
BOUNDED COHOMOLOGY, QUOTIENT EXTENSIONS,

AND HIERARCHICAL HYPERBOLICITY

FRANCESCO FOURNIER-FACIO, GIORGIO MANGIONI, AND ALESSANDRO SISTO

Abstract. We call a central extension bounded if its Euler class is repre-

sented by a bounded cocycle. We prove that a bounded central extension of a
hierarchically hyperbolic group (HHG) is still a HHG; conversely if a central

extension is a HHG, then the extension is bounded, and the quotient is com-

mensurable to a HHG. Motivated by questions on hierarchical hyperbolicity of
quotients of mapping class groups, we therefore consider the general problem

of determining when a quotient of a bounded central extension is still bounded,

which we prove to be equivalent to an extendability problem for quasihomo-
morphisms. Finally, we show that quotients of the 4-strands braid group by

suitable powers of a pseudo-Anosov are HHG, and in fact bounded central

extensions of some HHG. We also speculate on how to extend the previous
result to all mapping class groups.

Life is short and if you’re looking
for extension, you had best do well.
’Cause there’s good deeds and then
there’s good intentions. They are
as far apart as Heaven and Hell.

Ben Harper

1. Introduction

Central extensions 1 Ñ K Ñ E Ñ G Ñ 1 (which we often abbreviate with
just E) are classified by their associated Euler class αE P H2pG;Kq. We call a
central extension bounded if its Euler class is bounded, i.e. it is represented by a
bounded cocycle. One reason of interest is the fact that bounded central extensions
are quasi-isometrically trivial [Ger92]. Another reason of interest comes from the
study of hierarchically hyperbolic groups, see below.

In this paper we always consider central extensions with finitely generated kernel.
We are interested in the following natural problem:

Problem 1.1. Given a bounded central extension E, which of its quotient central
extensions Ē are bounded?

By a quotient central extension here we mean that there exists a diagram as
follows:

1 K E G 1.

1 K Ē Ḡ 1.

–

Equivalently, Ē “ E{N , whereN is a normal subgroup of E intersectingK trivially.
1
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We note in the other direction that if a central extension has a bounded quotient
central extension, then it is bounded (Lemma 2.12). However, not all quotient
extensions of a bounded central extension are themselves bounded. For instance,
the Heisenberg group is a quotient central extension of F2 ˆZ which is not bounded
(see Example 2.13); in fact, any central extension can be realised as a quotient of
a trivial extension of a free group (see Example 2.14).

By Proposition 2.9 (which we believe to be known to experts), boundedness of a
central extension E is equivalent to the existence of a quasihomomorphism E Ñ K
that is the identity on K. Quasihomomorphisms, in the sense of e.g. [FK16], are
also relevant for quotient central extensions, and indeed we show that bounded-
ness of a quotient central extension is equivalent to an extendability problem for a
quasihomomorphism. An informal statement is as follows:

Proposition 1.2 (see Proposition 2.16). Consider a bounded central extension

1 K E G 1.π

with finitely generated kernel, and a quotient central extension Ē “ E{N . Then Ē
is bounded if and only if a certain quasihomomorphism on πpNq extends to G.

This has further connection to bounded cohomology in degree 3, which we discuss
in Section 2.

The second and third authors encountered Problem 1.1 while studying quotients
of mapping class groups, in particular relating to their conjecture on hierarchical
hyperbolicity of quotients of mapping class groups [MS25, Question 3]. Hierarchi-
cally hyperbolic groups (HHG), as first defined by Behrstock, Hagen, and Sisto in
[BHS17b], provide a common framework for, among others, mapping class groups
of surfaces, most cubulated groups, fundamental groups of three-manifolds, and
extra-large Artin groups [HS20, HRSS22, HMS24], and are therefore amenable to
tools from both low-dimensional topology and the world of CAT(0) cube complexes.
Showing that a given group is hierarchically hyperbolic yields a lot of information
about it ([BHS21, HHP23, ANS`24, HHL23, DMS23, DMS25] is a highly non-
exhaustive list). Hence it is natural to explore which group-theoretic procedures
the class of HHG is closed under. These include taking graph products [BR22],
relative hyperbolicity [BHS19], many graphs of groups [BR20], and several quo-
tients [BHMS24, MS24, ABM`25]. In this direction, we characterise which central
extensions preserve hierarchical hyperbolicity:

Theorem 1.3 (see Theorem 3.10). Let 1 Ñ K Ñ E Ñ G Ñ 1 be a central exten-
sion with finitely generated kernel, and suppose that G is a hierarchically hyperbolic
group. Then E is a hierarchically hyperbolic group if and only if the extension is
bounded.

We postpone to Section 4 the details of how Theorem 1.3 relates to hierarchical
hyperbolicity of quotients of mapping class groups. In the other direction, we prove
that a central quotient of a HHG is commensurable to a HHG:

Theorem 1.4 (see Theorem 3.13). Let 1 Ñ K Ñ E Ñ G Ñ 1 be a central
extension with finitely generated kernel. If E is a hierarchically hyperbolic group,
then the extension is bounded.

Suppose moreover that E has a HHG structure with cobounded product regions.
Then there exists a finite-index subgroup E1 ď E containing K such that E1{K is
a hierarchically hyperbolic group.
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The hypothesis that E has cobounded product regions is mild and natural, as
explained in Definition 3.9. Since G is a finite-index overgroup of a HHG, it inher-
its the structure of a hierarchically hyperbolic space, given by the quasi-isometric
inclusion E1{K ãÑ G. However, even assuming cobounded product regions for E,
one cannot hope that G itself is a hierarchically hyperbolic group: in Remark 3.14
we argue that the trivial central extension E “ ZˆG of the p3, 3, 3q-triangle group
G is HHG, while G is not by [PS23].

Finally, inspired by the setup explained in Section 4, we show that many quo-
tients of the braid group B4 on 4 strands are bounded central extensions. Re-
call here that B4 is a central extension of a finite-index subgroup of the mapping
class group of the five-holed sphere. The quotients we consider here are quotients
by powers of pseudo-Anosovs, as studied for finite-type surfaces for instance in
[DGO17, BHS17a].

Theorem 1.5 (see Theorem 4.3). Let h be a pseudo-Anosov element of B4. Then
there exists M0 P Ną0 such that, for all multiples M of M0, we have that B4{xxhM yy

is a bounded central extension of a HHG, and in particular it is a HHG.

Outline of sections and arguments. We summarise here the techniques that
are involved in our arguments. In what follows, we often restrict to central ex-
tensions with infinite cyclic kernel for the ease of exposition; in this setting, a
quasihomomorphism with image in Z is simply called a quasimorphism.

In Section 2 we discuss generalities on central extensions and their quotients,
boundedness, and quasihomomorphisms. It is worth mentioning Lemma 2.12,
which states that, if a quotient extension is bounded, then so is the original exten-
sion. Next, we prove the characterisation of bounded quotient extensions, Proposi-
tion 2.16. The key observation is that a central extension 1 Ñ Z Ñ E

π
ÝÑ G Ñ 1 is

bounded if and only if it admits a quasimorphism ϕ : E Ñ Z which is the identity
on the kernel (see Proposition 2.9). The reader should think of ϕ as a “coarse ho-
momorphic” retraction inducing a “coarse” splitting of the extension, as explained
below.

Section 3 starts with background material on hierarchically hyperbolic groups
(HHG). Roughly, a group Γ is a HHG if there exists a collection of hyperbolic spaces
tCUuUPS, together with coarsely Lipschitz “coordinate projections” πU : Γ Ñ CU
satisfying various conditions.

We uncover a connection between boundedness and hierarchical hyperbolicity of
a central extension. In one direction, Theorem 3.10 shows that a bounded central
extension of a HHG is itself a HHG. With an inductive argument, one can reduce
to the case where the kernel is Z, which was already settled by [AHPZ23, Theorem
5.14]; in turn, the proof of the latter is a refinement of [HRSS22, Corollary 4.3],
which solved the case where the base is hyperbolic. We sketch here the core idea
of both arguments, as it enlightens several ideas that appear repeatedly through-
out our paper. From a bounded extension one gets an unbounded quasimorphism
ϕ : E Ñ Z as above, and the function E Ñ Z ˆ G mapping e P E to pϕpeq, πpeqq is
a quasi-isometry. In other words, a bounded extension is also quasi-isometrically
trivial in the sense of [Ger92], though the converse implication is not true in gen-
eral (see [FS23, AM24] and Remark 3.12). Then the HHG structure for E will have
one domain for every domain of G, with projection factoring through the quotient
map π, and one quasiline to “detect” the Z-factor. Such quasiline is built out of



4 F. FOURNIER-FACIO, G. MANGIONI, AND A. SISTO

the quasimorphism ϕ, using an observation of Abbott, Balasubramanya, and Osin
[ABO19, Lemma 4.15].

In the opposite direction, Theorem 3.13 proves that, if E is a HHG, then the
central extension is bounded, and the quotient is a finite-index overgroup of a
HHG. To get boundedness we again look for a quasimorphism on E which is the
identity on Z. Towards this, one first finds a domain CU on which the centre acts
loxodromically, which must be a quasiline; then the required quasimorphism is the
Busemann quasimorphism [Man08, Section 4.1] associated to the action of (a finite-
index subgroup of) E on CU , which roughly maps each e P E to its asymptotic
translation length on the quasiline.

We now sketch how to prove hierarchical hyperbolicity of a finite-index subgroup
of G. Let CU1, . . . , CUk be the domains on which Z acts loxodromically. By taking
linear combinations of the associated Busemann quasimorphisms, and then replac-
ing each CUi with a new quasiline (again using [ABO19, Lemma 4.15]), we can
modify the HHG structure for E in such a way that Z acts loxodromically on a
single CUi, call it CU , and with uniformly bounded orbits on every other domain.
Then the HHG structure of the quotient roughly coincides with what is left of the
structure for E after we delete CU .

In the above procedure, one has to restrict to a finite-index subgroup of E. This
is unavoidable, as in Remark 3.14 we show that, while the p3, 3, 3q triangle group G
is not a HHG by [PS23], the direct product Z ˆ G is. In this sense, the statement
of Theorem 1.4 is optimal.

In Section 4 we clarify how the study of hierarchical hyperbolicity of quotients
of mapping class groups leads to questions on the boundedness of certain central
extensions (Questions 4.1 and 4.2), and discuss possible strategies to tackle them.

Focusing on quotients by the normal closure of a high power of a pseudo-Anosov
element, we solve the problem for the 4-strand braid group B4 in Theorem 4.3.
The key idea is that, if a further quotient extension has hyperbolic base, then it is
bounded by [NR97], and hence so is the original quotient extension by Lemma 2.12.
Thus the problem becomes to construct a suitable hyperbolic quotient of a five-
punctured sphere, which we do using the machinery of rotating families from
[Dah18] and of short HHG from [Man24].

For surfaces of higher genus, one can maybe adapt the above argument, condi-
tionally to the residual finiteness of certain hyperbolic groups (see Remark 4.5), or
try to exploit that the kernel is an increasing union of convex-cocompact subgroups
(see Subsection 4.3).

Acknowledgments. We would like to thank Federica Bertolotti, Roberto Frigerio,
Shuhei Maruyama, Francesco Milizia, and Davide Spriano for helpful discussions.
We are also grateful to Mark Hagen for explaining to us how to cubulate suitable
extensions of crystallographic groups. FFF is supported by the Herchel Smith
Postdoctoral Fellowship Fund. GM is funded by an EPSRC-DTP PhD studentship.

2. Bounded extensions and quasi(homo)morphisms

In this section we discuss generalities on central extensions and bounded co-
homology. In particular, we state a characterisation of boundedness in terms of
quasimorphisms (Proposition 2.9). The main result in this section is Proposition
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2.16, which gives equivalent characterisations for a quotient central extension to be
bounded.

Notation 2.1. Throughout this section, we use „ to denote equality up to a
uniformly bounded error.

Definition 2.2. In this paper, cocycle will always refer to inhomogeneous 2-cocycle,
namely a map ω : G2 Ñ K such that

δωpg1, g2, g3q “ ωpg2, g3q ´ ωpg1g2, g3q ` ωpg1, g2g3q ´ ωpg1, g2q “ 0

for all g1, g2, g3 P G.

Let us briefly recall the dictionary between second cohomology and central ex-
tensions, referring the reader to [Bro94, Chapter IV.3] for details. Given a central
extension 1 Ñ K Ñ E Ñ G Ñ 1, we pick a section σ : G Ñ E that is nor-
malised, meaning that σp1q “ 1. We identify ωpg, hq “ σpgqσphqσpghq´1 with an
element of K, and then ω : G2 Ñ K is a cocycle that is normalised, meaning that
ωp1, gq “ ωpg, 1q “ 0 for all g P G. This defines a class rωs P H2pG;Kq, inde-
pendent of the choice of σ, which is called the Euler class of the extension and we
also denote by rEs. Conversely, given a normalised cocycle ω : G2 Ñ K we define
a group E with underlying set K ˆG and product

pk1, g1q ¨ pk2, g2q “ pk1 ` k2 ` ωpg1, g2q, g1g2q.

Then E is a central extension as above, and the map g Ñ p0, gq is a normalised
section. Equality in cohomology corresponds to equivalence of central extensions.

Definition 2.3. Let pK, } ¨ }q be an Abelian group endowed with a norm. For
another group G, a class α P H2pG;Kq is bounded if it belongs to the image of the
comparison map H2

b pG;Kq Ñ H2pG;Kq. More explicitly, α is bounded if there
exists a cocycle ω : G2 Ñ K such that α “ rωs, and such that }ωp¨, ¨q} : G2 Ñ Z is
uniformly bounded. A central extension 1 Ñ K Ñ E Ñ G Ñ 1 is bounded if the
corresponding Euler class rEs P H2pG;Kq is bounded.

Definition 2.4. Let pK, } ¨ }q be as above, and let E be another group. A map
χ : E Ñ K is a quasihomomorphism if there exists Dpχq ě 0, called the defect of
χ, such that, for every e1, e

1
2 P E,

}χpe1q ` χpe2q ´ χpe1e2q} ď Dpχq.

A quasihomomorphism is homogeneous if it restricts to a homomorphism on every
cyclic subgroup. WhenK “ Z or R with the Euclidean norm, we say quasimorphism
instead of quasihomomorphism.

Remark 2.5 (Homogeneisation). Given a quasimorphism ϕ : E Ñ R, for every

g P E the limit ϕhpgq “ limnÑ8
ϕpgn

q

n always exists. The map ϕh : E Ñ R is a
homogeneous quasimorphism; moreover, both }ϕ ´ ϕh} and the defect of ϕh are
bounded in terms of the defect of ϕ [Cal09, Lemma 2.21].

Real-valued quasimorphisms will only appear in the course of proofs about quasi-
morphisms with values in Z. All of our statements will only involve the case in which
K is a finitely generated Abelian group endowed with a word norm. In this case, a
subset ofK is bounded if and only if it is finite, so the notions above are independent
of the choice of a norm. This allows to generalise the notion of quasihomomorphism
to maps taking values in any discrete group, following Fujiwara–Kapovich [FK16].
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Definition 2.6. A map χ : G Ñ H between groups is a quasihomomorphism if
there exist a finite set F Ă H such that, for every g1, g2 P G, the difference between
χpg1g2q and χpg1qχpg2q lies in F (the way in which one takes the difference does
not matter by [Heu20, Proposition 2.3]).

We record here an example of a quasimorphism that we shall use repeatedly
throughout the paper.

Example 2.7 (Busemann quasimorphism, see e.g. [Man08, Section 4.1]). Let E
be a group acting on a δ-hyperbolic metric space X, with Gromov boundary BX,
and suppose the action fixes an ideal point p P BX. Given a sequence txnu P X
converging to p, the map ϕtxu : E Ñ R defined by

ϕtxupgq “ lim sup
nÑ8

dpgx0, xnq ´ dpx0, xnq,

is a quasimorphism of defect at most 16δ. Then the Busemann quasimorphism ϕ
is the homogeneisation of ϕtxu, as in Remark 2.5. One can check that ϕ does not
depend on the choice of the sequence; moreover, an element g P E acts loxodromi-
cally on X if and only if ϕpgq ‰ 0. Note that, by construction, for every g P E
one has that |ϕpgq| ď dpx0, gx0q; conversely, if X is a quasiline, then there exists a
constant L such that dpx0, gx0q ď |dpgx0, xnq ´ dpx0, xnq| ` L, for all sufficiently
large n (if tx0, gx0, xnu “ ta, b, cu and b is “between” a and c, one can see this by
considering the distance between b and a geodesic ra, cs). Taking the limsup, one
gets that dpx0, gx0q and |ϕpgq| are within uniform distance.

We now turn to the characterisation of when a central extension is bounded, in
terms of the existence of certain quasihomomorphisms.

Lemma 2.8. Let 1 Ñ K Ñ E Ñ G Ñ 1 be a central extension.

‚ Every bounded cocycle ω : G2 Ñ K is cohomologous to a normalised bounded
cocycle.

‚ If there exists a quasihomomorphic section σ : G Ñ E, then there exists a
normalised quasihomomorphic section.

Proof. For the first bullet, we have

0 “ δωpg´1, g, 1q “ ωpg, 1q ´ ωp1, 1q ` ωpg´1, gq ´ ωpg´1, gq.

Therefore ωpg, 1q “ ωp1, 1q, and similarly ωp1, gq “ ωp1, 1q for all g P G. Let
b : G Ñ K be the constant function at ωp1, 1q. Then δbpg, hq “ ωp1, 1q for all
g, h P G. Setting ω1 “ ω ´ δb, we see that ω1 is a normalised bounded cocycle
cohomologous to ω.

For the second bullet, let σ1pgq “ σpgq for all g ‰ 1, and σ1p1q “ 1. We need
to check that σ1pg1qσ1pg2qσpg1g2q´1 takes finitely many values over g1, g2 P G. If
g1, g2, g1g2 ‰ 1, then this follows from σ being a quasihomomorphism. If one of
g1, g2 is equal to 1, then the equation above is just equal to 1. Finally, if g1 “ g ‰ 1
and g2 “ g´1, then the equation above is equal to

σpgqσpg´1q “
`

σpgqσpg´1qσp1q´1
˘

σp1q,

which again takes finitely many values because σ is a quasihomomorphism. □

Proposition 2.9. Let 1 Ñ K Ñ E
π

ÝÑ G Ñ 1 be a central extension with finitely
generated kernel. The following are equivalent:

(1) rEs is bounded, i.e. rEs is represented by a (normalised) bounded cocycle.
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(2) There exists a quasihomomorphism χ : E Ñ K such that χ|K is the identity.
(3) There exists a (normalised) section s : G Ñ E which is a quasihomomor-

phism.

Proof. By Lemma 2.8, we may assume that all cocycles and sections involved are
normalised. Up to isomorphism of central extensions, E has underlying set K ˆG,
and product

pk1, g1q ¨ pk2, g2q “ pk1 ` k2 ` ωpg1, g2q, g1g2q;

where ω : G2 Ñ K is a normalised cocycle representing the central extension.
(1)ñ(2): Suppose that the extension is bounded, and choose ω to be a bounded

cocycle. We set χ : E Ñ K to be the projection onto the first factor; notice that
χ|K is the identity. Then

χppk1, g1q ¨ pk2, g2qq “ k1 ` k2 ` ωpg1, g2q “ χpk1, g1q ` χpk2, g2q ` ωpg1, g2q.

Thus the defect of χ is bounded by the norm of ω, and so it is bounded, i.e. χ is a
quasihomomorphism.

(2)ñ(1): Suppose that there exists a quasihomomorphism χ : E Ñ K such that
χ|K is the identity. Let b : G Ñ K be defined as bpgq “ χp0, gq. Then

pω ´ δbqpg1, g2q “ ωpg1, g2q ` bpg1g2q ´ bpg1q ´ bpg2q

“ χpωpg1, g2q, 1Gq ` χp0, g1g2q ´ χp0, g1q ´ χp0, g2q

„ χpωpg1, g2q, g1g2q ´ χp0, g1q ´ χp0, g2q

“ χpp0, g1q ¨ p0, g2qq ´ χp0, g1q ´ χp0, g2q „ 0.

Therefore ω ´ δb is bounded, and it is a cocycle cohomologous to ω. This shows
that the extension is bounded.

(1) ðñ (3): This equivalence was already pointed out in [FS23] (see the discus-
sion after Proposition 2.3 there). If σ : G Ñ E is a quasihomomorphic normalised
section, then the cocycle ωpg, hq “ σpghq´1σpgqσphq, which represents the Euler
class, is bounded. The converse implication is [Heu20, Theorem C]. □

Corollary 2.10. Let 1 Ñ K Ñ E
π

ÝÑ G Ñ 1 be a bounded central extension with
finitely generated kernel. Let L ă K be a subgroup. Then the central extensions

1 Ñ L Ñ E Ñ E{L Ñ 1

and

1 Ñ K{L Ñ E{L Ñ G Ñ 1

are also bounded.

Proof. We use the characterisation in the second item of Proposition 2.9. Let
χ : E Ñ K be a quasimorphism such that χ|K is the identity. Then χ|L is the
identity, which proves that the L-central extension is bounded. Composing χ with
the projection K Ñ K{L, we get a quasimorphism E{L Ñ K{L that is the identity
on K{L, whcih proves that the K{L-central extension is bounded. □

Given a central extension 1 Ñ K Ñ E
π

ÝÑ G Ñ 1, let N ď E be a normal
subgroup that intersects K trivially, so that π : N Ñ πpNq is an isomorphism.
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Then there is a diagram

(1)

1 K E G 1

1 K E G 1

“

π

p p

where E “ E{N and G “ G{πpNq, and both rows are central extension. We use
the letter p to denote both quotients E Ñ E and G Ñ G by an abuse of notation.
We say that the bottom row is a quotient central extension of the top row. The
main focus of the paper is the following question (see Problem 1.1):

Question 2.11. Under which conditions is a quotient central extension bounded?

A first easy necessary condition is given by the following observation:

Lemma 2.12. With the notation of Diagram (1), the pullback p˚ : H2pG;Kq Ñ

H2pG;Kq sends rEs to rEs. In particular, if rEs is bounded, then rEs is bounded.

Proof. We choose a normalised section σ : G Ñ E. We also choose an injective map
τ : G Ñ E such that pτ “ σ and τp1Gq “ 1E . This way Diagram (1) is enriched as
follows:

1 K E G 1

1 K E G 1

“

π

p p

π

τ

σ

Now πτ is a section for p : G Ñ G, so every element of G can be written uniquely
as g “ πpnq ¨ πτpppgqq for some n P N . We define σpgq “ n ¨ τpppgqq. First, note
that σ is indeed a normalised section: σp1Gq “ 1E , and if g “ πpnqπτpppgqq, then

πσpgq “ πpn ¨ τpppgqqq “ πpnq ¨ πτpppgqq “ g.

Secondly, we claim that pσ “ σp, indeed

pσpgq “ ppn ¨ τpppgqqq “ pτpppgqq “ σpppgqq,

which implies that the projection p : E Ñ E sends

σpgqσphqσpghq´1 ÞÑ σpppgqqσppphqqσpppghqq´1.

This shows that the cocycle defined by σ is indeed the pullback of the cocycle
defined by σ, and concludes the proof. □

This condition is however not sufficient, as the following examples show:

Example 2.13. Consider the group Z ˆ F2, where Z “ xzy is infinite cyclic, and
F2 “ xx, yy is free of rank 2. Let N be the normal closure of z´1rx, ys, which
intersects Z trivially. The quotient pZ ˆ F2q{N is the Heisenberg group H3, and
the quotient F2{πpNq is the free Abelian group Z2. So we have a map of central
extensions:

1 Z Z ˆ F2 F2 1

1 Z H3 Z2 1

The top one splits, so it is trivial and in particularly bounded. The bottom one is
not trivial, and in fact it maps to a generator of H2pZ2;Rq – R under the change
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of coefficients map. Because Z2 is amenable, H2
b pZ2;Rq vanishes [Fri17, Chapter

3], and so the bottom central extension cannot be bounded.

Example 2.14. More generally, we claim that every central extension can be
expressed as a quotient of a trivial (thus bounded) central extension of a free group.
Let 1 Ñ K Ñ E Ñ G Ñ 1 be a central extension. Let F be a free group and
p : F Ñ G a presentation, which we lift to a homomorphism p̃ : F Ñ E. Define
P : K ˆ F Ñ E to be the product of p̃ and the inclusion K Ñ E. An element
pk,wq P K ˆ F belongs to the kernel of P if and only if p̃pwq “ k; in particular K
intersects this kernel trivially. So we indeed have a quotient central extension:

1 K K ˆ F F 1

1 K E G 1

We can restate Question 2.11 in terms of extendability of a certain quasihomo-
morphism. We start with an easy lemma, which is a variation of a well-known fact
regarding real-valued homogeneous quasimorphisms.

Lemma 2.15. Let N ď G be a normal subgroup, and denote by p : G Ñ G{N the
quotient. Let χ : G Ñ K be a quasihomomorphism. If χ|N ” 0, then there exists a
quasihomomorphism ϕ : G{N Ñ K such that χ is at a bounded distance from ϕp.
Moreover, if H ď G is a subgroup such that χ|H is a homomorphism, then ϕ can
be chosen so that ϕp|H “ χ|H .

Proof. Let K “ Zk ˆ T , where k ě 0 and T is a finite abelian group. Accordingly,
write χ “ pχ1, . . . , χk, χT q, and note that χ1, . . . , χk are quasimorphisms (while
χT can be any function G Ñ T ). Recall that every quasimorphism χi : G Ñ R
is at a bounded distance from a unique homogeneous quasimorphism χi

h (Remark
2.5). The hypothesis, and uniqueness of homogeneous representatives, implies that
χi
h|N ” 0 for all 1 ď i ď k. Therefore, by [Cal09, Remark 2.90] there exist

homogeneous quasimorphisms ϕih : G{N Ñ R such that χi
h “ ϕihp for all 1 ď i ď k.

Setting ϕi to be the integral part of ϕih, we obtain a quasimorphism ϕi : G{N Ñ Z
such that ϕip „ ϕihp “ χi

h „ χi. Setting ϕ “ pϕ1, . . . , ϕk, ϕT q, where ϕT : G{N Ñ T
is any function, we obtain that χ is at a bounded distance from ϕp. Notice that ϕ
is indeed a quasihomomorphism, as its entries are quasimorphisms.

Suppose that χ|H is a homomorphism. Then by uniqueness of homogeneous
representatives, χi|H “ χi

h|H “ ϕihp|H for all i. In particular, ϕih takes integer
values on ppHq, and so ϕi|ppHq “ ϕih|ppHq. Moreover, because χ|N ” 0, there exists

a map ϕT : G{N Ñ T such that ϕT p|H “ χT |H . With this choice of ϕT , we have
ϕp|H “ χ|H , as promised. □

Back to the setting of Diagram (1), we now provide the characterisation of bound-
edness of central extensions in terms of extendable quasihomomorphisms. Recall
from Lemma 2.12 that, in order for the quotient central extension to be bounded,
the original central extension needs to be bounded, so we assume this throughout.

Proposition 2.16. With the notation of Diagram (1), suppose that rEs is bounded,
and let χ : E Ñ K be a quasihomomorphism such that χ|K is the identity, provided
by Proposition 2.9. Then:

‚ The map χπ´1 : πpNq Ñ K is a well-defined quasihomomorphism, and it
is almost invariant under conjugacy by G.
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‚ If ω is a normalised bounded cocycle representing rEs, then χ can be chosen
so that δpχπ´1q “ ω|πpNq.

‚ rEs is bounded if and only if χπ´1 can be extended to a quasihomomorphism
G Ñ K.

Given a normal subgroup Λ ď Γ, we say that a quasihomomorphism ϕ : Λ Ñ K
is almost invariant under conjugacy by Γ if there exists a constant C ą 0 such that

}ϕpγλγ´1q ´ ϕpλq} ă C

for all γ P Γ, λ P Λ. Note that quasihomomorphisms on Γ are almost invariant
under conjugacy by Γ, so this is a necessary condition for a quasihomomorphism
on Λ to be extendable, which will come up in the next result.

Proof of Proposition 2.16. χπ´1 is well-defined because π|N is an isomorphism. Be-
cause χ is defined on E, it is almost invariant under conjugacy by E, and then it
follows that χπ´1 is almost invariant under conjugacy by G.

Moving to the second bullet, from the proof of Proposition 2.9 we see that if ω is
a normalised bounded cocycle representing E, seen as the Cartesian product KˆG
with the product twisted by ω, then χ can be chosen to be the projection onto the
first factor, while π is the projection onto the second factor. Now every element
g P N can be written as pbpgq, πpgqq, and it follows that χπ´1 : πpNq Ñ K is just
the map πpgq ÞÑ bpgq. Because N is a group and π is injective, for all g1, g2 P N it
holds

pbpg1g2q, πpg1g2qq “ pbpg1q, πpg1qq ¨ pbpg2q, πpg2qq

“ pbpg1q ` bpg2q ` ωpπpg1q, πpg2qq, πpg1g2qq;

which shows that δpχπ´1q “ ω as cocycles πpNq2 Ñ K.
We finally prove the equivalence in the third bullet. Suppose that χπ´1 ex-

tends to a quasihomomorphism ϕ : G Ñ K. Consider the quasihomomorphism
χ ´ ϕπ : E Ñ K. Notice that χ ´ ϕπ restricts to the zero map on N and to the
identity on K. Therefore, Lemma 2.15 yields a quasihomomorphism ψ : E Ñ K
such that ψp is at a bounded distance from χ´ϕπ, and restricts to the identity on
K. Thus rEs is bounded, by the second item of Proposition 2.9.

Conversely, suppose that ψ : E Ñ K is a quasihomomorphism that restricts to
the identity on K. Then ψp : E Ñ K vanishes on N and is still the identity on K.
Therefore χ´ ψp : E Ñ K vanishes on K, and coincides with χ on N . By Lemma
2.15, there exists a quasihomomorphism ϕ : G Ñ K such that ϕπ : E Ñ K is at
a bounded distance from χ ´ ψp. So, up to changing ϕ by a bounded amount on
πpNq, it is an extension of χπ´1. □

Remark 2.17. Shuhei Maruyama pointed out to us that both Propositions 2.9
and 2.16 can also be proved by diagram chasing, using the exact sequences from
[KKM`21].

In view of Proposition 2.16, the problem of whether the quotient central exten-
sion rEs is bounded is equivalent to the problem of whether a specific quasihomo-
morphism πpNq Ñ K extends to G. This problem is non-trivial. On the one hand,
the easy obstruction for extendability, that is almost invariance under conjugacy
by G, is excluded by the the first bullet of Proposition 2.16. On the other hand,
the almost invariance under conjugacy is not sufficient for a quasimorphism to be
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extendable in general, as we have seen in Example 2.13. The problem of extend-
ability has been studied at length in recent years, and produced various examples
of non-extendable quasimorphisms, and criteria for extendability: see [KKM`24]
for a survey. In particular, we recall the following criteria:

Proposition 2.18 ([KKMM22, Proposition 1.6] and [KKM`21, Theorem 1.9]).
Let 1 Ñ N Ñ G Ñ G{N Ñ 1 be a short exact sequence of groups. Then any of the
following conditions guarantees the extendability of every quasimorphism N Ñ K
that is almost invariant under conjugacy by G.

(1) The extension virtually splits.
(2) H3

b pG{N ;Rq “ H2
b pG{N ;Rq “ H2pG{N ;Rq “ 0.

In another direction, very far from the case of a normal subgroup, we have:

Proposition 2.19 ([HO13], see also [FPS15]). Let H ď G be a hyperbolically em-
bedded subgroup. Then every quasimorphism H Ñ K extends to a quasimorphism
G Ñ K.

For both propositions, the original statement is about real-valued quasimor-
phisms, however these statements follow by splitting K as Zk ˆ T , choosing ar-
bitrary extensions for the T part, and dealing with the Z factors by taking the
integral part and modifying by a bounded amount.

Remark 2.20. By Proposition 2.16, the quasimorphism one has to extend is al-
ways such that its boundary is extendable. This shows a stark difference from
the problem of extendability of bounded cohomology classes and extendability of
quasimorphisms [KKM`24, End of Section 1.3].

3. Hierarchical hyperbolicity of central extensions

In this Section we explore the connections between boundedness and hierarchical
hyperbolicity for central extensions. We first recall the notion of hierarchically
hyperbolic spaces and groups.

Definition 3.1 (Hierarchically hyperbolic space). Let δ ą 0 and X be a pδ, δq–
quasigeodesic space. A hierarchically hyperbolic space (HHS) structure with con-
stant δ for X is the data of an index set S and a set tCW : W P Su of δ-hyperbolic
spaces pCW, dW q such that the following axioms are satisfied.

(1) (Projections.) For each W P S, there exists a projection πW : X Ñ 2CW

that is a pδ, δq–coarsely Lipschitz, δ–coarsely onto, δ–coarse map.
(2) (Nesting.) If S ‰ H, then S is equipped with a partial order Ď and

contains a unique Ď–maximal element, denoted by S. When V Ď W , we
say V is nested in W . For each W P S, we denote by SW the set of all
V P S with V Ď W . Moreover, for all V,W P S with V Ĺ W there is a
specified non-empty subset ρVW Ď CW with diampρVW q ď δ.

(3) (Finite complexity.) Any set of pairwise Ď–comparable elements has
cardinality at most δ.

(4) (Orthogonality.) The setS has a symmetric relation called orthogonality.
If V and W are orthogonal, we write V K W and require that V and W
are not Ď–comparable. Further, whenever V Ď W and W K U , we require
that V K U . We denote by SK

W the set of all V P S with V K W .
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(5) (Containers.) For each W P S and U P SW with SW X SK
U ‰ H, there

exists Q P SW such that V Ď Q whenever V P SW X SK
U . We call Q the

container of U in W .
(6) (Transversality.) If V,W P S are not orthogonal and neither is nested in

the other, then we say V and W are transverse, denoted V&W . Moreover,
for all V,W P S with V&W , there are non-empty sets ρVW Ď CW and
ρWV Ď CV , each of diameter at most δ.

(7) (Consistency.) For all x P X and U, V,W P S:
‚ if V&W , then min

␣

dW pπW pxq, ρVW q,dV pπV pxq, ρWV q
(

ď δ,

‚ if U Ď V and either V Ĺ W , or V&W andW M U , then dW pρUW , ρVW q ď

δ.
(8) (Bounded geodesic image (BGI).) For all V,W P S and for all x, y P X ,

if V Ĺ W and dV pπV pxq, πV pyqq ě δ, then every CW–geodesic from πW pxq

to πW pyq must intersect NδpρVW q.
(9) (Large links.) For all W P S and x, y P X , there exists a collection

tV1, . . . , Vmu Ď SW ´ tW u such that m ď δdW pπW pxq, πW pyqq ` δ, and for
all U P SW ´ tW u, either U Ď Vi for some i, or dU pπU pxq, πU pyqq ď δ.

(10) (Partial realization.) If tViu is a finite collection of pairwise orthogonal
elements of S and pi P CVi for each i, then there exists x P X realising the
tuple ppiq, meaning that, for every i and every W P S:

‚ dVipπVipxq, piq ď δ;

‚ if Vi Ĺ W or W&Vi then dW pπW pxq, ρVi

W q ď δ.
(11) (Uniqueness.) There exists a function θ : r0,8q Ñ r0,8q so that for all

r ě 0, if x, y P X and dX px, yq ě θprq, then there exists W P S such that
dW pπW pxq, πW pyqq ě r.

We use S to denote the HHS structure. We call an element U P S a domain,
the associated space CU its coordinate space, and call the maps ρVW the relative
projections from V to W . The quantity δ is called a hierarchy constant for S. We
often suppress reference to the projection maps, so for every x, y P X and U P S
we write dU px, yq to mean dU pπU pxq, πU pyqq.

Definition 3.2 (Hierarchically hyperbolic group). A finitely generated group G is
a hierarchically hyperbolic group (HHG) if the following hold.

(i) G acts metrically properly and coboundedly on a space X admitting a HHS
structure S.

(ii) There is a Ď–, K–, and &–preserving action of G on S by bijections such
that S contains finitely many G–orbits.

(iii) For each W P S and g P G, there exists an isometry gW : CW Ñ CpgW q

satisfying the following for all V,W P S and g, h P G.
‚ The maps pghqW : CW Ñ CpghW q and ghW ˝ hW : CW Ñ CphW q

coincide.
‚ For each x P X, gW pπW pxqq “ πgW pg ¨ xq in CpgW q.

‚ If V&W or V Ĺ W , then gW pρVW q “ ρgVgW in CpgW q.

We often drop the indices and denote each gW simply by g. When the underlying
HHS is not relevant, we denote a HHG by pG,Sq.

Remark 3.3 (Moral compass). When reading the definitions above, the uniniti-
ated reader should keep in mind the motivating example of a HHG, which is the
mapping class group of an orientable, finite-type surface. In this context, X is the
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marking complex from [MM00, Section 2.5]; the elements of S are isotopy classes
of subsurfaces, with nesting given by inclusion and orthogonality corresponding
to disjointness (both up to isotopy); finally, the coordinate space associated to a
subsurface is the corresponding curve graph, onto which X maps via the subsur-
face projection. The various axioms from Definition 3.1 are abstractions of the
properties of curve graphs and clean markings from [MM99, MM00].

3.1. Variations on the axioms.

Remark 3.4 (Normalisation). For experts, Definition 3.1 is that of a normalised
HHS, since the original definition [BHS19] only required the coordinate projections
to have uniformly quasiconvex images. However it is always possible to normalise
a HHS structure, by restricting each coordinate space CU to a neighbourhood of
πU pX q (see e.g. [BHS19, Remark 1.3]).

Remark 3.5 (Bounded domain dichotomy). A HHG acts cofinitely on the set
of domains, and two domains in the same orbit have isometric coordinate spaces.
Therefore, up to enlarging δ, we can and will assume that every U P S is either
unbounded (meaning that CU is) or diamCU ď δ.

Remark 3.6 (Almost HHS structure). Axiom (5) can be replaced by the following
weaker requirement:

(5’) (Finite dimension.) Every collection of pairwise orthogonal elements has
cardinality at most δ.

The pair pX ,Sq is an almost HHS if it satisfies all axioms from Definition 3.1,
with (5) replaced by (5’). Every HHS has finite dimension by [BHS19, Lemma 2.1];
conversely, it was shown in [ABD21, Appendix A] that an almost HHS structure
can be completed to a genuine HHS structure. Similarly, an almost HHG structure
(defined as in Definition 3.2 with an action on an almost HHG) can be completed
to a HHG structure, as argued in [ABD21, Remark A.7].

Remark 3.7 (Passing up). The large links Axiom (9) can be replaced by the
following weaker requirement:

(9’) (Passing up.) For every t ą 0, there exists an integer P “ P ptq ą 0
such that if V P S and x, y P X satisfy dUi

px, yq ą δ for a collection of
domains tUiu

P
i“1 with Ui P SV , then there exists W P SV containing some

Ui, and such that dW px, yq ą t. We call P : p0,8q Ñ p0,8q the passing up
function.

It was shown in [BHS19, Lemma 2.5] that every HHS satisfies the Passing up
axiom; conversely, in [Dur23, Section 4.8] it is argued that the passing up axiom,
together with BGI and normalisation, imply the large links axiom. Remarkably, the
container axiom is not involved in the argument, therefore an almost HHS structure
(resp. HHG structure) satisfying the passing up axiom is a genuine almost HHS
structure (resp. HHG structure).

The above discussion allows us to simplify any HHG structure, only keeping the
unbounded domains:

Lemma 3.8. Let G be a HHG, with structure pX ,Sq. Let

rS “ tSu Y tU P S | CU unboundedu.



14 F. FOURNIER-FACIO, G. MANGIONI, AND A. SISTO

Then pX , rSq, with the same coordinate spaces, (relative) projections, and relations,
is an almost HHG structure for G.

Proof. Let δ be a HHG constant for the structure, which we can assume to be
larger than the diameter of every bounded domain by Remark 3.5. We now check
that pX ,Sq satisfies the axioms of an almost HHG structure for G. Since we did
not change the projections, the relations, and the relative projections, Axioms (1)
to (4) and (6) to (8) still hold automatically, so we focus on the remaining ones.

‚ Finite dimension (5’). Every collection of pairwise orthogonal elements
has uniformly bounded cardinality, as this is true in S.

‚ Large links (9). By Remark 3.7, it is enough to check the passing up
axiom. In turn, the passing up axiom for pX ,Sq produces some passing up
function P : p0,8q Ñ p0,8q. Set

P 1ptq “

#

P pδq if t ď δ;

P ptq if t ě δ.

Now let t ą 0, P 1 “ P 1ptq, V P rS and x, y P X satisfy dUi
px, yq ą δ

for a collection of domains tUiu
P 1

i“1 with Ui P rSV . By the choice of P 1,
there exists W P S which is nested in V , contains some Ui, and such
that dW px, yq ą maxtt, δu. In particular diamCW “ 8 by Remark 3.5, so

W P rS.
‚ Partial realisation (10). Let tViu Ď rS a collection of pairwise orthogonal
elements, and for every i let pi P CVi. Since the Vi are orthogonal in S,
there exists some x P X realising the tuple, so both bullets of the axiom

are automatically satisfied in rS Ď S.
‚ Uniqueness (11). Let x, y P X and r ě 0 be such that dW px, yq ď r for

every W P rS. Notice that, if W 1 P S ´ rS, then dW 1 px, yq ď diamCW 1 ď δ;
thus x and y are uniformly close in every domain of S, and therefore they
are uniformly close in X by the original uniqueness axiom.

‚ G still acts metrically properly and coboundedly on X , and the G-action on

S restricts to rS since it preserves the diameters of coordinate spaces. Hence

pX , rSq is an almost hierarchically hyperbolic group structure for G. □

Definition 3.9 ((Cobounded) product region). Given U P S, the product region
associated to U is the subspace

PU “ tx P X | dW px, ρUW q ď δ for all U&W or U Ĺ W u.

If G is a HHG, then the stabiliser StabG pUq acts on PU , and the action is proper
as so is the G-action on X . We say that G has cobounded product regions if the
action is also cobounded. Under this assumption StabG pUq acts coboundedly on
CU as well.

The assumption of having cobounded product regions is extremely natural, to the
point that the authors of [BHS19] argue it should be part of the original definition.
Intuitively, under this assumption, domain stabilisers are themselves hierarchically
hyperbolic, and this allows for inductive arguments.

3.2. Bounded central extensions and hierarchical hyperbolicity. We now
move to the cohomological characterisation of when a central extension of a HHG,
with finitely generated kernel, is a HHG.
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Theorem 3.10. Let G be a HHG, and let 1 Ñ K Ñ E Ñ G Ñ 1 be a central ex-
tension with finitely generated kernel. Then E is a HHG if and only if the extension
is bounded.

Remark 3.11. One direction of Theorem 3.10 extends [AHPZ23, Theorem 5.14],
which states that a Z-central extension of a HHG is a HHG. In turn, the argument
there is a refinement of [HRSS22, Corollary 4.3], which dealt with the case with
hyperbolic base and only relied on the fact that every Z-central extension of a hy-
perbolic group is bounded [NR97]. As we have seen in Example 2.13, this is no
longer automatically true for general HHG. Even assuming acylindrical hyperbol-
icity of the base is not enough: indeed H2pZ2 ˚ Z;Zq – H2pZ2;Zq, which produces
an unbounded class. The argument is the same as Example 2.13, using for instance
that the comparison map H2

b pZ2 ˚ Z;Rq Ñ H2pZ2 ˚ Z;Rq is trivial [Li23, Example
4.7].

Remark 3.12. It is natural to ask whether one can also characterise the extension
being just HHS rather than HHG. A sufficient, and potentially necessary condi-
tion for this is that the extension is quasi-isometrically trivial, which turns out
to be equivalent to the Euler class of the extension being weakly bounded, in the
sense of [NR97]. For many groups (for instance right-angled Artin groups), weakly
bounded classes are bounded [FS23], and this is called property QITB (that is,
quasi-isometrically trivial implies bounded). However, there are examples of quasi-
isometrically trivial extensions which are not bounded [FS23, AM24]. To sum-
marise, two intriguing questions arise from this:

(1) If a central extension of an HHG is an HHS, is the extension quasi-isometrically
trivial?

(2) Do HHGs satisfy QITB? Equivalently, in view of Theorem 3.10, is a quasi-
isometrically trivial extension of a HHG also a HHG?

Proof of Theorem 3.10. Let K – Zn ˆ T for some n ě 0 and T finite.
pðq Assume that the extension E Ñ G is bounded. A finite extension of a

HHG is a HHG (via the geometric action on the same space). Moreover, a bounded
Z-central extension of a HHG is a HHG, as one sees by combining [ABO19, Lemma
4.15] and [AHPZ23, Theorem 5.14]. So by Corollary 2.10 and induction, we con-
clude that E is a HHG.

pñq Now assume that E admits a HHG structure, coming from the action on
some HHS pX ,Sq. Our goal is to produce a quasihomomorphism Ψ: E Ñ K which
is the identity on K, and then we will conclude by Proposition 2.9.

Fix a basepoint x P X , and let z P K be any infinite order element. As in
[DHS17] let

Big pzq “ tU P S |diamπU pxzy ¨ xq “ 8u,

that is, the set of coordinate spaces “witnessing” the infinite order of z. It is clear
that Big pzq does not depend on the choice of the basepoint. Moreover, since z
has infinite order, Big pzq ‰ H (this is [DHS17, Proposition 6.4]), and it is a finite
collection of pairwise orthogonal domains (this follows from combining [DHS17,
Lemma 6.7] with [BHS19, Lemma 2.1]). Notice that E permutes Big pzq, since for
every h P E we have

diamπhU pxzy ¨ xq “ diamπU ph´1xzy ¨ xq “ diamπU pxzyh´1 ¨ xq “ 8.
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Thus there exists a finite-index, normal subgroup E1 ď E fixing every domain
Big pzq. We claim that, by arguing as in [ABO19, Lemma 4.20], one can show that
CU is a quasiline for every U P Big pzq. Indeed, Z 1 – xzy X E1 has unbounded
orbits on CU , so E1 does not act elliptically; moreover, the action is not parabolic
as it is cobounded (this is because πU is coarsely surjective). By the classification
of group actions on hyperbolic spaces (see e.g. [ABO19, Theorem 4.2]), there must
be a loxodromic element h P E1. As Z 1 commutes with h, it must fix the endpoints
h`, h´ P BCU . In particular, the action of Z 1 is not parabolic, so some power of z is
a loxodromic with endpoints h˘. Again, this means that every element in E1, which
commutes with Z 1, must fix both h` and h´; hence, as the action is cobounded,
CU must be a quasiline.

We now construct a quasimorphism ϕz : E Ñ R which is unbounded on xzy.
As argued above, E1 fixes the ideal endpoints of CU , so let ϕ1 : E1 Ñ R be the
Busemann quasimorphism associated to the action, which is unbounded on Z 1.
Now [Man24, Lemma 3.4] takes ϕ1 as input and produces an quasiline L on which
E acts, and such that Z 1 (hence xzy) still acts loxodromically. But z is central in
E, which again implies that E acts on L without inversions. Then the required
quasimorphism ϕz is the Busemann quasimorphism associated to the action on L.

Now let Zn ď K be a maximal torsion-free subgroup, and let z1 P Zn be a
primitive element. The quasimorphism ϕ1 – ϕz1 restricts to a homomorphism on
the abelian subgroup Zn [Fri17, Corollary 2.12]; so let z2 P kerϕ1 be a primitive
element. Proceeding analogously, one gets a basis z1, . . . , zn for Zn and a collection
of quasimorphisms ϕ1, . . . , ϕn : E Ñ R such that ϕipzjq “ 0 for every i ă j, and
ϕipziq ‰ 0 for every i. In other words, the matrix Mij “ ϕipzjq is lower triangular
without zeroes on the diagonal, and in particular invertible. Then let Ψ: E Ñ Rn

defined by
Ψpeq “ M´1pϕ1peq, . . . , ϕnpeqqT .

By construction Ψ is the identity on Zn. Up to taking the integer part, we can as-
sume that Ψ takes values in Zn, and up to a further bounded modification we can
assume that Ψ|K is the identity. As a bounded modification of a quasihomomor-
phism with abelian target is still a quasihomomorphism, Ψ satisfies the requirements
of Proposition 2.9, and the proof is complete. □

Next, we prove a statement in the opposite direction:

Theorem 3.13. Let 1 Ñ K Ñ E Ñ G Ñ 1 be a central extension with finitely
generated kernel. If E is a HHG, then the extension is bounded.

Suppose moreover that E has a HHG structure with cobounded product regions.
Then there exists a finite-index subgroup E1 ď E containing K such that E1{K is
a HHG.

Proof. The proof of pñq of Theorem 3.10 did not use that G is a HHG, so it shows
that if E is HHG, then the extension is bounded. We now focus on the rest of the
statement, whose proof we split into several steps.

Step 1: the kernel fixes every unbounded domain. Consider a HHG
structure pX ,Sq for E. In this step we show that the K-action on the domain
set S fixes every unbounded domain (though K might act non-trivially on the
corresponding coordinate spaces).

Fix x0 P X , let HW “ StabE pW q, and let EpHW q be the collection of eyries of
HW , that is, the domains V P S such that diamπV pHW ¨ x0q “ 8 and which are
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Ď-maximal with this property (the definition is clearly independent of x0). Notice
that W P EpHW q: indeed, by cobounded product regions HW acts coboundedly on
CW , so diamπW pHW ¨ x0q “ diamCW “ 8; furthermore, if W Ĺ V and we choose
x0 P PW , then πV pHW ¨ x0q coarsely coincides with ρWV and is therefore bounded.

Now K acts on EpHW q, since for every z P K and V P EpHW q we have

diamπzV pHW ¨ x0q “ diamπV pz´1HW ¨ x0q “ diamπV pHW ¨ z´1x0q “ 8.

We are left to prove that z´1W “ W . By cobounded product regions, combined
with the partial realisation Axiom (10), there is a constant R ą 0 such that, for
every tuple ppV q P

ś

V PEpHW q CV , there exists g P HW such that dV pgx0, pV q ď R

for every V P EpHW q. Up to replacing R by a larger constant, we can also assume
that dW px0, zx0q ď R. Hence, using that CW is unbounded, we can find g P HW

such that dW px0, gx0q ą 4R, while dV px0, gx0q ď R for all V P EpHW q ´ tW u.
Now notice that

dz´1W px0, gx0q “ dW pzx0, zgx0q “ dW pzx0, gzx0q

ě dW px0, gx0q ´ dW px0, zx0q ´ dW pgx0, gzx0q

“ dW px0, gx0q ´ dW px0, zx0q ´ dg´1W px0, zx0q ě 2R.

We used that z commutes with g in the first line, and that g fixes W in the last
one. Since z´1W P EpHW q, we must have that z´1W “ W , as promised.

Step 2: choice of the finite-index subgroup. Now suppose K – Zk ‘T for
some k ě 0 and some finite abelian group T . Fix a generating set z1, . . . , zn of K
such that the first k elements are a basis for Zk and the remaining ones generate
T . Let

U “
ď

iďk

Big pziq .

As in the proof of Theorem 3.10, E acts on each Big pziq, so let E1 be the finite-
index subgroup of E that fixes each U P U . Notice that K ď E1 by the previous
paragraph; moreover, again by the proof of Theorem 3.10, for every U P U , the
subgroup E1 acts without inversions on the quasiline CU .

Since E1 ď E has finite index, pX ,Sq is a HHG structure for E1, and up to
equivariant isometry we once and for all identify X with a Cayley graph for E1

with respect to a finite generating set. By Lemma 3.8, E1 has an almost HHG

structure pX , rSq, where

rS “ tSu Y tU P S | CU unboundedu.

We also notice that, by the arguments from [ANS`24, Section 3], everyW P rS´tSu

is orthogonal to every U P U (in particular, any two U,U 1 P U are orthogonal).

Step 3: reduction to a single big domain. We shall now quotient by one
generator zi of the kernel at a time. For short, let z1 “ z and Z “ xzy. We
first replace some coordinate spaces to get a new almost HHG structure where
z has at most one big domain (this step is unnecessary if z has finite order).
Let Big pzq “ tU1, . . . , Uju, and for every i “ 1, . . . , j let ϕi – E1 Ñ R be the
Busemann quasimorphism for the action on CUi. We first claim that these quasi-
morphisms are linearly independent. Indeed, if, say, ϕ1 was a linear combina-
tion of the others, then there would be some function f : Rě0 Ñ Rě0 such that
dU1

pg, 1q ď fpdU2
pg, 1q, . . . ,dUj

pg, 1qq for every g P E1 (here we used that, as ar-
gued in Example 2.7, the absolute value of each quasimorphism coarsely coincides
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with the distance in the corresponding quasiline). However the elements of Big pzq

are pairwise orthogonal, so the partial realisation axiom (10) implies that E1 acts

coboundedly on the product
śj

i“1 CUi. In particular, one can find a sequence
of gn P E1 for which dU1

pgn, 1q Ñ 8 while the other projections are uniformly
bounded, contradicting the existence of f .

Next, set ψ1 “ ϕ1, and for every 2 ď i ď j let ψi “ ϕi ´
ϕipzq

ϕ1pzq
ϕ1, which is non-

trivial by linear independence. For every 1 ď i ď j let Li be a Cayley graph for E1

such that ψi : Li Ñ R is a quasi-isometry, as constructed in [ABO19, Lemma 4.15].
Notice that ψipzq “ 0 whenever i ě 2, so Z now acts elliptically on all quasilines
excluding L1.

Now replace each CUi by the corresponding Li, with projection given by the
identity map X Ñ Li as both are Cayley graphs for E1. We are left to check that
this gives an almost HHG structure for E1, as then in the new structure z will have

a single big domain. All requirements only involving the relations on rS, or the

projections between domains in rS ´ Big pzq, still hold by construction, so we focus
on the axioms which impose restrictions on the Li.

‚ Projections (1). The projection X Ñ Li is surjective and Lipschitz, as
X is a Cayley graph for E1 with respect to a finite generating set.

‚ Consistency (7). If two domains U, V P rS are transverse then none of
them is in Big pzq, so there is nothing more to check. Similarly, if U Ĺ V
and both U and V have a well-defined projection to some W , then none of
the three domains is in Big pzq, and again we have nothing to prove.

‚ Bounded geodesic image (8). If some Ui is nested in some W then
W “ S, and CS is bounded by [ANS`24, Lemma 3.1], so the axiom holds
trivially. All other instances of the axiom already appeared in the original
structure.

‚ Large links (9). As we only replaced finitely many coordinate spaces, the
axiom still holds (possibly after replacing δ by a bigger constant)

‚ Partial realisation (10). Let tViui“1,...,m a collection of pairwise orthog-
onal domains, each with a point pi P CVi. If tViu only contains S then
we have nothing to prove, because CS is bounded as pointed out before.
Otherwise, up to enlarging the collection, we can assume that tViui“1,...,m

contains Big pzq, in such a way that pi belongs to Li for all i ď j. Let
g1 “ p1 (seen as an element of E1), and for all 2 ď i ď j choose gi P E1 such
that ϕipgiq “ ψippiq ` ψ1pp1q. Let p1

i “ πCUi
pgiq. By the partial realisation

axiom for the original structure, the tuple pp1
1 . . . , p

1
j , pj`1, . . . , pmq is re-

alised by some x P X , and we are left to prove that x is uniformly close to
pi in each Li. Since x is a realisation point, for every i “ 1, . . . , j we have
that dCUipgi, xq ď δ, so that ϕipxq and ϕipgiq are uniformly close. In turn,
this means that ψipxq is uniformly close to ψippiq for all i, and therefore
dLi

ppi, xq is uniformly bounded, as required.
‚ Uniqueness (11) Suppose x, y P X have uniformly close projections to all
domains in the new structure. If we show that their projections to each
CUi are also uniformly bounded then x and y are uniformly close, by the
uniqueness axiom in the original structure. Up to the group action we can
assume that y “ 1, so that dLi

p1, xq coarsely coincides with the absolute
value of ψipxq. Since all distances in the Li are uniformly bounded, so are
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the absolute values of ψi, hence of ϕi, and again this means that dCUi
p1, xq

is uniformly bounded for all i.
‚ Almost HHG structure. All projections (old and new) are E1-equivariant,
so we built an almost hierarchically hyperbolic group structure.

Step 4: HHG structure of the quotient. We shall now prove thatG1 “ E1{Z

has the following almost HHG structure. Let Y “ X {Z. Let S “ rS if z has finite

order, and S “ rS´ tUzu otherwise, where Uz is the unique big domain for z in the

new structure. The relations in S are the same as in rS.
Moving to the coordinate spaces, given a domain W P rS, we denote by rW s

the corresponding domain in S. Set CrW s “ CW {Z (this is well-defined, as CW
is unbounded and therefore Z fixes W ), and let qW : CW Ñ CrW s be the quotient
projection, which is 1-Lipschitz. Given rxs P Y (by which we mean the Z-orbit of
a point x P X ) and rW s P S, let πrW sprxsq “ qW pπW pxqq for any x P rxs. Similarly,

for every rV s, rW s P S, set ρ
rV s

rW s
“ qW pρVW q whenever it is defined.

We now check that pY, rS{Zq satisfies the axioms of an almost HHG structure.

Most of the checks revolve around the fact that, for every W P rS, the projection
map qW : CW Ñ CrW s is a uniform quality quasi-isometry, because Z acts on CW
with uniformly bounded orbits. To see this, notice that StabG pW q acts on CW
coboundedly, and that for every g P StabG pW q

diamπW pZ ¨ gx0q “ diamπW pgZ ¨ x0q “ diamπW pZ ¨ x0q.

Let us now briefly go through all the axioms.

‚ Projections (1). For every rW s P rS{Z, πrW s is a δ-coarsely onto, δ-
coarse map, as the quotient projection qW : CW Ñ CrW s is 1-Lipschitz and
surjective. Moreover, given rxs, rys P Y let x P rxs and y P rys realise the
distance between rxs and rys, so that

drW sprxs, rysq ď dW px, yq ď δdX px, yq ` δ “ δdYprxs, rysq ` δ.

‚ Nesting (2). By construction, the unique maximal element of rS{Z is
rSs; moreover, whenever rV s Ĺ rW s and CrW s is unbounded, we have that

diamρ
rV s

rW s
ď diamρVW ď δ.

‚ Finite complexity, orthogonality, and finite dimension (3)-(5’). All

requirements follow from the fact that S Ď rS with the same relations.
‚ Transversality (6). Uniform boundedness of projection points follows as
for the nesting axioms.

‚ Consistency, bounded geodesic image, and large links (7)-(9) Since
qW is a uniform quasi-isometry for every W P S, all three axioms hold as

they were true in pX , rSq, plus the fact that we defined (relative) projections
via the original (relative) projections.

‚ Partial realisation (10). Let rV1s, . . . , rVks P S be pairwise orthogonal,
and for every i let pi P CrVis. For every i let ri P q´1

Vi
ppiq, and let x P X

realise the collection triui“1,...,k. It is easy to see that rxs realises tpiui“1,...,k

in Y.
‚ Uniqueness (11). Let rxs, rys P Y, and let r ą 0 be a constant such
that drW sprxs, rysq ď r for all rW s P S. Then any x P rxs and y P rys have

uniformly close projections to allW P rS´tUzu (again, because every qW is
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a uniform quasi-isometry). Furthermore, since Z acts coboundedly on CUz,
we can replace y by a Z-translate and uniformly bound dUz px, yq as well.

Then the uniqueness axiom for pX , rSq yields that x and y are uniformly
close in X , and therefore dYprxs, rysq ď dX px, yq is uniformly bounded.

‚ Almost HHG structure. Since E1 acted metrically properly and cobound-

edly on X , then so does G1 on Y. Moreover, the cofinite E1-action on rS
already factored through G1, so pY,Sq is an almost HHG structure for G1.

Step 5: conclusion. To conclude the proof of Theorem 3.13, we now iterate
steps 3 and 4 above with z2, then z3 and so on, until we quotiented by the whole
kernel K. □

Remark 3.14. In the statement of Theorem 3.13, one cannot hope that G is
genuinely a HHG. Indeed, the p3, 3, 3q triangle group G is not a HHG [PS23, Corol-
lary 4.5]; however the direct product G ˆ Z is a HHG with cobounded product
regions, as it acts geometrically on the standard cubulation of R3. We are thank-
ful to Mark Hagen for explaining to us a proof of the latter fact, which we now
present. Let o “ p0, 0, 0q and p “ p1, 1, 1q. Let H1 be the plane tx “ yu, and
similarly define H2 “ ty “ zu and H3 “ tx “ zu. Let T1, T2, T3 be the reflec-
tions across H1, H2, H3, which preserve the standard cubulation of R3. Now let
F “ tx ` y ` z “ 0u, which is the plane orthogonal to op passing through o, and
let Lpx, y, zq “ px ` 1, y ` 1, z ´ 2q, which is an integer translation along the line
in which H1 intersects F . Notice that T1, T2, T3 preserve F as they all fix op, and
moreover so does L. Then let G “ xα, β, γy, where

‚ α “ T1 : px, y, zq ÞÑ py, x, zq,
‚ β “ T2 : px, y, zq ÞÑ px, z, yq,
‚ γ “ LT3L

´1 : px, y, zq ÞÑ pz ´ 3, y, x` 3q.

G is a quotient of the p3, 3, 3q triangle group H, since the above elements are all
reflections and the product of any two of them has order 3 (geometrically, this is
because the dihedral angle between any two of the planes is π{3). Also α ˝ β ˝ γ is
given by px, y, zq ÞÑ px`3, z´3, yq, which has infinite order (as one sees by looking
at the first coordinate). However, H is just-infinite, meaning that its only infinite
quotient is H itself, so G – H. Indeed, this follows from [McC68, Proposition 9],
together with the fact that the point group is S3, realised as an irreducible subgroup
of GL2pZq.

Finally, let Spx, y, zq “ px ` 1, y ` 1, z ` 1q, which commutes with L and with
every Ti as op Ă H1 XH2 XH3. Moreover xSy XG is trivial, since G fixes F . Hence
E “ xS,Gy – xSy ˆ G is a direct product. Notice that E preserves the standard
cubulation of R3, as its generators do, and the action is proper and cocompact (as
one can see by considering the plane F and its translates by powers of S); therefore,
by e.g. [BHS17b, Remark 13.2], E has a HHG structure coming from the action on
pR3,Sq, where S consists of:

‚ the top element S;
‚ three elements for the coordinate planes, which are pairwise transverse;
‚ three elements for the coordinate lines, each of which is nested in the two
planes it belongs and orthogonal to the third one.

It is easily seen that product regions in this structure coincide with the whole R3.
Furthermore, since S is finite, the finite-index subgroup of E that fixes S pointwise
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acts coboundedly on R3, and therefore on every product region. This proves that
E is a HHG with cobounded product regions, as required.

4. Quotients of mapping class groups

4.1. The general problem. We now discuss certain quotient extensions that it
would be interesting to understand. The context is quotients of mapping class
groups, and in particular the conjecture of the second and third author [MS25,
Question 3], which we now state in a simplified form.

Let MCGpSq be the mapping class group of a finite-type surface S, and let
B “ tϕ1, . . . , ϕku be a collection of elements. The conjecture predicts that there
exists M P Ną0 such that MCGpSq{N is hierarchically hyperbolic, where

N “ xxϕM1 , . . . , ϕ
M
k yy.

There are various cases known in the literature. For instance, [BHMS24, Theo-
rem 7.1] provides an affirmative answer if B consists of conjugacy representatives
of all Dehn twists; [MS24] almost completely settles the conjecture for the five-
punctured sphere; and [ABM`25] will prove hierarchical hyperbolicity of quotients
by random walks, which should be thought as the “typical” quotients (see also
[BHS17a] for similar classes of quotients). The simplest unknown case is where B
consists of a single Dehn twist, and even in that case one already encounters the
problem of showing that a certain quotient central extension is bounded.

More precisely, if p : MCGpSq Ñ E is the quotient under consideration, let
H ď E be the image under p of the stabiliser of a curve γ, with the property
that no power of the Dehn twist around γ is conjugate into an element of B. In any
reasonable HHG structure, H should be itself hierarchically hyperbolic, as it would
correspond to a standard product region. One of the simplest scenarios is where γ
is non-separating, so that its stabiliser is the mapping class group of S ´ γ. Hence,
a simplified, yet significant version of the problem is the following.

Question 4.1. Let U be a finite-type surface with one boundary component γ,

let pU be the surface obtained by gluing a once-punctured disk to γ with puncture

p, and let MCGppU, pq be the subgroup of the mapping class group of pU fixing p.
There is a short exact sequence

1 Ñ xτγy Ñ MCGpUq Ñ MCGppU, pq Ñ 1.

Let Nγ ď MCGpUq be the normal subgroup generated by all M -th powers of Dehn
twists along curves which are supported on the interior of U . Is MCGpUq{Nγ

hierarchically hyperbolic, for a suitable choice of M?

It can be deduced from [Dah18] that Nγ intersects the kernel trivially, so the
quotient is itself a central extension

1 Ñ xτγy Ñ MCGpUq{Nγ Ñ MCGppU, pq{πpNγq Ñ 1.

Furthermore, the aforementioned [BHMS24, Theorem 7.1] yields that the base

MCGppU, pq{πpNγq is itself hierarchically hyperbolic, for a suitable choice of M ;
hence Question 4.1 is equivalent to the boundedness of the second central exten-
sion, by Theorem 3.10.
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4.2. Quotients by pseudo-Anosovs, low complexity. Another interesting (and
possibly easier) version of Question 4.1 is to ask about quotients by powers of
pseudo-Anosovs rather than Dehn twists.

Question 4.2. Let U be a finite-type surface with one boundary component γ, and

let pU be the surface obtained by gluing a once-punctured disk to γ with puncture
p. Let h be a pseudo-Anosov mapping class, and let Nh be the normal closure of a
sufficiently high power of h. Is the central extension

1 Ñ xτγy Ñ MCGpUq{Nh Ñ MCGppU, pq{πpNhq Ñ 1

hierarchically hyperbolic? Equivalently, since the base is hierarchically hyperbolic
by [BHS17a, Theorem 6.2], is the extension bounded?

In this section we answer the question in the case where U is a 4-punctured disk,

whose mapping class group is the braid group on 4 strands, and therefore pU is a
5-punctured sphere S5. As we will see, it is crucial for the proof that modding
out powers of Dehn twists in the mapping class group of the five-punctured sphere
yields a hyperbolic group. Later, we also discuss a different strategy to approach
the general case.

Theorem 4.3. Let h be a pseudo-Anosov element of B4, and let ĥ be its image
in MCGpS5, pq. Then there exists M0 P Ną0 such that for all multiples M of M0

the following holds. Let Nh �B4 (resp. N �MCGpS5, pq) be the normal subgroup

generated by hM (resp. ĥM ), with quotient map q (resp. pq). Then there is a
commutative diagram

1 xτγy B4 MCGpS5, pq 1.

1 Z B4{Nh MCGpS5, pq{N 1.

– q
pq

where the bottom row is a bounded central extension of a HHG. In particular, B4{Nh

is hierarchically hyperbolic.

One can understand subgroups generated by powers of pseudo-Anosovs using
the technology of rotating families; this is done in [DGO17]. To prove the theorem,
we will need an improvement of this technology from [Dah18]. We do not recall all
the relevant definitions here, but we discuss the main points, giving the motivating
example from [Dah18] along the way. A composite projection system is a set Y˚ (for
instance, the set of curves on a surface) together with additional data. One piece
of data is, for each X P Y˚, a subset ActpXq of Y˚ (for instance, ActpXq is the set
of curves that intersect X). A composite rotating family on a composite projection
system is given by groups GX of automorphisms of Y˚ fixing X, for all X P Y˚,
satisfying certain conditions (for instance, GX could be the subgroup generated by
the Dehn twist around X).

We need the following technical proposition to make sure that the central exten-
sions we will consider are still Z-central extensions.

Proposition 4.4. Let G be a group acting by automorphisms on a composite pro-
jection system Y˚, and let Z be the kernel of the action. Suppose that we have
subgroups tGXuXPY˚

of G such that the following hold.

‚ Z XGX “ t1u.
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‚ GgX “ gGXg
´1.

‚ GX commutes with GY if X R ActpY q.

‚ denoting ĜX the image of GX in G{Z, we have that tĜXu forms a com-
posite rotating family on Y˚.

Then the quotient map p : G Ñ G{Z restricts to an isomorphism

N “ xxtGXuyyG Ñ xxtĜXuyyG{Z “ N̂ .

Proof. Clearly we have ppNq “ N̂ , so we can restrict p to N to obtain a surjective

homomorphism p̄ : N Ñ N̂ . In order to show that this is an isomorphism, we
construct an inverse ι : N̂ Ñ N , using the first presentation of N̂ provided by
[Dah18, Theorem 2.2], which applies by the fourth bullet. The ĜX are generators
for this presentation, and thus have natural maps to the GX by the first bullet.
The relations for this presentation are conjugation relations, which are respected
in view of the second bullet, and commutation relations, which are respected by
the third bullet. Therefore, there is a well-defined homomorphism N Ñ N̂ , which
when restricted to any ĜX gives an inverse of p̄|GX

, and therefore ι is in fact the
inverse of p̄, as required. □

Proof of Theorem 4.3. Throughout this this proof we always assume that M is a
multiple of some suitable M0 P Ną0.

First of all, we need Nh to intersect xτγy trivially, justifying that there is indeed
a diagram as in the statement, with the vertical arrow on the left being an isomor-
phism. This follows from Proposition 4.4, with G “ B4, Z “ xτγy, and GX the
conjugates of xhM y.

In order to show boundedness of the relevant central extension, we now argue
that there is a further quotient central extension which is a central extension of a
hyperbolic group. More precisely, we argue that there is a diagram

1 Z B4{Nh MCGpS5, pq{N 1.

1 Z H Ĥ 1,

–

where Ĥ is hyperbolic. Since the comparison map for hyperbolic groups is surjective
[NR97] (see also [Min01]), by Lemma 2.12 we then get that the central extension
from the statement is bounded, as required.

The required quotient H can be taken to be the quotient of G “ B4{Nh by the
normal subgroup K generated by suitable powers of all images of Dehn twists of B4.
We now explain why we can choose such a K that intersects trivially the image Z of
xτγy in G, and such that G{KZ is hyperbolic. This uses results from [Man24, MS24]
about short HHG. We do not need the whole definition here; what is important is
that these are HHG with a specified collection of cyclic subgroups, and if all of those
are finite then the group is hyperbolic, see [Man24, Lemma 2.14]. All relevant short
HHG below also satisfy the assumption called colourability from [DMS23, Definition
2.8], which from now on we omit. Modding out suitable powers of generators of any
subcollection of the specified cyclic subgroups yields another short HHG by [MS24,
Theorem 4.1], with associated collection of specified subgroups simply the images
of the specified subgroups of the original short HHG.
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First of all, Ĝ “ MCGpS5, pq{N is a short HHG. This can be seen combining
the following:

‚ MCGpS5, pq is a short HHG, see [Man24, Subsection 2.3.1], with specified
subgroups generated by Dehn twists.

‚ We can add any cyclic subgroup generated by a pseudo-Anosov to the
collection of specified subgroups of the short HHG structure of MCGpS5, pq

by [Man24, Proposition 4.4].
‚ The aforementioned [MS24, Theorem 4.1] allows us to conclude that mod-
ding out suitable powers of h yields a short HHG (with the expected struc-
ture with specified subgroups coming from images of Dehn twists).

Now, for K as above we can consider its image K̂ in Ĝ, and this is the kernel
associated to a composite rotating family, by [MS24, Remark 3.8]. This allows
us to apply Proposition 4.4 and deduce that K intersects Z trivially, as required.
Moreover, G{KZ “ Ĝ{K̂ is a short HHG by [MS24, Theorem 4.1], and all its
specified subgroups are finite, which as mentioned above implies that the group is
hyperbolic. This concludes the proof. □

Remark 4.5. Under the assumption that “enough” hyperbolic groups are resid-
ually finite, [BHMS24] constructs hyperbolic quotients of mapping class groups.
One could in principle try to exploit these quotients, or variations, and a similar
strategy as in the proof above to solve other cases of Question 4.2, or to solve it
completely, but conditionally on the residual finiteness of the relevant hyperbolic
groups. The main difficulty is ensuring that kernels to these hyperbolic quotients
lift isomorphically to the corresponding central extension, as in Proposition 4.4.

4.3. Quotients by pseudo-Anosov, high complexity? In the setting of Ques-
tion 4.2, results from [DGO17] allow us to write πpNhq as the directed union of
groups Ni, each of which is a free product of finitely many conjugates of the cyclic

group generated by the relevant power of ĥ. Each of the Ni is convex-cocompact,
and we expect that a variant of Theorem 2.19 allows one to extend any quasimor-
phism on Ni to MCGpUq{πpNhq. If this extension could be realised in a way that
the defect is uniformly controlled, then we would have a positive answer to the
previous question, thanks to the following lemma:

Lemma 4.6. Let G be a finitely generated group, N ď G a normal subgroup, and
χ : N Ñ Z a quasimorphism. Suppose that N can be expressed as a directed union
of subgroups tNiuiPI , and that for each i P I there is a quasimorphism Xi : G Ñ Z
that extends χ|Ni

, such that the defect of the Xi is uniformly bounded. Then χ
extends to a quasimorphism X : G Ñ Z.

Proof. By using homogeneous representatives for one direction, and integer parts
for the other, as we did before, we can reduce to the following statement. Let
χ : N Ñ R be a homogeneous quasimorphism. Suppose that N can be expressed as
a directed union of subgroup tNiuiPI , and that for each i P I there is a homogeneous
quasimorphism Xi : G Ñ R that extends χ|Ni

, such that the defect of the Xi is
uniformly bounded. Then χ extends to a homogeneous quasimorphism X : G Ñ R.
Moreover, because G is finitely generated, thus countable, we can assume that the
directed set I is just N with its well order.

Let us make a further reduction: it suffices to show that we can modify each Xi

to obtain X 1
i : G Ñ R, which still extends χ|Ni

and has uniformly bounded defect,
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and moreover, for every g P G, t|X 1
ipgq|uiPN is uniformly bounded. Indeed, assuming

this, fix a non-principal ultrafilter ω on N. Then we can set Xpgq :“ limωXipgq,
which is a well-defined real number. Moreover, it is a homogeneous quasimorphism,
since ultralimits are norm non-increasing and linear.

Now consider the map α : G Ñ H1pG;Qq: this factors every homomorphism from
G to Q, and its kernel coincides with the set of elements with a power that belongs
to rG,Gs. In particular, if g P kerpαq, then its stable commutator length sclpgq is
finite, and by Bavard duality [Bav91] we have a bound |Xipgq| ď 2sclpgqDpXiq. This
shows that for g P kerpαq, we do not need to change Xi; note that this concludes
the proof in the case in which G has finite abelianisation (e.g. for mapping class
groups).

For the general case, let x1, . . . , xn be elements of G that are mapped to a basis
of H1pG;Qq, chosen in such a way that x1, . . . , xm R N while xm`1, . . . , xn P N .
Now, for each j “ 1, . . . ,m, let λj : G Ñ Q be the functional dual to xj . For each
i P N, we set

X 1
i :“ Xi ´

m
ÿ

j“1

Xipxjq ¨ λj .

As a result, X 1
i is a homogeneous quasimorphism with the same defect as Xi, the

same restriction on N (in particular it is still an extension of χ|Ni) and moreover
it vanishes on xj for all j “ 1, . . . ,m. Now for an element g P G, we can write
αpgq “

ř

ajαpxjq, for some aj P Q. Thus, for a high enough power p, we can write

αpgpq “ α

˜

n
ź

j“1

x
pj

j

¸

for some integers pj P Z. This way we have an expression gp “ xyz, where x is
a product of powers of x1, . . . , xm; y belongs to N , and z belongs to kerpαq. By
the first case treated before, |X 1

ipzq| is uniformly bounded. Moreover, |X 1
ipyq| is

uniformly bounded because y P Ni for i large enough, at which point Xipyq “ χpyq.
Finally, |X 1

ipxq| is uniformly bounded, since x is a product of m terms, each of
which vanish under X 1

i. All in all, this shows that |X 1
ipg

pq| is uniformly bounded,
and thus |Xipgq| “ 1

p |Xipg
pq| is uniformly bounded, which concludes the proof. □

As pointed out in Remark 2.20, in our setting there is a single bounded cocycle
that extends δχi|Ni . It could be possible to exploit this to find the extensions Xi

with uniformly bounded defect.
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