mPZ
pdπY px0, f

mx0q ` dπY px0, g
mx0qq ă L{40.

This shows that the requirements of Corollary 3.16 are a.a.s. satisfied, as required.

We can specialize Theorem 5.12 to the case of relative HHG:

Proposition 5.15. In the setting of Notation 5.11, assume further that G is an acylindri-
cally hyperbolic relative HHG, and that X is its top-level coordinate space. Then the col-
lection pX,Y, G, tHY uY PYq a.a.s. satisfies Hypothesis 4.12 with respect to some constants
E,K,M0, R, L, where M0 and L depend on n.

Proof. Since Hypothesis 2.19 and Hypothesis 3.1 hold by Theorem 5.12, we are left to
check the remaining assumptions of Hypothesis 4.12. It is clear that G acts cofinitely
on Y. Furthermore, xwy acts geometrically on its axis α, and therefore on Y , since all
EpGq-translates of α are within finite Hausdorff distance. Finally, if in Claim 5.13 we
choose L “ rL from Equation (6), we can also ensure that L ą rL, completing the proof of
Proposition 5.15.
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Remark 5.16. By Corollary 3.9, for every x P X and every n P N ´ t1u we have that
dXpx, nxq ą τ “ pL{10 ´ 2pB ` JRqq{J “ pL{10 ´ 2Bq{J ; here we used that R “ 0 as X
is a Cayley graph for G. Since B is bounded linearly in terms of M0, we can choose the
constant L from Claim 5.13 to be larger than 20B and ensure that L{10 grows faster than
2B as n Ñ 8. This proves that τ Ñ 8 as n Ñ 8, i.e., the subgroup N will a.a.s. have
minimum translation length greater than any given constant on the Cayley graph model for
X, and therefore on every graph G–equivariantly quasi-isometric to X. This is crucial in
the application to random quotients of mapping class groups [Man23].

Remark 5.17. In this paper, we have assumed that all of our random walks have the same
length. Some assumptions on the relative lengths of the random walk is necessary for our
methods to hold, as we now explain. The matching estimates introduced in Section 5 are
key to the arguments in this section. If, for example, both w1 and w2 are driven by a
uniform measure on the same finite generating set, and the length of w1,n1 is logarithmic in
the length of w2,n2

, then w1,n1
will a.a.s. appear as a subword of w2,n2

[ST19, Section 4].
In particular, it will no longer hold that the axes of these two random walks do not have
an pε∆n1, Qq–match a.a.s., as in Proposition 5.10, and so the collection of random walks
will not a.a.s. satisfy Hypothesis 4.12. On the other hand, a straightforward generalization
of the techniques in this Section should show that Theorem 5.12 holds if the lengths of the
random walks differ by linear functions. With more work, it may be possible to extend our
methods in the case that n2 is only polynomial in n1. For simplicity and in the interest of
space, we chose not to pursue these directions here.

5.3 Random quotients
We now apply Theorem 5.12 and Proposition 5.15 to prove Theorem B and its corollaries.

Proof of Theorem B. Let pG,Sq be an acylindrically hyperbolic (relative) HHG, and let
µ1, . . . , µk be permissible probability measures on G. Let w1,n, . . . , wk,n be independent
random walks of length n with respect to µ1, . . . , µk. Theorem 5.12 shows that the G{N -
action on CS{N is non-elementary, and Proposition 5.15 proves that the assumptions of
Theorem 4.13 are satisfied. Therefore pG{N,S{Nq is an acylindrically hyperbolic HHG, as
required.

Proof of Corollary C. Let G be a non-elementary hyperbolic group, and let w1,n, . . . , wk,n

be independent random walks of length n with respect to permissible probability measures on
G. Then pG,Sq is a HHG, where S “ tSu, and CS is the Cayley graph of G with respect to a
finite generating set. By Theorem B, if N “ xxw1,n, . . . , wk,nyy, then G{N is an acylindrically
hyperbolic HHG. Moreover, the hierarchy structure on G{N is S{N “ tSu, as can be seen
from Construction 4.26 in the proof of Theorem 4.13. In particular, pG{N,S{Nq has no
orthogonality, and so is a rank 1 HHG. By [BHS21, Corollary 2.16], G{N is a hyperbolic
group, and it is non-elementary as it is acylindrically hyperbolic.

The proof of Corollary D is similar, but uses relative HHG structures instead of HHG
structures.

Proof of Corollary D. Let G be a non-elementary relatively hyperbolic group with infinite,
finitely generated peripheral subgroups H “ tH1, . . . ,Hℓu. Let T be a finite generating set
for G such that T X H generates H for every H P H. By [BHS19, Theorem 9.3], there is a
relative HHG structure pG,Sq, where:
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• S “ tSu Y GH;

• CS “ Cay
´

G, T Y
Ťℓ

i“1 Hi

¯

, while CpgHq “ gCaypH, T X Hq; and

• every gH is nested in S and transverse to every other domain.

Let w1,n, . . . , wk,n be independent random walk of length n with respect to permissible
probability measures on G, let N “ xxw1,n, . . . , wk,nyy, and let T be the image of T in
G{N . For every i “ 1, . . . , ℓ, let Hi be the image of Hi in G{N , and let H “ tH1, . . . ,Hℓu.
Notice that every H P H fixes a set of diameter 1 in CS, while every non-trivial n P N has
translation length at least 2 by Corollary 3.9. Hence H X N “ t1u, and so H – H.

By Theorem B, G{N is an acylindrically hyperbolic relative HHG with hierarchy struc-
ture S{N . The relation between any two domains of S{N is the relation between any min-
imal representatives, as can be seen from Construction 4.26 in the proof of Theorem 4.13.
In particular, pG{N,S{Nq has no orthogonality, and so is a rank 1 relative HHG. By com-
bining [Rus20, Theorem 4.3] and [Dru09, Proposition 5.1], we conclude that G{N is non-
elementarily hyperbolic relative to a collection Q of subgroups with the property that each
Q P Q is at finite Hausdorff distance in CaypG{N, T q from a unique coset of some H P H.
More precisely, the proof of [Dru09, Proposition 5.1, Step (3)] shows that one such Q exists
for every infinite H, and in particular for every H P H by our assumptions.

Let Q and H P H be as above. Up to replacing Q by some conjugate, we can assume
that dHauspQ,Hq is finite, say, bounded by some r ě 0. We will now show that H “ Q,
thus completing the proof of Corollary D. Let K “ Q X H, and notice that, by [HW09,
Lemma 4.5], there exists a constant r1 ą 0 such that

Q Ď Q X NrpHq Ď Nr1 pQ X Hq “ Nr1 pKq.

Thus, K has finite index in Q. The same argument shows that K has finite index in H as
well.

Given g P H, the subgroup K X gKg´1 has finite index in K, as it is the intersection of
two finite-index subgroups of H. Hence K X gKg´1 has finite index in Q as well, since K
has finite index in Q. Thus Q X gQg´1, which contains K X gKg´1, also has finite index
in Q. Now Q is infinite, as it is commensurable to H – H, and almost malnormal, as it is
a peripheral subgroup in a relative hyperbolic structure. Hence, we must have that g P Q.
As g was an arbitrary element of H, this proves that H ď Q.

For the reverse inclusion, suppose toward a contradiction that there is some g P Q ´ H.
Then H and gH correspond to transverse Ď–minimal domains in the relative HHG structure
of the quotient. Since H and gH are Ď–minimal, the relative projection ρH

gH
is coarsely

the nearest point projection of the product region PH to PgH , and similarly for the other
relative projection; see [BHS17a, Remark 1.16] and [Rus20, Lemma 3.1]. Since H is infinite,
PH and PgH cannot be within finite Hausdorff distance, else we would contradict that the
relative projections are bounded diameter sets. On the other hand, PH and PgH coarsely
coincide with H and gH, respectively, and the latter are within finite Hausdorff distance
since g P Q. This is a contradiction, and so we conclude that H “ Q, as required.
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A List of constants
All constants depending on M0 are bounded linearly in M0.

Name From Description
δ Hypothesis 2.19 Hyperbolicity constant of X

Φpλ, c, δq Lemma 2.1 Morse constant for pλ, cq-quasigeodesics
K Hypothesis 2.19 Quasiconvexity constant of Y P Y

JpK, δq Lemma 2.3 Lipschitz constant of πY

Ωpδ,Kq Lemma 2.4 nearest point path is p1,Ωq-quasigeodesic
pδpδ,Kq Lemma 2.8 hyperbolicity constant of pX

Dpδ,Kq Lemma 2.9 rx, ys
X

Ď NDprx, ys
xX

q

M0 Hypothesis 2.19 @Y ‰ Y 1
P Y, diampY X N2K`2δpY 1

qq ď M0

Mptq “ Mpδ,K,M0, tq Lemma 2.5 diampY X NtpY
1
qq ď Mptq

Bpδ,K,M0q Lemma 2.6 diamY pUq ď B

Cpδ,K,M0q Lemma 2.13 Strong BGI: dπ
Y px, yq ě C ñ vY P rx, ys

xX

θpδ,K,M0q Proposition 2.20 Y satisfies projection axioms wrt θ

R Hypothesis 3.1 G-action on X is R-cobounded
Θpδ,K,M0, Rq Corollary 2.22 pX satisfies projection axioms wrt Θ
rΘpδ,K,M0, Rq Hypothesis 3.1 projection constant with a G-action
� “ 33rΘ Definition 2.16 In P “ P�pYq, W P LinkpW 1

q iff @Y dY pW,W 1
q ď �

L Hypothesis 3.1 Spinning: dπ
Y px, hY xq ě L @x P pX ´ tvY u

LhypprΘq Remark 3.2 If L ą Lhyp, P{N is hyperbolic
Lpδ,K,M0, Rq ě Lhyp Equation (3) If L ą L, pX{N is hyperbolic

τpδ,K,M0, R, Lq Corollary 3.9 dXpx, nxq ě τ @n P N ´ t1u.
E Definition 4.1 relative HHG constant of pG,Sq

ApK,Eq Equation (5) in pX, NApρUS q is coned off for every U Ĺ S
rLpE,K,M0q Equation (6) if L ą rL then G{N is a relative HHG

L1 Equation (7) Spinning constant in X 1

ℵ Remark 4.17 @y P Y , diampπU pHY ¨ yqq ď ℵ
ℶpℵ, Eq Proposition 4.32 bound on diamπU pxq and diamρV

U

Ψ Theorem 4.13.(11) HY –action on Y is Ψ-cobounded
∆ Proposition 5.4 minimal drift of random walks
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