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Introduction

Dehn twist quotients

Let S be a compact, oriented surface, and letMCGpSq be the group of its orientation-preserving
self-homeomorphisms, up to isotopy. Among these are the Dehn twists, which are particular
homeomorphisms that coincide with the identity map outside an annulus. Let DTK be the
normal subgroup generated by all K-th powers of Dehn Twists.
This thesis aims to study algebraic and geometric properties of the quotient MCGpSq{DTK
that arise when K is suitably large. One reason of interest for these quotients is that they can
be regarded as “Dehn filling quotients” of mapping class groups, as pointed out and explored
in [DHS21]. In fact, Thurston’s Dehn filling theorem [Thu97] states that, if M is a three-
dimensional hyperbolic manifold with torus boundary, and one chooses a simple closed curve γ
on the boundary, then the complete manifold obtained by filling the boundary with a solid torus,
whose meridian is γ, is again hyperbolic, except for finitely many curves γ. In other words, if
we take the fundamental group π1pMq, which is relatively hyperbolic in the sense of Gromov
[Gro87], then the quotient by the subgroup normally generated by γ is hyperbolic, except in
finitely many cases. Now, mapping class groups are not hyperbolic, except if the surface is very
simple, but it is still natural to consider the quotient by the subgroups generated by powers of
Dehn twists, which correspond to the curves on the surface that one wants to “fill”, and ask
whether these quotients share the same “hyperbolicity features” as the mapping class group if
one avoids a certain number of “bad” powers. This was done in both [DHS21] and [BHMS20],
where the authors also use properties of these groups to relate questions on finite quotients of
mapping class groups to residual finiteness of certain hyperbolic groups.
These quotients of mapping class groups also appear naturally in a somewhat unrelated are of
mathematics, namely the study of topological quantum field theories, see e.g. [Fun99]. Yet
another reason of interest is simply that given a group G and a collection of elements g1, . . . , gn,
it is natural to study the normal closure of the set, and the corresponding quotient. In the case of
our quotients of mapping class groups, we are considering a collection of conjugacy representatives
of Dehn twists, and we are “stabilizing” by taking powers.

Rigidity results

We have three main results, analogous to results for mapping class groups, that illustrate three
different forms of rigidity of the groups we are considering. In all cases, we consider punctured
spheres, in order to avoid some complications that arise in the case of surfaces with genus.
The first result we state, which answers [BHMS20, Question 3] in the case of punctured spheres, is
quasi-isometric rigidity of our groups of interest: if a groupG is quasi-isometric toMCGpSq{DTK ,
which roughly speaking means that G “has the same large scale geometry as MCGpSq{DTK”
(in a sense that shall be clarified in Section 5.1), then these two groups are isomorphic, up to
taking finite index subgroups or quotienting by finite subgroups. To be more precise, we say
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that two groups G and H are weakly commensurable if there exist two finite normal subgroups
L�H and M �G such that the quotients H{L and G{M have two finite index subgroups that
are isomorphic.

Theorem 1 (Quasi-isometric rigidity). Let S “ S0,b be a punctured sphere, with b ě 7 punctures.
There exists K0 P Ną0 such that if K is a non-trivial multiple of K0 then H “ MCGpSq{DTK
is quasi-isometrically rigid, meaning that if a finitely generated group G is quasi-isometric to H
then G and H are weakly commensurable.

Quasi-isometric rigidity of mapping class groups was first proven in [BKMM12], see also [Ham07],
but our argument is closer to the proof given in [BHS21, Section 5]. We cannot use the key
theorem from [BHS21, Section 5] as stated, but we will instead give another version of it, Theorem
5.2.15, which is of independent interest. Roughly speaking, this theorem allows one to extract
an automorphism of a certain graph from a quasi-isometry of a space with certain “hyperbolicity
features”.
In our case of interest, this graph can be related to a certain subgraph of the quotient of the
curve graph. From there we are able to prove quasi-isometric rigidity of our quotient groups
adapting several arguments due to Bowditch, especially from [Bow20], where the author proved
quasi-isometric rigidity of another metric graph associated to a surface, the pants graph. Indeed,
in some sense quotients of mapping class groups by powers of Dehn twists more closely resemble
the pants graph than the mapping class group, as will be clear in Chapter 6. This is why, in order
to illustrate the strategy of the proof of Theorem 1, we also provide an alternative argument for
a sizable part of the proof of quasi-isometric rigidity of pants graphs of spheres:

Theorem 2 (QI rigidity for pants graphs of spheres; [Bow20, Theorem 1.4]). Let S “ S0,b be a
punctured sphere, with b ě 7 punctures, and PpSq be its pants graph. Every self-quasi-isometry
of PpSq is at bounded distance from the isometry induced by some element of the mapping class
group.

From quasi-isometric rigidity descend some other rigidity results. The first one can be regarded as
a form of algebraic rigidity, and roughly speaking states that an automorphism of our quotients
can only be a conjugation. Here, MCG˘ denotes the extended mapping class group, where
orientation-reversing mapping classes are allowed.

Theorem 3 (Algebraic rigidity). Let S “ S0,b be a punctured sphere, with b ě 7 punctures.
There exists K0 P Ną0 such that, if K is a non-trivial multiple of K0, then

1. AutpMCGpSq{DTKq “ MCG˘pSq{DTK , and OutpMCGpSq{DTKq – Z{2Z;

2. The abstract commensurator of MCG˘pSq{DTK is trivial, that is, any isomorphism be-
tween finite index subgroups of MCG˘pSq{DTK is the restriction of an inner automor-
phism.

In the case of mapping class groups, the analogue of the result above was proven by Ivanov in
his famous paper [Iva97]. There, he studied simplicial automorphisms of the curve graph, first
introduced by Harvey [Har81], whose vertices are the simple closed curves on the surface, up to
isotopy, and whose edges correspond to disjointness. Ivanov showed that every automorphism
of the curve graph comes from a mapping class of the surface, which acts on the set of curves
and preserves disjointness. Similarly, our quasi-isometric rigidity and in turn algebraic rigidity
results rely on an analogue of Ivanov’s theorem for quotients of curve graphs:

Theorem 4 (Combinatorial rigidity). Let S “ S0,b be a punctured sphere, with b ě 7 punctures.
There exists K0 P Ną0 such that, if K is a non-trivial multiple of K0, then the natural map
MCG˘pSq{DTK Ñ AutpCpSq{DTKq is an isomorphism.

2



In fact, the result applies to other quotients of mapping class groups of punctured spheres, see
Theorem 4.4.1 and the discussion in the outline section. Moreover, an analogue of the theorem
also holds for b “ 4, but in that case the map has finite kernel, see Theorem 4.1.2.

Outline of proofs

Combinatorial rigidity

We will first prove combinatorial rigidity, Theorem 4. The main idea for doing so is the following.
Fix a punctured sphere S, say with at least 7 punctures, let C be its curve graph, and let K be a
suitable large integer. While the map C Ñ C{DTK is not a covering map (as it is quite far from
being locally injective), there are still various subgraphs of C{DTK that can be lifted. This idea
was first used in [DHS21] to show that C{DTK is hyperbolic by lifting geodesic triangles, and was
developed further in [BHMS20]. We push these techniques even further to show that the graph
constructed by Aramayona and Leiniger in [AL13] can be lifted. This graph is a finite rigid set
for C, that is, any isometric embedding of this finite subgraph extends to a unique mapping class.
Consider now an automorphism ϕ of C{DTK and a copy X of one such graph in C{DTK . One
can consider the following diagram, where the hats denote lifts and π is the quotient projection:

pX zϕpXq

X ϕpXq

g

π π

ϕ

From the diagram we obtain a candidate element of the extended mapping class group that

induces ϕ, namely the element g P MCG˘ mapping pX to zϕpXq. Showing that this candidate is
actually the desired element requires more care, and further lifts, but this is the basic idea.
In order to prove quasi-isometric rigidity, we will also need a version of the combinatorial rigidity
theorem for some subgraphs of C{DTK , spanned by classes of curves that cut out certain subsur-
faces. This is shown in Chapter 7, where we combine arguments due to Bowditch with further
lifting techniques.

Quasi-isometric rigidity

To prove quasi-isometric rigidity, we will use a result about self quasi-isometries of hierarchically
hyperbolic spaces, defined by Behrstock, Hagen and Sisto in [BHS17] and which, roughly speaking,
are those spaces with the same “hyperbolicity features” as the mapping class group. For this
class of spaces, [BHS21, Theorem 5.7] states that if X is hierarchically hyperbolic and satisfies
some additional assumptions then every self-quasi-isometry f of X induce an automorphism ϕ
of a certain graph called the hinge graph. This is a graph that encodes the “standard flats” of
X, that is, it roughly describes how isometric copies of the Euclidean space Rn inside X are
arranged. Actually, the additional assumptions of that theorem do not apply to our case, but
we show that a similar statement still holds under different hypotheses that do apply; this is
Theorem 5.2.15. The new requirements are also met by the pants graph, and indeed in Chapter
6 we show how to recover a result of Bowditch [Bow20] about quasi-isometric rigidity of pants
graphs of spheres from Theorem 5.2.15. Our argument is not completely new, since it relies on
lemmas from [Bow16] and Sections 6 and 7 of [Bow20].
Both in the case of pants graphs and in the case of mapping class groups mod powers of Dehn
twists, starting with an automorphism ϕ of the hinge graph, we use combinatorial arguments to
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recover automorphisms of the graphs from Chapter 7. Then, by combinatorial rigidity of such
graphs, these automorphisms are induced by some element g of the mapping class group, and
with some more effort one can show that f and g are at bounded distance.

Algebraic rigidity

Since automorphisms of a group, and more generally isomorphisms between finite index sub-
groups, induce quasi-isometries, one can expect to obtain strong algebraic rigidity results from
quasi-isometric rigidity. We do just that in Theorem 9.0.1, using results of Antolin, Minasyan
and Sisto from [AMS16]. Finite normal subgroups could cause the outer automorphism group to
be finite rather than trivial, so the key technical results we need is that MCG˘pSq{DTK does
not contain non-trivial finite normal subgroups, Lemma 9.0.7.

Outline of Chapters

In Chapter 1 we recall some basic definitions and facts about mapping class groups and curve
graphs. Chapter 2 introduces the basic tools of lifting and projecting that we will use throughout
the thesis, recalling and sometimes extending results from [DHS21, BHMS20]. In Chapter 3 we
study the combinatorial properties of the finite rigid sets from [AL13]. The key results here are
that our chosen finite rigid sets map injectively to the quotient, see Theorem 3.3.3, and that
they can be lifted from quotients of curve graphs to curve graphs, as we prove in Theorem 3.4.1.
We then use this in Chapter 4 to show the combinatorial rigidity Theorem 4, see Theorem 4.4.1.
In Chapter 5 we first review some background on coarse geometry and geometric group theory,
and then gather the relevant properties of hierarchically hyperbolic spaces. Finally, we show
that quasi-isometries of suitable hierarchically hyperbolic spaces induce automorphisms of an
associated graph, Theorem 5.2.15. In Chapter 6 we show how to use Theorem 5.2.15 to recover
quasi-isometric rigidity of the pants graph (still using some of the original arguments), as this
will serve as an outline for the proof of the quasi-isometry rigidity Theorem 1. In Chapter 7 we
prove further combinatorial rigidity results that will be needed in Chapter 8 to prove Theorem 1,
which is a combination of Theorem 8.0.16, which says that quasi-isometries are all at controlled
distance from left-multiplications, and the general Lemma 8.0.18. Finally, in Chapter 9 we show
algebraic rigidity, Theorem 3, see Theorems 9.0.1 and 9.0.8.
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Chapter 1

Setting and notation

In this Chapter we gather all the notions and facts we need in order to understand and prove
the Combinatorial Rigidity Theorem 4, postponing the prerequisites for the second half of the
thesis to Chapter 5. We will always assume that the reader is familiar with the basic definitions
and examples from the following areas:

• group theory (groups and subgroups, indices, centralizers, normal subgroups. . . );

• topology (topological spaces, homeomorphisms, homotopies and isotopies, coverings. . . );

• metric geometry (metric spaces, neighborhoods, balls, curves, length metric. . . ).

1.1 The mapping class group of a surface

For this and the following sections we mainly follow the book of Farb and Margalit [FM12]. By
surface of finite type, or simply surface, we mean a compact, connected, oriented 2-manifold that
is possibly punctured, that is, with a finite set of points removed (of course, after we puncture
a compact surface, it ceases to be compact). The classification theorem of surfaces (see e.g.
[Tho92] for a proof) states that any closed, connected, orientable surface is homeomorphic to the
connected sum of a 2-dimensional sphere with g ě 0 tori, and any finite type surface is obtained
from a closed surface by removing b ě 0 punctures. Then the set of homeomorphism types of
compact surfaces is in bijective correspondence with the set tpg, bq : g, b ě 0u.
Notice that, from a topological viewpoint, a surface with one point removed is homeomorphic to
the same surface with a disk removed, thus the classification does not see the difference between
punctures and boundary components. However, sometimes it is better to specify a surface by the
triple pg, b, nq, where n is the number of boundary components and b is the number of punctures.

Definition 1.1.1. Let HomeopS, BSq denote the group of homeomorphisms of S that restrict
to the identity on the boundary. The extended mapping class group of S, denoted MCG˘pSq,
is the group of isotopy classes of elements of HomeopS, BSq, where isotopies are required to fix
the boundary pointwise. The mapping class group of S, denoted MCGpSq, is the index two
subgroup of MCG˘pSq generated by classes of orientation-preserving homeomorphisms.

This is where the difference between boundary components and punctures is relevant: an element
of MCGpSq, which we also call a mapping class, has to fix the boundary components pointwise,
but may permute the punctures.
The support of a mapping class f is the subsurface (defined up to isotopy) given by the closure
of the set of points x P S such that fpxq ‰ x.
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1.1.1 Curves and (half) Dehn twists

Definition 1.1.2. By a curve on a surface S we mean a simple closed curve, that is, the image
of a continuous, injective map from the circle S1 to S. A curve is essential if it is not homotopic
to a point, a puncture, or a boundary component.

A curve α is separating if Szα has two connected components, and in this case we say that α
bounds these two subsurfaces. Notice that if the surface S is a sphere (i.e. it has no genus, as
will almost always be the case in this thesis) then every curve is separating, e.g. by the Jordan
curve Theorem [Jor91].
The following definition is due to Dehn (see [Deh38, Section 2b]). Consider the Euclidean plane
with polar coordinates pθ, rq, and consider the annulus A “ tpθ, rq|1 ď r ď 2u. Choose the
orientation on A such that a counterclockwise rotation is positive. Let T : A Ñ A be the
twist map of A given by the formula T pθ, rq “ pθ ` 2πr, rq, which is an orientation-preserving
homeomorphism that fixes BA pointwise. We call T the left twist of our annulus. Note that
instead of using θ` 2πr we could have used θ´ 2πr, thus obtaining what is called a right twist.

Figure 1.1: The left twist T of an annulus.

Now let S be an oriented surface and let α be a curve in S. Let N be a regular neighborhood of
α, which we call an annulus with core curve α, and choose an orientation-preserving homeomor-
phism ϕ : A Ñ N . The (left) Dehn twist about α, denoted Tα, is the homeomorphism

x Ñ

#

ϕ ˝ T ˝ ϕ´1pxq if x P N,

x if x P SzN.

The isotopy class of the Dehn twist Tα does not depend on the choice of N and ϕ, nor on the
choice of α within its free isotopy class. Thus we will often abuse notation slightly and view Tα
as a mapping class. By construction, the support of Tα is the annulus A.

Lemma 1.1.3 (Properties of Dehn Twists). Let α be a curve on a surface S. The following
facts hold for the Dehn twist Tα:

• If α is essential then Tα has infinite order;

• Tαpβq “ β iff ipα, βq “ 0;

• Tα “ Tβ iff α and β are isotopic;

• If f P MCG˘pSq then fTαf
´1 “ T˘

fpαq
, where the sign is positive if and only if f is

orientation-preserving.

Proof. These facts are well-known, see e.g. [FM12, Sections 3.2 and 3.3] for proofs.

If the surface has punctures, it is sometimes possible to define a half Dehn twist as follows. Let
α be a curve that bounds a twice-punctured disk D. Let D0 be the disk of radius 3 and centered
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at the origin inside the Euclidean plane, with the points p˘1, 0q removed, and let ϕ : D0 Ñ D be
an orientation-preserving homomorphism mapping BD0 to α and punctures to punctures. Then
define the half Dehn twist Hα as (the isotopy class of) the composition Hα “ ϕ ˝H ˝ϕ´1, where
in polar coordinates pθ, rq the map H is defined as follows:

Hpθ, rq “

#

pθ ` π, rq if r ď 2,

pθ ` p3 ´ rqπ, rq if 2 ď r ď 3.

In other words, H does a half-rotation around the origin and swaps the punctures.

Figure 1.2: The half twist H of a twice-punctured disk. Notice that the punctures are swapped.

With similar arguments as for the proof of Lemma 1.1.3 one can show the following:

Lemma 1.1.4 (Properties of half Dehn Twists). Let α be a curve on a punctured surface S that
bounds a twice-punctured disk. The following facts hold for the half Dehn twist Hα:

• H2
α “ Tα, thus Hα has infinite order if α is essential;

• if f P MCG˘pSq then fHαf
´1 “ H˘

fpαq
, where the sign is positive if and only if f is

orientation-preserving.

We denote by PMCGpSq the pure mapping class group, that is, the finite index subgroup of
MCGpSq generated by those mapping classes which do not permute the punctures. The quo-
tient MCGpSq{PMCGpSq is isomorphic to the symmetric group on the number of punctures
and is generated by a finite number of half Dehn twists which act as transpositions. More-
over, the following celebrated theorem was first proven by Dehn [Deh87] and Lickorish [Lic64]
independently:

Theorem 1.1.5. The pure mapping class group of a surface is generated by a finite number of
Dehn twists around non-separating curves. Therefore the mapping class group is finitely gener-
ated.

We will be interested in the special case of the previous theorem when S “ Sb is a sphere with
punctures, which actually follows from work by Artin [Art47] as explained in [FM12, Chapter 9]:

Theorem 1.1.6. Let Sb be a sphere with b ě 4 punctures. Order the punctures t1, . . . , bu and
let βi be a curve surrounding the punctures i, i` 1, so that

ipβi, βjq “

#

2 if |i´ j| “ 1 pmod bq,

0 otherwise.

Then the half Dehn twists around β1, . . . , βb generate MCGpSbq.

An example of such curves are the minimal curves in the finite rigid set, defined in Chapter 3.
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1.2 The curve graph

1.2.1 Simplicial graphs

This subsection gathers the basic notions of graph theory. The reader which is familiar with
what a simplicial graph is could easily skip this section.

Definition 1.2.1. An abstract simplicial graph is a pair X “ pV,Eq, where V is a set of vertices
and E is a set of unordered pairs of distinct vertices, that we call edges.

In other words, we do not allow multiple edges between the same two vertices, nor edges joining a
vertex to itself. Moreover, we are considering undirected graphs, that is, edges have no preferred
direction. We will often refer to V as the 0-skeleton Xp0q of X.

Definition 1.2.2. A combinatorial path is a sequence x0, x1, . . . , xn P V such that for every
i “ 0, . . . , n ´ 1 the vertices xi and xi`1 are adjacent, i.e., they are connected by an edge. We
say that the path connects the vertices x0 and xn, which are the endpoints of the path. A graph
is connected if every two vertices are connected by some path.

A simplicial graph can be endowed with a metric by saying that every edge has length 1. In
other words, a path x0, x1, . . . , xn has length n, and for every two vertices v, w P V the distance
dXpv, wq is given by the minimal length of a path connecting them. Therefore with a slight abuse
of notation we will often view a graph X as the metric space defined as follows:

• for every e P E take an isometric copy of the unit interval r0, 1s and identify the endpoints
of e with the endpoints of the interval;

• glue two edges along an endpoint if they share a common vertex;

• endow the resulting space with the length metric.

We will call this metric space the geometric realization of the abstract simplicial graph. Notice
that a graph is connected, in the sense of Definition 1.2.2, if and only if its geometric realization
is path connected in the usual sense.

Definition 1.2.3. We say that a path is a geodesic segment if it realizes the distance between
its endpoints, that is, if it has minimal length. One can similarly define geodesic rays and lines,
which are infinite (resp. bi-infinite) paths which realize the distance between any two of their
vertices. We will often refer to these objects simply as geodesics, when it will be clear from the
context whether we are talking about lines, rays, or segments.

Definition 1.2.4. A simplex of a graph X is a (possibly empty) collection of pairwise adjacent
vertices. The dimension of a simplex is the number of its vertices minus 1.

Vertices and edges are themselves simplices, respectively, of dimension 0 and 1. Moreover, it is
sometimes convenient to see the empty set H as a simplex without vertices.

Definition 1.2.5. A subgraph of X “ pV,Eq is a graph X 1 “ pV 1, E1q such that V 1 Ď V and
E1 Ď E. A subgraph X 1 Ď X is the induced subgraph spanned by V 1 if two vertices v, w P V 1

are adjacent in X 1 if and only if they are adjacent in X.

Definition 1.2.6. If K, L are disjoint induced subgraphs of X such that every vertex of K is
adjacent to every vertex of L, then their join K ‹ L is the induced subgraph with vertex set
Kp0q Y V p0q.
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Definition 1.2.7. For a simplex ∆ Ď X, the link Lkp∆q is the union of all simplices Σ of X
such that Σ X ∆ “ H and Σ ‹ ∆ is a simplex of X. The star of ∆ is given by ‹∆ “ ∆ ‹ Lkp∆q.

Definition 1.2.8. Let X,Y be two graphs. A graph morphism ϕ : X Ñ Y consists of a map
Xp0q Ñ Y p0q mapping adjacent vertices to adjacent vertices. A graph morphism is locally injective
if it is injective when restricted to the star of any vertex; it is an isometric embedding if for every
two vertices v, w P Xp0q we have that

dXpv, wq “ dY pϕpvq, ϕpwqq.

An isometric embedding which is surjective (hence also bijective) is called an isomorphism. An
isomorphism from a graph X to itself is called an automorphism. The group of automorphisms
of a graph will be denoted by AutpXq.

1.2.2 Definition of the curve graph

Recall that by curve we mean a simple closed curve on a surface S. We will often conflate a
curve α with its free homotopy class, that is, the class of all curves on S which admit an unbased
homotopy to α.
The geometric intersection number between free homotopy classes a and b of curves in a surface
S is defined as the minimal number of transverse intersection points between a representative
curve in the class a and a representative curve in the class b:

ipa, bq “ mint#pα X βq |α P a, β P bu.

We often abuse notation slightly by writing ipα, βq for the intersection number between the
homotopy classes of simple closed curves α and β. We will say that two curves intersect essentially,
or simply that they intersect, if their intersection number is positive. Notice that, since the surface
is oriented, the regular neighborhood of a curve is an oriented annulus, and therefore every curve
can be homotoped away from itself. This shows that the intersection number of a curve with
itself is always zero.
The following definition is due to Harvey [Har81]. First define the complexity of a surface with
genus g, b punctures, and n boundary components as 3g ` b` n´ 3.

Definition 1.2.9. Let S be a surface of complexity at least 2. The curve graph of a surface S
is the simplicial graph whose vertices are the free homotopy classes of simple, closed, essential
curves, and where two curves are joined by an edge if they are disjoint, that is, if ipα, βq “ 0.
We denote by dS the distance in the curve graph.

Notice that the definition does not see if we replace the punctures with boundaries, because we
only consider essential curves (which cannot be homotopic to punctures or boundary compo-
nents). Therefore, unless otherwise stated, we will always assume that our surfaces only have
punctures.
By construction, simplices of the curve graphs are tuples of pairwise disjoint essential curves,
and we can cut S along these surfaces. In particular, a maximal simplex must cut the surface
into the finest subdivision possible. It can be shown (see e.g. [FM12, Section 8.3.1]) that such
a subdivision decomposes S into pairs of pants, that is, subsurfaces homeomorphic to a sphere
with three disks removed; therefore we say that a maximal simplex in the curve graph is a pants
decomposition. One can then easily see that the complexity of a surface corresponds to the
number of curves in a pants decomposition. This is why we asked the complexity to be at least
2 in Definition 1.2.9, so that the curve graph has some edges, and it is actually connected by a
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result of Lickorish [Lic64]. However, for surfaces of complexity 1 the graph defined in Definition
1.2.9 is just a collection of countably many points with no edges. Therefore, in order to define
the curve graph of a complexity 1 surface, one needs to replace the adjacency relation in order
to detect the minimum intersection number possible:

• If S is a torus with one puncture, two curves α, β are adjacent if and only if ipα, βq “ 1;

• If S is a sphere with four punctures, two curves α, β are adjacent if and only if ipα, βq “ 2.

In both cases, the curve graph is isomorphic to the 1-skeleton of the Farey complex, which is the
triangulation of the hyperbolic plane depicted in Figure 1.3 (see e.g. [Min96] for a proof).

Figure 1.3: The Farey complex.

The following lemma summarizes some well-known properties of the Farey complex (see e.g.
Bowditch-Epstein [BE88], Hatcher-Thurston [HT80], and Series [Ser85]):

Lemma 1.2.10. The following facts hold for the Farey complex:

• Every edge belongs to exactly two triangles (that is, 2-dimensional simplices).

• For every two triangles T, T 1 there exists a sequence of triangles T “ T1, . . . , Tk “ T 1 such
that Ti and Ti`1 share an edge.

• Any automorphism of the Farey complex is uniquely determined by its restriction to a
triangle.

Remark 1.2.11. If S “
Ůk
i“1 Si is a disconnected subsurface, and each connected component Si

has complexity at least 1, then we can define the curve graph of S as in Definition 1.2.9, which
is a nontrivial join since every curve lying on a component is disjoint from every curve lying
on another one. Hence curve graphs of disconnected subsurfaces have diameter at most 2, and
therefore are rarely interesting from a large-scale viewpoint.

1.2.3 Annular curve graph

Recall that an annulus A on a surface S is the regular neighborhood of a curve γ Ă S, and we
say that the annulus is essential in S if so is its core. We cannot define its curve graph as before,
since it would be empty: the only simple closed curve on A is the core, which is homotopic
to both boundary components and therefore not essential in A. Instead, following Masur and
Minsky [MM00], we fix a point x0 P γ and an orientation of γ, so that we can see γ as an element
of the fundamental group π1pX,x0q. Let pγ : Sγ Ñ S be the annular covering, that is, the
covering associated to the subgroup xγy ď π1pX, pq, to which A lifts homeomorphically. There

is a natural compactification of Sγ to a closed annulus xSγ .
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Definition 1.2.12. The annular curve graph associated to the curve γ is the simplicial graph
whose vertices are the paths connecting the two boundary components of xSγ , modulo homotopies
that fix the endpoints, and where two such paths are adjacent if they have representatives with
disjoint interiors (but may share one or both endpoints).

One sees that the definition does not depend on the representative of the isotopy class of γ, nor
on the choices of a base point x0 and of an orientation for γ. We will denote the annular curve
graph of the annulus with core γ by Cpγq, and by dγ the distance in this graph.

1.3 Subsurface projections

Let S be a surface and Y be a subsurface, that is, Y is a (possibly disconnected) surface and
there is an embedding Y Ñ S. A subsurface is essential if it is not a disk, a pair of pants or an
annulus with core a boundary curve of S. We will always conflate a subsurface with the image
of the embedding, and two subsurfaces will be considered equivalent up to isotopy.
The set-theoretic boundary of Y inside S is a collection of disjoint curves on S, which we call the
relative boundary of Y inside S and denote by BY . Unless otherwise stated, we will adopt the
convention that the curves of the relative boundary do not lie on Y , since they can be homotoped
outside Y . Thus we will always see Y as a surface with punctures but without boundary, and
every puncture of Y will correspond either to a puncture of S or to a relative boundary curve
via the inclusion Y Ñ S.
Two subsurfaces are said to be:

• disjoint if (up to isotopy) they have empty intersection;

• nested if (up to isotopy) one is contained in the other;

• transverse otherwise.

In particular, two subsurfaces Y and Z are transverse if and only if one of the components of BY
intersects one of the components of BZ.
Given a subsurface Y Ă S, if Y has complexity at least 2 we can see the curve graph of Y as the
induced subgraph of CpSq spanned by those curves which (up to isotopy) lie on Y . Equivalently,
CY can be seen as the link of a simplex ∆ Ă CS, which corresponds to a pants decomposition
of SzY (including the relative boundary). This is not true if Y has complexity 1, since its curve
graph has a different adjacency relation, nor if Y is an annulus, whose annular curve graph is
different in nature.
Now let Y be a subsurface of complexity at least 1. Again following Masur and Minsky [MM00]
we will define a set valued projection πY : CpSq Ñ 2CpY q, where 2CpY q denotes the set of subsets
of CpY q. Let α P CpSq be a curve. There are three possible cases:

• If α Ă Y then α P CpY q, and we set πY pαq “ α.

• If α is disjoint from Y we set πY pαq “ H.

• Otherwise α intersects the boundary of Y , and αXY is a collection of finitely many disjoint
arcs a1, . . . , ak. For every arc ai let Ni be a regular neighborhood inside Y of the union of
this arc and the component(s) of BY on which its endpoints lie, and let BNi be the boundary
components of Ni inside Y which are essential curves of Y . Finally, we let πY pαq “

Ť

i BNi.

With a similar procedure one can define the annular projection πγ : CpSq Ñ 2Cpγq, where γ is an
essential curve:
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Figure 1.4: The regular neighborhood N of one of the arcs coming from α and the component(s)
of BY that it intersects. Notice that N can have one or two boundary curves, depending on
whether the endpoints of the arc lie on the same component or not. This is [MM00, Figure 6].

• If α is a simple closed curve in S crossing γ then a lift of α to Sγ has at least one component

that connects the two boundaries of xSγ , and together these components make up a (finite)
set of diameter 1 in Cpγq. Let πγpαq be this set.

• If α does not intersect γ essentially (including the case when γ “ α is the core of the
annulus) then πγpαq “ H.

We will say that a domain is a subsurface Y which is either an essential annulus or a subsurface of
complexity at least 1 (which are the cases for which there is a well-defined subsurface projection).
Given two curves α, β P CpSq and a domain Y , if both πY pαq and πY pβq are non-empty we define
dY pα, βq :“ dCpY qpπY pαq, πY pβqq, where the latter distance is the minimum distance between
pairs of points. The following is [MM00, Lemma 2.3]:

Lemma 1.3.1. Let Y be a domain. For any simplex ∆ Ă CpSq, if πY p∆q ‰ H then diamY p∆q ď

2.

Corollary 1.3.2. The projection πY sends curves to uniformly bounded finite subsets. Moreover,
it is 2-Lipschitz (where the distance between two finite subsets is the minimum distance between
pairs of points).

Proof. The first statement follows from Lemma 1.3.1 with ∆ equal to a point. The second follows
with ∆ equal to an edge, because then the distance between the images of two curves is at most
twice the length of a geodesic path between them.

Subsurface projection also makes sense between two domains Y and Z. For example, if Y is nested
in Z we can restrict the projection πY : CpSq Ñ 2CpY q to CpZq and get a map ρZY : CpZq Ñ 2CpY q.
Conversely, we can define ρYZ Ă CpZq as the relative boundary of Y inside Z, which is a simplex
in CpZq. Notice that we can see ρYZ as a constant map CpY q Ñ 2CpZq, which is why the notation
is similar. Finally, if Y and Z are transverse then there is at least a curve in BY which intersects
a curve in BZ, and therefore the projections ρYZ :“ πZpBY q and ρZY :“ πY pBZq are well-defined.

1.4 The action of the mapping class group

Given any homeomorphism f of our surface and a curve α, fpαq is again a curve, and up to
isotopy the result does not depend on the isotopy classes of f and α. Moreover, f preserves
disjointness of curves, thus we get an action of the mapping class group on the curve graph by
simplicial automorphisms. An important property of this action is the following:

Lemma 1.4.1. There are finitely many MCG-orbits of simplices inside the curve graph.

14



The previous result relies on the following, which is a special case of the so-called change of
coordinates principle (see [FM12, Section 1.3.1]):

Lemma 1.4.2. Up to the action of the mapping class group, there are only finitely many rep-
resentatives of simple closed essential curves, and only one of them is non-separating. More
precisely, given two curves α and β, there is a homeomorphism of S mapping α to β if and only
if the two surfaces obtained by cutting S along α and β, respectively, are homeomorphic, and up
to homeomorphism there are finitely many surfaces of the form Sztγu with γ P CpSq.

We will say that the actionMCG ö CpSq is cofinite, since the orbit of a finite set of representatives
covers the whole curve graph.

Proof of Lemma 1.4.1. Let ∆ “ tγ1, . . . , γku be a simplex. Let RpSq be a finite set of repre-
sentatives of the MCG-orbits of curves in CpSq, which exist by Lemma 1.4.2. Let α1 P RpSq

be such that there exists g P MCG such that gpγ1q “ α1. Thus, up to replacing ∆ with g∆,
we can assume that γ1 and α1 coincide. Now let S1 “ Sztα1u be the surface with boundary
obtained by cutting along α1, which is possibly disconnected. Again, by Lemma 1.4.2, there are
finitely many topological types of S1. Now we can repeat the same argument with S1: there
is a finite family RpS1q of representatives of MCGpS1q-orbits of curves in CpS1q, and up to the
action of MCGpS1q (which fixes α1 pointwise because the latter is a boundary curve of S1) we
can assume that γ2 P RpS1q. Proceeding this way we see that ∆ must fall into one of finitely
many MCG-orbits of simplices, obtained by successively choosing a curve in RpSq, a curve in
RpS1q and so on.

Corollary 1.4.3. There are finitely many MCG-orbits of subsurfaces Y Ă S.

Proof. Let Y be a subsurface, and let BY its relative boundary. Complete BY to a pants de-
composition ∆ for the complementary surface SzY . Now, if f P MCG, then fp∆q is a pants
decomposition for fpSzY q “ SzfpY q. Therefore simplices in the same MCG-orbit correspond
to homeomorphic subsurfaces, and since there are finitely many orbit of simplices the thesis
follows.

Another important fact about the action MCG ö C is that it induces an action on the set
of domains, preserving disjointness and nesting. Moreover, this action preserves subsurface
projections:

Lemma 1.4.4. If α, β P C, Y is a domain and f P MCG, then

dfpY qpfpαq, fpβqq “ dY pα, βq (1.1)

Proof. Equation (1.1) clearly holds if Y has complexity at least 1, by how subsurface projection
is defined. If Y is an annulus with core γ, we first notice that α P CpSq crosses γ if and only if
fpαq crosses fpγq. Moreover, every homeomorphism f : S Ñ S lifts to a covering map between
the annular covers f̃ : Sγ Ñ Sfpγq, meaning that the following diagram commutes:

Sγ Sfpγq

S S

pγ

f̃

pfpγq

f

This is because the image of π1pSγq via the map induced by f ˝ pγ is the subgroup generated by
fpγq P π1pSq, which in turn is the image of π1pSfpγqq via the map induced by pfpγq. Thus such a
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covering map f̃ exists by basic facts of covering theory. One can show that f̃ is a homeomorphism
and extends to a map pf : xSγ Ñ zSfpγq between the compactifications, which again commutes
with the covering maps. This means that, if α P S is a curve crossing γ, then a lift of fpαq to
zSfpγq is the image under pf of a lift of α to xSγ . Now the thesis clearly follows.

1.4.1 Pseudo-Anosov mapping classes

It is possible to classify mapping classes according to how they act on the curve graph. For
example, the Dehn twist along a curve γ fixes the base curve and every curve which does not
cross γ, thus it acts as the identity on the star of γ inside C. More generally, Dehn twists
are examples of what are called reducible mapping classes, which are isotopic to the identity
on an essential subsurface (in the case of Tγ , outside an annulus with core γ). On the other
hand, there are mapping classes which do not fix any finite collection of curves, which are called
pseudo-Anosov elements. We will not need the actual definition of what a pseudo-Anosov is; it
will suffice to know that these mapping classes exist and have the following properties:

Lemma 1.4.5. Let S be a surface of complexity at least 1. The following facts hold for a
pseudo-Anosov mapping class f P MCGpSq:

1. f has infinite order;

2. Every power fk, with k P Zzt0u, is again pseudo-Anosov. Therefore every finite-index
subgroup H ď MCG contains pseudo-Anosov elements.

3. f is loxodromic, meaning that for every curve α P C there exists c ě 0 (depending on α
and f) such that dCpfkpαq, αq ě c|k|.

Proof. The first two items follow from the Nielsen-Thurston classification Theorem ([Nie44,
HT85]), which says that a mapping class is Pseudo-Anosov if and only if it is neither of finite
order nor reducible. For a proof of the third fact see e.g. [MM99, Proposition 3.6].

We should think of a pseudo-Anosov element as a mapping class that moves curves around the
surface in a certain “wild” manner. More precisely, if f is pseudo-Anosov and α, β are any two
curves then limkÑ`8 dCpfkpαq, βq “ `8 by triangle inequality and Lemma 1.4.5.3, which in
particular means that fkpαq intersects β if k is large enough. We can state a more powerful
result, for which we need the following definition.

Definition 1.4.6. A family of curves tγ1, . . . , γku Ă CpSq fills the surface if for any curve η
there exists 1 ď i ď k such that η intersects γi.

The following lemma shows that we can always find two filling curves.

Lemma 1.4.7. Let f P MCG be a pseudo-Anosov element. For every two curves α, β there
exists k0 such that if k ě k0, f

kpαq and β fill the surface.

Proof. It suffices to notice that two curves fill the surface if and only if their distance in the curve
graph is at least 3, because then any other curve γ must be at distance at least 2 from (hence
intersect) one of the two. Then the thesis follows from Lemma 1.4.5.3.

From Item 3 of Lemma 1.4.5 we also get the following:

Corollary 1.4.8. The curve graph of a connected surface of complexity at least 1 (hence including
the Farey complex) is unbounded.
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1.4.2 Ivanov’s Theorem

We conclude this Chapter with a celebrated theorem of Ivanov [Iva97], later extended by Korkmaz
[Kor99] to surfaces of low genera. Since in this thesis we will only deal with punctured spheres
we state the theorem only in this case.

Theorem 1.4.9 (Ivanov-Korkmaz). Let S “ Sb be a sphere with b punctures, and let CpSq its
curve graph. Let i : MCG˘pSq Ñ AutpCpSqq be the action of the extended mapping class group.

• If b ě 5 then i is an isomorphism.

• If b “ 4 then i is surjective. The kernel K is a Klein four-group generated by the two
involutions in Figure 1.5.

Figure 1.5: The involution ι1 rotates the sphere by 180 degrees around the vertical axis, while
ι2 is a half rotation around the horizontal axis. These two elements generate a Klein four-group,
whose elements are called hyperrelliptic involutions.

In other words, every simplicial automorphism of the curve graph comes from a homeomorphism
of the surface. The intuition that this proposition conveys is that almost every algebraic property
of the mapping class group should be already witnessed by its action on the curve graph. For
example, in the same papers the two authors showed the following “algebraic rigidity” result:

Theorem 1.4.10. Let S “ Sb be a sphere with at least five punctures, and let H1 and H2

be two subgroups of MCG˘pSq of finite index. Then any isomorphism ϕ : H1 Ñ H2 is in-
duced by some inner automorphism of MCG˘pSq. In particular, the outer automorphism group
OutpMCG˘pSqq is trivial, while OutpMCGpSqq – Z{2Z.

The strategy of the proof is to show that an automorphism ϕ between finite index subgroups of
the mapping class group induces an automorphism of the curve graph, which by Theorem 1.4.9
comes from an element g of the mapping class group. Then with a little more effort one can
show that ϕ is actually the restriction of the conjugation by g. One of the goals of this thesis
is to prove equivalents Theorems 1.4.9 and 1.4.10 for a particular quotient of the mapping class
group, following a similar strategy (though with significant differences).
Later we will need an extension of Ivanov’s theorem to a certain subgraph of the curve graph.
We will say that a curve γ P C is 1-separating if it cuts out a subsurface of complexity one, that
is, either a once-punctured torus or a sphere with four punctures. We will denote by C1pSq the
induced subgraph of the curve graph spanned by 1-separating curves. The following result was
proven by Bowditch [Bow20, Bow16], building on results by Korkmaz [Kor99] and Luo [Luo00]:

Theorem 1.4.11. Let S “ Sb be a sphere with at least seven punctures. The action ofMCG˘pSq

on C1pSq gives an isomorphism MCG˘pSq Ñ AutpC1pSqq.
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Chapter 2

Modding by suitable high powers
of Dehn twists

For the rest of the thesis, let Sb “ S0,b be a sphere with b punctures, on which we fix some
orientation, and let Cb “ CpSbq be its curve graph, which we will also denote by C whenever
it will not cause ambiguity. Recall that, given two curves α, β (meaning two isotopy classes of
simple closed essential curves), we denote their geometric intersection number by ipα, βq, and
if both intersect a third curve s let dspα, βq be the distance of their annular projections over
s. Let MCG˘pSbq be the extended mapping class group, where we allow orientation-reversing
homeomorphisms.
Here we introduce the main object of this study.

Definition 2.0.1. For any K P N, let DTK “ xT kα |α P Cy be the subgroup generated by all K-th
powers of Dehn twists.

Notice that DTK is a normal subgroup. Indeed, by the properties of a Dehn twist under con-
jugation (Lemma 1.1.3), if f P MCG and α P C then fTKα f

´1 “ TKfpαq
P DTK . Hence we

can consider the quotient group MCG{DTK . Moreover, if we restrict the action MCG ö C to
DTK we can consider the quotient graph C{DTK , whose vertices and edges are DTK-equivalence
classes of vertices and edges in C. Notice that, at the moment, we don’t know if C{DTK is a
simplicial graph, since it may have multiple edges. This will be proven in Corollary 2.3.6.
In this Chapter we gather various results about the nature of these two quotients.

2.1 Basic lifting properties

First, notice that the projection map π : C Ñ C{DTK is 1-Lipschitz, since every combinatorial
path c in C is mapped to a combinatorial path c “ πpcq in C{DTK . On the other hand we have
the following:

Lemma 2.1.1. For every combinatorial path c “ tγ1, . . . , γku Ă C{DTK there exists a path
c “ tγ1, . . . , γku Ă C such that πpγiq “ γi for all i.

We will say that any such c is a lift of c.

Proof. We proceed by induction on k. If k “ 1 we have nothing to prove. Now suppose the
thesis is proven for k ´ 1. Let c be as above. Lift the sub-path tγ1, . . . , γk´1u to some path
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tγ1, . . . , γk´1u. Moreover, since an edge in C{DTK is an equivalence class of edges in C, there
exists an edge tγ1

k´1, γ
1
ku whose projection is the edge tγk´1, γku. Since γk´1 and γ1

k´1 lie in
the same DTK-orbit there exists an element g P DTK such that gpγ1

k´1q “ γk´1. Thus, since g
acts as a simplicial automorphism, we see that γk´1 and γk :“ gpγ1

kq are adjacent. This way we
patched the last edge to the partial lift, and we got a lift of c.

Corollary 2.1.2. Geodesic segments in C{DTK lift to geodesic segments in C.

Proof. Let c be a geodesic segment with endpoints α and β, and let c one of its lifts. Let α
and β be the endpoints of c. Then dCpα, βq is at most the length of c, which is the length
of c. Moreover, since c is a geodesic its length is the distance between the endpoints. Thus
dCpα, βq ď dC{DTK

pα, βq, and since the projection is 1-Lipschitz we must have equality. Hence c
already realizes the distance between its endpoints, and therefore is a geodesic.

2.2 More lifting properties: complexity reduction

The quotient MCG{DTK was already extensively studied by Dahmani, Hagen and Sisto in
[DHS21], and then by Behrstock, Hagen, Martin, and Sisto in [BHMS20]. This section collects
a number of results from these papers, which we sometimes enhance. In all our arguments, we
will only need one technical property of DTK (for suitable K), shown in [DHS21] using results
of Dahmani [Dah18], which we now state.

Proposition 2.2.1. There exists K0 P N such that for every Θ ą 0 there exists K 1 such that for
all multiples K of K0 larger than K 1 the following holds. There exists a well-ordered set O and
a map α : DTK Ñ O such that the following holds. For all x P C and g P DTK ´ t1u there exist
s P C and some power γs P DTK of the Dehn twist around s such that αpγsgq ă αpgq and one of
the following holds:

• ipx, sq “ 0, or

• dspx, gpxqq ą Θ.

Proof. This is [DHS21, Corollary 3.6] (which applies to DTK in view of [DHS21, Proposition
5.1]).

The second case will always be used in conjunction with the following, which is a special case of
the Bounded geodesic image Theorem, first proven by Masur and Minsky [MM00, Theorem 3.1]:

Theorem 2.2.2 (BGI). There exists a constant B such that the following holds for all finite-type
surfaces. For all vertices s, x, y P CpSq, if dspx, yq is defined and larger than B, then any geodesic
from x to y intersects the star of s.

Roughly speaking, this theorem says that, when moving from x to y along a geodesic, in order
to change the projection on the annular curve graph Cpsq one must pass close to s.

Definition 2.2.3. For short, we will say that a normal subgroup N �MCGpSbq is deep enough
if it satisfies the conclusion of Proposition 2.2.1 for some Θ depending on the data that has been
fixed up to that point.

Remark 2.2.4. Notice that a deep enough subgroup N is generated by powers of Dehn twist.
This is proved by induction on the complexity αpgq of an element g P N : if g “ 1 we have
nothing to prove, otherwise there exists γs P xTsy X N for some s P C such that g1 “ γsg has
lower complexity, and hence it is a product of powers of Dehn twists by induction hypothesis.
This g “ γ´1

s g1 is a product of Dehn twists.
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The key use of the conclusion of Proposition 2.2.1 will be to lift a variety of subgraphs from a
quotient of the curve graph to the curve graph. This is also done in [DHS21] as well as generalized
in [BHMS20]. First, a definition from the latter paper.

Definition 2.2.5. A generalized m-gon in a graph is a sequence τ0, . . . , τm´1 such that:

• Each τj is either a simplex, together with non-empty sub-simplices τ˘
j , or a geodesic in

Lkp∆jq for some (possibly empty) simplex ∆j with endpoints τ˘
j .

• τ`
j “ τ´

j`1 (indices are taken modulo m).

Note that the second bullet implies that τj X τj`1 is non-empty.

Roughly speaking, a generalized m-gon is a “necklace” whose “beads” are simplices or geodesic
segments, glued together along sub-simplices or endpoints. Notice that the necklace could self-
intersect, that is, we do not require that two non-adjacent beads do not intersect, though this
will almost always be the case in this thesis.
The following is a small variation on a result from [BHMS20].

Theorem 2.2.6. For all m0 ě 1 and all deep enough normal subgroups N the following hold:

• For b ě 4, any ordered simplex ∆ Ď C{N admits a unique N -orbit of lifts in C.

• For b ě 4, given a simplex ∆ in C{N , a lift ∆ of ∆ in C, and a geodesic γ in the link of
∆, we have that γ can be lifted to a geodesic in the link of ∆.

• For b ě 5 and m ď m0, any generalized m-gon in C{N can be lifted in C.

Proof. This is essentially [BHMS20, Proposition 8.29], whose proof only uses [DHS21, Corollary
3.6] and therefore works for any deep enough subgroup. Said proposition is stated for a precise
threshold m0, but the proof works for any fixed m0. Finally, [BHMS20, Proposition 8.29] as
stated deals only with the case b ě 5, but with similar tools it is easy to prove the uniqueness of
the orbit of lifts also for edges and triangles in the Farey complex. This shall be done in Lemmas
2.2.7 and 2.2.8, whose proofs are prototypical of many arguments throughout the thesis.

Lemma 2.2.7. Whenever N is deep enough, every edge e Ă C4{N admits a unique N -orbit of
lifts.

Proof. Let x, y be the vertices of e, and let e “ tx, yu and e1 “ tx1, y1u be two lifts of e. Up to
the action of N we can assume that y “ y1. Therefore we have a path tx, y, x1u inside C4, and
there is an element g P N such that gpxq “ x1.
If g is the identity we are done, otherwise let ps, γsq as in Proposition 2.2.1. If dpx, sq ď 1, so
that γs fixes x, we can apply γs to both edges. Now we have a path tγspxq, γspyq, γspx

1q, and
x “ γspxq is sent to γspx

1q by the element γsg. Since αpγsgq ă αpgq we can proceed by induction
on the complexity αpgq.
Otherwise dspx, x

1q ą Θ. We claim that dCpy, sq ď 1. If this is not the case then the projection
πspyq is well-defined, and by triangle inequality for annular projections either dspx, yq ą Θ{2 or
dspx

1, yq ą Θ{2. Without loss of generality, we can assume to be in the first case. If we choose
Θ ě 2B, where B is the constant from the bounded geodesic image theorem 2.2.2, we get that
every geodesic from x to y (that is, the edge between these vertices) should pass through the star
of s, which is a contradiction. Therefore γs must fix y, and if we replace x1 with γspx

1q we can
again reduce the complexity of g, while preserving the fact that the two edges share an endpoint.
At the end of the inductive argument we have that x “ x1, and since C is a simplicial graph we
must also have that e “ e1. Therefore e has a unique orbit of lifts.
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Lemma 2.2.8. Whenever N is deep enough, every triangle ∆ Ă C4{N admits a unique N -orbit
of lifts.

Proof. First we show that ∆ has a lift. Let tx, y, z, x1u a lift of the triangle, which we see as a
closed path tx, y, z, xu. Such a lift exists by Lemma 2.1.1, but it is possibly open. Let g P N
be an element mapping x to x1, and suppose that g is not the identity. Then let ps, γsq as in
Proposition 2.2.1. If dpx, sq ď 1 we can apply γs to the whole path, and proceed by induction
on the complexity αpgq.
Otherwise, we claim that either dCps, yq ď 1 or dCps, zq ď 1. If none of these happens then πspyq

and πspzq are both defined, and by triangle inequality we can assume, without loss of generality,
that dspx, yq ą Θ{3. But then again if we choose Θ ě 3B, where B is the constant from the
Bounded Geodesic Image Theorem 2.2.2, we have a contradiction. Hence γs fixes a cut point
between y and z, and we can apply γs “beyond” this point. Then we get a new lift of the path,
whose endpoints are x and γspx

1q “ γsgpxq, and again we can proceed by induction.
At the end of the inductive procedure we will have glued x to x1, thus we will have a closed lift
of the triangle.
Now let ∆ “ tx, y, zu and ∆1 “ tx1, y1, z1u be two lifts inside C4 of the same triangle ∆ “ tx, y, zu.
By Lemma 2.2.7 we know that the edge y, z admits a unique N -orbit of lifts, therefore we can
assume that y “ y1 and z “ z1. Moreover let g P N be an element mapping x to x1.
If g is the identity we are done, otherwise let ps, γsq as in Proposition 2.2.1. If dpx, sq ď 1 then
γs fixes x, and we can apply γs to both triangles and proceed by induction on the complexity
αpgq. Otherwise dspx, x

1q ą Θ, and with the same argument as in Lemma 2.2.7 we have that γs
fixes both y and z. But then if we replace ∆1 with γsp∆

1q we can again reduce the complexity of
g, while preserving the fact that the two triangles share an edge.
At the end of the inductive argument we have that ∆ “ ∆1, thus proving uniqueness of the orbit
of lifts of a triangle.

Later we will need the following refinement to Theorem 2.2.6, which shows that, when lifting
a quadrilateral (that is, a geodesic quadrangle), two opposite sides can be chosen somewhat
“rigidly”:

Lemma 2.2.9. Let N be deep enough with respect to some Θ ą 0, let Q Ă C{N be a quadrilateral
with vertices v1, w1, v2, w2 and let Q Ă C be one of its lifts. If the geodesics rv1, w1s, rv2, w2s

have lifts rvi, wis so that dspvi, wiq ď Θ whenever the quantity is defined, then the lifts rv1
i, w

1
is of

rvi, wis contained in Q is an N -translate of rvi, wis.

Proof. This is the “moreover” part of [DHS21, Proposition 4.3], whose proof only uses [DHS21,
Corollary 3.6].

2.3 Projection lemmas

While the previous sections were about lifting subgraphs, the present aims to study how sub-
graphs of C get projected to the quotient.

2.3.1 Puncture separations

Firstly, we make some observations on how two curves which separate the punctures on the sphere
“in the same way” must have different projections. Choose an enumeration of the punctures of
Sb. A curve α on Sb is always separating, therefore it splits the punctures into two sets B`pαq

and B´pαq.
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Definition 2.3.1. The puncture separation induced by α is the unordered pair tB`pαq, B´pαqu.

Remark 2.3.2. Notice that a Dehn twist fixes each puncture, therefore preserves puncture sepa-
rations. In fact, if two punctures are on the same side of α they may be joined by an arc, and
the image of this arc via a Dehn twist will again join the same punctures while being disjoint
from the image of α. In other words, any two curves that induce different puncture separations
cannot be identified in a quotient of the curve graph by a subgroup generated by powers of Dehn
twists, such as all deep enough subgroups N in the light of Remark 2.2.4.

Definition 2.3.3. Two curves α and α1 induce nested puncture separations if B`pαq Ď B˘pα1q.
In other words, the splitting induced by α Y α1 refines the splitting induced by α.

Notice that two disjoint curves induce nested puncture separations, but the converse is not true
(for example, choose some β intersecting α and set α1 “ Tβpαq, which induces the same puncture
separation by Remark 2.3.2). The following lemma shows a peculiar behavior of the projection
C Ñ C{DTK which holds for all K P N:

Lemma 2.3.4. For every subgroup H ď MCGpSq generated by powers of Dehn Twists, the
following hold for the projection C Ñ C{H:

1. For b “ 4, if α and α1 are adjacent in the Farey complex then their projections remain at
distance 1.

2. For b ě 5, if α and α1 are disjoint curves then their projections remain at distance 1.

3. For b ě 5, if α and α1 intersect and their puncture separations are not nested then their
projections remain at distance at least 2.

Proof. In all cases we will use that the projection is 1-Lipschitz, since the action of H over C is
by simplicial automorphisms.

1. Two adjacent curves in the Farey complex induce different puncture separations, therefore
their projections must be at distance 1 since they cannot coincide.

2. If α and α1 are disjoint then they must induce different puncture separations, otherwise
they would bound an unpunctured annulus and therefore they would be isotopic. Then
their projections can only be at distance 1, for the same reasons as before.

3. Suppose that α and α1 intersect and induce non-nested puncture separations. Firstly, α
and α1 cannot have the same projection, since they induce different puncture separations.
Furthermore, if by contradiction πpαq and πpα1q are the endpoints of an edge then we may
lift it, since the action is simplicial. In other words, there exists some g P H such that α is
disjoint from gpα1q. But then α and gpα1q must induce nested puncture separations, and so
must do α and α1 since g is a product of Dehn twists, which preserve puncture separations
by Remark 2.3.2.

As an immediate consequence of Items (1) and (2) we get:

Corollary 2.3.5. For every b ě 4, the projection map is an isometry when restricted to any
simplex ∆ Ă C.

Moreover, we can finally show that the quotient graph is simplicial:
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Corollary 2.3.6. If N is deep enough the graph C{N is simplicial. In particular, two vertices
α, β P C{N are adjacent if and only if they have disjoint lifts α, β P C.

Proof. First we check that C{N has no double edges. Suppose by contradiction that there exist
two edges e, e1 between the same two vertices α, β P C{N . By Lemma 2.1.1 (whose proof works
also for any deep enough subgroup N ) there exist two consecutive edges e, e1 that lift e, e1. Let
e “ tα, βu and e1 “ tβ, α1u. Since α and α1 both lift α, with the same proof of Lemma 2.2.7 we
can find an element g P N mapping α to α1 and fixing β. Thus gpeq “ e1, and therefore e “ e1,
against our hypothesis.
We are left to prove that no edge e of C{N joins a vertex α to itself. If this was the case, we
could lift e to an edge e of C joining two curves α, α1 with the same projection, thus contradicting
Item 1 or 2 of Lemma 2.3.4.

2.3.2 Isometric projections

We move on to show that, whenever N is deep enough, the projection is an isometry on a variety
of subgraphs of the curve graph. All the result of this subsection rely on the following refinement
of [DHS21, Lemma 4.4], which roughly speaking says that the projection π : C Ñ C{N preserves
directions with small projections, in the link of some fixed simplex:

Lemma 2.3.7. Fix Θ ą 0. Let N be deep enough and let ∆ Ď C{N be a (possibly empty)
simplex and ∆ Ď X be one of its lift. Suppose that x, y P Lkp∆q project to x, y P Lkp∆q and have
the property that dspx, yq ă Θ whenever the quantity is defined. Then π|rx,ys is an isometric

embedding into Lkp∆q, for any geodesic rx, ys Ď Lkp∆q.

Proof. The proof is very similar to that of [DHS21, Lemma 4.4]. Suppose by contradiction that
there is a shorter path from x to y inside Lkp∆q. Lift this shorter path as a geodesic segment
ry, x1s Ď Lkp∆q, which can be done by Lemma 2.2.6. There exists γ P N such that γx “ x1.
We proceed by induction on the complexity of γ, to prove that dLkp∆qpy, x1q “ dLkp∆qpy, xq (thus
contradicting that dLkp∆q

px, yq ă dLkp∆qpx, yq). If γ “ 1 we are done, otherwise let ps, γsq be as in

2.2.1. If dCpx, sq ď 1 then γsx “ x, and we can apply γs to both geodesics and to ∆ and conclude
by the induction hypothesis. Otherwise dspx, γxq ą Θ, and arguing as in Lemma 2.2.7 we see
that γs must fix ∆ pointwise. Moreover, either dCpy, sq ď 1 or dspy, x

1q ě dspx, x
1q ´ dspx, yq

must be large, since dspx, yq is assumed to be small. In both cases there must be some s1 P ry, x1s

in the star of s. Thus one can change the lift of ry, xs as ry, γsx
1s, while keeping it an isometric

lift inside the link of ∆. One concludes by induction hypothesis, which applies to γsγ.

The previous lemma is particularly useful in the following form:

Corollary 2.3.8. For every finite set of vertices V Ď C there exists Θ such that, whenever N is
deep enough with respect to Θ, the projection is an isometry on V .

Proof. Since V is finite, we only need to show that for every x, z P C there is some con-
stant Mpx, zq such that supsPC dspx, zq ă Mpx, zq, because then we can choose Θ ą M “

maxx,zPV Mpx, zq to ensure that the hypothesis of Lemma 2.3.7 applies. One way to see this
is to complete x, z to complete clean markings µ, ν, in the sense of [MM00, Section 2.5]. By
the Distance formula [MM00, Theorem 6.12] there exists a constant M 1pSq such that the sum
ř

sPC, dspµ,νqąM 1 dspµ, νq is bounded above in terms of the distance between µ and ν in the mark-
ing graph. In particular the sum is finite, and since every term is greater than a constant there
must be a finite number of terms. Moreover, for every s P C for which the quantity dspx, yq is
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defined (in particular, not a base curve of µ or ν), let x1 P µ and y1 P ν be curves which realize
dspµ, νq. Then by triangle inequality

dspx, yq ď dspx, x
1q ` dspx

1, y1q ` dspy
1, yq “ dspx, x

1q ` dspµ, νq ` dspy
1, yq,

and since by Lemma 1.3.1 annular projections are 2-Lipschitz we have that

dspx, yq ď dspµ, νq ` 4.

Thus it suffices to choose Mpx, zq ą maxsPC, dspµ,νqąM 1 dspµ, νq ` 4.

There are also two other consequences of Lemma 2.3.7 that will be quite useful later. The first
one deals with the cardinality of the quotient:

Corollary 2.3.9. Whenever N is deep enough, the quotient C{N is infinite.

Proof. For every curve x P C and every pseudo-Anosov mapping class g P MCGpSq there exists
Θ ą 0 such that supsPC,nPZ dspx, g

npxqq ă Θ. This follows from an argument in the proof of
[DHS21, Theorem 2.1] which just uses the Bounded geodesic image Theorem 2.2.2 and the fact
that for every x, z P C then supsPC dspx, zq ă `8, which we proved in Corollary 2.3.8. Hence, if
N is deep enough with respect to Θ, by Lemma 2.3.7 the projection is an isometry on the orbit
tgnpxqunPZ, which is infinite since g is pseudo-Anosov.

The second consequence deals with filling curves, as in Definition 1.4.6:

Corollary 2.3.10. Fix Θ ą 0. Let N be deep enough and let ∆ Ď C{N be a simplex and ∆ Ď X
be one of its lift. Suppose that ∆ cuts out a single subsurface Σ of complexity at least 1, and let
x, y Ă Σ be a pair of filling curves with the property that dspx, yq ă Θ whenever the quantity is
defined. If x, y project to x, y P Lkp∆q then any two lifts x1, y1 P Lkp∆q again fill Σ.

Proof. Recall that x and y fill Σ if and only if dLkp∆qpx, yq ě 3. Now if x and y satisfy the

hypothesis of Lemma 2.3.7 then the distance between x and y in Lkp∆q remains at least three.
But then every pair of lifts must be at distance at least three, since the projection map is
1-Lipschitz.

2.3.3 Quotient curve graphs of subsurfaces

We end this section by showing that the restriction of π to the curve graph of a subsurface is
what one would expect.

Lemma 2.3.11. Let U be a subsurface of S. Let N be a deep enough subgroup, and let N pUq

be the subgroup of N generated by the elements with support in U . If x, x1 are curves on U and
there exists an element g P N mapping x to x1 then we may find another element h P N pUq

mapping x to x1.

Proof. Let ∆ be a pants decomposition of the complement of U , including its boundary curves.
We proceed by induction on the complexity of g. If g is the identity then we are done; otherwise
let ps, γsq be as in Proposition 2.2.1.
If dCpx, sq ď 1 then we can apply γs to both curves, in order to reduce the complexity of g. Then
by inductive hypothesis we can find some h P N pγspUqq mapping γspxq to γspx

1q, and therefore
γ´1
s hγs maps x to x1 and belongs to N pUq by properties of Dehn twists under conjugation

(Lemma 1.1.3).
Otherwise dspx, x

1q ą Θ. Arguing exactly as in the proof of Lemma 2.2.7 we get that γs fixes ∆
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pointwise whenever N is deep enough. Now recall that, by construction, γs P xTNs y, where Ts is
the Dehn twist around s. Then s must be disjoint from all curves in ∆, which means that either
s P ∆ (which is impossible, since otherwise γs would fix x) or s Ď U . Therefore γs P N pUq, and
if we apply it to x1 we can conclude by induction.

Corollary 2.3.12. Let U be a connected subsurface of S of complexity at least 2, and let N be
a deep enough subgroup. If π is the quotient projection then πpCpUqq – CpUq{N pUq.

Proof. By Lemma 2.3.11 these graphs have the same vertices, and since U has complexity at
least 2 the adjacency relation is having disjoint lifts in both cases.
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Chapter 3

The finite rigid set

By results of Aramayona and Leiniger [AL13] there exists a finite subgraph Xb Ă Cb such that
every two copies of Xb inside the curve graph are obtained one from the other via a mapping
class. In this Chapter we will show that, whenever N is a deep enough subgroup, the same
subgraph can be found inside the quotient C{N , and that conversely any copy of Xb inside C{N
admits a unique orbit of lifts. This will allow us to extend the result of Aramayona and Leiniger
to C{N in Chapter 4, and this will be the key piece in the proof of the Combinatorial Rigidity
Theorem 4.

3.1 Special intersections

We first make a digression and talk about when it is possible to recognize that two curves on
our sphere have intersection number 2, just by looking at the curve graph. We will define what
we call “special intersection” between curves, which should be compared with the notion of
X -detectable intersection from [AL13]. For the following definitions, let Γ be either C or C{N .

Definition 3.1.1. A chain is a collection of vertices v1, . . . , vk P Γ such that dΓpvi, vjq ą 1 iff
|i´ j| “ 1. A chain is closed if the same holds with indices mod k.

In the curve graph, a chain is just a sequence of curves such that two of them intersect iff they
are consecutive.

Definition 3.1.2 (Special intersection). Let b ě 5. Given a facet P Ď Γ (that is, a simplex of
codimension one in a maximal simplex) we say that the vertex α P Γ has special intersection
with the vertex β P Γ with respect to P if:

• α and β both complete P to maximal simplices;

• there exist γ, δ such that γ, α, β, δ is a chain;

• both γ and δ intersect exactly one vertex ε P P .

We say that γ and δ are the auxiliary vertices that detect the intersection of α and β.

Lemma 3.1.3. Let α and β be two curves in C with special intersection. Then ipα, βq “ 2.
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Figure 3.1: The various curves involved in the definition of a special intersection, on the four-
holed sphere that the facet P cuts out.

Proof. Let P be the facet that detects the special intersection. Since P has dimension one less
that the maximal, it cuts out a subsurface of complexity 1, which can only be a four-punctured
sphere S4 since S has no genus. Moreover, α and β must lie on this S4, because the union αY β
is connected and disjoint from every curve of P .
Now, we claim that the intersection number between α and β must be 2. This can be shown
by successively drawing the curves on S4, so that the final situation will be as in Figure 3.1.
First draw α on the sphere, which must surround two punctures on each side since it is not
homotopic to any of the punctures (because these correspond to some curves in P ). Now, δ
intersects S4 because it crosses β Ă S4; moreover the only curve in P that δ crosses is ε, thus ε
must correspond to one of the punctures and the trace of δ on S4 must be a collection of arcs
with endpoints on the puncture corresponding to ε. However, δ is disjoint from α, hence every
arc of δ X S4 is a non-homotopically-trivial arc lying on one of the two twice-punctured disks
that α cuts out. Since, up to isotopy of a disk, there is only one such arc, δ must be as in Figure
3.1.
Now, γ crosses α but not β, then again the trace of γ on the pair of pants obtained by cutting
S4 along δ is an arc with endpoints on the puncture corresponding to ε Y δ, and therefore γ
must be as in Figure 3.1. Finally, β does not cross γ and is not homotopic to any puncture, thus
with the same arguments it must be as in Figure 3.1. Now we can finally see that α and β have
intersection number 2.

Remark 3.1.4. Definition 3.1.2 actually describes an isometrically embedded generalized pen-
tagon P, as in Figure 3.2. More precisely, if we define R as the codimension 2 simplex such that
P “ ε ‹ R, then γ, α, β, δ, ε form a closed chain in the link of R; this becomes an isometrically
embedded pentagon when the vertices are ordered as α, ε, β, γ, δ. Note that these five vertices
must play symmetric roles, meaning that when two of them are not adjacent in Γ they have spe-
cial intersection which is detected by the others. For example, γ and ε have special intersection
with respect to the facet R ‹ β, and α and δ detect it. Notice that having special intersection is
a completely combinatorial property, and hence it is preserved by graph automorphisms.

Definition 3.1.5. We will call an isometrically embedded generalized pentagon P Ă Γ which is
isomorphic to the one in Figure 3.2 a special pentagon.

Another consequence of stating special intersection in combinatorial terms is the following lifting
property:

Lemma 3.1.6. For every b ě 5 and for every N deep enough, if α, β P C{N have special
intersection then they admit lifts α, β with special intersection.
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Figure 3.2: The generalized pentagon P described in 3.1.2, which detects that any two non-
adjacent vertices in the link of R have special intersection.

Figure 3.3: The five curves involved in Definition 3.1.2 for Γ “ C, forming a chain on the five-
holed sphere that R cuts out. Every intersection is special, therefore the intersection number is
always 2.

28



Proof. By Theorem 2.2.6, whenever N is deep enough every special pentagon P as in Definition
3.1.5 admits a lift P, which remains isometrically embedded since the projection map is 1-
Lipschitz. More precisely, if x, y P Γ and x, y P Γ are their lift then

dC1px, yq ě dC1{DTK
px, yq “ dPpx, yq “ dPpx, yq.

For the rest of the thesis, given a curve β P C that surrounds a twice-punctured disk, let Hβ be
the half Dehn twist around β, with respect to the given orientation of Sb. If b ě 5 there is only
one twice-punctured disk bounded by β, while if b “ 4 for each disk D bounded by β we will
refer to the half Dehn twist of D as HD. The following lemma describes the set of curves with
special intersection with β with respect to some facet P :

Lemma 3.1.7. Let b ě 4 and let α, α1 P C be two curves which both have special intersection
with the same β, with respect to the same P . Let S4 be the four-holed sphere that P cuts out,
and let D Ă S4 be any of the two disks bounded by β inside S4. Then there exists an integer
k P Z such that α1 “ Hk

Dpαq.

Proof of Lemma 3.1.7. P cuts out a sphere S4 with four punctures, and by Lemma 3.1.3 having
special intersection implies that the intersection number is 2. Thus we want to show that, if
α, α1 are adjacent to β in the Farey complex, then α1 “ Hk

β for some k P Z. By properties of
the Farey complex (see Lemma 1.2.10) there exists a sequence of triangles T1, . . . , Tk such that
each triangle contains β, α P T1, α

1 P Tk and every two consecutive triangles Ti and Ti´1 share
and edge containing β. Thus it suffices to prove that if α, α1, β are the vertices of a triangle then
α1 “ H˘1

β pαq. This is true, since the two curves H˘1
β pαq are adjacent to both α and β, and α

and β belong to exactly two triangles (again, by Lemma 1.2.10).

Remark 3.1.8. When b ě 5 we have to be a little cautious. If β already bounds a twice-punctured
disk D inside Sb then this disk embeds inside S4, since it cannot contain any curve of P . Hence
the map HD, defined on S4, extends to the usual half Dehn Twist along β, which is defined on
the whole S. Therefore Lemma 3.1.7 shows that, whenever α, α1 are two curves with special
intersection with β with respect to the same P , there exists k P Z such that α1 “ Hk

β pαq.
However, if β does not bound a twice-punctured disk inside Sb there might be no way to extend
HD to the whole surface S, so it is important to underline that the conclusion holds inside the
four-holed sphere that P cuts out.

3.2 Definition of the finite rigid set

For the rest of the section let b ě 5. We denote by Xb the full subgraph of C defined in [AL13,
Section 3]. More precisely, we represent Sb as the double of a regular b–gon with vertices removed.
An arc connecting non-adjacent sides of the b-gon doubles to a curve on Sb, and let Xb be the
subgraph spanned by such curves, as in Figure 3.4 for the case b “ 8.
A copy of Xb will be the image of an isometric embedding Xb Ñ C (respectively C{N ). The
reason we are interested in Xb is the following theorem, which is a somewhat refined version
of Ivanov’s and was proven by Aramayona and Leiniger [AL13, Theorem 3.1]. Recall that a
simplicial map ϕ : G Ñ G1 between simplicial graphs is locally injective if its restriction to the
star of every vertex v P G is injective (in particular, isometric embeddings are locally injective).

Theorem 3.2.1. For every b ě 5, any locally injective simplicial map ϕ : Xb Ñ C is induced by
a mapping class h P MCG˘, meaning ϕ “ h|Xb

. Moreover any two such h differ by an element
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Figure 3.4: Doubling these arcs gives a copy of X8.

of the pointwise stabilizer PstabpXbq, generated by the reflection r that swaps the two copies of
the b-gon.

Another important fact about Xb is that every intersection is special, regardless of the ambient
graph Γ because it can be detected using only vertices that belong to Xb (this fact should be
compared with [AL13, Lemma 3.2]). For example, the special intersection between α and β
in Figure 3.5 is detected by the special pentagon spanned by α, β, the simplex R Ă Xb of
codimension two and the three curves x, y, z P Xb.

Figure 3.5: The dashed lines represent the codimension two simplex R. Any two intersecting
curves of this “star” have special intersection, with respect to some facet that extends R.

The next lemmas show how to construct some copy of Xb starting from a given copy of Xb´1,
and describe how much freedom one has to do so.

Definition 3.2.2. If b ě 6, we say that a vertex β in a copy of Xb is minimal if LkXb
pβq – Xb´1.

Lemma 3.2.3 (Existence of an extension of Xb´1). Let b ě 6. Every copy of Xb´1 inside C
which is in the link of a vertex β may be completed to a copy of Xb that contains β. Moreover, if
α has special intersection with β, with respect to some facet P Ď Xb´1, then we can choose Xb

to contain α.

Proof. First we show that β bounds a twice-punctured disk. To see this, notice that, by con-
struction of the graph Xb´1, if two curves x, y P Xb´1 are at distance 1 then there exists a curve
z P Xb´1 which is at distance 2 from both. This fact still holds if we replace distances in Xb´1

with distances in the curve graph, since Xb´1 is isometrically embedded, and it translates to
the fact that whenever two curves in Xb´1 are disjoint there is a third curve which intersects
both. Hence the union of all curves of Xb´1 must lie on the same connected component of Sbzβ,
which is a disk that we call S1. But then S1 contains b ´ 4 pairwise disjoint curves (other than
the boundary curve), and therefore must contain at least b ´ 2 punctures, since its complexity
cannot be too low. Thus the other connected component of Sbzβ must be a disk with at most 2
punctures, and since β is an essential curve it cannot bound disks with less than two punctures.
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Now, since β bounds a twice-punctured disk, it is easy to find some X 1
b which contains β as

a minimal curve. Let X 1
b´1 “ LkX1

b
pβq, and consider the Sb´1 obtained by shrinking β to a

puncture B. By finite rigidity of Xb´1 there exists a mapping class f P MCGpSb´1q mapping
X 1
b´1 to Xb´1, which we may choose to be the identity in a neighborhood of B, up to rotations

of Sb´1 and isotopy. Therefore f extends to a mapping class F P MCGpSbq (for example, by
setting F to be the identity in a neighborhood of the twice-punctured disk surrounded by β),
and now F pX 1

bq is a copy of Xb that completes β ‹Xb´1.
For the “moreover” part, choose a copy of Xb that completes β ‹Xb´1 and let α1 be the curve in
this copy that corresponds to α (i.e., the curve that has special intersection with β with respect
to the same P ). By Lemma 3.1.7 and the discussion in Remark 3.1.8 there is a suitable power
Hk
β of the half twist around β that maps α to α1. Since Hβ fixes β ‹ Xb´1 we may apply this

mapping class to obtain the desired copy of Xb.

Lemma 3.2.4 (Uniqueness of the extension). Let b ě 6. In any copy of Xb inside C, let Xb´1

be the link of some minimal vertex β and let α P Xb be a curve intersecting β. Then for every
other z P Xb that intersects β there is a facet P Ă Xb´1 such that z is the unique curve in C that
belongs to LkpP q X Lkpαq. In other words, a copy of Xb is uniquely determined by the star of a
minimal vertex β and one of the curves that intersect β.

Proof. Let R Ă Xb´1 be a simplex of codimension two such that α, z P LkpRq, and complete
it to a codimension one simplex P by adding some curve x P Lkpαiq X Xb´1 that intersects α.
For example, x and R can be chosen as in Figure 3.5. We need to show that if some curve z1

lies in LkpP q X Lkpαq then it is unique. First, notice that z1 must be an essential curve of the
five-punctured sphere S5 that R cuts out (that is, it cannot surround only one puncture of S5,
or it would coincide with some curve in R). Moreover, we know that α and x are both essential
curves of S5 and they have intersection number 2, so we are in the situation depicted in Figure
3.6. Now, α and x together cut S5 in three once-punctured disk and a twice-punctured disk.
Since z1 is essential in S5 it must be the boundary of the twice-punctured disk, and thus it is
unique.

Figure 3.6: The five-punctured sphere that R cuts out.

Remark 3.2.5. When b “ 5 we cannot define minimal curves as in Definition 3.2.2. Thus, with
a slight abuse of notation, we will say that every curve in X5 is minimal, because it bounds a
twice-punctured disk. Moreover Lemma 3.2.3 is false: LkX5pβq is made of two points, but if we

31



take two vertices γ, γ1 P LkC5pβq with intersection number greater than 2 we cannot complete
them to a copy of X5. However, we can run the proof of Lemma 3.2.4, with R “ H, to get the
following:

Lemma 3.2.6. For b “ 5, if two copies X5, X
1
5 Ă C5 share four curves then they must coincide.

3.3 Projecting the rigid set

Here we aim to show that, whenever N is deep enough, there is at least a copy of the finite rigid
set inside C{N . This will follow from Corollary 2.3.8, which dealt with isometric projections.

Definition 3.3.1. Given a copy of Xb Ă C for b ě 5, set

Yb “ Xb

ď

βPXbminimal

H˘1
β pXbq.

Lemma 3.3.2. For every b ě 5 there exists M P R` with the following property. Given a copy
Xb Ă C set Yb as in Definition 3.3.1. Then for every x, z P Yb and every s P C we have that
dspx, zq ď M .

Proof. Fix a copy Xb and let M “ maxx,zPYb
Mpx, zq, where Mpx, zq is defined as in Corollary

2.3.8. We are left to prove that, if X 1
b is another copy of the rigid set and Y 1

b is the corresponding
union of half twists, then M works also for Y 1

b . Take an extended mapping class f that maps Xb

to X 1
b, which exists by Theorem 3.2.1. In particular f maps minimal curves to minimal curves.

Therefore

Y 1
b “ X 1

b

ď

β1PX1
bminimal

H˘1
β1 pX 1

bq “ fpXbq
ď

βPXbminimal

H˘1
fpβq

˝ fpXbq “

“ fpXbq
ď

βPXbminimal

f ˝H˘1
β pXbq “ fpYbq.

Now the thesis follows, since for every x, z P Y 1
b and s P C we have that

dspx, zq “ df´1psqpf´1pxq, f´1pzqq ď M.

This corollary is crucial for us, so we state it as a theorem:

Theorem 3.3.3. For every b ě 5 the following holds whenever N is deep enough. Let Xb Ă C
be a copy of the rigid set and let Yb be as in Definition 3.3.1. Then the restriction π|Yb

is an
isometry. In particular there exists an isometrically embedded copy of Xb inside C{N .

Proof. Just combine Lemma 3.3.2 and Corollary 2.3.8.

3.4 Lifting the rigid set

In the previous section we showed that the finite rigid set can be isometrically projected to the
quotient. Conversely, our current goal is to prove the following lifting result:

Theorem 3.4.1. For every b ě 5 and every N deep enough, every copy of Xb in C{N has a lift
inside C, and any two lifts are conjugated by an element of N .
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The key point of both the existence and uniqueness of lifts will be the following lemma:

Lemma 3.4.2 (Unique lift for “very” special intersections). For b ě 5 the following holds
whenever N is deep enough. Let x, x1 P C be two curves with special intersection with the same
y, with respect to the same facet P , and let S be any graph in the link of y. Suppose that x, y, S
can be completed to a copy of Xb. Then if x and x1 project to the same element in the quotient
there is some g P N which maps x to x1 and fixes y and S.

Proof. Since both x and x1 have special intersection with y, with respect to the same facet P ,
by Lemma 3.1.7 there exists k P Z such that, in the four-holed sphere S4 that P cuts out,
x1 “ HDpxq, where D is one of the disks bounded by y. Now we claim that k “ 2m must be
even, and therefore H2m

D “ Tmy extends to the whole surface S. To see this first notice that since
x and x1 are in the same N -orbit they must induce the same puncture separation by Remark
2.3.2. Moreover x and y intersect twice, thus they separate the punctures of S into four sets
A˘,B˘, each of which corresponds to one of the punctures of S4. Suppose that x induces the
separation tA` YB`,A´ YB´u while y induces the separation tA` YA´,B` YB´u, and that D
contains the punctures corresponding to A˘. Then HD swaps the two punctures corresponding
to A˘, which shows that Hk

Dpxq induces the same puncture separation as x if and only if k is
even.
Now let γ P N such that x1 “ γpxq. If γ “ 1 then we are done. Otherwise let ps, γsq be
as in Proposition 2.2.1. If dCpx, sq ď 1 then we may apply γs to the whole data and proceed
by induction on the complexity of γ. Otherwise dspx, x

1q ě Θ. Now we claim that any other
z P S Y tyu is in the star of s, so that we can replace x1 with γspx

1q and proceed by induction.
If this is not the case then πspzq is well-defined, and we have that

dspx, x
1q ď dspx, zq ` dspx

1, zq “ dspx, zq ` dspT
m
y pxq, Tmy pzqq “ dspx, zq ` dT´m

y psq
px, zq,

where we used that z belongs to the star of y and is therefore fixed by Ty. But now

Θ ď dspx, x
1q ď dspx, zq ` dT´m

y psq
px, zq ď 2 max

p,qPXb, sPC
dspp, qq ď 2M,

whereM is the constant from Lemma 3.3.2, which does not depend on Θ. This is a contradiction
if N is deep enough.

3.4.1 Existence of a lift

Proof of existence. We proceed by induction, using the case b “ 5 as the base case since X5 is a
pentagon, which lifts by Theorem 2.2.6. Assume that b ě 6 and that every copy of Xb´1 has a
lift inside Cb´1, and let Xb be a copy of Xb inside Cb{N . Let β P Xb be a minimal vertex, and
let Xb´1 :“ LkXb

pβq. In order to apply the inductive hypothesis we need to show that LkCb
pβq

is isomorphic to Cb´1 and that its projection is isomorphic to Cb´1{N pSb´1q. We start with the
first assertion.

Lemma 3.4.3. Any lift β of a minimal vertex β P Xb bounds a twice-punctured disk. In other
words LkCb

pβq – Cb´1.

Proof. Let P be a facet inside Xb´1. Since β ‹ P is a simplex we can find a lift β1 ‹ P by
Lemma 2.2.6, and up to applying some elements of N we can assume that β1 “ β and therefore
P P LkCb

pβq. We want to show that all curves in LkCb
pβq lie in the same subsurface of Szβ, or in

other words that, given any two curves γ, δ P LkCb
pβq, we can find a chain γ “ η0, η1, . . . , ηk “ δ

inside LkCb
pβq. Since every curve in LkCb

pβq either coincides with or intersects a curve in P ,
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which has maximal dimension in LkCb
pβq, it is enough to show that for every γ, δ P P there is

a curve η that intersects both. Now, since Xb´1 is isometrically embedded inside Cb{N we may
pick some η P Xb´1 at distance 2 from both γ and δ, and let η be one of its lifts in LkCb

pβq.
Since the projection map is 1-Lipschitz, η must be at distance at least 2 from (hence intersect)
both γ and δ, and we are done.

Now, Corollary 2.3.12 shows that the projection of LkCb
pβq is isomorphic to Cb´1{N pSb´1q.

Therefore we can use the inductive hypothesis to lift Xb´1 to some Xb´1 inside LkCb
pβq.

In order to complete our lift of Xb we still need to lift the vertices α1, . . . , αb´3 P Xb outside
the link of β. For every i “ 1, . . . , b´ 3 we can find vertices x, y P Xb´1 and a codimension two
simplex R Ă Xb´1 such that β, α1, αi, x, y and R span a special pentagon P. For example, one
could look at Figure 3.5, replace z with αi and then consider the corresponding vertices inside
Xb.
Lift P to a special pentagon P1, let Q1 “ β1 ‹ y1 ‹ R1 be the lift of the simplex Q “ β ‹ y ‹ R
inside P1, and let Q “ β ‹ y ‹ R be the corresponding simplex inside β ‹ Xb´1. Since there is a
unique N -orbit of lifts of Q there exists g P N mapping Q1 to Q. Thus we can apply g to P1 and
assume that Q “ Q1. Moreover, let x1 P P1 be the lift of x, and x the corresponding lift inside
Xb´1. If we apply Lemma 3.4.2 to x, x1, y and S “ β ‹R we find some element g P N that maps
x1 to x and fixes Q. Thus we can apply g to P1 and assume that also x “ x1.
Now, let Gi “ P1 YXb´1. Let α

i
1 P P1 be the lift of α1 inside the special pentagon. Lemma 3.2.3

provides a copy Xi
b which extends β ‹Xb´1 and contains αi1. By Lemma 3.2.4, Xi

b also contains

αi, therefore Gi Ă Xi
b. Now, consider the copies X2

b and Xj
b , for 3 ď j ď b ´ 3. These copies

coincide on β ‹Xb´1, and by construction α2
1 and αj1 project to the same element α1. Therefore,

if we apply Lemma 3.4.2 with x “ α2
1, x

1 “ αj1, y “ β and S “ Xb´1, we find an element g P N
that maps α2

1 to αj1 and fixes β ‹ Xb´1. Then we conclude that gpX2
b q “ Xj

b by Lemma 3.2.4,
which implies that the projection of X2

b coincides with Xb also on αj . Since we may do this for
every 3 ď j ď b´ 3 we see that X2

b is the lift we were looking for.

3.4.2 Uniqueness of the lift

Proof of uniqueness. Again we proceed by induction. First we discuss the base case b “ 5.

Lemma 3.4.4. If N is deep enough, any two lifts of X5 inside C5 differ by an element of N .

Proof. The proof is just a sequence of iterations of Lemma 3.4.2. More precisely, let tγiui“1,...,5,
be the vertices of X5, and let γi and γ1

i be lifts that form two pentagons X5 and X 1
5. Up to

applying some element of N to X 1
5 we may assume that γ1 “ γ1

1 and γ2 “ γ1
2, because the edge

γ1, γ2, which is a simplex of dimension 1, admits a unique orbit of lifts by Lemma 2.2.6. Now,
if we apply Lemma 3.4.2 with x “ γ3, x

1 “ γ1
3, y “ γ1 and S “ P “ γ2 we find some element

g P N mapping γ3 to γ1
3 and fixing γ1, γ2, so we can apply g to X5 and assume that γ3 “ γ1

3.
Moreover, if we repeat the argument with x “ γ4, x

1 “ γ1
4, y “ γ2, P “ γ3 and S “ tγ1, γ3u we

may also assume that γ4 “ γ1
4. Now X5 and X 1

5 coincide on four curves, and therefore they must
coincide because of Lemma 3.2.6.

Now assume that b ě 6 and every copy of Xb´1 inside Cb´1{N pSb´1q has a unique lift inside
Cb´1. The next step is the following:

Lemma 3.4.5. If β P Xb is a minimal vertex, then G “ β ‹ Xb´1 has a unique lift inside Cb,
up to elements in N .
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Proof. Let G “ β ‹ Xb´1 and G1 “ β1 ‹ X 1
b´1 be two lifts of G. Up to an element of N we may

assume that β “ β1. Now Xb´1 and X 1
b´1 are in LkCb

pβq – Cb´1, where again we see Sb´1 as the
surface obtained by shrinking β to a puncture. Moreover, as already noticed the projection of
LkCb

pβq is isomorphic to Cb´1{N pSb´1q, thus by induction there is an element h P N pSb´1q that
maps Xb´1 to X 1

b´1. If we extend h to be the identity on the twice-punctured disk bounded by
β we get a mapping class H P N pSbq that maps G to G1, as required.

Now we are finally able to prove the theorem. Choose two lifts Xb and X
1
b of Xb. By the previous

lemma we may assume that they coincide on β ‹ Xb´1. Now apply Lemma 3.4.2 with x “ α1,
x1 “ α1

1, y “ β and S “ Xb´1, so that we may assume that Xb and X 1
b coincide also on α1.

Finally, by Lemma 3.2.4 we see that the two lifts now coincide.
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Chapter 4

Combinatorial rigidity

The aim of this Chapter is to prove the Combinatorial Rigidity Theorem 4, which is implied by
Theorem 4.4.1. First we show an analogue for the special case b “ 4. The proof will highlight
the core of the general case, though the latter will require some more machinery.

4.1 The four-punctured case

The subgraph playing the role of the rigid set in this case will be any triangle T inside the Farey
complex, since the following well-known result holds (for example, it follows from the discussions
in [AL13, Section 3] and in [FM12, Section 3.4]):

Theorem 4.1.1. Given two triangles T, T 1 Ă C4 there exists an element h P MCG˘pS0,4q

mapping T to T . Any two such h differ by an element of the Klein four-group K of hyperelliptic
involutions (see Figure 1.5).

Now we want to prove the following:

Theorem 4.1.2. There exists K0 P Ną0 such that if K is a non-trivial multiple of K0 the action

MCG˘pS0,4q{DTK Ñ AutpCpS0,4q{DTKq

is an epimorphism, with kernel the projection of the Klein four-group K, generated by the classes
of the two hyperelliptic involutions in Figure 1.5.

The proof will actually work for the quotient by any deep enough subgroup N . We split the
proof in two propositions below.

Proposition 4.1.3. For any normal subgroup N deep enough, any automorphism ϕ P AutpC4{N q

is induced by an element of MCG˘pS4q.

The proof relies on the following:

Lemma 4.1.4. The following facts hold:

1. Any two adjacent curves α, β P C4 belong to exactly two triangles.

2. Any two adjacent vertices α, β P C4{N belong to at most two triangles (namely, the pro-
jections of the two triangles that complete some of their lifts).
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Proof. Item (1) is true by properties of the Farey complex (see Lemma 1.2.10). Regarding Item
(2) fix a pair α, β of adjacent lifts of α, β. Any triangle T “ tα, β, γu has a lift tα1, β1, γ1u, and
by uniqueness of the orbit of lifts of an edge (which is a particular case of Theorem 2.2.6) we
may assume that α “ α1 and β “ β1. Therefore T is the projection of one of the two triangles
containing α, β.

Proof of Proposition 4.1.3. Let T Ď C4 be a triangle, and let T be its projection, which is still
an isometrically embedded triangle by Item (1) of Lemma 2.3.4. Let rT be a lift of ϕpT q, which
exists by Theorem 2.2.6. By Theorem 4.1.1 there is a mapping class h P MCG˘pS4q mapping

T to rT , which means that ϕ coincides with the induced map h on T . In other words, we showed
that the following diagram commutes on T Ă C4:

C4 C4

C4{N C4{N

π

h

π

ϕ

(4.1)

Our next goal is to show that, if the diagram commutes on some triangle T , then it commutes on
any triangle T 1 that shares an edge with T . If we prove the claim we are done, since for any two
triangles in the Farey complex there exists a sequence of triangles connecting them, such that
two consecutive triangles share an edge (see Lemma 1.2.10). Let α, β P T be the vertices of the

common edge. Notice that h, which is a graph automorphism, must map T 1 to the triangle rT
that contains hpαq and hpβq and is not rT , and similarly ϕ must map πpT 1q to πp rT 1q since there
are no other triangles containing πpαq and πpβq. Therefore Diagram (4.1) commutes also on T 1,
as required.

Proposition 4.1.5. For b “ 4 and any N deep enough, if g P MCG˘ induces the identity on
C4{N , then g P NK.

Proof. Choose a copy T Ă C{N of the rigid set, and let T be one of its lifts. Then gpT q is also
a lift of T , and by Lemma 2.2.8 there is an element h P N mapping T to gpT q. Hence h´1 ˝ g is
the identity on T , and therefore belongs to K by the “moreover” part of Theorem 4.1.1.

While the injectivity part of the case b ě 5 will be very similar to the proof of Proposition 4.1.5,
for the surjectivity part we will need a more general version of Lemma 4.1.4. The following
sections are devoted to establish such a result, the main tool being half twists around minimal
vertices.

4.2 Characterization of half twists

From now on let b ě 5. Let β P Xb Ď C be a minimal curve, and recall that we denote by Hβ

the half twist around β. Our first goal is to show that for any α P Xb its image Hβpαq admits a
graph-theoretic characterization, which therefore is preserved by any automorphism of the curve
complex. More precisely we want to prove the following:

Lemma 4.2.1. For any α P Xb:

• Hβpαq “ α iff dCpα, βq ď 1;

• otherwise there exists a facet P Ď Xb such that Hβpαq is one of the two curves with special
intersection with both α and β, with respect to P .
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Notice that we did not uniquely characterize Hβpαq, since it is impossible to distinguish it from
H´1
β pαq just from the curve graph (since the orientation-reversing reflection r fixes Xb pointwise

but swaps the half-twists).

Proof. The first bullet is clearly true, so we focus on the second. Let α be a curve in Xb that
intersects β, and let P be a facet that both α and β complete, which cuts out a four-holed sphere
S4. Now, clearly Hβpαq has special intersection with both α and β with respect to P (the curves
γ and δ are easy to find in both cases); therefore it suffices to notice that there are only two
curves on S4 with intersection 2 with both α and β, since in the curve graph of S4 the edge with
endpoints α and β belongs to only two triangles.

4.3 Definition of half twists in the quotient

For the rest of the section, let N be a deep enough subgroup.

Definition 4.3.1. Let Xb be a copy of Xb inside C{N , and let β P Xb be a minimal vertex. Let
s : Xb Ñ C be a lift. Then we define the half twist around β as Hβ :“ π ˝Hspβq

˝ s.

In other words, we define the half twist by lifting Xb, applying a half twist and projecting, so
that the half twist commutes with the quotient projection. The definition is well-posed, since
any two lifts of Xb differ by some g P N . Notice moreover that HβpXbq is still a copy of Xb by

Theorem 3.3.3, since it is the projection of Hspβq

`

spXbq
˘

.
Our next goal is to show that the combinatorial characterization of the half twist described in
Theorem 4.2.1 still works in the quotient. In order to do so we need to show that:

1. Hβpαq still satisfies the properties described in Theorem 4.2.1;

2. Any η that satisfies the properties with α, β and P lifts to a curve that satisfies the
properties with some lifts α, β, P . Therefore η must be the projection of H˘1

β pαq.

The following subsections will be dedicated to the proofs of these items.

4.3.1 The projection of a twist looks like a twist

Let Xb, α, β as above. For short, we set α “ spαq and similarly for any other vertex and subset
of spXbq. We subdivide the proof into two lemmas:

Lemma 4.3.2. Hβpαq “ α iff dC{DTK
pα, βq ď 1.

Proof. By construction Hβ is the identity on the link of β. Conversely, if α is at distance 2 from

β then α and Hβpαq are different curves in Yb, and by Theorem 3.3.3 they project to different
points.

Lemma 4.3.3. If dC{DTK
pα, βq “ 2 then there exists a facet P such that Hβpαq has special

intersection with both α and β, with respect to P .

Proof. Choose a facet P Ď Xb that both α and β complete, and let γ, δ P Xb be some auxiliary
curves detecting their special intersection, as in Figure 3.5. The images of these curves under
Hβ are auxiliary curves for β and Hβpαq. Moreover we can find γ1, δ1 P Yb that detect the special
intersection between α andHβpαq (see Figure 4.1 for an example). The graph G spanned by these
curves is the union of two special pentagons patched along the simplex Hβpαq ‹ P , as in Figure
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4.2. Since G it is a subgraph of the graph Yb, defined in Definition 3.3.1, by Theorem 3.3.3 its
projection is an isometric embedding of two special pentagons, detecting that Hβpαq “ πpHβpαqq

has special intersection with both α and β.

Figure 4.1: An example of how the auxiliary curves (here in red) may be chosen only using half
twists around β and ζ, which are both in Xb. In our example γ “ γ1, but this is not necessary.
The case where α bounds a twice-punctured disk can be dealt with similarly.

4.3.2 If it looks like a twist it is the projection of a twist

Lemma 4.3.4. Let β P Xb Ă C be a minimal curve, and let α P Xb have special intersection with
β with respect to the facet P . Let α, β, P be their projections, and let η P C{N be a vertex with
special intersection with both α and β with respect to P . Then η lifts to a curve η with special
intersection with both α and β with respect to P .

Proof. Consider the subgraph G Ď C{N made of two special pentagons that detect the special
intersections, as in Figure 4.2. This subgraph has a lift G Ď C (more precisely, each one of the
special pentagons lifts, and we may arrange that the lifts coincide on η ‹P since there is a unique
N -orbit of lifts of simplices). Now, as a corollary of Lemma 3.4.2 the union of the two simplices
α ‹ P Y β ‹ P admits a unique lift, up to elements in N , and therefore we may assume that
G is glued to Xb in such a way that the corresponding copies of α, β, P coincide. But now G
detects that η lifts to a curve with special intersection with the copies of α and β inside Xb, as
required.

4.4 The general case

We are finally ready to prove the following combinatorial rigidity statement, which implies The-
orem 4 when N “ DTK for suitable K.

Theorem 4.4.1. For every b ě 5 and for every deep enough subgroup N , the natural map
MCG˘pSbq{N Ñ AutpCpSbq{N q is an isomorphism.

As before, we split the proof into two theorems.
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Figure 4.2: The configuration G that detects the special intersection of Hβpαq with both α and
β, that consists in two special pentagons (here, in black and blue) which overlap over a simplex
(here, in green and red). Possibly γ “ γ1 and δ “ δ1, but each of the pentagons is isometrically
embedded.

Theorem 4.4.2. For b ě 5 and any N deep enough, any automorphism ϕ P AutpC{N q is induced
by an element of MCG˘pSbq.

Proof. Consider Xb inside C and let Xb be its projection, which is still a copy of Xb by Theorem
3.3.3. Moreover let ĂXb be a lift of ϕpXbq. By Theorem 3.2.1 there is an extended mapping

class h P MCG˘pSbq mapping Xb to ĂXb, which means that the following diagram commutes on
Xb P C:

C C

C{N C{N

π

h

π

ϕ

(4.2)

Now, choose a minimal vertex β P Xb, and let r be the reflection fixing Xb. We know that, if we
fix a curve α1 P Xb that intersects β, h must map Hβpα1q to either Hhpβqphpα1qq or H´1

hpβq
phpα1qq,

since these are the only two curves that satisfy the graph-theoretic characterization of the half
twist, Theorem 4.2.1. Section 4.3 shows that the same argument works in the quotient, hence
there are only two possibilities for ϕ ˝ Hβpα1q. Up to replacing h with h ˝ r we may therefore
assume that Diagram 4.2 commutes also on Hβpα1q, and hence on the whole HβpXbq, which by
Lemma 3.2.4 is uniquely determined by Hβpα1q (and the copy of Xb´1 which is the link of β in
Xb; this is fixed by Hβ).
We now claim that, if the diagram commutes on Xb Y HβpXbq and ζ is a minimal curve in Xb

that intersects β then the diagram commutes also on HζpXbq. In fact H´1
ζ pβq “ Hβpζq, as shown

in Figure 4.3, therefore we already know that the diagram commutes on H´1
ζ pβq (and therefore

on Hζpβq which is the only other curve that satisfies the same characterization as H´1
ζ pβq).

Therefore the diagram commutes also on the whole HζpXbq, which is uniquely determined by
Hζpβq.
We may repeat the previous argument to show that Diagram 4.2 commutes on Xb and on any
half twist around one of its minimal curves. Now it suffices to prove that the orbit of Xb by
successive half twists covers C. That is, we are left to prove:
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Figure 4.3: The two minimal curves from the proof of theorem 4.4.2 and their respective half
twists.

Claim: Given two copies Xb and X
1
b, there is a sequence Xb “ X0, X1, . . . , Xk “ X 1

b of copies
of Xb such that, for every i “ 0, . . . , k ´ 1, Xi`1 “ H˘

β pXiq for some minimal curve β P Xi.

Proof of Claim. To show this let h be a (orientation-preserving) mapping class that maps Xb

to X 1
b. Now, if β1, . . . , βb are the minimal curves in Xb we know that Hβ1 , . . . ,Hβb

generate
the mapping class group, by Theorem 1.1.6. Therefore let h “ H˘

βi1
. . . H˘

βik
, for some possibly

repeated indices i1, . . . , ik P t1, . . . , bu. Now we proceed by induction on k. If k “ 1 we are done.
Otherwise notice that, by the properties of half Dehn twists (Lemma 1.1.4),

h “ H˘
βi1

. . . H˘
βik

“ H˘

H˘
βi1

pβi2
q
. . . H˘

H˘
βi1

pβik
q
H˘
βi1
.

Now we have expressed h in terms of H˘
βi1

and k ´ 1 half twists around some minimal curves of

X1 :“ H˘
βi1

pXbq. Therefore we conclude by the inductive hypothesis.

This concludes the proof of Theorem 4.4.2.

Now we turn to the injectivity part:

Theorem 4.4.3. For any b ě 5 and any N deep enough, if g P MCG˘ induces the identity on
C{N , then g P N .

Proof. Choose a copy of Xb Ď C{N , and let Xb be one of its lifts. Then gpXbq is also a lift of Xb,
and by the uniqueness part of Theorem 3.4.1 there is an element h P N mapping Xb to gpXbq.
Therefore h´1 ˝ g is the identity on Xb, and by the “moreover” part of Theorem 3.2.1 we must
have that h´1 ˝ g P xry. Now if we show that r does not induce the identity on C{N we must
have that g “ h, and we are done. If this is not the case then for any minimal curve β P Xb we
have that HβpXbq and r ˝HβpXbq “ r ˝Hβ ˝ rpXbq “ H´1

β pXbq coincide in the quotient (here we
used that rpXbq “ Xb and the properties of a half Dehn twist under conjugation, Lemma 1.1.4).
Therefore by uniqueness of the orbit of lifts there is an element k P N which, for every curve
γ P Xb, maps H´1

β pγq “ r ˝ Hβpγq to Hβpγq. By the “moreover” part of Theorem 3.2.1 there
is only one only orientation-preserving mapping class with this property, and therefore we must
have that Tβ “ k P N since the Dehn twist Tβ clearly maps H´1

β pγq to Hβpγq. But then since N
is a normal subgroup it must contain all conjugates of Tβ , that is, all Dehn twists around curves
that bound twice-punctured disks. These mapping classes generate the pure mapping class group
PMCGpSbq, which is the finite index subgroup of MCGpSbq consisting of elements that fix each
puncture individually. But this subgroup is not deep enough if we choose a large enough constant
Θ (for example, since the quotient C{PMCG is finite, which contradicts Corollary 2.3.9).
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4.5 Finite rigidity of the quotient

As a byproduct of the proofs of Theorems 4.4.1 and 4.1.2 we get an analogue of Theorem 3.2.1
for the quotient.

Corollary 4.5.1 (Finite rigidity of C{N ). For b ě 4 and N deep enough, for every fixed copy
Xb Ă C{N (where by X4 we mean a triangle), any isometric embedding ϕ : Xb Ñ C{N is induced
by a mapping class h P MCG{N . Moreover two such h differ by an element of the pointwise
stabilizer PStabpXbq, which is the projection of PstabpXbq.

Proof. For the existence part let Xb and X 1
b be lifts of Xb and ϕpXbq, respectively. Then by

finite rigidity there is a mapping class h P MCG mapping Xb to X 1
b, and the induced map

h P MCG{N maps Xb to ϕpXbq.
For the uniqueness part, if h and h1 both induce maps that map Xb to ϕpXbq then hpXbq and
h1pXbq are both lifts of ϕpXbq, hence by uniqueness of the orbit of lifts there exists a g P N such
that g ˝ h|Xb

“ h1|Xb
. But then g ˝ h and h1 must differ by an element of PstabpXbq.
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Chapter 5

Extracting combinatorial data
from a quasi-isometry

The main goal of this Chapter is, roughly speaking, to show that quasi-isometries ofMCGpSbq{DTK
induce automorphisms of a certain graph, which we will later on relate to C{DTK . This strategy
is inspired by [BHS21, Section 5], where an approach to the quasi-isometric rigidity of mapping
class groups is presented as a template to prove quasi-isometric rigidity of other hierarchically
hyperbolic spaces (HHS), MCGpSbq{DTK being a HHS for suitable K by results of [BHMS20].
More precisely, [BHS21, Theorem 5.7] states that quasi-isometries of a HHS satisfying three
additional assumptions induce automorphisms of a suitable graph. Those assumptions are not
satisfied byMCGpSbq{DTK , but nevertheless we will show that a very similar statement applies,
see Theorem 5.2.15 which is the main result of this Chapter. The Theorem will also apply to
pants graphs (see Chapter 6).
In Section 5.1 we will recall the basic notions of coarse geometry, including what a quasi-isometry
is, and of geometric group theory. Then in Section 5.2 we will give an overview on hierarchically
hyperbolic spaces and gather all facts about HHSs that we will need.

5.1 A crash course in coarse geometry

For this section we will mainly follow the book of Bridson and Haefliger [BH99].

5.1.1 Coarse maps

Definition 5.1.1. Let pX, dXq, pY, dY q be two metric spaces. A map f : X Ñ Y is said to be:

• coarsely Lipschitz if there exist two constants k, c ě 0 such that for every x, x1 P X we have
that

dY pfpxq, fpx1qq ď kdXpx, x1q ` c;

• coarsely surjective if there exists a constant c ě 0 such that, for every y P Y there exists
x P X such that dY pfpxq, yq ď c;

• a quasi-isometric embedding if there exists two constants k, c ě 0 such that for every
x, x1 P X we have that

1

k
dXpx, x1q ´ c ď dY pfpxq, fpx1qq ď kdXpx, x1q ` c;
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• a quasi-isometry if it is a coarsely surjective quasi-isometric embedding.

We say that two maps f, g : X Ñ Y coarsely coincide, or are at bounded distance, if there exists
a constant c such that, for every x P X, dY pfpxq, gpxqq ď c.

Notice that coarsely Lipschitz maps and quasi-isometric embeddings need not be continuous,
since we get no information at all at scales below c. In other words, this kind of maps only
capture the “large scale” behavior of distances in the two spaces: for example, a good way of
thinking about quasi-isometric embeddings is that they are bi-Lipschitz maps at a large scale.
Two metric spaces are quasi-isometric if there exists a quasi-isometry between them (that is, if
they look the same “from far enough”). Being quasi-isometric is an equivalence relation, since it
is easy to show that a quasi-isometric embedding f : X Ñ Y is a quasi-isometry if and only if
admits a quasi-inverse g : Y Ñ X, that is, a quasi-isometric embedding such that g ˝ f coarsely
coincide with the identity map idX on X, and similarly f ˝ g and idY are at bounded distance.
Notice moreover that the composition of two quasi-isometries is a quasi-isometry (with possibly
larger constants). Summing up these facts we see that, given a metric space X, the set QIpXq

of self-quasi-isometries of X up to bounded distance forms a group.

Definition 5.1.2. Let X be a metric space. A (quasi)geodesic line is a (quasi-)isometric em-
bedding γ : R Ñ X. One can similarly define (quasi)geodesic rays and segments.

We will often conflate a (quasi-)geodesic with its image. Notice that, if X is a metric simplicial
graph, this new notion of geodesic agrees with the one we gave before, which is Definition 1.2.3.

Definition 5.1.3. A metric space X is said to be:

• geodesic if for every two points x, x1 P X there exists a geodesic segment γ whose endpoints
are x and x1;

• quasi-geodesic if there exist two constants k, c such that for every two points x, x1 P X
there exists a pk, cq-quasigeodesic segment γ whose endpoints are x and x1.

We will denote a geodesic segment with endpoints x and x1 by rx, x1s, though there might be
more than one geodesic segment between two points.
Though in what follows we could work with quasigeodesic metric spaces, we prefer to consider
geodesic metric spaces, which are nicer since they are path connected. This is why it is sometimes
better to replace an abstract graph (which is just a collection of points with the discrete topology)
with its geometric realization. In the latter case the new notion of geodesic agrees with the one
given in Definition 1.2.3.

5.1.2 The Cayley graph of a group

Here we recall how to endow a finitely generated group G with a metric graph structure. Let S
be a finite set of generators, which we assume to be symmetric (meaning that if s P S then its
inverse s´1 belongs to S as well).

Definition 5.1.4. The Cayley graph CaypG,Sq is the simplicial graph whose vertices are the
elements of the group, and two elements g, h P G are adjacent if and only if there exists a
generator s P S such that g “ hs.

If we denote by dG,S the length metric as defined in Subsection 1.2.1, which we call the word
metric associated to the generating set S, we see that for every g, h P S their distance is

dG,Spg, hq “ mintk P N|Ds1, . . . , sk P S s.t. g “ hs1 . . . sku.
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This distance is always finite, since h´1g is a finite product of generators. This shows that
CaypG,Sq is a connected graph, and therefore a geodesic metric space.
The word metric is invariant under left multiplication by elements of G, or left-invariant for
short, since if g “ hs then for every f P G we have that fg “ pfhqs. In other words, the
group acts on its Cayley graph by left multiplication, and every element acts as a simplicial
automorphism.
For every element g P G we can define its norm as }g}G,S “ dG,Sp1, gq, where 1 P G is the trivial
element of the group. Notice that, for every g, h P G, we have an estimate on the norm of their
product:

}gh} “ dpgh, 1q ď dpgh, gq ` dpg, 1q “ dph, 1q ` dpg, 1q “ }h} ` }g}.

Now, as a graph CaypG,Sq depends both on the group and on the chosen generating set. However:

Lemma 5.1.5. Let G be a finitely generated group. If S, S1 are two symmetric generating set,
then the identity map idG : G Ñ G extends to a quasi-isometry idG : CaypG,Sq Ñ CaypG,S1q.
Hence “the” Cayley graph CaypGq is well-defined up to quasi-isometry.

Proof. Since S is a generating set and S1 is finite, there exists a constant K “ maxs1PS1 }s1}G,S .
Now, every element g P G can be written as g “ s1

1 . . . s
1
l for some s1

i P S1. Suppose that l is
minimal with this property, so that l “ }g}G,S1 . Then

dpg, 1qG,S1 “ }g}G,S1 ď }s1
1} ` . . .` }s1

l} ď Kl “ K}g}G,S1 “ Kdpg, 1qG,S .

Hence, using that both metrics are left-invariant, we see that the identity map is K-Lipschitz.
Swapping S and S1 in the previous argument we see that the identity map is a quasi-isometric
embedding, and therefore a quasi-isometry since it is clearly surjective.

Remark 5.1.6. An important property of the Cayley graph is that it is a proper metric space,
meaning that its closed balls are compact. In fact, it is easy to see that a metric graph is proper
if and only if every link of a vertex is finite, which happens in our case (all links are isomorphic
via the action of G, which is transitive, and the link of the trivial element is the finite set S).

Defining the Cayley graph is the first step towards Geometric Group Theory, which is the study
of algebraic properties of groups with geometric tools. The second step is establishing when an
action of a group G on a metric space X induces a quasi-isometry between CaypGq and X, so
that the large scale geometry of the group can be studied by looking at its “nice” actions. We
first need to define what “nice” means:

Definition 5.1.7. Let pX, dq be a metric space and G be a group acting on X by isometries.
The action is said to be:

• proper if for any x P X and any ball B Ď X there are only finitely many elements of G
that map x inside B;

• cobounded if there exists a ball B of finite radius whose G-translates cover the whole X,
that is to say G ¨B “ X;

We say that G acts geometrically on a metric space X if the action is proper, cobounded and by
isometries.

It is easy to see that, if G is finitely generated, the action G ö CaypGq is geometric. The
following, which is sometimes called the fundamental lemma of Geometric Group Theory, show
that geometric actions are the “nice” ones we were looking for:
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Lemma 5.1.8 (Milnor-Švarc, [Š55, Mil68]). Let G be any group, acting geometrically on a
geodesic metric space X. Then

• G is finitely generated;

• CaypGq is quasi-isometric to X, via the map g Ñ gx0 for any given choice of x0 P X. This
quasi-isometry is G-equivariant, meaning that it commutes with the G-actions.

Proof. See e.g [BH99, Proposition I.8.19] for a proof.

We conclude this Subsection with the observation that a group morphism ϕ : G Ñ H can be
viewed as a map CaypGq Ñ CaypHq. Then it is easy to show the following:

Lemma 5.1.9. A group morphism ϕ : G Ñ H is a quasi-isometry if and only if it has finite
kernel and Impϕq has finite index in H. In particular, group isomorphisms are quasi-isometries.

5.1.3 Gromov-hyperbolic spaces and groups

Given three points x, y, z P X in a geodesic metric space, a geodesic triangle will be the union of
three geodesic segments rx, ys Y ry, zs Y rz, xs.

Definition 5.1.10 (Gromov, [Gro87]). A geodesic metric space pX, dq is Gromov-hyperbolic, or
simply hyperbolic, if there exists a constant δ, called the hyperbolicity constant, such that the
following holds. For every geodesic triangle rx, ys Y ry, zs Y rz, xs and any p P rx, ys there exists
some q P ry, zs Y rz, xs with dpp, qq ď δ.

A triangle satisfying Definition 5.1.10 is said to be δ-thin, and looks like in Figure 5.1:

Figure 5.1: A δ-thin triangle. Every side is in the δ-neighborhood of the other two.

The next lemma shows that not only triangles, but also quadrangles (that is, the union of four
consecutive geodesic segments) are slim:

Lemma 5.1.11. Let Q “ rw, xs Y rx, ys Y ry, zs Y rz, ws be a geodesic quadrangle inside a
δ-hyperbolic space X. Then for every p P rw, xs there exists q P rx, ys Y ry, zs Y rz, ws with
dpp, qq ď 2δ.

Proof. Choose a geodesic rw, ys and consider the two triangles T “ rw, xs Y rx, ys Y ry, ws and
T 1 “ rw, ys Y ry, zs Y rz, ws. Then in the first triangle p is δ-close to a point r P rx, ys Y ry, ws. If
r P ry, ws we set q “ r and we are done, otherwise r itself is δ-close to a point q P ry, zsYrz, ws.

An important fact about hyperbolicity is that it is preserved under quasi-isometries, though the
actual hyperbolicity constant δ may change:
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Lemma 5.1.12. Let X,Y be geodesic metric spaces. If there exists a quasi-isometric embedding
f : X Ñ Y and Y is hyperbolic, then so is X. In particular, being hyperbolic is a quasi-isometry
invariant

Proof. See e.g. [BH99, Theorem III.1.9] for a proof.

Thanks to Lemma 5.1.12, we can say that a finitely generated group G is hyperbolic if one (hence
any) of its Cayley graphs is hyperbolic. Equivalently, by Lemma 5.1.8 a group is hyperbolic if
and only if it acts geometrically on a hyperbolic space.
For a hyperbolic metric space it is possible to define a notion of boundary, whose points represent
the “directions at infinity” of the space. First, we recall the following notation. Given a point
x in a metric space X, let Bpx, εq be the ball of radius ε centered at x. Moreover, if A Ă X,
we define its ε-neighborhood as NεpAq “

Ť

aPABεpaq. Finally, given two subsets A,B Ă X of a
metric space, their Hausdorff distance is defined as

dHauspA,Bq “ inf tε ą 0 |B Ď NεpAq, A Ď NεpBqu .

Let R be the set of quasigeodesic rays r0,`8q Ñ X inside X, which might be empty. We
say that two rays γ, λ are asymptotic, and we write γ „ λ, if their Hausdorff distance is finite.
Intuitively, this means that the rays are “parallel” and co-oriented.

Definition 5.1.13. Let X be a δ-hyperbolic metric space. The Gromov boundary BX is the set
of „-equivalence classes of quasigeodesic rays.

For every p P BX, we say that every quasigeodesic ray γ which belongs to the class p is asymptotic
to p, and we write γp`8q “ p.

Lemma 5.1.14. There exists a constant Kpδq such that the following holds. For every x P X
and every p P BX there exists a pK,Kq-quasigeodesic ray γ : r0,`8q Ñ X such that γp0q “ x
and γp`8q “ p. Moreover, for every two boundary points p, q P BX there exists a pK,Kq-
quasigeodesic line γ : p´8,`8q Ñ X such that γp´8q “ q and γp`8q “ p.

Proof. See e.g. [KB02, Remark 2.16] for a proof.

Roughly speaking, Lemma 5.1.14 says that the whole boundary is “visible” from any point
x P X, because every point in the boundary can be reached from x following a suitable quasi-
geodesic. The “moreover” part asserts that pairs of boundary points correspond to bi-infinite
quasigeodesics, which will be very useful later. Notice that the constants of these quasigeodesics
are the same for every x and every p in the boundary.

5.1.4 Acylindrical hyperbolicity

Definition 5.1.15. If a group G acts by isometries on a hyperbolic space S, an element g P G is
loxodromic if for some x P S the map Z Ñ S given by k ÞÑ gkpxq is a quasi-isometric embedding.

We call the orbit tgkpxqu a (quasi)-axis for the loxodromic element. If one precomposes the map
in the definition with a quasi-isometry R Ñ Z then one gets a bi-infinite quasigeodesic R Ñ S,
whose endpoints at infinity are denoted g˘ P BS. This pair does not depend on the choice of x,
since if y is another point then dSpgkpxq, gkpyqq “ dSpx, yq is constant, hence the two quasi-axis
are at bounded Hausdorff distance and have the same endpoints in the boundary.
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Definition 5.1.16 (Bestvina-Fujiwara [BF02]). In the same setting of Definition 5.1.15, an
element g P G is weakly properly discontinuous, or WPD, if for every ε ą 0 and any x P S there
exists N0 “ N0pε, xq such that whenever N ě N0 we have

ˇ

ˇ

␣

h P G|max
␣

dS px, hpxqq , dS
`

gN pxq, hgN pxq
˘(

ď ε
(
ˇ

ˇ ă `8.

We denote by LWPD the set of loxodromic WPD elements. It follows from the definitions that
a power of a loxodromic and WPD element remains loxodromic and WPD.

Definition 5.1.17. A group G is virtually-cyclic if it has a finite index subgroup isomorphic to
Z. In particular, G and Z are quasi-isometric.

Definition 5.1.18 (Osin [Osi16]). A finitely-generated group G is acylindrically hyperbolic if it
is not virtually-cyclic and it acts by isometries on a hyperbolic space S, so that the action admits
loxodromic WPD elements.

Remark 5.1.19. It follows from [Osi16, Theorem 1.1] that if G and S are as in Definition 5.1.18
then there exist at least two loxodromic elements g, h which are independent, meaning that the
sets tg˘u and th˘u are disjoint. Hence in particular BS has at least four points (and one can
show that it is actually infinite).

5.1.5 A link to the past: more properties of the curve graph

Now that we have some more notions of coarse geometry we can say more about the curve graph
and the action of the corresponding mapping class group. First we recall a celebrated theorem
of Masur and Minsky [MM99, Min96]:

Theorem 5.1.20. There exists a constant δ such that the curve graph of a surface S of complexity
at least 1 (hence including the Farey complex) is δ-hyperbolic.

Next, we identify the loxodromic WPD elements of this action:

Lemma 5.1.21 ([MM99, BF02]). If S has complexity at least 2 then the action of a pseudo-
Anosov element on the curve graph is loxodromic and WPD.

Finally, the mapping class group of surfaces of complexity at least 2 is not virtually-cyclic. This
is because whenever two curves are disjoint the corresponding Dehn twists commute and generate
a Z2 subgroup, but a virtually-cyclic group does not contain a copy of Z2 (simply because for
every non-trivial element a P Z2 we can find some b P Z2 such that no power of b is in xay).
Combining these results we get:

Theorem 5.1.22. The mapping class group of a surface of complexity at least 2 is non-virtually-
cyclic and acts on its curve graph with loxodromic WPD elements, hence it is acylindrically
hyperbolic.

A similar result holds also for MCGpS4q, but we will not need it.

Corollary 5.1.23. The curve graphs of both S4 and S5 have at least four points at infinity.

Proof. In the case of an S4, it is easy to see that the boundary of the Farey complex is in
bijection with the accumulation points of the endpoints of the arcs in Figure 1.3, which is dense
in the boundary S1 of the disk. Regarding S5, we know that MCGpS5q is non-virtually-cyclic,
and it acts on CpS5q with loxodromic WPD elements. Therefore the thesis follows by Remark
5.1.19.
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5.2 HHS background

This section is devoted to recover the useful facts about hierarchically hyperbolic spaces and
groups, first defined by Behrstock, Hagen and Sisto in [BHS17]. Most of the time we will not go
into the actual details, since a complete knowledge of the (rather lengthy) definitions will not be
necessary for our purposes. It will suffice to have in mind what the various notions involved in
the definitions are for mapping class groups, whose hierarchical features were already studied by
Masur and Minsky in [MM00] (see Remark 5.2.5 below).

Definition 5.2.1. Roughly speaking, a hierarchically hyperbolic space (HHS) is the data of:

• a metric space X;

• an index set S with a symmetric relation called orthogonality (K) and a partial order,
called nesting (Ď), with a unique maximal element S P S; when two indices U, V are
neither orthogonal nor Ď-related then they are said to be transverse (&);

• for every index U P S, a space CU , called the curve graph of U , which is uniformly
hyperbolic (meaning that the hyperbolicity constant δ does not depend on U), and a
uniformly coarsely Lipschitz map πU : X Ñ CU (meaning that the constants of the coarsely
Lipschitz property are the same for every U).

It is customary to denote a HHS simply by pX,Sq.

We may think of the projections πU : X Ñ CU as coordinates, meaning that every point x P X
is uniquely determined by the tuple tπU pxquUPS of its coordinates.
A crucial fact about HHSs is that they satisfy a distance formula. This means that for all
sufficiently large threshold s there exists D such that for all x, y P X we have

dXpx, yq —D,D

ÿ

ttdY px, yquus (5.1)

where

• —D,D denotes equality up to multiplicative and additive error at most D,

• ttAuus “ A if A ě s and ttAuus “ 0 otherwise,

• dY px, yq is shorthand for dCpY qpπY pxq, πY pyqq.

The idea of orthogonality is that it corresponds to products, in the following sense. Given any
U P S, there is a corresponding space FU associated to it, which is quasi-isometrically embedded
in X and is a HHS itself “of lower complexity” with index set SU “ tV P S : V Ď Uu. A point
x P FU has all coordinates of the form πV ppq prescribed whenever UKV , U Ĺ V and U&V , thus
the indices in SU are the only coordinates needed to describe x.
Now, given a maximal set tUiu of pairwise orthogonal elements of S, there is a corresponding
standard product region PtUiu which is quasi-isometric to the product of the FUi

. The product
region PtUiu has the property that for all U with Ui Ĺ U or U&Ui for some i, we have that

πY pPtUiuq is a uniformly bounded set, that we denote ρ
tUiu

V .
The following is [BHS21, Corollary 1.28] (which is stated for product regions corresponding to
one element of the index set, but the proof does not use this):
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Lemma 5.2.2. For all sufficiently large s there exists D such that, if tUiu is a maximal collection
of pairwise orthogonal indices and x P X, then

dXpx, PtUiuq —D,D

ÿ

W

!!

dW

´

x, ρ
tUiu

W

¯))

s
,

where the sum is made on all W such that Ui Ĺ W or Ui&W for some Ui.

From this Lemma we obtain a criterion for two product regions to intersect in a bounded set, in
the following “coarse” sense:

Definition 5.2.3. Given two subsets A,B of a metric space X, if there exists R0 so that
for any R,R1 ě R0, we have dHauspNRpAq, NR1 pBqq ă `8 then the coarse intersection of A
and B, which we denote AX̃B, is any subspace of X within bounded Hausdorff distance of all
NR0

pAq XNR0pBq.

Corollary 5.2.4 (Intersection of different product regions). If tUiu and tVju are maximal col-
lections of pairwise orthogonal indices, such that tUiu X tVju “ H and every Vj is Ď-minimal,
then PtUiuX̃PtVju is coarsely a point (that is, it is bounded).

Proof. It is enough to apply Lemma 5.2.2 with x P PtVju. In fact, for every W R tVju there
is a Vj such that Vj&W or Vj Ĺ W , since tVju is a maximal collection of pairwise orthogonal,
Ď-minimal indices. Moreover, since x P PtVju, the projection πW pxq is contained in the uniformly

bounded set ρ
tVju

W . Hence the index W contributes to the sum with a term of the form

!

dW

´

ρ
tVju

W , ρ
tUiu

W

¯)

s

that does not depend on x, but only on tUi, Vju and W . Now, if we fix a threshold s0 there is a
finite number of terms that contribute to the sum, since the sum is bounded above in terms of
dXpx, PtVjuq. Therefore, if we choose a big enough threshold s we can erase this terms from the
sum, and we get that

dXpx, PtUiuq —D,D

ÿ

j

!!

dVj

´

x, ρ
tUiu

Vj

¯))

s
.

Therefore all points x P PtVju that lie within a given constant of PtUiu have nearby projections to
all CVj . Since all coordinates forW R tVju are prescribed we must have that all these points have
the same coordinates (up to a finite error), and therefore they are close in X by the Distance
Formula 5.1.

Remark 5.2.5 (The motivating example). The mapping class group of a surface S is a hierarchi-
cally hyperbolic space, by combining results of Masur, Minsky, Behrstock, Kleiner and Mosher
[MM99, MM00, Beh06, BKMM12]. More precisely:

• the index set S is the set of essential subsurfaces (up to isotopy);

• nesting corresponds to containment of subsurfaces, and the maximal element is the whole
surface S;

• orthogonality is disjointness of subsurfaces;

• CU are the “real” curve graphs, which are uniformly hyperbolic by Theorem 5.1.20;

• πU : MCG Ñ CU is defined using subsurface projection;
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• if U Ĺ V or U&V then ρUV is the subsurface projection of BU to CV ;

• FU can be thought of as the mapping class group of U , and has a hierarchical structure
whose index set are the subsurfaces of U ;

• if U1, . . . , Uk are pairwise disjoint subsurfaces the corresponding mapping class groups
commute, and PtUiu can be thought of as the product of these subgroups;

• the distance formula is a result of [MM00].

5.2.1 Quasiflats in HHS

This section collects some results from [BHS21] about how quasi-isometric copies of Rn can be
arranged in a HHS. First, a definition.

Definition 5.2.6. Let X be a metric space. A k-dimensional quasiflat is (the image of) a
quasi-isometric embedding Rk Ñ X. Similarly, a k-dimensional orthant is (the image of) a
quasi-isometric embedding Rk` Ñ X, where R` “ r0,`8q.

Notice that one-dimensional quasiflats and orthants are just quasigeodesic lines and rays, respec-
tively.

Definition 5.2.7 (Hierarchy paths). For D ě 1, a pD,Dq-quasigeodesic γ in X is a D–hierarchy
path if for each W P S, the path πW pγq Ă CW is an unparameterized pD,Dq–quasigeodesic
(meaning that it admits a reparameterization as a pD,Dq–quasigeodesic).

In other words, hierarchy paths are quasigeodesics which are “compatible” with the HHS struc-
ture, since the “coordinates” of γ are themselves quasigeodesics with the same constants (up to
choosing a different parameterization). One can similarly define hierarchy rays and lines. The
following is [BHS19, Theorem 4.4]:

Lemma 5.2.8. There exists D0 ě 1 such that, for every x, y P X there exists a D0-hierarchy
path joining them.

Notice that, since for every U P S the space FU is itself a HHS, it makes sense to talk about
hierarchy paths in FU . Now, given a product region PtUiu “

ś

i FUi
, if we choose a hierarchy line

(resp. ray) γi inside FUi
for i ď k and a point pi P FUi

for i ą k we can consider their product
ś

iďk γi ˆ
ś

iąktpiu, which is a k-dimensional quasiflat (resp. orthant). This is what we will
refer to as standard k-flats (resp., orthants). The support of a standard k-flat (resp., orthant) is
the set of Ui for which a line/ray has been assigned. Related to this, a complete support set is
a subset tUiu

ν
i“1 Ď S of pairwise orthogonal indices with all CUi unbounded, and with maximal

possible cardinality ν among sets with these properties. We say that ν is the rank of our HHS.
Now we claim that, if U is in a complete support set and BCU is non-empty, we can prescribe
the asymptotic behavior of hierarchy rays and lines in FU . This requires the following technical
condition, which is [BHS21, Definition 1.14]:

Definition 5.2.9 (Asymphoricity). We say that the HHS pX,Sq of rank ν is asymphoric if there
exists a constant A with the property that there does not exist a set of ν`1 pairwise orthogonal
elements U of S where each CU has diameter at least A.

From now on we will always assume without saying that all HHS are asymphoric. We will
moreover assume that they are normalized, meaning that every projection πU : X Ñ CU is
uniformly coarsely surjective.
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Lemma 5.2.10. Let U be an element of a complete support set. For every p P BCU there exists
a hierarchy ray γ Ă FU , such that πU pγq is a quasi-ray which is asymptotic to p, while πV pγq is
uniformly bounded for every V Ď U .
Moreover, for every pair of distinct points p˘ P BCU there exists a hierarchy line l Ă FU , such
that πU plq is a quasigeodesic which is asymptotic to p˘, while πV plq is uniformly bounded for
every V Ď U .

Proof. The asymphoricity assumption implies that, whenever U is an element of a complete
support set and V,W Ĺ U , if V KU then either diampCV q ď A or diampCW q ď A. By [BHS21,
Corollary 2.16] this is equivalent to the fact that FU is δ1-hyperbolic, for some constant δ1

depending only on the hyperbolicity constant δ of CU , which is uniform for all U , and on the
HH structure.
Now we show that the first statement holds, since the “moreover” part has a similar proof. The
proof will be similar to that of [KB02, Remark 2.16].
Let η : r0,`8q Ñ CU be a pK,Kq-quasi-ray converging to p, where K is the constant from
Lemma 5.1.14. For every n P N let xn P FU be a point whose projection πU pxnq is uniformly
close to ηpnq, which exists by the normalization assumption. Notice that, since πU is coarsely
Lipschitz, for every fixed m P N we have limnÑ`8 dpxm, xnq “ `8.
For every n P N let hn be a hierarchy path from x0 to xn. We claim that for every k P N
there exists N0 “ N0pkq such that for every n,m ě N0, the initial segment of hn of length k
and the initial segment of hm of length k are uniformly close in the Hausdorff distance. To see
this, consider a hierarchy path lmn from xm to xn, so that T “ hn Y hm Y lmn is a triangle
of pD,Dq-quasigeodesics. By e.g [BH99, Corollary III.1.8] there exists δ2, depending only on D
and δ1, such that this triangle is δ2-slim. Moreover, since lmn is a hierarchy path it projects
to an unparameterized pD,Dq-quasigeodesic from πU pxmq to πU pxnq, and by stability of quasi-
geodesics in hyperbolic spaces (see e.g. [BH99, Theorem III.1.7]) there is an M , depending only
on D and δ, such that πU plmnq and ηrm,ns are M -Hausdorff-close. Hence the projection of lmn is
also arbitrarily distant from πU px0q when m,n Ñ `8, and therefore we can assume that every
point in lm,n is at distance at least k ` 100δ2 from x0. Now pick a point z on hm at distance
at most k from x0. Since the triangle T is δ2-slim there must be some q P hn Y lmn which is
δ2-close to p. However, q cannot lie on lmn, because otherwise dpx0, lmnq ď k` δ2. Therefore we
proved that a segment of length k of hm is δ2-close to an initial segment of fixed length of hn,
and symmetrically the same holds if we swap m and n.
Now, arguing as in [KB02, Remark 2.16] we can find a quasigeodesic ray γ whose constants are
bounded in terms of δ and D and whose projection to CU is uniformly close to η. To show that
γ is a hierarchy path it suffices to prove that, whenever V Ĺ U , we have that πV pγq is bounded.
This is true since by the second of the consistency inequality [BHS19, Definition 1.1.(3)] the
projection of γ to CV is the union of the projection of a bounded initial segment (which is
bounded) and a piece which is uniformly close to ρUV pηq. In turn, the latter is uniformly bounded
by the bounded geodesic image axiom [BHS19, Definition 1.1.(7)].

Now suppose that all curve graphs have non-empty Gromov boundary, as will be the case for us.
In this case the cardinality ν of a complete support set is the maximal dimension of a standard
orthant, because we can choose a hierarchy ray hi in every FUi and take their product. Moreover,
thanks to Lemma 5.2.10, we can also ask that the projection πUi

phiq is asymptotic to a prescribed
boundary point pi P BCUi. Similarly, for every complete support set tUiui “ 1ν and for every
choice of distinct points pi P BCUi there exists an associated standard flat F

tpUi,p
˘
i qu

, which is

the product of a hierarchy line in each FUi
whose projection to CUi has endpoints p˘

i .
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5.2.2 The hinge graph

In this section we discuss the graph that quasi-isometries will induce automorphisms of. We will
call it the hinge graph, and it is best thought of, for the purposes of this section, as encoding
standard orthants, as well as their coarse intersections in the sense of Definition 5.2.3.

Remark 5.2.11. The coarse intersection of any two standard flats F1,F2 is well-defined by [BHS21,
Lemma 4.12]. In fact, the lemma gives a description of the coarse intersection as a subspace F
of the HHS whose projection to any hyperbolic space U is the coarse intersection of πU pF1q

and πU pF2q. For example, the coarse intersection is a standard 1-flat provided that all coarse
intersections in the various hyperbolic spaces are bounded, except for one hyperbolic space
where πU pF1q and πU pF2q are both quasigeodesic lines with the same endpoints in the Gromov
boundary.

Definition 5.2.12 (Hinge graph). From now on let X be an asymphoric and normalized HHS.
As in [BHS21, Definition 5.2], let HingepSq be the set of hinges, that is, pairs pU, pq where U
is contained in a complete support set and p P BCU . We say that two hinges pU, pq and pV, qq

are compatible if they are orthogonal and there exists some complete support set that contains
both. Then we give HingepSq a metric graph structure by declaring two hinges to be adjacent
if and only if they are compatible.

Remark 5.2.13. As in [BHS21, Definition 5.3], one can associate to a hinge σ “ pU, pq a standard
1-orthant, denoted hσ. This is the hierarchy ray constructed in Lemma 5.2.10, whose projection
to CpUq is a quasigeodesic ray asymptotic to p, and whose projections to all other curve graphs
are uniformly bounded. Another property of hσ, stated in [BHS21, Remark 5.4], is that if σ ‰ σ1

are two different hinges then dHausphσ, hσ1 q “ `8. In fact, if σ “ pU, pq and σ1 “ pU, p1q then
πU phσq and πU phσ1 q are two quasi-rays that must diverge; if σ “ pU, pq and σ1 “ pU 1, p1q with
U ‰ U 1 then πU 1 phσq is bounded while πU 1 phσ1 q is not. Either way there is a curve graph where
πU phσq and πU phσ1 q are at infinite Hausdorff distance, and therefore dHausphσ, hσ1 q “ `8 by
the Distance Formula (Equation 5.1).

Lemma 5.2.14. Let pX,Sq be an asymphoric and normalized HHS. If for every U P S either
the space CU is bounded or |BCU | ě 4 then:

1. For every hinge σ “ pU, pq there exist two standard flats F1, F2 whose coarse intersection
is supported in U , is coarsely a standard 1-flat, and contains hσ.

2. For any two compatible hinges σ “ pU, pq and σ1 “ pV, qq there exist two standard flats
F1, F2 whose coarse intersection is a standard 2-flat supported in tU, V u and containing hσ
and hσ1 .

Proof. 1. Choose another ideal point q P BCUztpu, and let γ be a hierarchy path in FU
whose projection to CU has limit points p and q. Then pick a complete support set tUiu
completing U “ U1, and for each i ě 2 choose four distinct ideal points p˘

i , q
˘
i P CUi.

Let γi, δi be two bi-infinite hierarchy paths in each FUi whose projection to CUi have limit
points, respectively, p˘

i and q˘
i . Then F1 “ γˆ

ś

i γi and F1 “ γˆ
ś

i δi have the required
coarse intersection in view of the discussion in Remark 5.2.11.

2. The proof is very similar, in this case fixing two hierarchy lines rather than one.

Theorem 5.2.15. Let pX,Sq, pY,Tq be asymphoric and normalized HHSs such that for every
U P S either the space CU is bounded or |BCU | ě 4, and similarly for every V P T. Then every
quasi-isometry f : X Ñ Y induces an isomorphism fhin between the hinge graphs, such that for
all σ P HingepSq we have dHausphfhinpσq, fphσqq ă `8.
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Proof. This is a very similar statement to [BHS21, Theorem 5.7], which applies to HHSs satisfying
three additional assumptions, stated in [BHS21, Section 5] but not satisfied in our case. An
inspection of the proof shows that each use of the three assumptions can be replaced by our
Lemma 5.2.14.

The following is the analogue of [BHS21, Lemma 5.9], which is a corollary of [BHS21, Theorem
5.7] and whose proof does not use the additional assumptions on the HHSs further. Given a
quasi-isometry between HHSs, the lemma gives a condition for the image of a standard flat to lie
within bounded Hausdorff distance of a standard flat in terms of the induce map fhin on hinge
graphs. Crucially for applications, the bound is only in terms of the HHSs and the quasi-isometry
constants.

Lemma 5.2.16 (Flats go to flats). Let pX,Sq, pY,Tq be asymphoric and normalized HHSs, such
that for every U P S either the space CU is bounded or |BCU | ě 4, and similarly for every V P T.
Let f : X Ñ Y be a quasi-isometry. There exists a constant C0, depending only on the quasi-
isometry constants of f , with the following property. Let tUiu

ν
i“1 Ď S be a complete support set,

and let p˘
i be distinct points in BCUi. Suppose that there exist a complete support set tViu

ν
i“1 Ď T

and distinct points q˘
i P BCVi such that for every i “ 1, . . . , ν we have fhinpUi, p

˘
i q “ pVi, q

˘
i q.

Then, dHauspfpF
tpUi,p

˘
i qu

q,F
tpVi,q

˘
i qu

q ď C0.
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Chapter 6

Quasi-isometric rigidity of pants
graphs of spheres

For the rest of the thesis let S “ Sb be a sphere with b ě 7 punctures.

Definition 6.0.1 (Hatcher-Thurston [HT80]). The pants graph PpSbq is the simplicial graph
such that:

• there is a vertex for every pants decomposition ∆ “ tγ1, . . . , γb´3u, that is, for every
maximal (unordered) simplex of CpSbq;

• two pants decompositions ∆ and ∆1 are joined by and edge if and only if they share a facet
P , such that ∆ “ γ ‹P , ∆1 “ γ1 ‹P and ipγ, γ1q “ 2 (that is, the two curves have minimal
intersection in the S4 that P cuts out).

By combining a theorem of Brock [Bro03] with [MM99, MM00, Beh06, BKMM12], we get that
PpSbq is hierarchically hyperbolic with the following structure:

• S is the set of isotopy classes of essential, non-annular subsurfaces;

• K is disjointness and Ď is inclusion;

• for every U P S, CU is the curve graph;

• Projections are defined using subsurface projections. More precisely, for every pants de-
composition ∆, which we see as a maximal simplex of CpSq, its projection to a subsurface
U is

Ť

γP∆ πU pγq, which is uniformly bounded since subsurface projections are Lipschitz
1.3.1.

This structure is very similar to that of the mapping class group, described in Remark 5.2.5.
The only important difference is that the index set for the pants graph does not contain annuli,
thus if a connected subsurface U is Ď-minimal then it is a four-holed sphere. As we will see in
Remark 8.0.2, the quotient MCG{DTK will have a similar structure, whose minimal indices are
(DTK-orbits of) four-holed spheres.
The goal of this Chapter is to prove a quasi-isometric rigidity result for pants graphs of punctured
spheres, as a blueprint for the case of MCG{DTK . We will partly recover a result of Bowditch
[Bow20, Theorem 1.4] with our machinery, though the proof will not be completely new since we
will still rely on some theorems of the named author from [Bow20, Sections 6 and 7] and on the
main theorem of [Bow16].
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Theorem 6.0.2 (Quasi-isometric rigidity of the pants graph). Let Sb be a punctured sphere,
with b ě 7. Any self-quasi-isometry f of the pants graph PpSbq is at uniformly bounded distance
from an element of the extended mapping class group.

The “source” of rigidity here will be the fact that automorphisms of a certain graph, the graph
of 1-separating curves, can only be extended mapping classes [Bow20, Bow16]. Hence our goal
is to show that automorphisms of the hinge graph induce automorphisms of this other graph,
as we shall do in Corollary 6.2.3, and in order to show this the key thing to do is roughly the
following. Since hinges are not just subsurfaces, but rather pairs pU, pq where U is a subsurface
and p is a point in the boundary of its curve graph, we have to be able to determine which hinges
have the same support subsurface in a “combinatorial” way, that is, just by looking at the hinge
graph. This is not always possible, but we will be able to do so for “enough” hinges.

6.1 Unambiguous subsurfaces

We recall that a surface is said to be odd if its complexity is odd, otherwise it is even (in our case,
ironically Sb is odd iff b is even). Bowditch [Bow20, Section 6] pointed out that if a subsurface
U belongs to a complete support set then U must have one of the following shapes, which ensure
that every complete support set containing U can cut out at most one pair of pants from S. If S
is odd then U is an S4 and each connected component of the complement SzU is odd and meets
U in exactly one curve. If S is even then U is either:

1. an S4 with all but one of the complementary components odd;

2. an S5 with all complementary components odd.

First we ensure that we are in the hypotheses of Section 5.2.2.

Lemma 6.1.1. The HHS structure of the pants graph is asymphoric and normalized.

Proof. The projection πU : PpSq Ñ CU is surjective, since every curve on U can be completed to
a pants decomposition of S. Regarding asymphoricity, it suffices to notice that the curve graph
of an essential, non-annular subsurface U is unbounded by Corollary 1.4.8, thus every collection
of pairwise disjoint subsurfaces has cardinality less than the rank.

Now, by Corollary 5.1.23, both CpS4q and CpS5q have at least four boundary points, therefore
we are always in the assumptions of Theorem 5.2.15. Thus a quasi-isometry f of PpSbq induces
an automorphism fhin of the hinge graph, and we want to show that fhin maps hinges with the
same underlying subsurface to hinges with the same underlying subsurface, at least in the vast
majority of cases.
Given a hinge σ “ pU, pq let Complpσq be the set of all tuples of pairwise orthogonal hinges
that σ completes to a complete support set. In other words, Complpσq is the set of all facets in
HingepSq that σ completes to a maximal simplex.

Definition 6.1.2. Two hinges σ, σ1 are said to be equally completable, or to have the same
completions, if Complpσq “ Complpσ1q.

This definition clearly induces an equivalence relation which is preserved by any automorphism
of the hinge graph. One would like to think that if two hinges are equally completable then they
have the same underlying subsurface. However this is not always true: in the even case, an S4

whose even complementary component is a pair of pants P has the same completions as the S5

given by the union of S4 and P . See Figure 6.1 to understand the situation. Luckily we will see
that this is the only problem that could arise.
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Figure 6.1: The S4 and the S5 in the Figure cannot be distinguished just by their completions,
all of which must be supported in the union of the Σi’s.

Definition 6.1.3. A hinge σ is unambiguous if any other equally completable hinge σ1 has the
same support. A support U is unambiguous is every hinge supported in U is unambiguous.

We need another definition that characterizes (some) unambiguous surfaces and can be recognized
inside the hinge graph.

Definition 6.1.4. A hinge σ is minimal if Complpσq is maximal by inclusion, among comple-
tions.

Lemma 6.1.5. Let S “ Sb be a sphere with b ě 7 punctures. If the complexity is odd, every
hinge is minimal and unambiguous. If the complexity is even, a hinge is minimal if and only if
it is unambiguous and its support is a four-holed sphere.

Proof. Let σ “ pU, pq be a hinge. We examine all possible shapes of U to determine in which
cases σ is minimal and/or unambiguous. In the odd case U is always an S4 and each component
of the complement is odd. Then we may find a completion tUiu whose union is SzU : it suffices
to choose a pants decomposition of every complementary component Σi, which must contain an
even number of pairs of pants (since Σi must be odd), and then match these pants in couples to
get some four-holed spheres whose union covers Σi. Now U must be unambiguous and minimal,
since any other V completing tUiu must be inside Sz

Ť

Ui “ U and therefore coincide with U
which has already minimal complexity. In the even case there are two possibilities:

1. Suppose U is an S5. Since b ě 7 we know that U does not coincide with S, so set
SzU “

Ůk
j“1 Σj with k ď 5. Cover every Σj with four-holed spheres. Moreover, choose

a pair of pants P Ă U whose boundary touches some four-holed sphere W Ď Σ1, and let
U 1 “ UzP . Then U is not minimal: any completion of U works also for U 1, but if we
replace W with W 1 “ W Y P we get a completion for U 1 but not for U . See Figure 6.2 to
understand the situation.

2. Suppose U is an S4. Cover the odd complementary components with four-holed spheres. If
the even component is not a pair of pants then we can find a way to cover it with a single
S5 and some S4, and argue that U must be minimal and unambiguous as in the odd case.
Otherwise U is ambiguous, since we are precisely in the case described in Figure 6.1. This
also means that U has the same completions of a five-holed sphere, which is not minimal
as we have already showed.
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Figure 6.2: Replacing W with W 1 “ W YP we get a completion for U 1 but not for U “ U 1 YP .

Remark 6.1.6. Any automorphism of the hinge graph must map minimal hinges with the same
completions to minimal hinges with the same completions, therefore it acts on the set of minimal
supports. Thus, if U is a minimal support, we can define fsupppUq as the support of fhinpU, pq

for any hinge pU, pq supported in U .

Corollary 6.1.7 (Products go to products). Let b ě 7 and let f be a self-quasi-isometry of the
pants graph PpSbq. There exists C, depending only on the quasi-isometry constants of f , with
the following property. Let tUiu Ď S be a complete support set made of minimal supports, and
let fsupppUiq “ Vi for all i. Let PtUiu and PtViu be the standard product regions defined by tUiu

and tViu, respectively. Then dHaus
`

f
`

PtUiu

˘

, PtViu

˘

ď C.

Proof. Another way of stating Remark 6.1.6 is that, if pU, p`q and pU, p`q are two hinges with
the same minimal support and fhinpU, p`q “ pV, q`q, then there exists q´ P BCV such that
fhinpU, p´q “ pV, q´q. Thus the Flats to Flats Lemma 5.2.16 says that, if tpUi, p

˘
i qu is a complete

support set made of minimal supports, with a choice of two points in every BCUi, and if we
set pVi, q

˘
i q :“ fhinpUi, p

˘
i q, then dHauspfpF

tpUi,p
˘
i qu

q,F
tpVi,q

˘
i qu

q ď C0 for some constant C0

depending only on the quasi-isometry constants of f . Hence

dHaus

´

f
´

ď

FtpUi,˚qu

¯

,
ď

FtpfsupppUiq,˚qu

¯

ď C0,

where
Ť

FtpUi,˚qu is the union of all standard flats supported in tUiu.
Now, the thesis follows if we prove the existence of some constant C1 such that, for every complete
support set tUiu made of minimal supports,

dHaus

´

ď

FtpUi,˚qu, PtUiu

¯

ď C1.

In fact, if this is the case then we also get that

dHaus

´

f
´

ď

FtpUi,˚qu

¯

, f
`

PtUiu

˘

¯

ď C2,

where C2 is some constant depending only on C1 and the quasi-isometry constants of f . In turn,
since PtUiu “

ś

FUi with the product metric, to prove the existence of such C1 it suffices to
select a close enough hierarchy line in each coordinate, as we shall do in Lemma 6.1.8.

Lemma 6.1.8. There exists C3 ě 0 such that whenever U P S is a minimal domain and x P FU ,
there exists a hierarchy line γ Ă FU such that dFU

px, γq ď C3.
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Proof. Notice that, by the distance formula (Equation 5.1) and the fact that U is an S4, and
therefore a Ď-minimal support, we have that FU is uniformly quasi-isometric to CU . Moreover, a
hierarchy line γ Ă FU simply corresponds to a bi-infinite quasigeodesic (with certain constants),
since for every V ‰ U the coordinate πV pγq is prescribed, and therefore constant. Finally recall
that MCGpUq acts on CU coboundedly and by isometries, hence every point can be moved
within uniformly bounded distance from a fixed quasigeodesic (which exists by the “moreover”
part of Lemma 5.1.14).

6.2 Automorphism of terminal subsurfaces

Definition 6.2.1. A support U is terminal if it has complexity 1 and it is cut out by a single
curve. We say that the boundary curve of a terminal support is 1-separating, and we denote by
C1 the full subgraph of C spanned by 1-separating curves.

Lemma 6.2.2. A hinge σ “ pU, pq has terminal support if and only if it is minimal and there
exists a hinge pV, qq, compatible with σ, such that any complete support set containing pV, qq

must contain some σ1 which has the same completions as σ (i.e., it has the same support). In
particular, having terminal support is preserved by automorphisms of the hinge graph.

Proof. This is just a restatement in our context of [Bow20, Lemma 6.3]. We just have to notice
that a terminal hinge is minimal, which follows from the discussion of Lemma 6.1.5 since a
terminal support has a single complementary component.

Corollary 6.2.3. If b ě 7, any automorphism of the hinge graph induces an automorphism of
C1.

Proof. Any automorphism must map terminal supports to terminal supports and must preserve
compatibility (which, for terminal subsurface, is equivalent to disjointness of their boundaries).

Now we are ready to prove Theorem 6.0.2, that is, that any self-quasi-isometry f of the pants
graph PpSbq is at uniformly bounded distance from an element of the extended mapping class
group.

Proof of Theorem 6.0.2. The previous discussion shows that f induces an automorphism of C1,
which is the restriction of some extended mapping class g P MCG˘ when b ě 7 by Bowditch’s
extension of Ivanov’s Theorem, which is Theorem 1.4.11. In other words, fsupp and g agree on
terminal subsurfaces, and we want to show that they coincide on every minimal support U . We
recall that, as showed in the proof of Lemma 6.1.5, every complementary components Σ of U
has complexity at least 1, i.e., U does not cut out any pair of pants. Now, if Σ has complexity
1 then it is a terminal subsurface; otherwise Σ has complexity at least 2, and therefore there
exist two terminal subsurfaces inside Σ whose boundary curves fill Σ (for example, we can choose
a 1-separating curve α P CpΣq and apply a high enough power of a pseudo-Anosov element of
MCGpΣq to get a pair of filling curves, as in Lemma 1.4.7). Thus U is the unique minimal
support that is disjoint from all these terminal subsurfaces, and therefore fsupp and g must agree
on U since they both preserve disjointness.
By Corollary 6.1.7 if tUiu is a complete support set made of minimal supports then f maps the
corresponding product region PtUiu within uniformly bounded Hausdorff distance from gpPtUiuq,
since they are both uniformly Hausdorff close to PfsupptUiu “ PgtUiu.
We are left to prove that every point x P PpSbq is the (uniform) coarse intersection of two
standard product regions P X̃P 1, coming from minimal complete support sets. If this is the case
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then fpxq will be the coarse intersection of fpP q and fpP 1q, which lie at uniformly bounded
distance from the coarse intersection of gpP q and gpP 1q, which is coarsely gpxq. In order to prove
this, it is enough to show that there is some point x P PpSbq which is the coarse intersection of two
standard product regions with minimal supports, since the mapping class group acts cofinitely
on PpSbq by Lemma 1.4.1. In turn, by Corollary 5.2.4 we are left to prove that there exist two
complete support sets tUiu and tViu, with minimal supports, whose indices are pairwise distinct
(notice that we can apply Corollary 5.2.4 since minimal indices are S4, and therefore they are
also minimal with respect to nesting). If the surface is odd choose any complete support set
tUiu, which is already minimal. In the even case let Ũ be an S5 cut out by a single curve, and
let tUiu be a support set that covers the complement of Ũ . Since tŨu Y tUiu covers the surface,
every Ui must be minimal (this is the same argument as in the proof of Lemma 6.1.5). Now if we
replace Ũ with a terminal S4 contained in Ũ , call it U1, we get a complete support set tUiu made
of minimal supports. In both cases, we can choose a pseudo-Anosov mapping class ϕ such that
every boundary curve of tUiu crosses every boundary curve of tViu “ ϕtUiu. Therefore Ui ‰ Vj
for every choice of i and j.
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Chapter 7

Extending automorphisms of
some subgraphs of the curve
graph

Recall that we denoted by C1 the subgraph of C spanned by 1-separating curve, as in Definition
6.2.1. Moreover we recall the following definition from [Bow16]:

Definition 7.0.1. Let Css the full subgraph of the curve graph spanned by all strongly separating
curves, i.e. those separating curves that do not bound a twice-punctured disk.

Notice that C1 Ď Css whenever b ě 6. Moreover the action of DTK restricts to both C1 and
Css, therefore the quotient C1{DTK is a subgraph of Css{DTK , which is in turn a subgraph of
C{DTK .
A hidden but fundamental piece of the proof of Theorem 6.0.2 was the fact that every automor-
phism of C1 is induced by an extended mapping class. Therefore, if we want to emulate the same
proof for MCG˘{DTK , we must establish the following analogue for C1{DTK . For short, for
the rest of the thesis we will say that a proposition holds for all large multiples K if there exists
K0 P Ną0 such that the proposition holds whenever K is a non-trivial multiple of K0.

Theorem 7.0.2. For all b ě 7 and for all large multiples K, any automorphism of C1{DTK is
the restriction of an automorphism of C{DTK .

Combining this theorem with the combinatorial rigidity Theorem 4.4.1 we get the following:

Theorem 7.0.3. For all b ě 7 and for all large multiples K, any automorphism of C1{DTK is
the restriction of an element of MCG˘pSbq{DTK .

Following the roadmap of [Bow16, Bow20] we split the proof of Theorem 7.0.2 into two interme-
diate extensions, one from C1{DTK to Css{DTK and one from Css{DTK to C{DTK .

7.1 From 1-separating to strongly separating

For the rest of the Chapter, we assume b ě 7 and we take a multiple K which is large enough
that C{DTK satisfies the Combinatorial Rigidity Theorem 4. We first recall some definitions:
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Definition 7.1.1. Let G be a graph. The dual graph G˚ of G is the graph with the same vertices
of G and with an edge between two vertices if and only if they are not adjacent in G.

Notice that if G Ď C then G˚ is connected iff any two curves can be joined by a chain, as in
Definition 3.1.1.
The following definition is from [Bow20, Section 7]:

Definition 7.1.2. Let Γ be either C1 or C1{DTK . A division of Γ is an unordered pair tP`, P´u

of disjoint infinite subsets such that P` ‹ P´ Ă Γ is a maximal join and both pP`q˚ and pP´q˚

are connected. Two divisions P˘, Q˘ are nested if either P` Ď Q` or P` Ď Q´.

By [Bow20, Lemma 7.2] and the discussion following [Bow20, Lemma 7.5], any division of C1 is
induced by a unique strongly separating curve δ P CsszC1: namely, P˘pδq correspond to the 1-
separating curves that fill the two sides of δ. Moreover nesting is equivalent to the corresponding
δs being disjoint. Our goal is to give a similar description for the classes of pCss{DTKqzpC1{DTKq.

Definition 7.1.3. Let Γ be either C1 or C1{DTK . A filled division of Γ is a triple pP˘, α˘, β˘q

such that:

1. P˘ is a division of Γ, called the underlying division;

2. α˘, β˘ P P˘, respectively;

3. dΓpα`, β`q “ dΓpα´, β´q “ 2

4. P` “ LkΓpα´q X LkΓpβ´q, and similarly for P´.

Two filled divisions are said to be equivalent if they have the same underlying P˘. From now on,
by division we will always mean an equivalence class of filled divisions (i.e., we will not consider
divisions which do not allow a filling).

Remark 7.1.4. When Γ “ C1, any division P˘ in the sense of Bowditch admits a filling. For
example, since the division is induced by some strongly-separating curve δ, we may choose α˘, β˘

to be two pairs of curves that respectively fill the two subsurfaces cut out by δ (hence the name
“filled division”). Notice, however, that this is not necessarily the case: the subsurfaces filled
by α˘, β˘ could cut out some twice punctured disks, which are irrelevant to our argument since
they cannot contain any 1-separating curve. We will elaborate on this Remark in the proof of
Lemma 7.1.11, and the situation will be depicted in Figure 7.2.

Here we give another, simpler definition which does not explicitly involve the underlying division,
and then prove that it is just a restatement of Definition 7.1.3.

Definition 7.1.5. A filled division is given by two pairs of vertices pα˘, β˘q P Γ such that:

1. α`, α´, β`, β´ is an isometrically embedded square;

2. P˘ :“ LkΓpα¯q X LkΓpβ¯q are infinite;

3. if γ P P` and γ1 P P´ then dΓpγ, γ1q “ 1.

Lemma 7.1.6. Definitions 7.1.3 and 7.1.5 are equivalent.

Proof. It is obvious that if pP˘, α˘, β˘q is a filled division in the sense of Definition 7.1.3 then
the four curves satisfy Definition 7.1.5. Conversely, let pα˘, β˘q be two pairs of curves satisfying
Definition 7.1.5, and we show that P˘ :“ LkΓpα¯q X LkΓpβ¯q satisfy Definition 7.1.3. By
Conditions 2 and 3 of Definition 7.1.5 we have that P` and P´ are disjoint infinite subsets
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that form a join P` ‹ P´, which is maximal since any subgraph Q` Ă Γ which forms a join
with α´ and β´ must be contained in P`. Moreover, Condition 1 says that α` and β` are
connected in pP`q˚. Finally, since P` and P´ are disjoint we get that there is no γ P Γ such
that α˘, β˘ P LkΓpγq; therefore a vertex in P` “ LkΓpα´q X LkΓpβ´q which is not α` nor β`

must be at distance at least 2 from either α` or β`, so pP`q˚ is connected.

The following definition is needed to take into account also classes in C1{DTK :

Definition 7.1.7. A slice (respectively, filled slice) is either a division (resp. filled division) or
a vertex δ P Γ. A vertex is nested into a division P˘ if it belongs to either P` or P´. Two
vertices are nested one into the other if they are disjoint.

Now we want to assign to every δ P pCss{DTKqzpC1{DTKq some filled division pP
˘
, α˘, β

˘
q.

First, choose representatives δ1, . . . , δk P CsszC1 for every homeomorphism type of strongly sep-
arating, non-1-separating curves (we know that there are finitely many representatives, because
of Lemma 1.4.1). For every i “ 1 . . . , k choose α˘

i , β
˘
i as two pairs of curves in C1 that fill the

sides of δi. Then for every δ P CsszC1 choose some mapping class f such that δ “ fpδiq for some
i P t1, . . . , ku, and set pα˘pδq, β˘pδqq “ fpα˘

i , β
˘
i q, which are again two pairs of filling curves for

the sides of δ. Now, choose Θ big enough that, for every i “ 1, . . . , k and for every s P C, we have
that maxtdspα

˘
i , β

˘
i q, dspα

˘
i , β

¯
i qu ď Θ (this is always possible, as we showed in the proof of

Lemma 2.3.8). Since pα˘pδq, β˘pδqq are defined as images via mapping classes of some pα˘
i , β

˘
i q

we also get that, for every δ P CsszC1 and for every s P C,

maxtdspα
˘pδq, β˘pδqq, dspα

˘pδq, β¯pδqqu ď Θ. (7.1)

This way, if K is a large enough multiple with respect to this constant Θ we will be able to invoke
Lemma 2.3.7 and its corollaries, which will tell us that the projection map is isometric when
restricted to these curves. The key point is that, since there are only finitely many MCG-orbits
of curves δ, we could fix once and for all a MCG-equivariant choice of four curves α˘pδq, β˘pδq

in every orbit, and therefore we only need to bound the annular projections of finitely many
curves. This kind of argument will be recurrent throughout the thesis.

Now let pα˘, β
˘

q :“ πpα˘pδq, β˘pδqq.

Lemma 7.1.8. The two pairs pα˘, β
˘

q give a filled division.

Proof. We show that the conditions of Definition 7.1.5 are satisfied. First notice that, since by
construction all projections between α˘ and β˘ are short (see Equation (7.1)), Lemma 2.3.7 tells
us that the quotient map π is an isometry on the square spanned by these curves. This proves
Condition 1.
For Condition 2 let P˘ Ă C1 be the division induced by δ, and let P

˘
be defined as in Definition

7.1.5. Clearly πpP˘q Ă P
˘
, since any γ P P´ is disjoint from both α` and β` and therefore

πpγq P Lkpα`qXLkpβ
`

q, again by Lemma 2.3.4. Thus it is enough to show that πpP˘q is infinite.
Let Σ˘ be the two subsurfaces cut out by δ, so that P˘ Ă CpΣ˘q. Since δ R C1 both subsurfaces
have complexity at least 2, therefore πpCpΣ˘qq – CpΣ˘q{DTKpΣ˘q by Corollary 2.3.12. Now we
claim that we can find a large multiple K such that CpΣ˘q{DTKpΣ˘q is infinite. In order to do
so, for every topological type of Σ` we can choose a curve x P P` and a pseudo-Anosov element
g P MCGpΣ`q that fixes the boundary δ pointwise. Notice that for every n P Z we have that
gnpxq is again 1-separating for S since g sends the terminal surface bounded by x to a terminal
curve, thus gnpxq P P`. Now we can proceed as in Corollary 2.3.9 to show that, whenever K is
a large multiple, the projection π is an isometry on the axis tgnpxqunPZ, and in particular πpP`q

is infinite. Since by Lemma 1.4.1 there are only finitely many topological types of Σ` we can
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choose a large multiple K that works for any Σ`. Moreover the whole argument can be repeated
to show that πpP´q is infinite.
For Condition 3, first consider a simplex ∆` P C that contains δ, is disjoint from α` and

β` and is maximal with these properties, and let ∆
`

P C{DTK be its projection, which
is a simplex of the same dimension by Corollary 2.3.5. Let γ P C1{DTK be a vertex in

LkC1{DTK
pα`q X LkC1{DTK

pβ
`

q. If we look at these three vertices inside C{DTK we see that

α`, β
`

P LkC{DTK
p∆

`
q, i.e. we have a generalized square whose “vertices” are γ, α`, ∆

`
, β

`

as in Figure 7.1.

Figure 7.1: The generalized square from Lemma 7.1.8. The simplex ∆
`

is represented as a
segment.

We may lift this square and assume that the lift of ∆
`
is ∆`, by uniqueness of the orbit of lifts

of a simplex, which is Theorem 2.2.6. In particular we may assume that the lift of δ is still δ.

Let α1, β1 be the lifts of α`, β
`
, which again fill one of the sides of δ by Corollary 2.3.10. But

now the lift γ of γ is disjoint from α1 and β1 and cannot coincide with δ, since δ R C1. Therefore
γ must lie on the other side of δ with respect to α1 and β1, i.e. γ P P´. The same argument

applies to any vertex η P Lkpα´q X Lkpβ
´

q and produces a lift η P P`. But then γ and η lie on
different sides of δ, and in particular they must be disjoint. Therefore by Item 2 of Lemma 2.3.4
we get that dC1{DTK

pγ, ηq “ 1, as required.

Now we want to define a bijection between vertices of Css{DTK and slices of C1{DTK . Let δ be
in Css{DTK . If δ P C1{DTK set Spδq :“ δ. Otherwise choose a lift δ, take the corresponding
filled division pα˘pδq, β˘pδqq, constructed as above, and let Spδq :“ P˘pδq be the underlying

division of pα˘, β
˘

q :“ πpα˘pδq, β˘pδqq.

Theorem 7.1.9. For all large multiples K, the map S described above is a well-defined bijection
between vertices in Css{DTK and slices of C1{DTK , that translates adjacency into nesting. Hence
any automorphism of C1{DTK extends to an automorphism of Css{DTK .

We need to show that S is a well-defined bijection when restricted to pCss{DTKqzpC1{DTKq. If
this is the case then clearly it maps adjacent vertices to nested slices and vice versa, and the
proof of Theorem 7.1.9 is complete. We break the proof into a series of lemmas.

Lemma 7.1.10. The map S is well-defined. In other words, the underlying division P
˘

of

pα˘, β
˘

q is independent on the choice of the lift δ.

Proof. When we verified Conditions 2 and 3 in the proof of Lemma 7.1.8 we actually showed

that P
˘

“ πpP˘q, and the latter depends only on δ. Now it suffices to notice that, if g P DTK ,
then the division induced by gpδq is clearly gpP˘q.
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Now we look for an inverse of S.

Lemma 7.1.11. Let P
˘

be a division that admits a filling. There exists a vertex δ such that

Spδq “ P
˘
.

Proof. Let pα˘, β
˘

q be two pairs of vertices whose underlying division is P
˘
. Lift them to some

curves pα˘, β˘q that form a square in C1. Let Σ`, Σ´ be the subsurfaces filled by α` Y β` and
α´ Yβ´, respectively. The boundaries of these subsurfaces are separating, as they are curves on
a sphere, hence they cut out some peripheral punctured disks and a (possibly punctured) annulus
between them. Moreover, there is no curve γ P C1 that does not cross any of the boundaries,

because otherwise Lkpπpγqq would contain pα˘, β
˘

q. Therefore we are in the situation of Figure
7.2: all peripheral disks contain two punctures each.
If we show that the annulus cannot contain any puncture then the core curve δ of this annulus
is the only strongly separating curve which is disjoint from α˘ and β˘, which can be also
characterized as the only boundary component of the surface filled by α` Y β` which lies in
Css. If otherwise the annulus contains some puncture we can find two intersecting 1-separating
curves γ˘ such that γ` P Lkpα´q X Lkpβ´q and γ´ P Lkpα`q X Lkpβ`q. This is because the
annulus must cut the surface into two subsurfaces, each of which contains the disk with three
punctures bounded by α` and α´, respectively. Hence every side of the annulus contains at least
three punctures, and we can choose some curve γ` that bounds the puncture inside the annulus
and two other punctures on the side of α`. The same holds for γ´, as depicted in Figure 7.2.
Now, since we can choose γ˘ to induce different puncture separations, their projections remain

at distance at least 2 by Lemma 2.3.4, hence they contradict Condition 3 for pα˘, β
˘

q.

Figure 7.2: The red curves fill the subsurfaces whose boundaries are the black curves, and may
cut out some punctured disks. If the annulus in between contains some punctures then the
projections of the blue curves remain at distance at least 2.

Now, let P˘ be the division induced by δ and filled by pα˘, β˘q. Clearly πpP˘q Ď P
˘
, since

a curve in Lkpα`q X Lkpβ`q projects inside Lkpα`q X Lkpβ
`

q. Moreover by construction we

have that πpP˘q “ Spπpδqq, and in particular it is a maximal join. Hence Spπpδqq “ P
˘

by
maximality.

Lemma 7.1.12. For all large multiples K, the vertex δ from Lemma 7.1.11 does not depend on

the choice of the filling vertices pα˘, β
˘

q, nor on the choice of their lifts.

The proof of this lemma will be prototypical of many arguments throughout the thesis.
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Proof. Choose two pairs of filling vertices pα˘
1 , β

˘

1 q and pα˘
2 , β

˘

2 q. Without loss of generality we

may assume that pα`
1 , β

`

1 q “ pα`
2 , β

`

2 q, since we can replace one pair at a time. Let pα˘
1 , β

˘
1 q

and pα˘
2 , β

˘
2 q two lifts forming two squares. The argument of Lemma 7.1.11, whose construction

works for any choice of lifts of pα˘
1 , β

˘

1 q, shows that there exists a unique curve δ1 P Css which is
disjoint from α˘

1 and β˘
1 , and we can similarly find δ2. Up to elements in DTK we may assume

that α`
1 “ α`

2 “ α`, thus we are in the situation depicted in Figure 7.3.
Now, there exists g P DTK such that gpβ`

1 q “ β`
2 . We want to prove that, up to changing the

lift, we may “glue” β`
1 to β`

2 , that is, we can find a lift of the two squares in Figure 7.3 such
that α`

1 “ α`
2 and β`

1 “ β`
2 . If g is not the identity let ps, γsq be as in Proposition 2.2.1. If

dCps, β`
1 q ď 1 we may apply γs to all data and proceed by induction on the complexity of g.

Otherwise dspβ
`
1 , β

`
2 q ě Θ. Now, at least one of the cut sets tα´

1 , β
´
1 , δ1u, tα`u, tα´

2 , β
´
2 , δ2u

must be fixed pointwise by γs, because if DTK is deep enough there cannot be a path from β`
1

to β`
2 of length 4 with no points in the star of s. In fact, for every fixed n P N we can choose

Θ ě nB, where B is the constant from the Theorem 2.2.2 (BGI). Therefore, whenever p, q P C
have large projections on some s, any piecewise geodesic path between p and q which is made
of at most n geodesic sub-paths must intersect the star of s, because otherwise we could find a
geodesic sub-path whose endpoints have projections at least B on s, thus violating BGI. In our
case we can choose n to be 4. Therefore we may apply γs to the lift “beyond” the points in the
star of s (that is, to the connected component that contains β`

2 of the complement of the cut
set), and again proceed by induction on the complexity of g.
At the end of this procedure we have replaced δ1 and δ2 by some curves in the respective DTK-
orbits. But now pα`

1 , β
`
1 q “ pα`

2 , β
`
2 q, and therefore δ1 “ δ2 since they are both characterized as

the only boundary component of the surface filled by α` Y β` which lies in Css.

Figure 7.3: The two squares inside Css described in the proof of Lemma 7.1.12. We may inde-
pendently choose a point for every column and find a path from β`

1 to β`
2 passing through those

points. Every such path must pass through the star of s, i.e., must contain a vertex fixed by γs.

Now the proof of Theorem 7.1.9 is complete if we show that:

Corollary 7.1.13. The map S is injective.

Proof. We want to show that if Spδ1q “ Spδ2q then δ1 “ δ2. Let δ1 and δ2 be two lifts of

these vertices, let pα˘
1 , β

˘
1 q and pα˘

2 , β
˘
2 q be some filling curves for the lifts and let pα˘

1 , β
˘

1 q and

pα˘
2 , β

˘

2 q be their projections, which induce the same division P
˘
. Notice that, by construction,

δ1 is the curve obtained by applying the machinery of Lemma 7.1.11 to pα˘
1 , β

˘

1 q with lifts
pα˘

1 , β
˘
1 q, and similarly for δ2. But the previous lemma shows that δ1 “ δ2, since the class of the

curve δ obtained by Lemma 7.1.11 does not depend on the choice of filled divisions for P
˘
.
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7.2 From strongly separating to all curves

For this whole section we follow the footsteps of [Bow16], except we focus on the case of punctured
spheres. We recall that, as in Definition 7.0.1, we denote by Css the full subgraph of C spanned
by strongly separating curves, that is, all separating curves that do not bound twice-punctured
disks. We want to prove that:

Theorem 7.2.1. For b ě 7 and for all large multiples K, any automorphism of Css{DTK extends
to an automorphism of C{DTK .

In [Bow16], Bowditch identifies every minimal curve ω (meaning, a curve that bounds a twice-
punctured disk) with a certain equivalence class of pairs of curves in Css. We recall the following
definitions from that paper:

Definition 7.2.2. Two curves α, β P Css form a surrounding pair if they bound three-punctured
disks whose intersection is a twice-punctured disk. The boundary of the latter is the minimal
curve surrounded by α and β. See Figure 7.4.

Figure 7.4: A surrounding pair and the minimal curve ω it surrounds.

Definition 7.2.3. Three curves α, β, γ P Css form a surrounding triple if any two of them form
a surrounding pair that surrounds the same minimal curve, as in Figure 7.5.

Figure 7.5: A surrounding triple.

The following is a restatement of [Bow16, Lemmas 4.2 and 4.3], which are core results of that
paper:

Lemma 7.2.4. Any two surrounding pairs that surround the same ω are connected by a finite
sequence of surrounding triples (i.e., by successively replacing one of the two curves with a third
curve that forms a surrounding triple with the other two). Thus minimal curves correspond to
equivalence classes of surrounding pairs, up to surrounding triples.
Moreover, two minimal curves ω, ω1 are disjoint if and only if there are two disjoint curves α
surrounding ω and α1 surrounding ω1. A minimal curve ω is disjoint from a curve β if and only
if either β surrounds ω or there is some α surrounding ω and disjoint from β.

This implies that, whenever surrounding pairs and surrounding triples can be recognized inside
Css, any automorphism of Css extends to an automorphism of C. Our goal is to repeat the
same kind of argument: we want to define surrounding pairs and triples inside Css{DTK just
using combinatorial properties and then show that they actually correspond to projections of
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surrounding pairs and triples. Then we can rely on Lemma 7.2.4 to show that two surrounding
pairs in Css{DTK are connected by a finite sequence of surrounding triples, and we are almost
done. As in [Bow16] we distinguish three cases, whether the number of punctures is 7, 8 or at
least 9.
For the rest of the section K will always denote a large enough multiple, depending on the
constants that will successively appear.

7.2.1 7 punctures

We will say that an n-cycle inside a graph Γ is a closed path of length n which does not cross itself,
that is, its vertices are all distinct. The following lemma, which summarizes [Bow16, Sections 3
and 4], shows that surrounding pairs and triples can be recognized inside CsspS7q (which actually
coincides with C1pS7q) by using 7-cycles:

Lemma 7.2.5. In a seven-punctured sphere:

• Inside C1pS7q there is only one 7-cycle, or heptagon, up to the action of the mapping class
group, and this heptagon is isometrically embedded;

• Two curves α, β P C1 form a surrounding pair if and only if they are at distance 2 in some
heptagon;

• Three curves α, β, γ form a surrounding triple if any two of them form a surrounding pair
and there is no curve in C1 that is disjoint from each of α, β, γ.

Figure 7.6: These curves form an isometrically embedded heptagon in C1pS7q. The curves are
all obtained from the same curve, say the red one at the top, by rotating. Notice that all curves
induce different puncture separations.

Thus a good definition for surrounding pairs inside Css{DTK is the following:

Definition 7.2.6. Two vertices α, β P Css{DTK form a surrounding pair if they are at distance
2 in some heptagon inside Css{DTK .

It is clear that if α, β are a surrounding pair then we can find lifts α, β that are a surrounding
pair in Css, just by lifting the corresponding heptagon. Thus α, β surround some minimal curve
ω, and we say that α, β surround its projection ω.

Lemma 7.2.7. The vertex ω surrounded by α, β is well-defined, meaning it does not depend on
the chosen heptagon, nor on its lift.
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Proof. Let T , T
1

Ă Css{DTK be two heptagons in which α, β are at distance 2, and let T, T 1 be

two lifts of T , T
1
. Up to elements of DTK we can assume that the lifts of α coincide, and let β, β1

be the lifts of β. Let ω, ω1 be the minimal curves surrounded by the two pairs. Let g P DTK be
such that gpβq “ β1. Then the picture in C is as in Figure 7.7.

Figure 7.7: The two heptagons from the proof of Lemma 7.2.7.

Let ps, γsq be as in Proposition 2.2.1. We now show that we can apply γs to part of our diagram
without breaking the heptagons, and ensuring that ω and ω1 remain surrounded by the corre-
sponding pairs. If this is true then we can proceed by induction on the complexity of g to glue
β to β1, and in the end ω and ω1 will both be the unique curve surrounded by α and β. We can
argue as in the proof of Lemma 7.1.12 to show that γs must fix one of the following:

• β;

• ω and some curves γ, δ P T on the two paths in T from β to α;

• α;

• ω1 and some curves γ1, δ1 P T 1 on the two paths in T 1 from β1 to α1.

In all cases we can apply γs beyond the cut set and proceed by induction. We just need to be
careful that in the second case ω remains the curve surrounded by β and γspαq. This is true,
since the curve surrounded by a pair is characterized as the only minimal curve inside both of
the three-punctured disks defined by the surrounding curves. Thus it suffices to notice that
ω “ γspωq is still inside the disk surrounded by γspαq. The exact same argument shows that, in
the fourth case, ω1 remains the curve surrounded by α1 and γspβ

1q.

This shows that every surrounding pair in Css{DTK corresponds to some minimal ω. Conversely,
given some ω it is easy to find some α, β that surround it: just pick a lift ω, find a surrounding
pair and let T be the corresponding heptagon. Since by Lemma 7.2.5 there is a unique heptagon
in C1pS7q up to the action of the mapping class group, the vertices of T are seven curves that
look like in Figure 7.6, and therefore induce different puncture separations. Thus by Lemma
2.3.2 the projection is injective when restricted to T , and therefore πpT q is a 7-cycle.
Now we want to define surrounding triples, in order to characterize the class of pairs that surround
the same ω. Again, our definition is inspired by Lemma 7.2.5.

Definition 7.2.8. Three vertices α, β, γ P Css{DTK form a surrounding triple if they are pairwise
surrounding pairs and there is no δ P Css{DTK which is adjacent to each of them.

Lemma 7.2.9. A surrounding triple α, β, γ P Css projects to a surrounding triple α, β, γ inside
Css{DTK .

Proof. We have already seen that surrounding pairs project to surrounding pairs. Now let
δ P Css{DTK and let δ be one of its lifts. We want to show that δ is not adjacent to each
of α, β, γ. Since α, β, γ is a surrounding triple we have that δ must intersect at least one of the
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three curves, say α. If δ and α induce different puncture separations then dCss{DTK
pα, δq ě 2 by

Lemma 2.3.4. Otherwise δ and α surround the same three punctures, and in particular δ and
β must intersect with different puncture separations. Hence dCss{DTK

pβ, δq ě 2 for the same
reason.

Corollary 7.2.10. Any two surrounding pairs for the same ω are connected by a finite number
of surrounding triples.

Proof. Just lift the two surrounding pairs in such a way that they surround the same lift ω.
Then the conclusion follows from Lemmas 7.2.5 and 7.2.9.

Moving on, we need to show that the vertex ω surrounded by a surrounding triple is well-defined,
in order to identify ω with an equivalence class of surrounding pairs up to surrounding triples.

Lemma 7.2.11. If α, β, γ P Css{DTK form a surrounding triple then they pairwise surround the
same ω. Therefore, if two pairs are connected by a sequence of surrounding triples, then they
surround the same ω.

Proof. Let T , T
1
, T

2
be three heptagons for the three pairs. Lift them to three heptagons T, T 1, T 2

in such a way that T and T 1 share some lift β and T 1 and T 2 share some lift γ. Let α P T and
α2 P T 2 be the lift of α, and let ω, ω1 ω2 be the three curves surrounded by the three pairs, as in
Figure 7.8.

Figure 7.8: The three heptagons from the proof.

Arguing as in Lemma 7.2.7 one can glue α to α2 while preserving the fact that ω is the curve
surrounded by α and β, and similarly for ω1 and ω2. Now α, β, γ are pairwise surrounding
pairs. Moreover they cannot lie in the link of some other curve δ P Css, because otherwise their
projections would be at distance 1 from δ, thus violating the fact that α, β, γ is a surrounding
triple. This implies that α, β, γ form a surrounding triple, and therefore ω “ ω1 “ ω2.

Corollary 7.2.12. There is a bijective correspondence between minimal vertices ω P C{DTK
and equivalence classes of surrounding pairs, up to surrounding triples.

The only thing left to do is the following straightforward observation, that shows that automor-
phisms of Css{DTK preserve disjointness between equivalence classes of surrounding pairs:

Lemma 7.2.13. Two minimal vertices ω, ω1 are disjoint if and only if there are two disjoint
vertices α surrounding ω and α1 surrounding ω1. A minimal vertex ω is disjoint from a vertex β
if and only if either β surrounds ω or there is some α surrounding ω and disjoint from β.

We now know how to intrinsically recover C{DTK from Css{DTK . Thus we get the following,
which is the b “ 7 case of Theorem 7.2.1:

Corollary 7.2.14. If b “ 7, for all large multiples K every automorphism of Css{DTK extends
to an automorphism of C{DTK .
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7.2.2 At least 9 punctures

We move on to the general case in which our sphere has at least 9 punctures, temporarily
ignoring the case S8 which, as will become clear, is different in nature. First we need to identify
the vertices corresponding to classes of 1-separating curves inside Css{DTK .
Recall that we denote by G˚ the dual of a graph G.

Definition 7.2.15. Let Γ be (a subgraph of) either C or C{DTK . A vertex x splits Γ if Lk˚
Γpxq

is connected.

Notice that we can recognize C1 inside Css. More precisely, if δ P Css then δ P C1 if and only if δ
does not split Css. Now we want to establish the same result for Css{DTK .

Lemma 7.2.16. A vertex δ P Css{DTK belongs to C1{DTK if and only if it does not split
Css{DTK .

Lemma 7.2.16 is implied by the following:

Lemma 7.2.17. Let δ P Css be a curve and let α, β P Lkpδq. Let α, β, δ be their projections.
Then δ separates α and β if and only if δ separates α and β.

Proof. Suppose that α, β are not separated by δ. Pick a chain γ0 “ α, γ1, . . . , γk “ β P Lkpδq

and choose some lifts γ0 “ α, γ1, . . . , γk “ β P Lkpδq. Notice that, since the projection map is
1-Lipschitz, any two consecutive curves must be at distance at least 2 in C. Hence these curves
form a chain themselves, which means that δ does not separate α and β.
Conversely, suppose that α, β lie on the same subsurface Σ cut out by δ. This subsurface must
contain one of the disks that α cuts out, call it Dα, but cannot coincide with it since δ ‰ α.
Therefore there must be some puncture that belongs to Σ but not to Dα. The same argument
works for β and some disk Dβ . Hence it is always possible to find a strongly separating curve
γ P Lkpδq which intersects both α and β and induces a different puncture separation. More
precisely, one can always find some disk Dγ Ă Σ with at least three punctures and which
contains (at least) one of the punctures not in Dα and (at least) one of the punctures not in Dβ ,
as in Figure 7.9. Then γ must be at distance at least 2 from both α and β by Lemma 2.3.2, and
therefore δ does not separate α and β.

Figure 7.9: The shape of a possible curve γ depends on whether one of the discs contains the
punctures of the other.

Now we can exploit the previous results to intrinsically determine if two curves belong to a
peripheral S7, that is, an S7 cut out by a single curve. Here is where we need the number of
punctures to be at least 9, since in S8 there is no strongly separating curve that cuts out some
S7.

Lemma 7.2.18 (Bizarre simplices). Let b ě 9. If ∆ “ pδ3, . . . δb´6q Ď Css is an ordered simplex
of dimension b´ 9 such that:
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1. δ3 P C1;

2. every δi separates δi´1 from δi`1;

3. there is no strongly separating curve that separates two consecutive curves δi and δi`1;

then Lkp∆q fills a peripheral S7 cut out by δb´6.

Proof. The second property tells us that ∆ cuts the surface into two disks and some punctured
annuli between consecutive curves, as in Figure 7.10. Moreover each of these annuli should
contain just one puncture, because otherwise we could find some curve that contradicts the third
property. Then, since the S0,4 cut out by δ3 cannot contain any strongly separating curve,
Lkp∆q must fill the other peripheral disk, call it Σ. Now it is enough to count the punctures in
Σ, that must be six (δ3 cuts out three punctures, and each of the b ´ 9 annuli contains a single
puncture).

Figure 7.10: Starting from δ3, ∆ is constructed by consecutively cutting out once-punctured
annuli.

Notice that these bizarre properties are stated only in terms of some vertices separating some
others, and are therefore preserved when passing to the quotient and taking lifts by Lemma
7.2.17. Hence we get the following:

Corollary 7.2.19. Let b ě 9. If ∆ “ pδ3, . . . δb´6q Ď Css{DTK is an ordered simplex of
dimension b´ 9 such that:

1. δ3 P C1{DTK ;

2. every δi separates δi´1 from δi`1;

3. there is no γ P Css{DTK that separates two consecutive δi and δi`1;

then every vertex α P Lkp∆q lifts inside a peripheral S7 cut out by some lift δb´6 of δb´6.

Now, given some peripheral S7 and a bizarre simplex ∆ for it, we are able to recognize CsspS7q,
which is the subgraph of Css spanned by those curves γ P Lkp∆q which do not cut out a pair of
pants with the boundary of S7, or equivalently for which there exists some other curve γ1 P Lkp∆q

that separates γ from δb´6. Again, this property just involves some vertices separating some
others, thus it holds in the quotient if and only if it holds in Css. Therefore, if π : Css Ñ Css{DTK
is the quotient projection, we can recognize πpCsspS7qq inside Css{DTK in the same way. Notice
that, as discussed in Corollary 2.3.12, πpCsspS7qq is isomorphic to CsspS7q{DTKpS7q, therefore
we are exactly in the framework of the previous subsection. Then we can define surrounding
pairs and triples as in Figures 7.4 and 7.5. The following is a summary of [Bow16, Lemmas 6.1
and 6.3]:

Lemma 7.2.20. Let b ě 9. Two curves α, β P Css form a surrounding pair if and only if:

• They belong to C1;
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• They belong to some peripheral S7;

• They are a surrounding pair intrinsically inside S7.

Three curves α, β, γ P Css form a surrounding triple if they are pairwise surrounding pairs and
they all belong to some peripheral S6 (which is defined exactly as a peripheral S7, but this time
the bizarre simplex has one more vertex).

Now we can almost repeat what we did for the case b “ 7, being careful to remember in which
link we are. All proofs will have the same flavor as the corresponding ones, though they will
involve more cut set arguments.

• First notice that, if T is a heptagon which lies in LkCss{DTK
p∆q for some simplex ∆, then

T ‹ ∆ is a generalized heptagon, thus we can find lifts ∆ and T Ă LkCssp∆q by Theorem
2.2.6.

• To prove the equivalent of Lemma 7.2.7 we must show that the vertex ω surrounded by

a pair is also independent of the chosen simplex ∆. Thus we take simplices ∆,∆
1
and

heptagons T , T
1
inside the respective links, and lift them to T P Lkp∆q and T 1 P Lkp∆1q.

Then the proof follows the same steps, being careful to add ∆ to the cut set containing ω
(and similarly for ∆1).

• It is clear that surrounding pairs (triples) project to surrounding pairs (triples) since the
bizarre properties are preserved in the quotient. Then Lemma 7.2.9 follows.

• Lemma 7.2.13 deals with disjointness, and the same statement works in our case.

We are left to prove an analogous to Lemma 7.2.11, which needs a bit more care.

Lemma 7.2.21. Let b ě 9. If α, β, γ P Css{DTK form a surrounding triple then they pairwise
surround the same ω.

Proof. As in the proof of Lemma 7.2.11 we actually want to show that a surrounding triple in
Css{DTK lifts to a surrounding triple in Css. Since α, β are a surrounding pair they belong to
some heptagon T inside the link of some simplex ∆, which corresponds to some peripheral S7

(meaning that it lifts to a pants decomposition for the complement of a peripheral S7). We can

similarly find T
1
,∆

1
for β, γ and T

2
,∆

2
for α, γ. Moreover, let σ be a simplex which corresponds

to some peripheral S6 and whose link contains α, β, γ. Now, choose lifts ∆,∆1,∆2, σ for the
various simplices. Lift T to a heptagon T inside Lkp∆q, and let α P T be the lift of α. If
α R Lkpσq let g P DTK be such that gpαq P Lkpσq, and replace T and ∆ with gpT q and gp∆q.
Apply the same procedure to T 1,∆1 and T 2,∆2. Finally, let ω be the curve surrounded by α, β,
and define similarly ω1 and ω2. The situation is depicted in Figure 7.11.

Figure 7.11: The various lifts from the proof of Lemma 7.2.21.
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Now let β P T and β1 P T 1 be the corresponding lifts of β, which we want to glue to each
other. Let g P DTK be an element mapping β to β1. If g is not the identity let ps, γsq be as in
Proposition 2.2.1. Arguing as in the proof of Lemma 7.1.12 we see that γs must fix pointwise
one of the following:

• β;

• ω, two curves δ, ε in T and the whole ∆;

• α;

• σ;

Then we can apply γs to everything beyond the cut set, while preserving that all ωs are still
the minimal curves surrounded by the corresponding pairs as in Lemma 7.2.7, and proceed by
induction.
Thus we can glue β to β1 and with the exact same argument we can glue γ1 to γ2. Therefore our
data up to this point span a graph which schematically looks like in Figure 7.12.

σ

ω ω1 ω2

α ∆ β ∆1 γ ∆2 α2

T T 1 T 2

Figure 7.12: This graph represents all possible “paths” from α to α2, and elements on the same
column correspond to the same cut set. Notice that every heptagon actually represents two
paths.

We are left to glue α to α2, since then α, β, γ will be a surrounding triple and therefore surround
the same minimal curve, which in turn will mean that ω “ ω1 “ ω2. Let g P DTK be an element
mapping α to α2. If g is not the identity let ps, γsq be as in Proposition 2.2.1. Then γs must fix
pointwise one of the following cut sets:

• α;

• σ, ω, two curves δ, ε in T and the whole ∆;

• σ and β;

• σ, ω1, two curves δ1, ε1 in T 1 and the whole ∆1;

• γ;

• ω2, two curves δ2, ε2 in T 2 and the whole ∆2.

Thus, as argued in Lemma 7.2.7, we can apply γs beyond the cut set, while preserving that every
minimal curve is the one surrounded by the corresponding pair, and conclude by induction.

To sum up we get the following, which is the case b ě 9 of Theorem 7.2.1:

Corollary 7.2.22. For every b ě 9 and all large multiples K, every automorphism of Css{DTK
extends to an automorphism of C{DTK .
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7.2.3 8 punctures

We are left to deal with the case b “ 8. The idea will be to replace heptagons with a suitable
subgraph which we will use to recognize surrounding pairs. Define O as the graph obtained by
adding the four longest diagonal to an octagon, as in Figure 7.13. A possible realization of this
graph inside C1pS8q is given by the eight curves in the same Figure, and [Bow16, Lemma 7.2]
shows that there is only one copy of O inside C1pS8q up to the action of the mapping class group
(that is, every O corresponds to some curves arranged as in the Figure).

Figure 7.13: The graph O and its realization with 1-separating curves, each of which surrounds
three consecutive punctures. Notice that two vertices correspond to a surrounding pair (as the
red curve and the blue curve) if and only if they are connected by exactly two paths of length 2
inside O (as the vertices α and β).

In [Bow16] it was proved that α, β P Css form a surrounding pair if and only if:

• They belong to C1;

• They belong to some isometrically embedded copy of O inside C1;

• They are connected by exactly two geodesic paths of length 2 inside O.

Moreover three curves α, β, γ P Css form a surrounding triple if and only if they are pairwise
surrounding pairs and there is no δ P CsszC1 which is disjoint from all of them.
Now, in order to define surrounding pairs and triples inside Css{DTK we need the following
lemmas:

Lemma 7.2.23. For all large multiples K every isometrically embedded copy of O inside C
projects isometrically into C1{DTK . In particular there exists an isometrically embedded copy of
O inside C1{DTK .

Proof. Every two copies of O differ by a mapping class, thus it suffices to argue as in Lemma
3.3.3 with Xb replaced by O.

Lemma 7.2.24. Every isometrically embedded copy O Ă C1{DTK admits an isometrically em-
bedded lift O Ă C1. Therefore surrounding pairs lift to surrounding pairs.

Proof. It suffices to find a lift O, which will automatically be isometrically embedded since the
projection map is 1-Lipschitz (as argued in Lemma 3.1.6). Now, it is useful to see O as the
1-skeleton of a Möbius band made of four squares, as in Figure 7.14.
Clearly the graph G in the Figure admits a lift, since we can lift each square and glue them
together along common sides (recall that every 1-simplex admits a unique DTK-orbit of lifts).
Now we are left to glue 1 to 11 and 5 to 51. Let g P DTK be an element that maps the edge 1, 5
to the edge 11, 51. If g is not the identity let ps, γsq be as in Lemma 2.2.1, applied to x “ 1. If
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Figure 7.14: O is obtained from the strip G by gluing 1 to 11 and 5 to 51.

dCps, 1q ď 1 we can apply γs to the whole data and proceed by induction. Otherwise every path
from 1 to 11 must intersect the star of s. This means that there must be a square Q where it is
not possible to move from the left side to the right side without crossing the star of s. Thus there
must be at least two vertices p, q P Q which lie in the star of s and that cut G in two connected
components (more precisely, p, q must be the vertices of either a diagonal or a vertical side of
one of the squares). Thus we can apply γs beyond p and q. Notice that either 51 is one of p and
q or 51 and 11 are in the same connected component cut out by p and q; either way γs is applied
to the whole edge 11, 51, and we can proceed by induction.

Now we can proceed exactly as for the case b “ 7, with a few adjustments to cut sets arguments.
Given a surrounding pair α, β, define the vertex ω surrounded by the pair by lifting the pair and
projecting the curve surrounded by the lift, as before.

Lemma 7.2.25. The vertex ω surrounded by a pair α, β is well-defined.

Proof. Let O and O
1
be two copies of O inside Css{DTK that contain α, β, and lift them to O

and O1. We can assume that the lifts of α coincide, and let β, β1 be the lift of β. Let γ1, γ2, δ1, δ2
be the curves in Figure 7.15.

Figure 7.15: The two octagons from the proof of Lemma 7.2.25.

Let ω, ω1 be the curves surrounded by the two pairs, and let g P DTK be an element that maps
β to β1. If g is not the identity let ps, γsq be as in Proposition 2.2.1. If dCpβ, sq ď 1 we can apply
γs to the whole data and proceed by induction on the complexity. If dCpα, sq ď 1 we can apply
γs just to the second octagon and again proceed by induction. If none of the previous hold we
can assume without loss of generality that dspα, βq is large, and therefore every path from β to
α must pass through the star of s. In order to understand the following cut set argument we
represent ω and part of the octagon as in Figure 7.16.
We already see that γs must fix ω, γ1, γ2 and one between δ1 and δ2. In the first case γs fixes
LkOpβq “ tγ1, γ2, δ1u, which is a cut set for O because it is the link of a vertex. Thus we can
apply γs to all curves but β. In the second case γs fixes LkOpαq “ tγ1, γ2, δ2u, and we can apply
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δ1 δ2

β ω α

γ1

γ1

Figure 7.16: A schematic representation of tωu Y LkOpαq Y LkOpβq from Lemma 7.2.25.

γs to O1 Y Lkpαq. In both cases ω remains the curve surrounded by β and γspαq, as argued in
Lemma 7.2.7; therefore we can proceed by induction.

The rest of the argument is as for the case b “ 7.

• Arguing exactly as in Lemma 7.2.9 we see that surrounding triples project to surrounding
triples.

• Adapting the proof of Lemma 7.2.11 with the cut set arguments from Lemma 7.2.25 we
get that the vertex ω surrounded by a surrounding triple is well-defined.

• Again, the conclusion of Lemma 7.2.13 holds, so we can recognize disjointness.

Thus we get the final piece of the proof of Theorem 7.2.1:

Corollary 7.2.26. If b “ 8, for all large multiples K every automorphism of Css{DTK extends
to an automorphism of C{DTK .
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Chapter 8

Quasi-isometric rigidity

This Chapter is devoted to the proof of Theorem 1, following the same steps as for the pants
graph. Let us start from the HHS structure of MCG˘{DTK .

Definition 8.0.1. For ∆, ∆1 simplices of a graph G, we write ∆ „ ∆1 to mean Lkp∆q “ Lkp∆1q.
We denote by r∆s the „–equivalence class of ∆, and by S the set of equivalence classes of non-
maximal simplices. Finally, we define the saturation of ∆ as the set of vertices v P G for which
there exists a simplex ∆1 such that v P ∆1 and ∆1 „ ∆, i.e.

Satp∆q “

¨

˝

ď

∆1Pr∆s

∆1

˛

‚

p0q

.

Remark 8.0.2. As shown in [BHMS20] (see Theorem 7.1 and Proposition 8.13 there),MCG{DTK
has the following HHS structure:

(i) The index set is the set S of „–equivalence classes of simplices inside C{DTK ;

(ii) There is a bijection j : S Ñ Sě1{DTK , where Sě1 is the set of essential, non-annular,
possibly disconnected subsurfaces U Ď S.

(iii) Two elements U, V P S are orthogonal (resp. nested) if jpUq and jpV q admit representa-
tives, which we also call lifts, that are disjoint (resp. nested);

(iv) If ∆ is not a facet, then Cp∆q :“ Cpr∆sq is quasi-isometric to Lkp∆q (see [BHMS20, Claim
6.11]). Otherwise the pointwise stabilizer of the saturation P p∆q :“ PstabpSatp∆qq is a
hyperbolic group acting properly and cocompactly on Cp∆q.

We will use the notion of convex-cocompact subgroups, introduced by Farb and Mosher in [FM02],
and the following two properties these subgroups enjoy. Recall that a group is free on two
generators if it admits a presentation of the form F2 “ xa, by.

Lemma 8.0.3 ([FM02, Theorem 1.4]). For every subgroup H ď MCG˘ of finite index there
exists a copy F2 ď H of a free group on two generators which is convex-cocompact.

Lemma 8.0.4 (Kent-Leiniger, [KL08]). If a subgroup Q ă MCGpSq is convex-cocompact then
there exists a constant D such that for every element h P Q and for every two curves x, s Ă U
we have dspx, hpxqq ď D whenever the quantity is defined.
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In our context, convex-cocompact subgroups survive in deep enough quotients:

Lemma 8.0.5. Let S be a connected surface of finite type and whose complexity is at least 2.
Given a convex-cocompact subgroup Q ă MCGpSq, for all large multiples K the projection π|Q

is injective and the orbit maps of Q to CpSq{DTK are quasi-isometric embeddings.

Proof. This is just [BHMS20, Theorem 7.1.iii].

Now we turn to the proof of quasi-isometric rigidity. In order for our machinery to work we must
ensure that we are in the assumptions of Theorem 5.2.15. We split this passage in Remark 8.0.6
and Lemma 8.0.7.

Remark 8.0.6 (Asymphoricity and normalization for HHGs). MCG{DTK is an example of what
is called a hierarchically hyperbolic group (HHG), that is, a group whose Cayley graph has a HHS
structure which is “compatible” with the action by left multiplication. The precise definition
is [BHS19, Definition 1.21], which also requires the group to act cofinitely on the set of curve
graphs, such that two curve graphs in the same orbit are isometric. Hence the diameters of the
curve graph of a HHG may assume finitely many different values in r0,`8s, and this implies
that every HHG is asymphoric, as in Definition 5.2.9.
Also, as explained in [DHS17, Proposition 1.16] and [DHS20, Remark 2.1] we can and shall
assume that the structure is normalized, up to replacing every CU with (a uniform neighborhood
of) πU pXq.

Lemma 8.0.7. For all large multiples K the following holds. For any r∆s P S, either the space
Cp∆q is bounded or it has at least four points at infinity.

Proof. First, assume that ∆ has codimension 1. Then, by Remark 8.0.2 and the Milnor-Şvarc
Lemma 5.1.8, Cp∆q is quasi-isometric to the hyperbolic group P p∆q, and we claim that there
exists a copy of the free group on two generators F2 inside P p∆q. If this is the case then P p∆q

is an infinite, non virtually-cyclic hyperbolic group, hence it has at least four boundary points
(see e.g [KB02, Theorem 2.28]).
Let ∆ Ă C be a lift of ∆. By [BHMS20, Proposition 8.13.vii] we have that πpSatp∆qq “ Satp∆q,
therefore P p∆q contains the quotient projection of P p∆q :“ PstabpSatp∆qq. Thus it is enough to
show that there is a copy of F2 inside P p∆q whose projection to MCG˘{DTK is injective. Now,
∆ is a facet in C, thus it cuts out a four-holed sphere U . Notice that a curve γ P C is in the link
of ∆ if and only if γ lies in U and is not one of its boundary curves. Hence a simplex ∆1 which
has the same link of ∆ must be a pants decomposition for SzU , including its boundary curves.
This in turn means that, if we see U just as a four-punctured sphere S4 (that is, we forget about
the difference between punctures and boundary curves), then P p∆q contains the pure mapping
class group PMCGpS4q.
Notice that PMCGpS4q has finite index inside MCGpS4q, since it is the kernel of the action
of the mapping class group on the punctures. Hence by Lemma 8.0.5 we may find a convex-
cocompact copy of F2 inside PMCGpS4q, call it Q. Suppose by contradiction that π|Q is not
injective, which means that there is some h P Q X DTKzt1u. Now h can not fix every curve,
since the only elements of MCGpS4q with this property are the hyperelliptic involutions, which
permute the punctures. Thus let x Ď U be a curve such that hpxq ‰ x and let ps, γsq be as
in Proposition 2.2.1. Notice that hpxq still lies on U , therefore both x and hpxq complete ∆ to
maximal simplices.
Now, suppose by contradiction that dCpx, sq ą 1, and therefore dspx, hpxqq ą Θ. If we argue as
in Lemma 2.2.7 we get that γs must fix ∆ pointwise. Hence s is disjoint from all curves in ∆,
but s R ∆ since otherwise γs, which is a power of Ts, would fix x. Therefore s lies in U , and by
convex-cocompactness of H there exists a constant D such that dspx, hpxqq ď D. Notice that,
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since there are finitely many subsurfaces homeomorphic to S4, up to the action of the mapping
class group, therefore we may find a D which works for all possible U . This is a contradiction if
we choose Θ ą D and a large enough multiple K.
Then we must have that dCpx, sq ď 1, i.e., x must be fixed by γs, and we can apply γs to the
whole data and proceed by induction on the complexity of h. In the end we must have that
h “

śr
i“1 γsi and every γsi fixes x. But then hpxq “ x, which contradicts our hypothesis. Thus

we proved the Lemma for Cp∆q whenever ∆ has codimension 1.
Now suppose that ∆ is not a facet. Then again by Remark 8.0.2 Cp∆q is quasi-isometric to
Lkp∆q, which is the projection of Lkp∆q for some lift ∆. Notice that Lkp∆q “ CpUq is the curve
graph of the subsurface U cut out by ∆. If U has at least two connected components then as
pointed out in Remark 1.2.11 CpUq is bounded, and so is its projection. Otherwise U is some
connected subsurface of complexity at least 2, and Cp∆q is the image of the curve graph CpUq

under the quotient map, which is isomorphic to CpUq{DTKpUq by Corollary 2.3.12.
Then our goal has become to show that, for every surface U of complexity at least 2, the quotient
of the curve graph CpUq{DTKpUq has at least four boundary points. But now we can just apply
Lemma 8.0.5: if we choose a convex-cocompact copy of F2 inside MCGpUq then its projection
is still a copy of F2 whose orbit maps to CpUq{DTKpUq are quasi-isometric embeddings, and we
are done.

Moving forward, our next goal is to understand the structure of complete support sets. For the
following theorems we think of S as the set of DTK-classes of subsurfaces (thus omitting the
bijection j whenever possible).

Lemma 8.0.8. The following holds for all large multiples K. Let
␣

U i
(r

i“1
be a collection of

pairwise orthogonal indices. Then there exist pairwise disjoint representatives tUiu
r
i“1.

Notice that this lemma is not at all obvious: we just know that every two indices in
␣

U i
(r

i“1
have

disjoint representatives, but this does not mean a priori that this conditions can all be satisfied
simultaneously. Notice moreover that the U is in the proof can be any equivalence classes of
subsurfaces, not necessarily elements of a complete support set. However, the main reason we
want to establish the Lemma is the following:

Corollary 8.0.9. For every complete support set tU iu for MCGpSbq{DTK there exist represen-
tatives tUiu which form a complete support set for PpSbq.

Proof of Lemma 8.0.8. We proceed by induction on r, the base case r ď 2 being true by the
description of the HHS structure. Then let r ě 3 and choose three indices U1, U2, U3. Take lifts
U1, U2, U3, U

1
1 such that U1 K U2, U2 K U3 and U3 K U 1

1. Let g P DTK be an element mapping
U1 to U 1

1. For each of these surfaces we choose a family Ci of filling curves, in such a way that
C 1

1 “ gpC1q. Since U1 and U2 are disjoint, we have a join C1 ‹ C2, and similarly for the other
disjoint pairs. Then morally we have a “path” C1, C2, C3, C

1
1, and we want to show that we can

glue C1 to C 1
1, as if we were looking for a “closed lift” of this path. The situation in the curve

graph is as follows:

C1 C2 C3 C 1
1

g

We proceed by induction on the complexity of g. If g is the identity we are done; otherwise fix
a curve x P C1 and let ps, γsq be as in Proposition 2.2.1. If dCpx, sq ď 1 we can apply γs to
everything and proceed by induction. Otherwise, one between C2 and C3 must be fixed by γs
pointwise, since if not we can find a path from x to x1 that does not intersect the star of s, thus
violating the Bounded geodesic image Theorem 2.2.2 (here we use the fact that consecutive Cis
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form a join). Either way we can apply γs to part of our chain and proceed by induction.
At the end of this process we get that U1, U2, U3 are pairwise disjoint. Now suppose that, for
3 ď k ă r we can find representatives U1, . . . , Uk such that U1, U2, Ui are pairwise disjoint for
all 3 ď i ď k, and we want to show that the same holds for k ` 1. As before, let Uk`1 be a
representative for Uk`1 which is disjoint from U2 and let U 1

1 be a representative for U1 disjoint
from Uk`1. Let C1, . . . , Ck`1, C

1
1 be sets of filling curves for the corresponding subsurfaces. In

the curve graph there is a ”triangle” of the form C1, C2, Ci for every i “ 3, . . . , k, as shown in
this schematic picture:

C3

...

Ck

C1 C2 Ck`1 C 1
1

g

The same argument as before shows that we can glue C1 to C 1
1, this time without breaking the

“triangles”: in every inductive step, γs fixes either C1 (and we apply γs to the whole data) or one
between C2 and Ck`1 (and we can apply γs beyond these curves, without moving the triangles).
If we do this for k “ 3, . . . , r ´ 1 we can find representatives tUiu

r
i“1 such that U1 K U2 and

both U1 and U2 are disjoint from every other Ui. But now we can consider U1 and U2 as a single
(possibly disconnected) subsurface and conclude by induction on r.

In the previous proof we actually showed that every “simplex of indices” admits a lift. Now we
want to prove the uniqueness of these lifts, up to elements of DTK :

Lemma 8.0.10. For all large multiples K the following holds. Let
␣

Ui
(r

i“1
be a collection of pair-

wise orthogonal indices. Any two collections of pairwise orthogonal representatives tUiu
r
i“1 , tU 1

iu
r
i“1

are obtained one from the other via some element g P DTK .

Proof. We proceed by induction on r, the base case r “ 1 being clear. If the conclusion holds
for r ´ 1 then, up to some element g P DTK , we can assume that Ui “ U 1

i for i “ 1, . . . , r ´ 1.
Now let h P DTK be an element that maps Ur to U 1

r, and let C1, . . . , Cr, C
1
r be sets of filling

curves such that hpCrq “ C 1
r. If h is not the identity, fix a point x P Cr and let ps, γsq be as

in Proposition 2.2.1. If dCpx, sq ď 1 we can apply γs to everything and proceed by induction
on the complexity of h; otherwise γs must fix C1, . . . , Cr´1 pointwise, so we can apply γs to the
“simplex” tC1, . . . , Cr´1, C

1
ru and proceed by induction.

From now on we can almost repeat the arguments of Section 6.1. First we define minimal and
unambiguous hinges in the same way and prove the following:

Lemma 8.0.11. For all large multiples K, a hinge pU, pq for MCG{DTK is minimal iff it is
unambiguous and its support is the class of a four-holed sphere.

Proof. Let U be a lift of U . Again, we look at all possible shapes of U , according to Lemma
6.1.5.
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• Suppose U is an S5, and choose some minimal V Ĺ U (for example, choose a pair of pants
P Ă U whose boundary touches a connected component of SzU , and let V “ UzP , which is
minimal by the discussion of Lemma 6.1.5). Every completion for U admits representatives
that are disjoint from U by Lemma 8.0.8, and therefore also from V . Thus every completion
for U is also a completion for V . Moreover we claim that there exists a completion tV iu for
V but not for U . To this purpose choose a completion tViu for V , such that some boundary
curve δ crosses one of the boundary components η of U (this is always possible, since the
complementary components of V are not pairs of pants and therefore admit pseudo-Anosov
elements), and let tV iu be their classes. Now recall that, as a consequence of Lemma 2.3.7,
if we fix some finite subset F Ă C then for all large multiples K the projection map is an
isometry on gpF q, for every mapping class g P MCG. In our case, there is a finite number
of S5 inside S, up to the action of the mapping class group, and for each of these we can
find δ and η as above. Then we set F as the union of these curves. Now, any lift tViu of
tV iu must intersect U . More precisely, η must cross the boundary curve δ1 corresponding
to δ, since

dCpδ1, ηq ě dC{DTK
pδ1, ηq “ dC{DTK

pδ, ηq “ dCpδ, ηq ě 2,

where we used that the projection is 1-Lipschitz and that its restriction to F is isometric.
This shows that U is not minimal.

• Suppose U is an ambiguous S4. Let V be the S5 given by the union of U and the pair of
pants cut out by U , again as in Figure 6.1. Then slightly abusing notation we have that
ComplpUq “ ComplpV q, because they are both the projection of ComplpUq “ ComplpV q.
Thus U is ambiguous, and it is not minimal since V is not.

• The only case left is when U is a minimal S4. Choose a completion tUiu for U so that
U “ Sz

Ť

Ui, and let tU iu be its projection. If V completes tU iu then we may lift it to
some V Ď U (here we used that, up to elements of DTK , the lift of tU iu is unique by
Lemma 8.0.10). Then again V “ U since U has minimal complexity, thus we proved that
U is minimal and unambiguous.

Then the Products to products Corollary 6.1.7 holds also in the case of MCG{DTK with the
same proof, provided that we show the following analogue of Lemma 6.1.8:

Lemma 8.0.12. There exists a constant C4 such that whenever U is a minimal domain and
x P FU , there exists a hierarchy line γ Ă FU such that dF

U
px, γq ď C4.

Proof. As in the proof of Lemma 6.1.8, since U is Ď-minimal we just need to show that every
point x P CU is within uniformly bounded distance from a bi-infinite quasigeodesic. Now, CU has
at least 2 points at infinity by Lemma 8.0.7, and therefore Lemma 5.1.14 grants the existence of
a bi-infinite quasigeodesic γ. Moreover, setting r∆s “ j´1pUq, Remark 8.0.2.(iv) tells us that the
hyperbolic group P p∆q acts cocompactly on CU . Hence every point x P CU lies within uniformly
bounded distance from some image of γ under the action of P p∆q, which is again a bi-infinite
quasigeodesic since the action is by isometries.

The next step is to characterize terminal supports:

Lemma 8.0.13. For all large multiples K, a hinge σ “ pU, pq has terminal support if and only
if it is minimal and there exists a hinge pV , qq, compatible with σ, such that any complete support
set containing pV , qq must contain some σ1 supported in U .
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Proof. Suppose U is terminal, i.e., one (hence every) of its lifts U is terminal. Choose some V
that cuts out U . Then every complete support set containing V lifts to a complete support set
containing V , and therefore also U . Moreover, by the discussion in the proof of Lemma 8.0.11 a
terminal support is also minimal.
Conversely, suppose that U is not terminal. If U is not minimal we have nothing to prove.
Otherwise U is the class of a non-terminal S4, and we want to show that every V K U which is
compatible with U admits a completion that does not contain U . First notice that, up to the
action of the mapping class group, there is a finite number of possible pairs U K V of orthogonal
subsurfaces (again, as a consequence of Lemma 1.4.1). For each of these possibilities, let tViu

ν
i“2

a completion for V “ V1, that we can choose in such a way that some boundary curve δ of U
crosses some boundary curve η of some Vi, say, V2. This is always possible because U , which is
a non-terminal S4, cannot coincide with the connected component Σ of SzV it belongs to, and
therefore there must be a relative boundary curve of U inside Σ that we can choose as δ. Now
let F be the finite union of all δs and ηs that arise from these possibilities. By Corollary 2.3.8
for all large multiples K the projection is an isometry on F . Thus tV iu is a completion for V
that cannot contain U , since any lift U 1 of U contains a boundary curve δ1 which must cross η
(we can argue precisely as in Lemma 8.0.11). Hence U&V 2 since U 1&V2 for every lift U 1. This
implies that U cannot be an element of tViu, and we are done.

Corollary 8.0.14. For all large multiples K, any self-quasi-isometry f of MCG{DTK induces
an automorphism of C1{DTK .

Then this automorphism comes from some g P MCG˘{DTK , by Theorem 7.0.3. Finally we need
to show that, if fsupp and g agree on terminal subsurfaces then they agree on every minimal
surface. More precisely we claim the following:

Lemma 8.0.15. For all large multiples K, every minimal support U for MCG{DTK is uniquely
determined by the terminal supports it is compatible with.

Proof. Let U be a lift of U and let SzU “
Ů4
i“1 Σi. Moreover let V be another support such

that every terminal support T compatible with U is also compatible with V . We claim that, for
i “ 1, . . . , 4, there exists a representative Vi for V which is disjoint from Σi. If this is the case
then there exists a representative V which is disjoint from all Σis (more precisely, we can use
Lemma 8.0.8 to lift the “simplex” tV u Y tΣiu

4
i“1, and Lemma 8.0.10 shows that we can choose

tΣiu
4
i“1 as lifts of tΣiu

4
i“1). Therefore V Ď U , and equality holds since U , which is an S4, has

already minimal complexity.
First notice that there is a finite number of possibilities for U , up to the action of the mapping
class group. For each of these possibilities look at its complementary components. Whenever
one of these, call it Σ, is not terminal we choose two 1-separating curves α, α1 that fill Σ and a
pants decomposition ∆ for SzΣ, including its boundary. Let F be the finite set of curves given
by the union of all these α, α1 and ∆. Notice that Corollary 2.3.10 tells us that for all large
multiples K every lift of α, α1 inside Lkp∆q is still a pair of filling curves for Σ.
Now we go back to our proof. If Σ is already a terminal support then we can find a representative
V which is disjoint from Σ, and we are done. Otherwise let α, α1,∆ be the image under some
mapping class of the corresponding elements of F , which satisfy the property that every two lifts
of α, α1 inside Lkp∆q fill Σ. Let W,W 1 be the terminal subsurfaces cut out by α and α1, and let
V, V 1 be some representatives of V such that V K W and V 1 K W 1. Let g P DTK that maps V
to V 1. Let C be a collection of filling curves for V , and let C 1 “ gpV q. Then in the curve graph
the situation is as follows:

C α ∆ α1 C 1

g
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Now if g is not the identity pick some x P C and let ps, γsq be as usual. If dCpx, sq ď 1 we can
apply γs to everything and proceed by induction on the complexity of g. Otherwise we must be
in one of these three cases:

• If dCpα, sq ď 1 we can apply γs to everything after α. Now γspαq and γspα
1q still fill γspΣq,

and we can proceed.

• If ∆ is fixed pointwise by γs then we can apply γs to everything after ∆. Notice that γspα
1q

is still a lift of α1 in the link of ∆, hence it still fills Σ together with α.

• If dCpα1, sq ď 1 we can apply γs just to C 1, without touching α and α1.

At the end of the induction we have that C “ C 1 is disjoint from both α and α1, which may
differ from the original curves but remain a pair of filling curves for a representative of Σ. This
gives us the required representative for V .

We are finally ready to prove quasi-isometric rigidity of MCG˘{DTK , which is Theorem 1. We
subdivide the proof in two steps.

Theorem 8.0.16. Let S “ S0,b be a punctured sphere, with b ě 7 punctures. For all large
multiples K the following holds. For every T ą 0 there exists a constant D ą 0 such that every
pT, T q-self-quasi-isometry f of MCGpSq{DTK lies within distance D of the left multiplication
by some element g P MCG˘{DTK , which depends only on the restriction of fsupp to terminal
supports.

Proof. Let f be a self-quasi-isometry of MCG{DTK , and let fsupp be the induced map on
minimal supports. With a slight abuse of notation, the restriction of fsupp to terminal supports
is an automorphism of C1{DTK which comes from some element g P MCG˘{DTK by Theorem
7.2.1. Then fsupp and g agree on terminal supports, and therefore also on every minimal support
by Lemma 8.0.15. Then the Products to products Corollary 6.1.7, which holds for MCG{DTK
as we already noticed, tells us that there exists some constant C, depending only on the quasi-
isometry constants of f , such that, if tU iu is a complete support set made of minimal supports, f
maps the corresponding product region PtUiu within Hausdorff distance at most C from gpPtUiuq.
We are left to prove that every point x P MCG{DTK is the (uniform) coarse intersection of two
standard product regions P X̃P 1, coming from minimal complete support sets. With the same
reduction as in the proof of Theorem 6.0.2 for the pants graph, it is enough to prove that there
exist two complete support sets tU iu and tV iu with minimal, pairwise distinct supports (again,
we can apply Corollary 5.2.4 since minimal supports are also Ď-minimal). Let tUiu be a complete
support set made of minimal support, whose existence we showed in the proof of Theorem 6.0.2.
Choose a pseudo-Anosov mapping class ϕ such that every boundary curve of tUiu crosses every
boundary curve of tViu “ ϕtUiu. Now, for all large multiples K, the projection is an isometry
on the finite set F of boundary curves of tUiu and tViu. Therefore we must have that U i ‰ V j
for every choice of i and j, because any two lifts U 1

i and V
1
j must have crossing boundaries. This

proves the theorem.

Corollary 8.0.17. For every T ą 0 there exists D such that, if a pT, T q-self-quasi-isometry f
of MCG{DTK lies within finite distance of the identity, then it lies within distance D of the
identity.

Proof. By the previous theorem we know that f lies within distance D of the left multiplication
by some g, which depends only on the induced map fsupp on terminal supports. In turn fsupp
is induced by fhin, thus if this map is the identity then g can be chosen to be the identity, and
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the corollary follows. Now, Theorem 5.2.15 tells us that dHausphfhinpσq, fphσqq ă `8. Moreover
dHauspfphσq, hσq ă `8, because f moves every point of hσ within uniformly bounded distance
from the point itself. Hence we must also have that dHausphfhinpσq, hσq ă `8. This in turn
means that fhinpσq “ σ, since hσ has the property that if σ ‰ σ1 then dHausphσ, hσ1 q “ `8, as
pointed out in Remark 5.2.13.

Thus Theorem 1 is implied by the general statement below, which follows from standard argu-
ments (see e.g. [Sch95, Section 10.4]):

Lemma 8.0.18. Let H be a finitely generated group, and let QIpHq be the group of its self-
quasi-isometries up to bounded distance. Suppose that for every T ą 0 there exists D ą 0 such
that:

1. Every pT, T q-self-quasi-isometry of H lies within distance D of the left multiplication by
some element of H;

2. If a pT, T q-self-quasi-isometry of H lies within finite distance of the identity then it lies
within distance D of the identity.

Then H is a finite extension of QIpHq, meaning that it surjects onto QIpHq with finite kernel.
Moreover, if a finitely generated group G is quasi-isometric to H then G and H are weakly
commensurable, meaning that there exist two finite normal subgroups L � H and M � G such
that the quotients H{L and G{M have two finite index subgroups that are isomorphic.

Proof. Fix a finite generating set S for H, and endow the group with the corresponding word
metric. Set µ : H Ñ QIpHq by mapping h to the left multiplication by h, which is clearly
an isometry of H (and in particular a p1, 1q-quasi-isometry). This map is surjective by the first
hypothesis; moreover it has finite kernel, since if µphq is within finite distance of the identity then
it is within distance D “ Dp1q of the identity, which means that dHph, 1q “ dHpµphqp1q, 1q ď D.
Then we conclude since there are finitely many h P H within distance D from the identity,
because Cayley graphs are proper as pointed out in Remark 5.1.6.
Regarding the second statement, let L be the finite normal subgroup such that H{L – QIpHq,
and let ϕ : G Ñ H be a quasi-isometry with quasi-inverse ϕ´1. We define a map ψ : G Ñ QIpHq

by setting
ψpgqphq “ ϕpgϕ´1phqq.

We claim that this map is a group homomorphism. In fact, if g, g1 P G and h P H we have that

dH
`

ψpgg1qphq, ψpgqpψpg1qphqq
˘

“ dH
`

ϕgg1ϕ´1phqq, ϕgϕ´1ϕg1ϕ´1phqq
˘

.

Now, since ϕ is a quasi-isometry for some constants pC1, C1q we have that

dH
`

ϕgg1ϕ´1phqq, ϕgϕ´1ϕg1ϕ´1phqq
˘

ď C1dG
`

gg1ϕ´1phqq, gϕ´1ϕg1ϕ´1phqq
˘

` C1,

and since the left multiplication by g is an isometry

C1dG
`

gg1ϕ´1phqq, gϕ´1ϕg1ϕ´1phqq
˘

` C1 “ C1dG
`

g1ϕ´1phqq, ϕ´1ϕg1ϕ´1phqq
˘

` C1.

Now ϕ´1 is a quasi-inverse for ϕ, which means that there exists a constant C2 such that

dG
`

g1ϕ´1phqq, ϕ´1ϕg1ϕ´1phqq
˘

ď C2.

Hence
dH

`

ψpgg1qphq, ψpgqpψpg1qphqq
˘

ď C1pC2 ` 1q,
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which means that ψpgg1q and ψpgq ˝ψpg1q coincide up to bounded distance, and therefore are the
same element of QIpHq.
Notice that ψpgq is a self-quasi-isometry of H, whose constants pT, T q depend only on the quasi-
isometry constants of ϕ and ϕ´1. Let D “ DpT q as in the hypothesis. The same argument as
before shows that ψ has finite kernel: if g P kerψ then ϕpgϕ´1p1qq is D-close to 1, hence gϕ´1p1q

is D1-close to ϕ´1p1q for some other constant D1pϕ, ϕ´1, Dq. Thus the Lemma follows if we prove
that ψ is coarsely surjective.
For every g P G let θpgq P H be the element whose left multiplication is D-close to ψpgq. Then
by construction the following diagram commutes:

H

G QIpHq

µθ

ψ

Since µ is a quotient map it is 1-Lipschitz and surjective. Hence it is enough to show that θ is
coarsely surjective, which in turn will follow if we prove that θ lies within bounded distance from
the quasi-isometry ϕ. In fact θpgq is D-close to ϕpgϕ´1p1qq, which in turn is uniformly close to
ϕpgq since dGpg, gϕ´1p1qq “ }ϕ´1p1q}G is constant.
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Chapter 9

Algebraic rigidity

This Chapter is devoted to the proof of Theorem 3, which is covered by Theorems 9.0.1 and 9.0.8
below. Recall that if G is a group, we denote by AutpGq the group of group isomorphisms from
G to itself. Among these are the inner automorphisms InnpGq, which are just the conjugation by
elements ofG. Then one might be interested in the quotient OutpGq :“ AutpGq{InnpGq, which we
call the group of outer automorphisms. In [Iva97] Ivanov showed that, except in some sporadic
cases of low complexity, the homomorphism MCGpSq Ñ AutpMCG˘pSqq which sends every
element to the corresponding conjugation is an isomorphism, and in particular OutpMCG˘pSqq

is trivial. Our goal is to prove the following analogue for the quotient:

Theorem 9.0.1. Let Sb be a sphere with b ě 7 punctures. For all large multiples K, every
ϕ : H Ñ H 1 isomorphism between finite index subgroups of MCG˘pSbq{DTK is the restriction
of an inner automorphism. In particular OutpMCG˘pSbq{DTKq is trivial.

We recall a definition from [AMS16]:

Definition 9.0.2. Two elements h and g of a group G are commensurable, and we write h
G
« g,

if there exist m,n P Zzt0u, k P G such that kgmk´1 “ hn (that is, if they have non-trivial
conjugate powers).

Moreover recall that a subgroup E ď G is normalized by another subgroup H if for every
h P H and every g P E we have that hgh´1 P E. The following result is a special case of
[AMS16, Theorem 7.1]. Roughly speaking, the theorem says that if H is a non-virtually-cyclic
subgroup of G and both act with loxodromic WPD elements on some hyperbolic space, then any
homomorphism ϕ : H Ñ G is either (the restriction of) an inner automorphism or it maps some
loxodromic WPD to an element which is not commensurable to it.

Theorem 9.0.3. Let G be a group acting coboundedly and by isometries on a hyperbolic space
S, with loxodromic WPD elements. Let H ď G be a non-virtually-cyclic subgroup such that
H X LWPD ‰ H, and let EGpHq be the unique maximal finite subgroup of G normalized by H,
whose existence is proven in [AMS16, Lemma 5.6]. Let ϕ : H Ñ G be a homomorphism such

that whenever h P H X LWPD then ϕphq
G
« h. If EGpHq “ t1u then ϕ is the restriction of an

inner automorphism.

Outline of the proof of Theorem 9.0.1. We just need to verify that, for all b ě 7 and for all
large multiples K, the hypotheses of Theorem 9.0.3 are satisfied for G “ MCG˘pSbq{DTK
and any isomorphism ϕ : H Ñ H 1 between subgroups of finite index. By results of Dahmani,
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Hagen and Sisto [DHS21, Theorems 2.1 and 5.2] the quotient C{DTK is a hyperbolic graph, G
is non-virtually-cyclic, and the action of G on C{DTK admits loxodromic WPD elements. In
particular, every subgroup of finite index is not virtually-cyclic (otherwise G itself would be so)
and it contains some power of every loxodromic WPD element, which remains loxodromic WPD.
In Lemma 9.0.4 we show that ϕ has the required commensurating property, that is, for every

h P H X LWPD we have that ϕphq
G
« h. Moreover, in view of the general Lemma 9.0.5, in order

to prove that EGpHq “ t1u it suffices to show that EGpGq “ t1u, i.e., that MCG˘{DTK has no
nontrivial finite normal subgroups. This is done in Lemma 9.0.7.

Lemma 9.0.4. Let G “ MCG˘pSbq{DTK for b ě 7. For every isomorphism ϕ : H Ñ H 1

between finite index subgroups and every element h P H of infinite order, h and ϕphq are com-
mensurable.

Proof. Fix a finite generating set for G, and let dG be the corresponding word metric. Since
H has finite index there exists a quasi-isometry f : G Ñ H, which we can choose to be the
identity on H (for example, every g P G can be sent to any of the closest elements of H). Let
Φ “ ϕ ˝ f : G Ñ H 1, which coincides with ϕ on H and is a self-quasi-isometry of G because ϕ
is an isomorphism between finite index subgroups (this is an easy consequence of Lemma 5.1.9).
Then by Theorem 8.0.16 there exist a constant D and an element g P G such that Φ is D-close
to the left multiplication by g. In particular dGpg, 1q “ dGpg,Φp1qq ď D, and since the word
metric is invariant under left multiplication we also have that dGpg´1, 1q “ dGp1, gq ď D. Then
Φ is also 2D-close to the conjugation by g, since for every k P G we have that

dGpgkg´1,Φpkqq ď dGpgkg´1, gkq ` dGpgk,Φpkqq “ dGpg´1, 1q ` dGpgk,Φpkqq ď 2D,

where again we used the left-invariance of the word metric to cancel gk in the first distance.
Choosing k “ hl for every l P Z we get that the infinite subgroupsH1 “ xghg´1y andH2 “ xϕphqy

lie at Hausdorff distance at most 2D (here we used that Φ|H ” ϕ). But now [Hru10, Proposition
9.4] states that, whenever G has a left-invariant proper metric (in our case, the word metric)
and H1, H2 are two subgroups, for every D there exists a constant D1 such that, if we denote by
NRpSq the R-neighborhood of a set S,

N2DpH1q XN2DpH2q Ď ND1 pH1 XH2q.

Thus ND1 pH1 X H2q is infinite because it contains H1. This in turn implies that H1 X H2 is
infinite, otherwise ND1 pH1 X H2q would be a finite union of balls of radius D1, and as pointed
out in Remark 5.1.6 balls in Cayley graphs contain finitely many elements. Therefore there exist
common powers ghmg´1 “ ϕphqn, as required.

Lemma 9.0.5. Let S be a hyperbolic space, on which a non-virtually-cyclic group G acts cobound-
edly and with loxodromic WPD elements. Let H ď G be a finite index subgroup. If EGpGq “ t1u

then EGpHq “ t1u.

Proof. For every element g P G let EGpgq be the virtual commutator of the subgroup generated
by g, that is,

EGpgq “
␣

k P G | Dm,n P Zzt0u s.t. kgmk´1 “ gn
(

.

It follows from the proof of [DGO17, Lemma 6.18] that there exists a loxodromic WPD element
g0 such that EGpg0q “ xg0y ˙ EGpGq (there the notation KpGq is adopted for EGpGq). Since
EGpGq “ t1u we have that EGpg0q “ xg0y.
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Now, in [AMS16, Lemma 5.6] it is proved that, whenever H is a non-virtually-cyclic subgroup
such that H X LWPD ‰ H, then

EGpHq “
č

hPHXLWPD

EGphq.

Since H has finite index there exists k P Ną0 such that gk0 P H, and notice that EGpgk0 q “ EGpg0q

by definition. Thus EGpHq is a finite subgroup of EGpgk0 q, which is infinite cyclic, and therefore
EGpHq “ t1u.

The following statement is well-known to experts, but we provide a proof since we could not find
a suitable reference.

Lemma 9.0.6. Let S “ Sg,b be a surface of finite type with genus g and b punctures, with
pg, bq R tp0, 2q, p0, 3q, p0, 4q, p1, 0q, p1, 1q, p1, 2q, p2, 0qu. Then MCG˘pSq has no nontrivial finite
normal subgroups. In other words EMCG˘ pMCG˘q “ t1u.

Proof. Let N �MCG˘pSq be a finite normal subgroup and let f P N . If f fixes every isotopy
class of simple closed curves then it must be the identity, for example by Ivanov’s Theorem
[Iva97, Theorem 1] and its extension to lower genera by Korkmaz [Kor99, Theorem 1]. Then
suppose by contradiction that fpγq ‰ γ for some curve γ, and let Tγ be the corresponding Dehn
twist. Since N is normal there exists g P N such that fT 2

γ “ T 2
γ g. Thus, using how Dehn twists

behave under conjugation (see Lemma 1.1.3), we have T˘2
fpγq

“ fT 2
γ f

´1 “ T 2
γ gf

´1, where the

sign depends on whether f is orientation preserving or reversing. This can be rewritten as

T´2
γ T˘2

fpγq
“ gf´1. (9.1)

Now, referring to the table at the end of [FM12, Subsection 3.5.2] we see that T 2
γ and T 2

fpγq
are

the generators of a subgroup isomorphic to either Z2 or F2, hence the left-hand side of Equation
(9.1) has infinite order. This is impossible, since the right-hand side is an element of the finite
subgroup N .

Lemma 9.0.7. For every b ě 7 and for all large multiples K, MCG˘pSbq{DTK has no finite
normal subgroups.

Proof. For short, we denote MCG˘pSbq simply by MCG˘. Recall that, as stated in Theorem
5.1.22,MCG˘ is acylindrically hyperbolic, hence by [DGO17, Lemma 6.18] there exists a pseudo-
Anosov element g P MCG˘ such that EMCG˘ pgq “ xgy ˙ EMCG˘ pMCG˘q “ xgy. Moreover,
if we fix a curve x P C, arguing as in the proof of Corollary 2.3.9 we can find Θ ą 0 such that
supsPC,nPZ dspx, g

npxqq ă Θ. Then for all large multiples K the projection map C Ñ C{DTK is
an isometry on the axis tgnpxqunPZ by Lemma 2.3.7. In particular, the element g P MCG˘{DTK
induced by g has infinite order, since gn maps x to the projection of gnpxq, which is not x. Now,
we claim that every finite normal subgroup N ď MCG˘{DTK must be trivial. First notice that
N moves x within distance M for some M ě 0, since it is finite. Then the whole axis tgnpxqunPZ
is moved within Hausdorff distance M , since

sup
nPZ, ϕPN

dC{DTK

`

gnpxq, ϕ ˝ gnpxq
˘

“ sup
nPZ, ψPN

dC{DTK

`

gnpxq, gn ˝ ψpxq
˘

,

where we used that N is normal. But then by left-invariance of the word metric we get that

sup
nPZ, ψPN

dC{DTK

`

gnpxq, gn ˝ ψpxq
˘

“ max
ψPN

dC{DTK

`

x, ψpxq
˘

ď M.
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Now, let ϕ P N and let ϕ P MCG˘ be one of its preimages. Fix n P Z to be determined later,
let l “ rx, gnpxqs be a geodesic and let s “ ϕplq, which is a geodesic between ϕpxq and ϕ ˝ gnpxq.
Notice that supsPC dspϕpxq, ϕpgnpxqqq “ supsPC dϕ´1psqpx, gnpxqq ă Θ, therefore both l and s

project isometrically to geodesics l “ rx, gnpxqs and s “ ϕplq, again by Lemma 2.3.7. We can
complete these two segments to a quadrilateral Q of vertices x, ϕpxq, ϕ ˝ gnpxq, gnpxq, by adding
two geodesic segments of length at most M . By Lemma 2.2.6 there exists a lift Q of Q, and by
Lemma 2.2.9 we can assume that the lifts l1, s1 of l, s are DTK-translates of l, s respectively. Up to
elements of DTK we can also assume that l “ l1. Moreover, let k P DTK be such that kpsq “ s1.
Setting ψ “ k ˝ ϕ, which still induces ϕ P MCG˘{DTK , we see that the vertices of Q are
x, ψpxq, ψpgnpxqq, gnpxq. But since Q lifts Q we have that dCpx, ψpxqq “ dC{DTK

px, ϕpxqq ď M ,
and similarly dCpgnx, ψpgnxqq ď M . Now, since M is independent of n we can choose n big
enough (that is, x and gnpxq far enough on the axis) that ψ must belong to EMCG˘ pgq “ xgy

because of [DGO17, Lemma 6.7] which says, roughly, that coarsely stabilizing a large segment
of an axis is equivalent to stabilizing the whole axis (as noted in [DGO17], the lemma has the
same proof as [BF02, Proposition 6], which has more restrictive hypotheses). Thus ψ “ gm for
some m P Z, and in the quotient ϕ “ ψ “ gm. Then we must have that m “ 0 since ϕ has finite
order while g has infinite order.

As a consequence of Theorem 9.0.1 we can also describe the automorphism group ofMCG{DTK :

Theorem 9.0.8. For every b ě 7 and for all large multiples K the following hold:

• AutpMCGpSbq{DTKq – MCG˘pSbq{DTK ;

• OutpMCGpSbq{DTKq – Z{2Z.

We will need this auxiliary lemma:

Lemma 9.0.9. For every b ě 7 and for all large multiples K, MCGpSbq{DTK has trivial center.

Proof. Let G “ MCG˘pSbq{DTK and H “ MCGpSbq{DTK . The center ZpHq is contained in
EGphq for every h P H, by definition of EGphq. Then

ZpHq ď
č

hPHXLWPD

EGphq “ EGpHq,

and we know that EGpHq “ t1u by Lemma 9.0.5.

Proof of Theorem 9.0.8. Again, let G “ MCG˘{DTK and H “ MCG{DTK . Theorem 9.0.1
gives a surjective map Φ : G Ñ AutpHq mapping an element g P G to the restriction of the
conjugation by g. Notice that Φ is injective when restricted to H, since this group has trivial
center by Lemma 9.0.9. Thus kerΦ X H “ t1u, which in turn means that kerΦ injects in the
quotient G{H – Z{2Z. Hence kerΦ is a finite normal subgroup of G, and it must be trivial by
Lemma 9.0.7. This proves that G – AutpHq, and since H has trivial center we also get

OutpHq “ AutpHq{InnpHq – G{H – Z{2Z,

as required.
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Gabay, Sceaux, 1991. Équations différentielles. [Differential equations], Reprint of
the third (1915) edition.

[KB02] Ilya Kapovich and Nadia Benakli. Boundaries of hyperbolic groups. In Combinatorial
and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of
Contemp. Math., pages 39–93. Amer. Math. Soc., Providence, RI, 2002.

[KL08] Richard P. Kent, IV and Christopher J. Leininger. Shadows of mapping class groups:
capturing convex cocompactness. Geom. Funct. Anal., 18(4):1270–1325, 2008.

[Kor99] Mustafa Korkmaz. Automorphisms of complexes of curves on punctured spheres
and on punctured tori. Topology Appl., 95(2):85–111, 1999.

[Lic64] W. B. R. Lickorish. A finite set of generators for the homeotopy group of a 2-
manifold. Proc. Cambridge Philos. Soc., 60:769–778, 1964.

[Luo00] Feng Luo. Automorphisms of the complex of curves. Topology, 39(2):283–298, 2000.

[Mil68] J. Milnor. A note on curvature and fundamental group. J. Differential Geometry,
2:1–7, 1968.

[Min96] Yair N. Minsky. A geometric approach to the complex of curves on a surface.
In Topology and Teichmüller spaces (Katinkulta, 1995), pages 149–158. World Sci.
Publ., River Edge, NJ, 1996.

[MM99] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I.
Hyperbolicity. Invent. Math., 138(1):103–149, 1999.

[MM00] H. A. Masur and Y. N. Minsky. Geometry of the complex of curves. II. Hierarchical
structure. Geom. Funct. Anal., 10(4):902–974, 2000.

[MS22] Giorgio Mangioni and Alessandro Sisto. Rigidity of mapping class groups mod
powers of twists, 2022.

[Nie44] Jakob Nielsen. Surface transformation classes of algebraically finite type. Danske
Vid. Selsk. Mat.-Fys. Medd., 21(2):89, 1944.

[Osi16] D. Osin. Acylindrically hyperbolic groups. Trans. Amer. Math. Soc., 368(2):851–888,
2016.

[Sch95] Richard Evan Schwartz. The quasi-isometry classification of rank one lattices. Inst.
Hautes Études Sci. Publ. Math., 82:133–168 (1996), 1995.

93



[Ser85] Caroline Series. The modular surface and continued fractions. J. London Math. Soc.
(2), 31(1):69–80, 1985.

[Tho92] Carsten Thomassen. The Jordan-Schönflies theorem and the classification of sur-
faces. Amer. Math. Monthly, 99(2):116–130, 1992.

[Thu97] William P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35
of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1997.
Edited by Silvio Levy.
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