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Introduction

Artin groups are a rich class of groups generalising braid groups and with strong
connections to Coxeter groups. They are defined via the following presentation:
given a finite simplicial graph Γ with vertices VpΓq, edges EpΓq, and for each edge
ta, bu P EpΓq a label mab P Ně2, the associated Artin group AΓ is

xVpΓq | prodpa, b,mabq “ prodpb, a,mabq @ta, bu P EpΓqy,

where prodpu, v, nq denotes the prefix of length n of the infinite alternating word
uvuvuv . . . . When a and b do not span an edge, we abuse notation and setmab “ 8.

One of the most prominent open questions for Artin groups is the isomorphism
problem, which specialises Dehn’s isomorphism problem [Deh12], and asks for an
algorithm that, given two labelled graphs, determines if they give rise to isomorphic
Artin groups. The question is completely open in general, with some results when
one or both graphs are restricted to some subclasses [Bau81, Dro87, Par04, Vas22].
In this paper we are concerned with the twist conjecture, which can be seen as a
first step towards the isomorphism problem. Before giving more details, we need
some terminology.

An Artin system is a pair pA,Sq where A is a group isomorphic to some AΓ, and
the isomorphism maps S Ď A bijectively onto the vertices of Γ (see Definition 2.1).
The set S is called an Artin generating set for A, and the graph Γ, which we also
denote by ΓS , is its defining graph. A standard parabolic subgroup of pA,Sq is the
subgroup AY generated by some Y Ď S; by a result of van der Lek, pAY , Y q is itself
an Artin system [VdL83].

Two Artin generating sets for the same Artin group are twist equivalent if they
are related by a sequence of elementary twists, whose definition we briefly recall (we
postpone all details to Definition 3.2). Given an Artin generating set S, let Y Ď S
be a subset which separates ΓS . Suppose that the Artin system pAY , Y q is spherical
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(meaning the corresponding Coxeter group is finite) and does not decompose as a
direct product. Performing an elementary twist of S along Y roughly amounts to
conjugating one of the connected components of ΓS ´ ΓY by the Garside element
of pAY , Y q (this is a distinguished element corresponding to the longest element in
the associated Coxeter group, see [BS72]). Two graphs Γ and Γ1 are then said be
twist equivalent if Γ – ΓS and Γ1 – ΓU for some twist equivalent Artin generating
sets S and U of an Artin group A.

In all the solved cases of the isomorphism problem, two graphs give rise to
isomorphic Artin groups if and only if they are twist equivalent, so it is natural to
ask if this is always the case:

Question A ([Cha16, Problem 28]). If two labelled graphs Γ and ∆ give rise to
isomorphic Artin groups, are they necessarily twist equivalent?

As a first step in this direction, Brady, McCammond, Mühlherr, and Neumann
conjectured the following:

Conjecture B (Weak twist conjecture, [BMMN02, Conjecture 8.2]). Let pA,Sq be
an Artin system. If U Ď A is an Artin generating set with RS “ RU , then ΓS and
ΓU are twist equivalent.

Here RS , called the reflection set of pA,Sq, is the union of the conjugacy classes
of S in A, and similarly for RU . The corresponding conjecture for Coxeter groups,
which is [BMMN02, Conjecture 8.1], has been proven to be false in [RT08]; however,
Artin groups are believed to be more rigid than their Coxeter counterparts.

In this paper we consider the following stronger version of the twist conjecture:

Conjecture C (Strong twist conjecture). Let pA,Sq be an Artin system. If U Ď A
is an Artin generating set with RS “ RU , then S and U are twist equivalent.

The analogue of the strong twist conjecture for Coxeter groups (with the appro-
priate extra conditions to avoid the known counter examples) was already consid-
ered by Mühlherr in [Müh06, Conjecture 2].

A combination theorem for the strong twist conjecture. A big chunk of
a simplicial graph is a connected induced subgraph without separating vertices
which is maximal with these properties. Given an Artin system pA,Sq, a big chunk
parabolic is a subgroup conjugated to some AX , where X Ď S spans a big chunk
in ΓS . In our previous work, we proved that every isomorphism between two
Artin systems induces a bijection between the sets of big chunks, which preserves
the isomorphism type [JMS25]. In light of this, one might hope to recover the
strong twist conjecture for an Artin system from the twist conjecture for its big
chunk parabolics. We prove just that in our first main result, under a further mild
hypothesis:

Theorem D (see Theorem 4.11). Let pA,Sq be an Artin system, with ΓS connected.
Suppose that the following holds:

‚ For every X Ď S spanning a big chunk, pAX , Xq satisfies the strong twist
conjecture;

‚ For every Y Ď S spanning a clique, pAY , Y q satisfies the vertex ribbon
property.

Then pA,Sq satisfies the strong twist conjecture.
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First introduced by Paris [Par97], a ribbon can be intuitively thought of as a
minimal element that conjugates two standard parabolic subgroups of an Artin
system (see Definition 4.1, which for our purposes only describes ribbons between
standard generators). The vertex ribbon property states that any element that
conjugates two standard generators decomposes as a product of ribbons, and is
conjectured to hold for all Artin systems. In the course of proving Theorem D,
we also obtain a combination result for the vertex ribbon property, see Theorem G
below.

As an application of Theorem D, we exhibit new families of Artin systems sat-
isfying the strong twist conjecture. Our result covers Artin systems for which even
the weak twist conjecture was not previously known (see Figure 1 for an example).

Corollary E (see Corollary 4.16). Let pA,Sq be an Artin system, with ΓS con-
nected. Suppose that, for every X Ď S spanning a big chunk, the corresponding
parabolic pAX , Xq is of one of the following types:

(1) pAX , Xq is right-angled (i.e. all edge labels are 2);
(2) pAX , Xq is of large-type (i.e. all edge labels are at least 3) and triangle-free

(i.e. no induced subgraph of ΓX is a triangle);
(3) pAX , Xq is of large-type and free-of-infinity (i.e. ΓX is a complete graph);
(4) pAX , Xq is of type XXXL (i.e. all edge labels are at least 6);
(5) pAX , Xq is of type An for n ě 3; Bn for n ě 3; or Dn for n ě 4 and n ‰ 5.

Then pA,Sq satisfies the strong twist conjecture.

In Lemmas 4.12-4.14-4.15, by combining existing results in the literature, we
show that the classes of Artin systems appearing as big chunks above satisfy the
strong twist conjecture. Furthermore, work of Godelle [God03, God07] proves that
the Artin systems supported on cliques of ΓS enjoy the vertex ribbon property.

Figure 1. In the labelled graph Γ above, all big chunks (here, in
different colours) are of the type described in Corollary E, so that
AΓ satisfies the strong twist conjecture.

Theorem D and Corollary E should be compared to [RT13], where the authors
describe a JSJ decomposition of Coxeter groups over FA subgroups, and produce
a similar combination theorem for the (strong) twist conjecture, allowing them to
conclude that all Coxeter systems with chordal defining graphs satisfy the strong
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twist conjecture. Indeed, underlying our techniques is an explicit JSJ decomposition
for any Artin group, which we constructed in our previous work [JMS25].

If we drop the assumption on the ribbon property in Theorem D, we still get a
sufficient condition for the weak twist conjecture:

Theorem F (see Theorem 3.7). Let pA,Sq be an Artin system, with ΓS connected.
Suppose that, for every X Ď S spanning a big chunk, pAX , Xq satisfies the strong
twist conjecture. Then pA,Sq satisfies the weak twist conjecture.

In the above setup, we actually show that every Artin generating set U with
RS “ RU is related to S by a finite sequence of elementary twists and Dehn twists
(see Definition 3.4). Indeed, Theorem D follows from Theorem F by using the vertex
ribbon property to describe Dehn twists as compositions of elementary twists.

A combination theorem for the vertex ribbon property. As a collateral
result of the proof of Theorem D, we can reduce the vertex ribbon property to the
free-of-infinity Artin groups.

Theorem G (see Corollary 4.9). Let pA,Sq be an Artin system. Suppose that, for
any Y Ď S spanning a clique in ΓS, pAY , Y q satisfies the vertex ribbon property.
Then pA,Sq satisfies the vertex ribbon property.

The above result is a consequence of a more general combination theorem, stating
that if an Artin system pA,Sq admits a visual splitting and the factors satisfy the
vertex ribbon property then so does the whole pA,Sq (see Proposition 4.7).

Organisation of the paper. Section 1 contains generalities on simplicial actions
on trees and deformation spaces, in the sense of Forester [For01], which are the
main technical tools of this paper. In Section 2 we recall some properties of Artin
groups; then, building on results from our previous paper [JMS25], we associate a
deformation space to every Artin system, whose trees roughly correspond to the
maximal visual splittings over big chunk parabolics.

In Section 3, we prove a technical intermediate theorem, involving a generalised
version of the strong twist conjecture that allows Dehn twists (as well as elementary
twists and conjugations), which in particular implies Theorem F. In Section 4,
we upgrade this theorem under the further mild assumption that the big chunks
satisfy the ribbon property. In particular, we obtain Theorem D, which we then
combine with the strong twist conjecture for several classes of Artin groups to get
Corollary E (see Corollaries 4.11 and 4.16, respectively). In the process we also
prove the combination result for the ribbon property, which then yields Theorem G
(see Corollary 4.9).

Acknowledgements. We are grateful to Piotr Przytycki, Maŕıa Cumplido, and
Alexandre Martin for insights about the twist conjecture and the ribbon property,
and Stefanie Zbinden for helpful conversations. A special thanks goes to Laura
Ciobanu and Alessandro Sisto for comments on a first draft of this document.

1. Background on deformation spaces

We first recall some properties of simplicial actions on trees, referring to [Ser03] for
further generalities. We shall work in the following setting:
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Notation 1.1. By tree we mean a simply connected simplicial graph, equipped
with the metric where each edge has length one. Given a group G, a G-tree pT,Ωq

is a tree T endowed with an action Ω: G Ñ AutpT q by simplicial isometries, without
edge inversions, and minimal (i.e. no proper sub-tree is invariant under the action).
We often suppress the reference to the action Ω when it is not relevant or it is clear
from the context.

Throughout we will write StabΩ pSq for the pointwise stabiliser of S Ď T , or
StabG pSq if there is no danger of confusing the action.

Remark 1.2. Bass [Bas93, Proposition 7.9] proved that, if G is finitely generated,
a minimal G-action on a tree T is also cocompact.

The translation length of an element g P G is defined as |g| – infxPT dT px, gxq.
The minset of g is the subtree spanned by all points x which realise the translation
length. If |g| “ 0 the element is called elliptic, and its minset is the sub-tree of all
fixed points of g. If otherwise |g| ą 0 the element is loxodromic, and its minset is a
geodesic line on which g acts by translations.

For the remainder of this section we follow [GL07], and recall some properties
of deformation spaces, a notion originally due to Forester [For01]. A deformation
space is a space parameterised by G-trees.

Definition 1.3. Two G-trees pT,Ωq and pT 1,Ω1q are G-equivariantly isometric if
there is a simplicial isometry f : T Ñ T 1 such that, for every g P G, we have that
f ˝ Ωpgq “ Ω1pgq ˝ f .

Definition 1.4. We say an edge e “ tu, vu of a G-tree pT,Ωq is collapsible if
StabG puq ď StabG pvq, and u, v lie in different G-orbits. The associated elementary
collapse produces a new G-tree pT 1,Ω1q by removing e and identifying u and v, and
propagating this move equivariantly across T . The inverse of an elementary collapse
is called an elementary expansion. A finite sequence of elementary collapses and
expansions is called an elementary deformation.

Elementary collapses preserve elliptic subgroups, in the following sense:

Lemma 1.5. If pT 1,Ω1q is obtained from pT,Ωq by an elementary collapse, every
edge stabiliser (resp. vertex stabiliser) for Ω1 is also an edge stabiliser (resp. vertex
stabiliser) for Ω.

Proof. Say the collapse φ : T Ñ T 1 identifies the endpoints of e “ tu, vu where
StabΩ puq ď StabΩ pvq. If x1 is an open edge of T 1, or a vertex which is not in the
G-orbit of φpeq, then φ is injective on φ´1px1q, so by G-equivariance of φ we have
that StabΩ1 px1q “ StabΩ pxq for any edge (resp. vertex) x in the preimage of x1.

To conclude the proof, we now show that

(1) StabΩ1 pφpeqq “ StabΩ pvq .

Let g P StabΩ1 pφpeqq. Towards a contradiction, assume that g ¨ v ‰ v. Because g
fixes φpeq, the vertices v and g ¨ v have the same image under φ. Then there is a
path of G-translates e1 “ g1 ¨ e, e2 “ g2 ¨ e1, . . . , ek “ gk ¨ ek´1 of e connecting v to
g ¨ v. Notice that k ě 2, as v and u are in different G-orbits; moreover g1 ¨ v “ v,
as the path connects v to φpvq, and for the same reason g2 fixes g1 ¨ u but not v.
However g2 P StabΩ pg1 ¨ uq “ StabΩ puq

g1 ď StabΩ pvq, which is absurd. □
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Definition 1.6. Given a G-tree pT,Ωq, the deformation space containing pT,Ωq is
the simplicial realisation of the following partial order. Take the underlying set to
be all G-trees related to pT,Ωq by an elementary deformation, up to equivariant
isometry. Then say pT 1,Ω1q ě pT 2,Ω2q if pT 1,Ω1q admits a sequence of elementary
collapses to pT 2,Ω2q.

Remark 1.7. For experts, what we refer to here as a deformation space may
more accurately be called the simplicial spine. This is a deformation retract of the
genuine deformation space, which is obtained by considering a space of metric trees
(instead of only simplicial trees). We restrict to the spine for the ease of exposition.

The following theorem of Forester is a very convenient characterisation of when two
G-trees are in the same deformation space:

Theorem 1.8. [For01, Theorem 1.1] Let pT,Ωq and pT 1,Ω1q be cocompact G-trees.
Then the following are equivalent:

(1) pT,Ωq and pT 1,Ω1q are related by an elementary deformation (i.e. they
belong to the same deformation space).

(2) pT,Ωq and pT 1,Ω1q have the same elliptic subgroups.

Definition 1.9. A G-tree is reduced if no elementary collapse is possible.

Remark 1.10. If a G-tree T is not reduced, one obtains a (possibly non-unique)
reduced G-tree T 1 by collapsing collapsible edges until no collapse is possible. This
procedure eventually ends, as T {G is finite.

Definition 1.11. Given a G-tree T , we say (the orbit of) an edge e is surviving if
there exists a sequence of elementary collapses from T to a reduced tree, such that
e is not collapsed. We say T is surviving if every orbit of edges is surviving.

A particularly well-behaved subclass of deformation spaces are the non-ascending
ones. We first need a definition.

Definition 1.12 (see [GL17, Section 1.2]). A deformation space D is irreducible
if there exists pT,Ωq P D and two loxodromic elements for the action Ω whose
commutator is again loxodromic.

Definition 1.13. A deformation space D is non-ascending if it is irreducible and
there is no G-tree pT,Ωq P D containing an edge e with the following properties:

(1) Both endpoints of e are in the same G-orbit,
(2) The subgroup StabΩ peq is equal to the stabiliser of one endpoint and prop-

erly contained in the other.

The following theorem explains our interest in non-ascending deformation spaces:

Theorem 1.14. Let D be a non-ascending deformation space, and let F be the
subcomplex of D spanned by surviving trees. Two trees T1, T2 P F are related by an
elementary deformation where every intermediate tree may be taken to be surviving.

Proof. Such an elementary deformation is a path from T1 to T2 in F , so we have
to show that F is connected. This follows from the fact that D is connected by
construction, and deformation retracts onto F by [GL07, Theorem 7.6]. □

We conclude the section with a sufficient condition for a deformation space to be
non-ascending:
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Lemma 1.15. Suppose D is an irreducible deformation space containing a G-tree
T such that T {G is a tree. Then D is non-ascending.

Proof. Towards a contradiction, suppose that T 1 is a G-tree with an edge e as
forbidden by Definition 1.13. Then the image of e in T 1{G is a loop, and in particular
the latter is not a tree. Furthermore, the Betti number of a G-tree (i.e. the rank of
the fundamental group of the quotient) is a constant across all trees in a deformation
space [GL07, Section 4]; hence no T P D is such that T {G is a tree, against the
hypothesis. □

We can rephrase the requirement on T {G in the above Lemma with the existence
of a suitable fundamental domain for the G-action.

Definition 1.16 (combinatorial fundamental domain). Let pT,Ωq be a G-tree; a
combinatorial fundamental domain is a subtree K Ď T such that:

(1) for every vertex v P VpT q, |G ¨ v X VpKq| “ 1;
(2) for every edge e P EpT q, |G ¨ eXK| “ 1.

Lemma 1.17. A G-tree pT,Ωq admits a combinatorial fundamental domain if and
only if T {G is a tree.

Proof. If T {G is a tree then any lift of the quotient to T is a combinatorial fun-
damental domain. Conversely, if T admits a combinatorial fundamental domain K
then T {G – K is a tree, since the orbits of T are in bijection with K. □

2. Background on Artin groups

In this section, we recall some well known facts on Artin groups, and results
from [JMS25] which we will need. We also introduce a deformation space for Artin
groups, depending only on the union of the conjugacy classes of the generating set.

Definition 2.1. Given a finite, labelled simplicial graph Γ, let AΓ be the associated
Artin group, as in the Introduction. Given a group A and a finite subset S, we say
that pA,Sq is an Artin system if A – AΓS

for some graph ΓS , called the defining
graph of pA,Sq, and the isomorphism sends S bijectively to the vertices of ΓS . We
say that S is an Artin generating set of A. Two Artin systems pA,Sq and pA1, S1q

are isomorphic if there is an isomorphism A – A1 mapping S to S1.

Remark 2.2. The defining graph of an Artin system is well defined up to la-
belled graph isomorphism. As such, we will freely talk about subgraphs spanned
by generators in S, implicitly identifying them with vertices in ΓS .

Definition 2.3. If an Artin system pA,Sq is such that ΓS is an edge with label
m ě 3, then A is called a dihedral Artin group. If S “ ta, bu, the centre of A is
infinite cyclic, generated by

zab “

#

∆ab if m is even;

∆2
ab if m is odd,

where ∆ab “ prodpa, b,mabq is the Garside element (see e.g. [BS72]).

Definition 2.4. Given an Artin system pA,Sq, a standard parabolic subgroup (with
respect to S) is a subgroup generated by some U Ď S, which we denote by AU .
By a theorem of Van der Lek, AU – AΓU

, where ΓU is the induced subgraph of
ΓS spanned by the vertices in U [VdL83, Theorem 4.13]. We say a subgroup of an
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A is a parabolic subgroup (still with respect to S) if it is conjugate to a standard
parabolic subgroup.

Remark 2.5 (One-endedness). An Artin group A is one-ended if and only if some
(equivalently, any) Γ such that A – AΓ is connected and has at least two vertices
(see e.g. [JMS25, Remark 2.6] for further details).

A vertex v of a simplicial graph Γ is separating if the subgraph spanned by
VpΓq ´ tvu is disconnected. The presence of a separating vertex (almost) fully
characterises when an Artin group splits over Z (that is, it admits a graph of
groups decomposition with infinite cyclic edge stabilisers):

Theorem 2.6 ([JMS25, Theorem A]). Let A be a one-ended Artin group. Then A
splits over Z if and only if, for some (equivalently every) Artin system pA,Sq,

‚ |S| “ 2, or
‚ ΓS has a separating vertex.

Under the hypothesis of the second bullet of the theorem, there exist U, V Ĺ S such
that ΓU X ΓV is a vertex s P S while U Y V “ S. Hence A “ AU ˚xsy AV , and we
call such a decomposition a visual splitting over a separating vertex.

Theorem 2.6 motivates the following definition.

Definition 2.7. Given a graph Γ, a big chunk is a connected induced subgraph of
Γ without separating vertices, which is maximal (with respect to inclusion) with
these properties. If Γ “ ΓS for some Artin system pA,Sq, a big chunk parabolic is
a subgroup of A conjugated to some xUy, where U Ď S spans a big chunk in ΓS .

The next Theorem allows us to speak of the number and isomorphism types of
big chunks parabolics of an Artin group, without any reference to Artin generating
sets:

Theorem 2.8 ([JMS25, Theorem 5.6]). Let Γ and Γ1 be finite, connected labelled
simplicial graphs. Let BCpΓq be the set of big chunks of Γ, and define BCpΓ1q in
a similar fashion. Given an isomorphism φ : AΓ Ñ AΓ1 , there exists a bijection
φ# : BCpΓq Ñ BCpΓ1q such that:

(1) For every Λ P BCpΓq, AΛ – Aφ#pΛq.
(2) If Λ is not a leaf of label 2, then Aφ#pΛq is a conjugate of φpAΛq.
(3) If Λ is an even leaf then so is φ#pΛq.

Moreover, if φ maps standard generators of Γ to conjugates of standard generators
of Γ1, then we can arrange that Aφ#pΛq is a conjugate of φpAΛq for every Λ P BCpΓq.

We will use this theorem only in the form of the following immediate corollary.
For an Artin system pA,Sq, call RS – tsa | s P S, a P Au the set of reflections.

Corollary 2.9. Let A be an Artin group and S,U Ď A be Artin generating sets
such that RS “ RU . Then H ď A is a big chunk parabolic subgroup of pA,Sq if and
only if it is a big chunk parabolic subgroup of pA,Uq.

Proof. This follows by applying the “moreover” part of Theorem 2.8 to the isomor-
phism AΓS

– A – AΓU
. □
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2.1. A deformation space for Artin groups. We now describe a deformation
space for an Artin system pA,Sq, only depending on the set of reflections RS , whose
trees roughly correspond to maximal visual splittings over separating vertices. To-
wards proving Theorem F, we restrict our attention to one-ended Artin groups.

Definition 2.10 (see [JMS25, Definition 5.2]). Let A be a one-ended Artin group.
For every Artin system pA,Sq let MS be the graph of groups decomposition of A
defined as follows.

‚ The underlying graph of MS has one black vertex for every big chunk of
ΓS , and one white vertex for every separating vertex of ΓS .

‚ The vertex group associated to a black vertex (henceforth, a black vertex
group) is the corresponding standard big chunk parabolic, while the vertex
group associated to a white vertex (henceforth, a white vertex group) is
generated by the corresponding separating vertex, seen as an element of S.

‚ There is an edge between a white vertex and a black vertex if the corre-
sponding separating vertex belongs to the corresponding big chunk. The
edge group is the same as the white vertex group, which embeds in the
black vertex group via the subgraph embedding.

See Figure 2 for an example. Let DS be the deformation space of MS .

We notice that MS is well-defined up to equivariant isometry, as two identifica-
tions of S with ΓS can only differ by a graph automorphism of ΓS , which descends
to an equivariant isometry of MS .

Figure 2. Let pA,Sq be an Artin system with defining graph ΓS

as above (this is the graph from Figure 1). The separating vertices
are a and b, and the subsets X,Y, Z, ta, bu Ă S each span a big
chunk in ΓS . The decomposition MS has one white vertex for
every separating vertex, and one black vertex for every big chunk.
Notice that all elements of S are elliptic in MS .

Remark 2.11 (MS is surviving). Every edge of MS corresponds to a pair tv,∆u,
where ∆ is a big chunk of ΓS and v P ∆ separates ΓS . If for every such v we collapse
one of the adjacent edges of MS , we get a reduced tree, as two big chunks cannot
contain each other. Furthermore, every separating vertex belongs to at least two
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big chunks, so for every edge e of MS one can find a collapse as above where e
survives. See Figure 3 for an example.

Figure 3. Each ∆i is a big chunk of ΓS . If we fix an edge (here,
in red), we can always collapse one edge of MS for every white
vertex (here, the blue collection) to get a reduced tree where the
fixed edge survives.

Lemma 2.12. Let S and U be Artin generating sets of A such that RS “ RU .
Then DS “ DU .

Proof. We will use the characterisation from Theorem 1.8, hence it suffices to check
thatMS andMU have the same elliptic subgroups. In turn, by construction elliptic
subgroups of MS are precisely the subgroups of big chunk parabolics of S, and
similarly for U ; hence the lemma follows from Corollary 2.9. □

In view of the Lemma, from now on we shall refer to DS as DR where R “ RS , in
all situations where only the dependence on the reflection set is relevant.

3. Reducing the twist conjecture

For the next definition, we say that an Artin system pA,Sq is indecomposable if S
cannot be partitioned into two non-empty, disjoint subsets Y,Z such that myz “ 2
for every y P Y and z P Z. We also say that an Artin system pA,Sq is spherical if
the associated Coxeter group A{xxs2 | s P Syy is finite.

Definition 3.1 (Garside element, [Gar69]). If pA,Sq is spherical and indecompos-
able, there is a distinguished element ∆S P A, which we call the Garside element.
For our purposes, it is enough to know that:

‚ If S “ tau then ∆S “ a.
‚ If S “ ta, bu then ∆S “ ∆ab is as in Definition 2.3.

Definition 3.2 (Twist equivalence). Let pA,Sq be an Artin system, and let J Ď S
be such that pAJ , Jq is spherical and indecomposable. Let JK be the generators
in S ´ J which commute with J . Suppose that S ´ pJ Y JKq is a disjoint union
B \ C, where B, C are non-empty and any b P B is not adjacent to any c P C in
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ΓS (in other words, ΓJYJK separates ΓS). The elementary twist of B around J is
the map τ : S Ñ A defined by

τpsq –

#

s if s P C Y J Y JK;

∆Js∆
´1
J if s P B.

The image τpSq is again an Artin generating set for A [BMMN02, Theorem 4.5].
Two Artin generating sets S, S1 for A are twist equivalent, and we write S „ S1, if
S1 is obtained from S via a finite sequence of elementary twists and conjugations.
Two simplicial graphs Γ,Γ1 are twist equivalent, and we write Γ „ Γ1, if there exist
Artin systems pA,Sq and pA,S1q such that ΓS “ Γ, ΓS1 “ Γ1, and S „ S1.

We are interested in the following property:

Definition 3.3. An Artin system pA,Sq satisfies the strong twist conjecture if for
every Artin generating set U Ď A with RS “ RU is twist equivalent to S. An Artin
group A satisfies the strong twist conjecture if every Artin system pA,Sq does.

Before exploring which Artin groups enjoy the above property, we first define an-
other class of isomorphisms of Artin groups:

Definition 3.4 (Dehn Twist). Let pA,Sq be an Artin system, and r P S separate
ΓS , so S´ tru is a disjoint union B\C where B,C are non-empty and for all b P B
and c P C, b and c are not adjacent in ΓS . A Dehn twist of B about r is a map
δ : S Ñ A defined as follows:

δpsq –

#

s if s P C Y tru;

hsh´1 if s P B,

where h is any element centralising r. It is easily seen that δpSq is an Artin gener-
ating set for A, and that ΓδpSq is isomorphic to ΓS .

Definition 3.5. Two Artin generating sets S,U for A are generalised twist equiv-
alent, and we write S „D U , if they are related by a finite sequence of elementary
twists, Dehn Twists, and conjugations. An Artin system pA,Sq satisfies the gen-
eralised strong twist conjecture if for every Artin system pA,Uq with RS “ RU

we have that S „D U . An Artin group A satisfies the generalised strong twist
conjecture if every Artin system pA,Sq does.

Remark 3.6. Notice that if S „D U then RS “ RU , as both types of twists re-
place some generators by conjugates, and ΓS „ ΓU , as Dehn twists do not change
the isomorphism type of the defining graph. In particular, the generalised strong
twist conjecture implies the weak twist conjecture from the introduction (see Con-
jecture B).

We are now ready to state the main result of this section, which is Theorem F:

Theorem 3.7. Let pA,Sq be an Artin system, with A one-ended. Suppose that,
whenever X Ď S spans a big chunk, the Artin system pAX , Xq satisfies the strong
twist conjecture. Then pA,Sq satisfies the generalised strong twist conjecture.

3.1. Proof of Theorem 3.7. For the rest of the section, unless otherwise stated,
we work under the following assumption:

Notation 3.8. Let pA,Sq be an Artin system, with A one-ended. Let R “ RS be
the associated reflection set, and let DR be the corresponding deformation space.
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We start by observing the following:

Lemma 3.9. Every A-tree in DR admits a combinatorial fundamental domain, as
in Definition 1.16.

Proof. By constructionMS{A is a tree, and therefore so is T {A for every T P DR by
invariance of the Betti number across the deformation space. Then the statement
follows from Lemma 1.17. □

Corollary 3.10. DR is non-ascending, unless ΓS consists of a single big chunk.

Proof. By Lemma 1.15, it is enough to show that, if ΓS has at least two big chunks,
then DR is irreducible, and in turn it suffices to exhibit two loxodromic elements
for the action on MS whose commutator is again loxodromic. Let X,Y Ď S span
different big chunks, let a P X ´ Y and b P Y ´ X, and set g “ ab and h “ a2b,
which are both loxodromic as they they are products of two elliptic elements with
disjoint stable fixed point sets (this is a standard ping-pong type argument, see e.g.
[Man17]). Their commutator abab´1a´2 is conjugate to rb, as “ bpab´1a´1q, which
again is a product of elliptic elements with disjoint stable fixed point sets. □

Lemma 3.11. Let F ď DR be the subcomplex spanned by surviving trees. For
every pT,Ωq P F and every e P EpT q, StabΩ peq is a cyclic S-parabolic subgroup.

Proof. For the sake of light notation, we will identify A-trees with the underlying
tree. The claim holds for MS by how it was constructed in Definition 2.10. If ΓS

only has one big chunk then DR consists of a single point, and there is nothing to
prove. Otherwise we can assume that DR is non-ascending, by Corollary 3.10.

Let M 1 be a reduced tree obtained from MS by a finite sequence of elementary
collapses, which exists as observed in Remark 1.10. Since each collapse preserves the
set of stabilisers of those edges that are not collapsed, the claim holds forM 1. If T is
a reduced tree, then T andM 1 are related by a finite sequence of slide moves [GL07,
Theorem 7.2], which preserve the set of edge stabilisers (notice that the theorem
requires the deformation space to be non-ascending). In particular, the claim holds
for each reduced tree. Finally, if T is a surviving tree, then, for every edge e of T ,
there exists a reduced tree T 1 and a finite sequence of elementary collapses T Ñ T 1

that do not collapse e. Again, because elementary collapses preserve the set of
stabilisers of edges that are not collapsed, the claim holds for T . □

Definition 3.12 (S-tree). Let pA,Sq be an Artin system; an A-tree pT,Ωq is an
S-tree if there exists a combinatorial fundamental domain K Ď T for the action Ω
such that:

(1) for every x P VpKq Y EpKq, StabΩ pxq is a standard S-parabolic;
(2) every element of S fixes a vertex of K.

The following two propositions, which are the core arguments underlying Theo-
rem 3.7, show that performing an elementary deformation on an S-tree produces
an S1-tree, where S1 „D S. In the proofs we will follow the strategy of [Jon24,
Lemma 4.8 and Lemma 4.9].

Proposition 3.13. Let pT,Ωq, P DR be an S-tree, and let pT 1,Ω1q P DR be an
A-tree that is obtained from pT,Ωq by collapsing one edge. Then pT 1,Ω1q is an
S-tree.
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Proof. Let φ : T Ñ T 1 be the collapse map, and let K Ď T be a combinatorial fun-
damental domain for Ω that makes pT,Ωq into an S-tree. Since φ is A-equivariant
and K contains exactly one edge for every orbit, there exists a unique edge e P K
that is collapsed, say with endpoints u and v such that StabΩ puq ď StabΩ pvq.

We claim that K 1 “ φpKq makes pT 1,Ω1q into an S-tree, that is, that K 1 sat-
isfies the conditions of Definition 3.12. Firstly, K 1 is a combinatorial fundamental
domain, by equivariance of φ.

Let us now show that stabilisers of simplices in K 1 are standard S-parabolic
subgroups. Because φ restricts to a bijection K ´ e Ñ K ´ tφpequ, we only need to
check that StabΩ1 pφpeqq is a standard S-parabolic. In this case Equation (1) gives
StabΩ1 pφpeqq “ StabΩ pvq, which by hypothesis is a standard S-parabolic.

Finally, every s P S fixes some vertex x P V pKq, so s must also fix φpxq P K 1. □

Proposition 3.14. Let pT,Ωq, pT 1,Ω1q P F be surviving trees such that pT,Ωq is
obtained from pT 1,Ω1q by an elementary collapse. If pT,Ωq is an S-tree, then there
is an Artin generating set S1 Ď A such that S „D S1 and pT 1,Ω1q is an S1-tree.

Proof. We denote by φ : T 1 Ñ T the collapsing map. Let K Ď T be a combinatorial
fundamental domain for Ω that makes pT,Ωq into an S-tree. Since K is a combina-
torial fundamental domain and φ is A-equivariant, there exists an edge e “ tu, vu

of T 1 that gets collapsed to a vertex φpeq P K, say with StabΩ1 puq ď StabΩ1 pvq.
In particular, StabΩ pφpeqq is a standard S-parabolic subgroup of A. Note that, by
Lemma 3.11, every edge stabiliser of T 1 is a cyclic S-parabolic subgroup of A. Now
consider the chain

(2) StabΩ1 peq “ StabΩ1 puq ď StabΩ1 pvq “ StabΩ pφpeqq ď A,

where the equality is Equation (1). This is a chain of inclusions of S-parabolic
subgroups of A, so by [BP23, Theorem 1.1] StabΩ1 peq is a parabolic subgroup
of StabΩ1 pvq (meaning that StabΩ1 peq is conjugated by an element of StabΩ1 pvq

to a standard S-parabolic contained inside StabΩ1 pvq). Up to replacing e by a
StabΩ1 pvq-translate of it, we may therefore assume that StabΩ1 peq is a standard
S-parabolic subgroup of StabΩ1 pvq, hence of A.

Let us now decompose the fundamental domain K as
Ťn

i“1Ki, where the Ki’s
are the maximal subtrees of K having φpeq as a vertex of valence one, so that
Ki X Kj “ tφpequ whenever i ‰ j. Such decomposition induces subsets tSiu

n
i“0

of S, where xS0yA “ StabΩ pφpeqq and, for every i P t1, . . . , nu and every s P Si, the
subtree of K fixed by s is contained in Ki ´ tφpequ.

Claim 3.15. The union
Ťn

i“0 Si is a partition of S.

Proof of Claim 3.15. Let s P S. By definition of S-tree, s fixes a vertex of K. If
s fixes φpeq, then s P S0; if not, then there exists i P t1, . . . , nu such that s fixes a
vertex wi of Ki, so s P Si. If there existed a different index j such that s fixes a
vertex wj of Kj , then s would fix the unique path between wi and wj , hence φpeq,
giving a contradiction. This shows that the Si’s are all disjoint. □

The tree structure of K gives a decomposition of A as an amalgamated product of
the factors txS0 Y Siyuni“1 over the subgroup xS0y.

Claim 3.16. The decomposition xS1YS0y˚xS0y¨ ¨ ¨˚xS0yxSn Y S0y is a visual splitting
for pA,Sq.
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Proof of Claim 3.16. Because
Ťn

i“0 Si “ S, it is sufficient to show that, for every
distinct indices i, j P t1, . . . , nu, for every s P Si and for every t P Sj , xs, tyA –

F2. To this end, let us observe that StabΩ pφpeqq is a standard parabolic, so
StabΩ pφpeqq X xsy “ StabΩ pφpeqq X xty “ t1u by [VdL83]. Hence s and t have
disjoint stable fixed-point sets, in particular separated by φpeq, which no non-trivial
power of s or t fix. A standard ping-pong argument now shows that s and t generate
a non-abelian free group, as required. □

We now define simultaneously an Artin generating set S1 Ď A that is generalised
twist-equivalent to S, and a subtree K 1 Ď T 1 that makes pT 1,Ω1q into an S1-tree.
To be precise, we set S1

0 “ S0, and we shall inductively replace each Si with S
1
i for

every i “ 1, . . . , n. Letting Ui “
Ť

jďi S
1
j Y

Ť

jąi Sj for all i, two generators a, b P Ui

may generate a dihedral only if either they both belong to some Sj (or S
1
j), or if one

of them is in S0; hence every Ui will give an amalgamated product decomposition
over xS1

0y for A. Furthermore, at each step we shall show that Ui „D Ui`1. Then
the required S1 will be Un, which will therefore be generalised twist equivalent to S.

Let us define L1
i :“ φ´1pKi ´ tφpequq Ď T 1. Because φ is injective outside of the

orbit of e, L1
i is isomorphic to Ki as a graph and contains some wi P φ´1peq as a

vertex of valence one. Notice that, since StabΩ1 pvq “ StabΩ peq “ StabΩ1

`

φ´1peq
˘

,

the only vertices in φ´1peq are v and all StabΩ1 pvq-translates of u.
If wi is either v or u, we simply set K 1

i :“ L1
i Y e and S1

i :“ Si. This way
Ui´1 “ Ui, and there is nothing to prove. Let us now assume that wi “ h ¨ u for
some h P StabΩ1 pvq´t1u. In order thatK 1 is connected, we setK 1

i :“ h´1¨L1
iYe. Let

f be the edge of L1
i that has h ¨u as an endpoint. Because φ : T 1 Ñ T restricts to an

isometry L1
i Ñ Ki, f is not collapsed, so we have that StabΩ1 pfq “ StabΩ pφpfqq.

In particular, the latter is a cyclic standard S-parabolic, say generated by some
s P S. In turn, the edge h´1 ¨ f has u as an endpoint and h´1 StabΩ1 pfqh is an
S-parabolic subgroup of A contained in StabΩ1 puq, hence an S-parabolic subgroup
of StabΩ1 puq by [BP23, Theorem 1.1]. Therefore, up to replacing h by a StabΩ1 puq-
translate (which might change L1

i, but does not move wi “ hu), we may assume
that h´1 StabΩ1 pfqh is a standard S-parabolic subgroup, say generated by t P S.
Since h´1 conjugates s to t, it follows that there is a sequence tsiu

k
i“0 Ď S such

that [Par97, Corollary 4.2]:

(1) s0 “ t, sk “ s, and for every i P t0, . . . , k ´ 1u, tsi, si`1u spans an odd
dihedral S-parabolic;

(2) h´1 P CAptq∆s0s1 ¨ ¨ ¨∆sk´1sk , where CAptq denotes the centraliser of t.

We also remark that s, t P S0 as they both lie in StabΩ1 pvq “ StabΩ pφpeqq.
Before defining S1

i, we observe the following fact:

Claim 3.17. For every x P Si and for every r P S0, if xx, ry is a spherical dihedral
subgroup, then r “ s.

Proof of Claim 3.17. Let x P Si and let r P S0 ´ tsu. Because x P Si, the stable
fixed point set of x intersects L1

i and does not contain f . On the other hand, r
fixes v but not f , so its stable fixed-point in T 1 lies on the opposite side of f with
respect to L1

i. Again, a standard ping-pong argument shows that xx, ry – F2. □

As the above argument holds for any i “ 1, . . . , n, it implies that, if two vertices of
ΓS0

are connected by a path, then we can choose such path to belong entirely to
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ΓS0
, as for every i there is a unique vertex in S0 from which one can enter or exit

Si. In particular, we can assume that all si from Item (1) belong to S0.

Set S1
i :“ h´1Sih, and recall that we defined Ui´1 “

Ť

jăi S
1
j Y

Ť

jěi Sj and

Ui “
Ť

jďi S
1
j Y

Ť

jąi Sj . Consider the map αi : Ui´1 Ñ Ui which maps a P Ui´1 to

αipaq “

#

h´1ah if a P Si;

a otherwise.

To conclude that Ui´1 and Ui are generalised twist equivalent, it is enough to
prove the following:

Claim 3.18. αi is a sequence of elementary twists and a Dehn Twist.

Proof of Claim 3.18. By inspection of Item (2), conjugating Si by h amounts to
first conjugating by ∆sk´1sk , where sk “ s. Notice that both sk´1 and s belong
to S0, thus to Ui´1, and the edge tsk´1, su separates ΓUi´1 in view of Claim 3.17;
hence conjugating Si by ∆sk´1sk is an elementary twist τ1, with respect to Ui´1.
Notice that, since tsk´1, su is an odd edge, sk´1 now separates Γτ1pSiq from the rest
of Γτ1pUi´1q, as the twist “slides” Si along the odd edge. Proceeding inductively, one
sees that conjugating Si by ∆s0s1 . . .∆sk´1sk is a sequence τ of elementary twists
along edges, after which s0 “ t separates ΓτpSiq from the rest of ΓτpUi´1q. Now S1

i is
obtained from τpSiq by conjugating by an element in the centraliser of t, and this is
a Dehn Twist in the visual splitting of pA, τpUi´1qq along t. This proves that Ui´1

and Ui are generalised twist equivalent, as required. □

Let K 1 “
Ť

iK
1
i Ď T 1. We are now left to show that K 1 makes pT 1,Ω1q into an

S1-tree. K 1 has exactly one more edge than K (that is, the edge e), thus it is a
finite subgraph of T 1, and it is connected by construction of the K 1

i’s, each of which
is connected and contains e. It follows that K 1 is a finite subtree of T 1. For the
sake of clarity, we shall break down the remaining part of the proof into smaller
claims.

Claim 3.19. K 1 is a combinatorial fundamental domain for pT 1,Ω1q.

Proof of Claim 3.19. Let x P VpT 1q. If φpxq lies in the Ω-orbit of φpeq, then x
lies in the Ω1-orbit of either u or v. The fact that |A ¨ x X VpK 1q| “ 1 follows
by observing that K is a combinatorial fundamental domain and that u and v
belong to distinct Ω1-orbits. If φpxq is not in the orbit of φpeq, then there exist
k P K ´ tφpequ and g P A such that φpxq “ g ¨ k. Because φ is injective away from
the orbit of e, φ´1pkq “ k1 for some k1 that either belongs to K 1 or such that a
StabΩ1 pvq-translate of it belongs to K 1. In both cases, the orbit of k1 intersects K 1.
Because φ is A-equivariant, φpxq “ g ¨ φpk1q implies that φpxq “ φpg ¨ k1q; because
φ is injective on these points, it follows that x “ g ¨ k1.

The proof that EpK 1q contains exactly one element for each Ω1-orbit of edges
runs analogously. □

Claim 3.20. For every x P VpK 1q Y EpK 1q, StabΩ1 pxq is a standard S1-parabolic
subgroup.

Proof of Claim 3.20. We have that StabΩ1 pvq “ StabΩ pφpeqq “ xS0y by construc-
tion ofK 1; moreover, as argued in Equation (2), StabΩ1 puq “ StabΩ peq is a standard
S-parabolic inside xS0y. Since S0 “ S1

0, both stabilisers are standard S1-parabolics
as well.
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Let now x P VpK 1q ´ tu, vu. From injectivity of φ away from the orbit of e and
A-equivariance, it follows that StabΩ1 pxq “ StabΩ pφpxqq. By construction of K 1,
there exists h P StabΩ1 pvq and i P t1, . . . , nu such that φpxq P h´1 ¨Ki. Because K
makes pT,Ωq into an S-tree, there exists U Ď Si such that StabΩ ph ¨ φpxqq “ xUy,
that is, StabΩ pφpxqq “ xh´1Uhy, which is a standard S1-parabolic subgroup of A,
since h´1Uh Ď h´1Sih “ S1

i.
Again, the proof that edge-stabilisers are standard S1-parabolics runs analo-

gously. □

Claim 3.21. Every element s1 P S1 fixes a vertex of K 1.

Proof of Claim 3.21. Every s1 P S1
0 fixes e. If instead s1 P S1 ´ S1

0, there exist
h P StabΩ1 pvq, i P t1, . . . , nu and s P Si Ď S such that s1 “ h´1sh. By construction
of Ki, s acts elliptically on T , fixing a subtree of Ki and therefore s1 acts elliptically,
fixing a subtree of h´1 ¨ L1

i Ď Ki. □

The proof of Proposition 3.14 is now complete. □

Proposition 3.22. Given a one-ended Artin group A with Artin generating sets S
and U such that RS “ RU , there exist equivariantly isometric A-trees TS and TU 1

with infinite cyclic edge stabilisers, such that TS is an S-tree and TU 1 is a U 1-tree,
for some Artin generating set U 1 „D U . Moreover, if A has at least two big chunks,
TS contains an edge and is minimal as an A-tree.

Proof. Take MS and MU as in Definition 2.10. We claim the tree MS is an S-
tree. Take the fundamental domain K to be the one described in Definition 2.10.
Every standard big chunk S-parabolic occurs as a point stabiliser in K, and every
s P S belongs to some big chunk parabolic, so every s P S fixes a point in K.
Conversely, every simplex stabiliser inK is either a standard big chunk S-parabolic,
or generated by some s P S separating ΓS , so is in particular a standard S-parabolic.
Likewise, MU is a U -tree.

One easily checks from Definition 2.10 that if A has at least two big chunks, then
MS is minimal and is not just a point.

Now, since RS “ RU , Lemma 2.12 gives that MS and MU are in the same de-
formation space DR, where R “ RS . If DR consists of a single point then MS and
MU are equivariantly isometric, and we are done. Otherwise DR is non-ascending
by Lemma 3.10. Moreover, both MS and MU are surviving by Remark 2.11, so
Theorem 1.14 produces a sequence of elementary collapses and expansions taking
MU to a tree T 1 which is equivariantly isometric to MS . By applying Proposi-
tions 3.13 and 3.14, we can realise T 1 as a U 1-tree, where U 1 is as required by the
statement. □

Proof of Theorem 3.7. Recall that we are given a one-ended Artin group A and
an Artin system pA,Sq such that, for every X Ď S spanning a big chunk, pAX , Xq

satisfies the strong twist conjecture. Our goal is to prove that every Artin generating
set U for A such that RS “ RU “ R is generalised twist equivalent to S. We proceed
by induction on the number of big chunks of A. The base case is immediate.

Before moving to the inductive step, let us clarify the inductive hypothesis. Let
V be the collection of proper subsets V Ĺ S such that AV is one-ended and V
is of the form V “ X1 Y . . . Y Xi, where each Xj spans a big chunk in ΓS . By
induction we can assume that, for every V P V, the Artin system pAV , V q satisfies
the generalised strong twist conjecture.
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Now, replacing U by some U 1 „D U does not change the set of reflections, so
in light of Proposition 3.22 we may assume that there are equivariantly isometric
A-trees pTS ,ΩSq and pTU ,ΩU q with infinite cyclic edge stabilisers, such that TS is
an S-tree and TU is a U -tree (we henceforth suppress the actions in our notation).
Write KS and KU to be the corresponding combinatorial fundamental domains.

We now use the S-tree and U -tree structure to produce visual splittings of A
with respect to S and U such that both decompositions have the same factors,
towards applying the inductive hypothesis to these factors. By Proposition 3.22,
TS has at least one edge, since A has at least two big chunks; so fix an arbitrary
edge e of KS , and let StabΩS

peq “ xry for some r P S. Take f : TS Ñ TU to be
an equivariant isometry. Up to conjugating U , we may assume that fpeq P EpKU q.
By equivariance of f it follows that StabΩU

pfpeqq “ xry, and so either r P U or
r´1 P U .

In fact, it must be that r P U . If this was not the case, then since r P RS “ RU ,
there would be u P U conjugate to r. However U would have one generator conju-
gate to the inverse of another, and this contradicts the existence of a homomorphism
AU Ñ Z mapping every generator to 1.

Write TS (resp. TU ) for the equivariant quotient A-tree obtained by collapsing
every edge in TS (resp. TU ) not in the orbit of e (resp. fpeq). By a routine diagram
chase one sees that f induces an equivariant isometry f : TS Ñ TU .

By equivariance of the quotient map, TS has one orbit of edges. We claim it has
two orbits of vertices. Suppose not, then, writing e “ tx, yu, this means that there
is a path in TS from x to gy (for some g P A), not passing through any edge in the
orbit of e. However, this implies that TS{A is not simply connected, contradicting
the fact that TS has a combinatorial fundamental domain by Lemma 1.17.

We write S “ S1YS2, where each Si is the set of generators fixing a vertex of KS

on one side of e. This can be done since KS is a fundamental domain making TS an
S-tree. Notice that S1 XS2 “ tru. Using the equivariance of the quotient map, it is
not hard to show that TS is the Bass-Serre tree for the splitting A “ AS1

˚xry AS2
.

The arguments above apply verbatim with U in place of S, substituting fpeq for
e to obtain a splitting A “ AU1

˚xry AU1
, where U “ U1 Y U2 and U1 X U2 “ tru.

Notice that, by the equivariance of f , the stabilisers of the endpoints of the image
of e in TS and TU are the same subgroups of A, so (up to exchanging U1 and U2),
ASi “ AUi for i P t1, 2u. We denote these subgroups simply by Ai.

The next two claims will allow us to use the inductive hypothesis:

Claim 3.23. S1, S2 P V.

Proof of Claim 3.23. We first notice that S1, S2 ‰ S, since otherwise TS , and hence
TS , would not be minimal. Furthermore, each X Ď S spanning a big chunk in
S lies in either S1 or S2. Indeed, AX fixes a point p in TS , since TS is in the
same deformation space as MS , and therefore has the same elliptic subgroups by
Theorem 1.8. This means that each x P X ´ tru must fix a point in KS belonging
to the same connected component of TS ´ e as p.

Finally, ASi
is one-ended since ΓSi

is connected. To see this, we shall prove
that, for every x P Si and any simple path γ Ď ΓS connecting x to r, we have that
γ Ď ΓSi . Indeed, notice that x and the first vertex of γ after it, call it z, must
belong to a common big chunk, say spanned by X Ď S. Moreover, by the above
argument X must belong to one of S1 and S2, and it must be that X Ď Si since
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x ‰ r belongs to Si. Hence z P Si as well. If z “ r we stop; otherwise we repeat
this procedure, eventually showing that γ Ď ΓSi , as required. □

Claim 3.24. For i “ 1, 2 let RAi

Si
and RAi

Ui
be the reflection sets for Si and Ui in

Ai. Then RAi

Si
“ RAi

Ui
.

Proof of Claim 3.24. Let s P Si, and we have to find some u1 P Ui which is conjugate
to s in Ai. Since RS “ RU , there is u P U and g P A such that s “ gug´1. Moreover,
notice that ΓUi

is a union of big chunks of ΓU (this follows as in Claim 3.23, applied
to U), so by e.g. [JMS25, Remark 3.6], there exists a retraction ρ : A Ñ Ai mapping
every generator v P U to

ρpvq “

#

v if v P Ui;

r if v R Ui.

Since ρ is the identity on Ai, we get that s “ ρpsq “ ρpgqρpuqρpgq´1. Hence s is
conjugate to ρpuq P Ui by ρpgq P Ai, as required. □

By induction, there exists ψ : S1 Ñ A1 which is a generalised twist equivalence
between S1 and U1.

Claim 3.25. ψ extends to a generalised twist equivalence ψ̂ : S Ñ A; moreover

S1 – ψ̂pSq “ U1 Y hS2h
´1, where h P A1 is such that ψprq “ hrh´1.

Proof of Claim 3.25. Write ψ as a sequence ψl ˝ . . . ˝ ψ1 of elementary twists, con-
jugations, and Dehn twists. By an inductive argument, it is enough to show that
ψ1 extends to an elementary twist, conjugation, or Dehn twist of A with respect to

S. If ψ1 is the conjugation by some h1 P A1 then let ψ̂1 : S Ñ A be the conjugation
by h1, and we have nothing to show.

Next, suppose ψ1 is a Dehn twist around a separating vertex v of ΓS1
. Then

v is separating in ΓS as well, since S1 X S2 “ tru; furthermore, either v “ r or
S2 is in the same connected component of ΓS ´ tvu as r. If ψ1prq “ r (that is, if
either v “ r or r is not in one of the connected components of ΓS1

´ tvu which get

conjugated), we can define ψ̂1 : S Ñ A to be the identity on S2, and notice that
this is a Dehn twist around v in ΓS . Otherwise ψ1prq “ h1rh

´1
1 for some h1 P A1

commuting with v, and if we define ψ̂1 by mapping every s P S2 to h1sh
´1
1 we still

get a Dehn twist around v in ΓS .
A similar argument, with the required adjustments, proves that if ψ1 is an el-

ementary twist then it can be extended to an elementary twist ψ̂1 : S Ñ A, thus
proving the claim. □

Now notice that r, hrh´1 P U1 are conjugate in A1. It follows from [Par97, Corollary
4.2] that there is a path of odd edges te1, . . . , enu in ΓU1 from hrh´1 to r. For
i “ 1, . . . , n write ∆i for the Garside elements of ei, so that ∆n . . .∆1h centralises r.

As in the proof of Claim 3.18, successively conjugating hS2h
´1 by ∆1, ∆2,

and so on, is a sequence of twists along separating edges (meaning that every ei is
separating in the defining graph of U1 Y∆i´1 . . .∆1hS2h

´1p∆i´1 . . .∆1q´1). Hence

S1 “ U1 Y hS2h
´1 „ U1 Y p∆n . . .∆1qhS2h

´1p∆n . . .∆1q´1 “: S2,

and we note that ΓS2 has r as a separating vertex. In particular, since ∆n . . .∆1h
centralises r, we can Dehn twist S2 by this element to obtain U1 Y S2. We have
now seen that S1 Y S2 „D U1 Y S2.
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We finally notice that, again in view of Claims 3.23 and 3.24, there is a generalised
twist equivalence between S2 and U2 in A2. As above, this can be used to show
that U1 Y S2 „D U1 Y U2, thus completing the proof of Theorem 3.7. □

4. A genuine combination theorem using ribbons

In Section 3 we proved that an Artin system pA,Sq satisfies the generalised strong
twist conjecture, provided that its big chunk parabolics satisfy the strong twist con-
jecture. In order to to improve the conclusion of Theorem 3.7 to the genuine strong
twist conjecture, we need to guarantee that, with respect to any Artin generating
set that is twist-equivalent to S, Dehn twists around separating vertices can be
written as a composition of elementary twists and conjugations. We prove that
this condition is satisfied, whenever sufficiently many parabolic subgroups of pA,Sq

enjoys the vertex ribbon property. The latter describes the elements that conjugate
standard generators via ribbons, which intuitively can be thought as minimal con-
jugating elements. The notion of a ribbon was introduced by Paris in [Par97] and
then studied in detail by Godelle (see Theorem 4.4 below).

Definition 4.1 (ribbons). Let pA,Sq be an Artin system and let x, y P S. An
element g P A such that x “ gyg´1 is an elementary px, yq-ribbon (with respect to
S) if one of the following conditions hold:

(1) the elements x and y are distinct, mxy P Ně3 is odd and g “ ∆xy (or its
inverse);

(2) the elements x and y coincide and one of the following holds:
(a) g “ x (or its inverse);
(b) there is t P S such that mxt P Ně4 is even and g “ ∆xt (or its inverse);
(c) there is t P S such that mxt “ 2 and g “ t (or its inverse).

An element g “ g1 ¨ ¨ ¨ gn such that x “ gyg´1 is an px, yq-ribbon (with respect to S)
if there exist x0, . . . , xn P S such that x0 “ x, xn “ y and, for every i P t1, . . . , nu,
gi is an elementary pxi´1, xiq-ribbon. We denote by RibbSpx, yq the set of px, yq-
ribbons with respect to S.

We say that the pair px, yq satisfies the vertex ribbon property (in pA,Sq) if, for
every g P A, if x “ gyg´1, then g P RibbSpx, yq. We say that pA,Sq satisfies the
vertex ribbon property if every pair px, yq with x, y P S satisfies the ribbon property
with respect to S.

Remark 4.2. Let pA,Sq be an Artin system and a P S. From Definition 4.1, it
follows that, for every pa, aq-ribbon h P A, there exists a sequence pai, biq

n
i“0 of pairs

of elements in S, such that the following hold.

‚ a0 “ bn “ a.
‚ For every i, either tai, biu span a dihedral subgroup, and we setmi “ maibi ,
or ai “ bi, and with a little abuse of notation we set mi “ 1.

‚ ai`1 “ ai if mi is even, and ai`1 “ bi if mi is odd.
‚ Set ti “ bi if mi ď 2, while ti “ ∆aibi if mi ě 3.
‚ There exist εi P t˘1u such that h “ tεnn . . . tε00 .

In other words, the taiu
n
i“0 are the vertices of an odd loop γ Ď ΓS , to which some

even “spikes” are glued, as in Figure 4.

Remark 4.3. We will freely use that, if g P RibbSps, tq and h P RibbSpt, rq, then
gh P RibbSps, rq and g´1 P RibbSpt, sq.
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Figure 4. An example of a “loop with spikes” associated to an
pa, aq-ribbon, as in Remark 4.2. In the picture the ribbon is
h “ b∆azy

´1∆wz∆wx∆
´1
aw, so we set pa0, b0q “ pa,wq, pa1, b1q “

pw, xq, pa2, b2q “ pw, zq, pa3, b3q “ pz, yq, pa4, b4q “ pz, aq, and
pa5, b5q “ pa, bq. The blue path γ corresponds to the collection of
elementary ribbons along odd edges, while the orange “spikes” are
given by the elementary ribbons along even edges. In the proof of
Proposition 4.5, we also consider a subset B Ă S which a separates
from the rest of the vertices (here, in red).

In this paper, for the sake of explicitly describing Dehn twists, we only defined
ribbons between vertices, which are are an instance of a more general definition
of ribbons, encoding “minimal” group elements that conjugate standard parabolic
subgroups (see e.g. [God07, Definition 1.3]). Godelle conjectured that the vertex
ribbon property (and a more general “ribbon property”) holds for all Artin groups,
and proved it for several classes, some of which we list here specialised to the
generality we shall need later:

Theorem 4.4 ([God03, God07]). Let pA,Sq be an Artin system of either spherical
or large type. Then pA,Sq satisfies the vertex ribbon property.

The next lemma shows the relevance of the vertex ribbon property in this paper:

Proposition 4.5. Let pA,Sq be an Artin system. If δ is a Dehn Twist of pA,Sq

around a vertex a P S, and pa, aq satisfies the vertex ribbon property in S, then
δpSq „ S.

Proof. By definition of a Dehn twist, there exist a non-trivial decomposition S ´

tau “ B \ C such that mbc “ 8 for every b P B and c P C, and an element h P A
centralising a, such that δpSq “ C Y tau Y hBh´1. By the vertex ribbon property
for pa, aq, h P RibbSpa, aq, so for every i “ 0, . . . , n let pai, biq P SˆS, mi, ti, and εi
be as in Remark 4.2. Up to decomposing h into a product of smaller pa, aq-ribbons,
we can assume that the path γ passes through a only at its endpoints, so either
γ Ď ΓCYtau or γ Ď ΓBYtau. We can assume that we are in the first case up to
swapping B and C, because conjugating B by h is the same as conjugating C by
h´1 and then conjugating the whole generating set by h.

Set h´1 “ 1 and, for every i “ 0, . . . , n, let hi “ tεni . . . tε00 . Set Bi “ hiBh
´1
i and

Si “ C Y tau Y Bi, so that Sn “ δpSq. We shall now prove by induction on i that
Si „ S, and furthermore that ai`1 separates ΓBi

from the rest of ΓSi
. The base

case i “ ´1 holds vacuously. Now suppose the conclusion holds for i ´ 1. There
are four cases to consider, depending on mi.
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If mi “ 1 then ti “ ai, so conjugating Bi´1 by ti (or its inverse) is an elementary
twist around taiu. If mi “ 2 then ti “ bi, so conjugating Bi´1 by ti (or its inverse)
is an elementary twist around tbiu (notice that ai P tbiu

K by construction). If
mi ě 4 is even, then ti “ ∆aibi , so conjugating Bi´1 by ti (or its inverse) is an
elementary twist along the edge tai, biu. In each of these three cases ΓSi

– ΓSi´1

and ai`1 “ ai, which still separates ΓBi
from the rest of ΓSi

.
The last case to consider is when mi ě 3 is odd, so that ti “ ∆aibi . The

only difference with the even case is that ΓSi is obtained from ΓSi´1 by “sliding”
ΓBi´1Ytaiu along the edge tai, ai`1u, as in Figure 5. More formally, if x P C Y tau

and y P Bi are such that mxy ‰ 8, then x “ ai`1. Therefore ai`1 now separates
ΓBi

from the rest of ΓSi
. This concludes the induction, and in turn the proof that

δpSq „ S. □

Figure 5. An elementary twist along the odd edge tai, ai`1u

“slides” Bi´1, so that a vertex in Bi can only be connected to
ai`1 in ΓSi

.

We now study which procedures preserve the vertex ribbon property. We first
observe that, to verify the vertex ribbon property, it is sufficient to understand
centralisers of standard generators. We will freely use this fact in the sequel.

Lemma 4.6. An Artin system pA,Sq satisfies the vertex ribbon property if and
only if for all s P S, ps, sq satisfies the vertex ribbon property in S.

Proof. The forward direction is obvious. For the reverse direction, suppose s, t P S
and t “ gsg´1. Since s and t are conjugate, it follows from [Par97] that there is a
path of odd edges between them, and so there is h P RibbSps, tq (which is the prod-
uct of the Garside elements of these edges). We see that s “ hth´1 “ hgsphgq´1,
so hg P RibbSps, sq by assumption. Hence g P h´1 RibbSps, sq “ RibbSpt, sq as
required. □
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Proposition 4.7. Let pA,Sq be an Artin system. Suppose that A “ AB ˚AD
AC

where B,C Ď S and D “ BXC. Suppose further that pAB , Bq and pAC , Cq satisfy
the vertex ribbon property. Then pA,Sq satisfies the vertex ribbon property.

Proof. We consider the Bass-Serre tree T for the splitting in the statement. We
write vB and vC for the vertices corresponding to AB and AC respectively, and e
for the edge between those vertices, which is stabilised by AD.

By Lemma 4.6, it is enough to prove that, for every s P S and every w P A which
commutes with s, w P RibbSps, sq. Without loss of generality assume that s P B,
so that svB “ vB . We write T s for the subtree of T fixed by s, and notice that if
x P T s then wx P T s as well. There are several cases to consider, according to the
shape of T s.

Case 1. We suppose first that s only fixes vB . Then wvB “ vB so w P AB .
Since pAB , Bq satisfies the vertex ribbon property by hypothesis, we have that
w P RibbBps, sq Ď RibbSps, sq.

Case 2a. Next, suppose that s fixes e, i.e. s P D. We characterise edges in T s:

Claim 4.8. Every edge ge in T s can be written as fe, where f P RibbSps, tq for
some t P D.

Proof of Claim 4.8. We proceed by induction on the distance between the mid-
points of ge and e. The base case is clear by taking t “ s and f “ 1.

For the inductive step, fix ge P T s such that g P RibbSps, tq. Suppose without
loss of generality that gvC is the endpoint furthest from e, and consider an edge
sharing this endpoint in T s, which we may write as ghe for some h P AC . Notice
that, since sghe “ ghe, we have that h´1th “ h´1g´1sgh P AD. By [BP23,
Theorem 1.1], h´1xtyh is parabolic inside of AD, so up to postmultiplying h by an
element of AD (which does not change the edge ghe), we may assume h´1th “ r for
some r P D. By the assumption that pAC , Cq satisfies the vertex ribbon property,
we see that h P RibbCpt, rq Ď RibbSpt, rq, and so gh P RibbSps, rq. This completes
the proof of the claim. □

Now, take w P AS such that wsw´1 “ s, and therefore we P T s. By the Claim,
we may write we “ fe where f P RibbSps, tq for some t P D. In turn w “ fh, where
h P AD ď AB is such that hsh´1 “ t, and as such h P RibbBpt, sq Ď RibbSpt, sq
by assumption that pAB , Bq satisfies the vertex ribbon property. It follows that
w P RibbSps, sq as required.

Case 2b. Finally, suppose that s fixes an edge, and we claim that we can reduce
to Case 2a. Indeed, since s fixes vB , it must also fix some edge of the form be, where
b P AB . Then bxsyb´1 is a parabolic subgroup of AD, so by [BP23] there exists
d P AD and s1 P D such that bxsyb´1 “ d´1xs1yd. By looking at the map AS Ñ Z
sending every generator to 1 we see that bsb´1 “ d´1s1d. Now, since db P AB

conjugates s P B to s1 P D Ď B, the vertex ribbon property for pAB , Bq yields
that db P RibbBps1, sq Ď RibbSps1, sq. Furthermore, since wsw´1 “ s, the element
w1 “ dbwpdbq´1 commutes with s1, and the latter fixes e as it belongs to AD. Then
w1 P RibbSps1, s1q by Case 2a, and therefore w “ pdbq´1w1db P RibbSps, sq, as
required. □

Corollary 4.9. Let pA,Sq be an Artin system. Suppose that, for any Y Ď S
spanning a clique in ΓS, pAY , Y q satisfies the vertex ribbon property. Then pA,Sq

satisfies the vertex ribbon property.
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Proof. We proceed by induction on the cardinality of S, the base case |S| “ 1 being
trivial. Now suppose the conclusion holds for every Artin system pA1, S1q such that
|S1| ă |S|. If ΓS is a clique there is nothing to prove. Otherwise let u, v P S be non-
adjacent in ΓS , and set B “ S ´ tvu, C “ S ´ twu, and D “ B X C. Every clique
in ΓB or ΓC is also a clique in ΓS ; so by induction pAB , Bq and pAC , Cq satisfy the
vertex ribbon property, and therefore so does pA,Sq by Proposition 4.7. □

The vertex ribbon property is also preserved under elementary twists, provided that
it holds for cliques:

Lemma 4.10. Let pA,Sq be an Artin system, and let S1 be obtained from S by
an elementary twist. Suppose further that, for any Y Ď S spanning a clique in
ΓS, pAY , Y q satisfies the vertex ribbon property. Then for any Y 1 Ď S1 spanning
a clique in ΓS1 , pAY 1 , Y 1q satisfies the vertex ribbon property. In particular pA,S1q

satisfies the vertex ribbon property.

Proof. By definition of an elementary twist, there exist J, T,R Ď S such that, if we
set D “ J YJK, B “ RYD, C “ T YD, then S “ BYC while S1 “ B1 YC, where
B1 “ ∆JR∆

´1
J Y D. Notice that there is an isomorphism pAB , Bq Ñ pAB1 , B1q

(see e.g. [BMMN02, Definition 4.4]), so for every Y 1 Ď S1 spanning a clique in ΓB1

(resp. ΓC), pAY 1 , Y 1q has the vertex ribbon property by assumption. Furthermore
any clique of ΓS1 is contained in either ΓB1 or ΓC , as no b1 P B1 ´ D is adjacent
to any c P C ´ D in ΓS1 . Finally, pA,S1q satisfies the vertex ribbon property by
Corollary 4.9. □

We are now ready to prove that, if we assume the vertex ribbon property for
cliques, then we can promote the generalised twist equivalence from Theorem 3.7
to a genuine twist equivalence.

Theorem 4.11. Let pA,Sq be an Artin system, with A one-ended. Suppose that
the following hold:

‚ For any X Ď S spanning a big chunk in ΓS, pAX , Xq satisfies the strong
twist conjecture;

‚ For any Y Ď S spanning a clique in ΓS, pAY , Y q satisfies the vertex ribbon
property.

Then pA,Sq satisfies the strong twist conjecture.

Proof. Theorem 3.7 produces a sequence S “ S0, . . . , Sk “ U of Artin generating
sets such that, for every i, Si`1 is obtained from Si by a conjugation, an elementary
twist, or a Dehn Twist (with respect to Si).

It is now enough to inductively prove that every Si is twist equivalent to S; we
shall also prove that, for every Y Ď Si spanning a clique in ΓSi

, pAY , Y q satisfies
the vertex ribbon property. There is nothing to prove for the base case S0 “ S.
Now assume that Si satisfies the inductive hypothesis. By Corollary 4.9, pA,Siq

has the vertex ribbon property, so Proposition 4.5 yields that any Dehn twist of A
(with respect to Si) is a compositions of elementary twists. Thus Si`1 „ Si „ S;
moreover, by Lemma 4.10, whenever Y 1 Ď Si`1 spans a clique in ΓSi`1

, pAY 1 , Y 1q

has the vertex ribbon property. This concludes the inductive step, and the proof
of Theorem 4.11. □
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4.1. New examples of the strong twist conjecture. We now collect several
examples of Artin groups satisfying the strong twist conjecture, by gathering results
from the literature.

Lemma 4.12. Let pA,Sq be an Artin system of large type (i.e. for every a, b P S,
mab ě 3). Suppose that ΓS is connected and has no separating vertex. Assume
further that pA,Sq is either:

(1) a dihedral Artin group;
(2) of type XXXL (i.e. for every a, b P S, mab ě 6);
(3) triangle-free (i.e. for every a, b, c P S, maxtmab,mbc,macu “ 8);
(4) free-of-infinity (i.e. for every a, b P S, mab ă 8).

Then pA,Sq satisfies the strong twist conjecture.

Proof. Let U be an Artin generating sets for A such that RS “ RU . By [MV24,
Corollary B], ΓS „ ΓU ; therefore, up to replacing U by a twist-equivalent generating
set, we can assume that ΓS – ΓU , that is, U “ φpSq for some φ P AutpAq. We
split the proof into the various cases from the list above.

Case (1): Let S “ ta, bu and let m “ mab. If m is odd, then [GHMR00,
Theorem C] gives that OutpAq – Z{2Z is generated by the global inversion, and
therefore φ must be a conjugation since RS “ RφpSq.

Now assume that m is even. Up to composing φ with a conjugation and the
graph automorphism swapping a and b, we can assume that φpaq “ a. Then, by
e.g. inspecting the proof of [Jon24, Lemma 2.9], one gets that φ is either trivial or
φpbq “ a´1b´1a´1. The latter cannot happen since a´1b´1a´1 and b have different
images in the abelianisation, contradicting that RS “ RφpSq.

In view of the above case, we henceforth assume that |S| ě 3, and denote ΓS

simply by Γ.
Case (2): Let G be the collection of simplicial graphs obtained from Γ via a

sequence of elementary edge twists. For every Γ1 P G let S1 „ S be an Artin
generating set such that Γ1 – ΓS1 , and fix an isomorphism φS1 : A Ñ A consisting
of a sequence of edge twists from S to S1 (if Γ1 “ Γ we choose S1 “ S and φS “ id).
Let S be the collection of such Artin generating sets.

Then [BMV24, Theorem 9.6] states that AutpAq is generated by the following
elements:

‚ The element σ – φ´1
S2 ˝σ˝φS1 whenever S1, S2 P S and σ : pA,S1q Ñ pA,S2q

is an isomorphism of Artin systems. By construction σ fixes S setwise, since
σ identifies S1 with S2.

‚ The element t – φ´1
S2 ˝ t ˝ φS1 for every S1, S2 P S and every edge twist t

taking S1 to S2. By construction t is a composition of edge twists.
‚ Inner automorphisms.
‚ The global inversion i mapping every generator s P S to s´1.

The subgroup N ď AutpAq generated by the first three types of elements is the
kernel of the map AutpAq Ñ AutpZq “ Z{2Z induced by mapping every generator
s P S to 1. Moreover φ P N , as φpsq is conjugated to s for every s P S, thus φpSq „ S
by construction. This proves that pA,Sq satisfies the strong twist conjecture.

Case (3): By combining [Cri05, Theorems 1 and 2], the automorphism group
of A has exactly the same description as in the XXXL case, so the strong twist
conjecture for pA,Sq follows identically.
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Case (4): By [Vas25, Theorem A], the automorphism group of A is generated
by graph automorphisms, the global inversion, and conjugations; hence a simplified
version of the proof above yields the strong twist conjecture for pA,Sq in this
case. □

Remark 4.13. In fact, if pA,Sq is large-type triangle-free, the arguments of [Cri05]
show that pA,Sq satisfies the strong twist conjecture even if ΓS has a separating
vertex.

Lemma 4.14. Let pA,Sq be a right-angled Artin system (i.e. for all a, b P S,
mab P t2,8u), with A one-ended. Then pA,Sq satisfies the strong twist conjecture.

Proof. Let U be an Artin generating set for A such that RS “ RU . By combining
[Dro87] and [Bau81], there is an isomorphism of Artin systems φ : pA,Sq – pA,Uq.
Furthermore, by [Lau95] (see also [Ser89]), AutpAq is generated by graph auto-
morphisms, transvections, inversions, and partial conjugations (all with respect
to S). Since the commutator subgroup is characteristic, the abelianisation map
Ab : A Ñ Zn induces a map Ab˚ : AutpAq Ñ GLpn,Zq. One easily checks that the
subgroup H ď AutpAq preserving RS is the preimage under Ab˚ of

Ab˚pxtσ : pA,Sq Ñ pA,Sq is a graph automorphismuyq,

so since φ P H it must lie in a coset of the form kerpAb˚qσ for some graph auto-
morphism σ. It is now enough to notice that σ fixes S setwise, and, by [Lau95,
Theorem 2.2], kerpAb˚q is generated by the partial conjugations, which are exactly
elementary twists in the sense of Definition 3.2. This proves that U “ φpSq „ S. □

Now we turn to Artin systems of spherical type. Restricting to indecomposable
systems (where there is no visual decomposition as a direct product) there are four
infinite families. One family is the dihedral Artin groups, which we have already
considered. Spherical systems in the other three families also satisfy the strong
twist conjecture. The only exception is D5, whose outer automorphism group is
not known. In Figure 6, we list the Coxeter graphs of the Artin groups of type An,
Bn and Dn.

Figure 6. From left to right, the Coxeter graph of the spherical
Artin group of type An, Bn and Dn. The notation is different from
the one we have been using throughout: here non-adjacent vertices
in the Coxeter graph correspond to commuting generators, while
unlabelled edges correspond with braid relations of length 3.

Lemma 4.15. Let pA,Sq be a spherical Artin system of type An, with n ě 3; Bn,
with n ě 3; or Dn, with n ě 4 and n ‰ 5. Then pA,Sq satisfies the strong twist
conjecture.

Proof. Write WS for the quotient Coxeter group, obtained as the quotient of A
with kernel KS :“ xxs2 | s P Syy. The group WS is finite since pA,Sq is spherical.
Suppose U is an Artin generating set of A with RS “ RU , and define WU and KU
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as before. Since RS “ RU , notice that KS “ KU , so WS – WU and in particular
WU is finite. Hence pA,Uq is also spherical by definition.

By Paris’ solution to the isomorphism problem within the class of spherical Artin
groups, it follows that ΓS – ΓU [Par04], so there is an automorphism ψ : A Ñ A
such that ψpSq “ U .

We will now show that rψs P OutpAq has a representative that simply permutes
S. Since such an automorphism fixes S setwise, and replacing S by a conjugate
generating set is a twist equivalence, this will complete the proof.

We now divide into cases based on the isomorphism type of A. Given φ1, φ2 P

AutpAq, we will write φ1 „ φ2 if rφ1s “ rφ2s in OutpAq.
Case An: In this case ψ „ ιi for i P t0, 1u, where ι inverts each element of S

[DG81]. Since RU “ RS , it cannot be that i “ 1, since then a generator in S would
be conjugate to the inverse of a generator in S, contradicting the existence of the
map to Z sending each s P S to 1.

Case Dn, n ‰ 5: In this case ψ „ σιi, for i P t0, 1u, where ι is as before and σ
is a possibly trivial permutation of the generators [Sor21, CP24]. Since σ does not
invert any generators, it must be that i “ 0 for the same reason as in the previous
case.

Case Bn: This case is more complicated. Write r1, . . . , rn for the standard gener-
ating set, wheremrn´1rn “ 4, and set ∆B “ pr1 . . . rnqn and δ “ rn´1 . . . r1r1 . . . rn´1.
By inspecting the proof of [CC05, Proposition 10] and the consequent remark,
ψ „ T kιjµi, for k P Z and i, j P t0, 1u, where ι is as above while T and µ have the
following forms (in each case 1 ď ℓ ď n´ 1):

T :

#

rℓ ÞÑ rℓ∆B

rn ÞÑ rn∆
´pn´1q

B

and µ :

#

rℓ ÞÑ r´1
ℓ

rn ÞÑ δrn

(Via different methods, Paris and Soroko recovered the same result for the case
n ě 5 [PS25, Corollary 2.6]. The reader should notice that the generators extracted
from the proof of [CC05, Proposition 10] and those presented in the statement of
[PS25, Corollary 2.6] are the same, up to composition with inner automorphisms.)

We consider the induced action of OutpAq on the abelianisation, which is iso-
morphic to Z2 and generated by r1 (which is equal to rℓ for 1 ď ℓ ď n ´ 1) and
rn. Since T kτ jµi preserves the generators setwise up to conjugacy, the action on
the abelianisation can be at most a permutation of coordinates. Now, by looking
at the action on the r1 coordinate, since |∆B | ą 2, we see that k “ 0 and i´ j “ 0.
Now, by looking at the action on the second coordinate, we see that i “ 0, so j “ 0,
completing the proof. □

Corollary 4.16. Let pA,Sq be an Artin system, with A one-ended. Suppose that,
for every X Ď S spanning a big chunk, pAX , Xq is as in one of Lemmas 4.12-4.14-
4.15. Then pA,Sq satisfies the strong twist conjecture.

Proof. Lemmas 4.12-4.14-4.15 ensure that pAX , Xq satisfies the strong twist conjec-
ture whenever X Ď S spans a big chunk. Now let Y Ď S span a clique, which must
be contained in some big chunk, say spanned by X Ď S. Notice that if pAX , Xq is
of large type (resp. spherical type, right-angled) then so is pAY , Y q. Then pAY , Y q

enjoys the vertex ribbon property, either by Theorem 4.4, or because a right-angled
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Artin system with complete defining graph is a free abelian group with the stan-
dard generating set, for which the vertex ribbon property clearly holds. Hence the
statement follows from Theorem 4.11. □
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