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AN EXTENDED HAMILTONIAN QR ALGORITHM∗

MICOL FERRANTI‡ , BRUNO IANNAZZO§ , THOMAS MACH¶, AND RAF VANDEBRIL‡

Abstract. An extended QR algorithm specifically tailored for Hamiltonian matrices is pre-
sented. The algorithm generalizes the customary Hamiltonian QR algorithm with additional free-
dom in choosing between various possible extended Hamiltonian Hessenberg forms. We introduced
in [Ferranti et al., An extended Hessenberg form for Hamiltonian matrices, Calcolo] an algorithm
to transform certain Hamiltonian matrices to such forms. Whereas the convergence of the classi-
cal QR algorithm is related to classical Krylov subspaces, convergence in the extended case links
to extended Krylov subspaces, resulting in a greater flexibility, and possible enhanced convergence
behavior. Details on the implementation, covering the bidirectional chasing and the bulge exchange
based on rotations are presented. The numerical experiments reveal that the convergence depends
on the selected extended forms and illustrate the validity of the approach.
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1. Introduction. A Hamiltonian matrix Ĥ ∈ C2n×2n is a 2 × 2 block matrix
defined as follows

Ĥ =

[
Â Ĝ

F̂ −ÂH

]
, (1.1)

with Â, F̂ , Ĝ ∈ Cn×n, and F̂ = F̂H , Ĝ = ĜH . Hamiltonian matrices are related to
the numerical solution of algebraic Riccati equations [8] and can be used in several
applications, e.g., in control theory [22,26].

The Hamiltonian structure has its impact on the spectrum, which is symmetric
with respect to the imaginary axis. Classical dense eigenvalue solvers simply ignore
this structure, but algorithms designed specifically for Hamiltonian matrices exploit
this structure to gain in accuracy and speed [5, 12]. E.g., the Hamiltonian QR algo-
rithm exploits this structure; unfortunately, designing such an algorithm is far from
being trivial and so far, only the rank F̂ = 1 case has been satisfactorily solved [12].

Another fruitful approach is based on forming a URV factorization of Ĥ [7,14,27,37].

We will focus on QR type algorithms. The QR algorithm has two main steps:
there is a preprocessing step, in which the matrix is transformed to an upper Hessen-
berg matrix by unitary similarity transformations; and there is the actual processing
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step, in which the eigenvalues of the latter matrix are retrieved by an iterative process,
the QR iteration, preserving the Hessenberg form.

It has been shown recently by Vandebril and Watkins [30, 31] that it is possible
to design an effective QR algorithm, based on a condensed form different from the
Hessenberg one, e.g., for Hessenberg-like, or CMV matrices. These new QR algo-
rithms are called extended QR algorithms and they work on all matrices admitting
a QR factorization whose unitary factor Q can be written as a product of n − 1
Givens rotations. A more detailed introduction to extended QR algorithms is given
in Section 1.4.

The QR algorithm [17, 18, 39] computes the spectrum of a Hamiltonian matrix
Ĥ in a backward stable manner. This means that the computed eigenvalues will be
the exact eigenvalues of a nearby (not necessarily Hamiltonian) matrix H̃, but the
symmetry with respect to the imaginary axis may be lost. Byers’s Hamiltonian QR
algorithm [12] is a structured variant of the QR algorithm preserving the Hamilto-
nian structure at each step of the algorithm and thus the symmetry of the spectrum.
This results in a structured backward stable algorithm [29]: the computed eigenval-
ues will be the exact eigenvalues of a nearby Hamiltonian matrix. The benefits of
an algorithm preserving the Hamiltonian structure and the effect on the condition
numbers of eigenvalues and invariant spaces are discussed in [5, Sect. 3.2]. Moreover,
the Hamiltonian QR algorithm roughly halves the required storage and the number
of required floating point operations [12].

Our contribution is a generalization of the Hamiltonian QR algorithm to an ex-
tended Hamiltonian QR algorithm for Hamiltonian matrices having rank F̂ = 1. The
first step of the algorithm: the reduction to a suitable condensed form, the extended
Hamiltonian Hessenberg form, has been described in [15, 16]. The second step, that
is the QR iteration preserving the condensed form, is described in this paper.

The paper is organized as follows. In the remainder of this section we will briefly
review the (K)-Hamiltonian structure, unitary core transformations, and the extended
QR algorithm. In Section 2 we will present the extended (K)-Hamiltonian QR it-
eration, followed by a section on implementation details. In Section 3 we present
numerical experiments to investigate the accuracy and effect of the various extended
forms on the convergence speed. The paper concludes with Section 4.

In the rest of the paper we denote the identity matrix of size n by In and the flip
matrix of size n by

Φn =

 1

. .
.

1

 .
We will write I and Φ, when the size is clear from the context, and we will denote
by ej the j-th column of the identity matrix. We recall that a matrix is said to be
per-Hermitian if ΦA is Hermitian [11].

The matrix MH is the Hermitian conjugate of M , while with M(i : j, k : `),
with i < j and k < `, we address the submatrix with row indices {i, i+ 1, . . . , j} and
column indices {k, k + 1, . . . , `} following Matlab notation.

1.1. K-Hamiltonian structure. To ease the description of the algorithm we
will use K-Hamiltonian matrices, instead of Hamiltonian ones. A matrix H ∈ C2n×2n
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is said to be K-Hamiltonian if Ĥ = KHK is a Hamiltonian matrix, with

K =

[
In 0
0 Φn

]
. (1.2)

The K-Hamiltonian structure is a permutation of the Hamiltonian structure, which
allows us to simplify the algorithm and link it back in an easy manner to the classical
QR and extended QR algorithms [31, 38]. The definition of K-Hamiltonian matrices
leads to the following proposition.

Proposition 1.1. Let H ∈ C2n×2n be a K-Hamiltonian matrix. Then H admits
the following block structure

H =

[
A G
F −ΦAHΦ

]
,

with GΦ and ΦF Hermitian and A,F,G ∈ Cn×n.
Proof. From the definition we have that Ĥ = KHK is a Hamiltonian matrix,

and thus

Ĥ = KHK =

[
I 0
0 Φ

] [
A G
F −ΦAHΦ

] [
I 0
0 Φ

]
=

[
A GΦ
ΦF −AH

]
.

It follows that F and G are per-Hermitian, i.e., GΦ = (GΦ)H = ΦGH .
A K-Hamiltonian matrix H with A of upper Hessenberg form and F = αe1e

T
n is

named a K-Hamiltonian upper Hessenberg matrix, which pictorially looks like

H =

[
A G
F −ΦAHΦ

]
= .

A practical advantage of the K-Hamiltonian structure, over the Hamiltonian one, is
that every K-Hamiltonian upper Hessenberg matrix is also of upper Hessenberg form.

Following the definition of the K-Hamiltonian matrix above, we call the matrix
S ∈ C2n×2n K-symplectic if KSK is symplectic, where Ŝ ∈ C2n×2n is symplectic if
ŜH

[
0 I

−I 0

]
Ŝ =

[
0 I

−I 0

]
. K-symplectic matrices are useful in the design of structure

preserving algorithms as we see in the next results.
Lemma 1.2 (see [28]). Let H,S ∈ C2n×2n be a K-Hamiltonian and a K-

symplectic matrix respectively, then SHS−1 is K-Hamiltonian.
Every K-Hamiltonian matrix with rankF = 1 can be transformed into a K-Ha-

miltonian upper Hessenberg matrix by unitary K-symplectic similarity transforma-
tions [1]. We can give a simple characterization of unitary K-symplectic matrices
which will be useful in the following.

Theorem 1.3. A unitary matrix S ∈ C2n×2n is K-symplectic if and only if it
can be written as

S =

[
U1 U2Φ

−ΦU2 ΦU1Φ

]
for matrices U1, U2 ∈ Cn×n. In particular, if S has a block diagonal structure

S =

In−1

Q
In−1

 ,
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with Q ∈ C2×2, then

Q = eiψ
[
cos θ − sin θ
sin θ cos θ

]
,

for some ψ, θ ∈ [0, 2π).
Proof. It is well-known that a unitary symplectic matrix T has the form T =[

U1 U2

−U2 U1

]
for U1, U2 ∈ Cn×n; see, for instance, [8, Thm. 1.16]. Observing that KSK

is unitary and symplectic we get the result.
As a consequence of Theorem 1.3, real rotations involving rows n and n+1 are K-

symplectic. A special case of K-symplectic matrices are block diagonal K-symplectic
matrices, which have the form

S =

[
S11 0
0 S22

]
, with SH22 = ΦS−1

11 Φ.

If, additionally, S is unitary, then S22 = ΦS11Φ and both, S11 and S22, are unitary.

1.2. Unitary core transformation. In this section and in the following we
define unitary core transformations and their K-symplectic generalizations. Then, we
will briefly review the most important operations with these transformations.

We call any matrix Qi ∈ Cn×n, for i ∈ {1, . . . , n−1}, coinciding with the identity
matrix except for the 2 × 2 submatrix Qi(i : i + 1, i : i + 1) a core transformation.
The index i describes the position of the active part Qi(i : i+ 1, i : i+ 1). A unitary
core transformation is said to be nontrivial if it is not diagonal.

A special subset of unitary core transformations are the rotations acting on two
consecutive coordinates, with active part

[
c −s
s c

]
, where |c|2 + |s|2 = 1. We will use

frequently �� to depict a core transformation, where the tiny arrows pinpoint the
position of the active part, as illustrated in the next example. In the remainder of
the text we assume all core transformations to be rotations.

Example 1.4. The QR decomposition of an upper Hessenberg matrix A ∈ Cn×n
can be written as

A = QR = Q1Q2 · · ·Qn−1R,

where the matrices Qi are rotations. Pictorially, by using the bracket notation, the
QR decomposition is depicted as (n = 9)

A = QR = Q1Q2 · · ·Qn−1R =

��
��
��
��
��
��
��
��

×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

The unitary factor Q of the QR factorization of an Hessenberg matrix, as shown
in Example 1.4, can be written as a product of rotations, each of which acts on two
consecutive rows. The order in which rotations appear is (1, . . . , n− 1).

Definition 1.5. An extended Hessenberg matrix is a matrix that admits a
QR factorization QR where the unitary factor Q can be factored into n − 1 core
transformations Q = Qσ(1) · · ·Qσ(n−1) for a specific permutation σ.
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If all the matrices Q1, . . . , Qn−1 are nontrivial, then the extended Hessenberg
matrix is said to be irreducible. The permutation associated with an extended Hes-
senberg matrix is not always unique as QiQj = QjQi as soon as |i − j| > 1, for
instance, observe that Q1Q3Q2 = Q3Q1Q2. In order to get uniqueness results, the
mutual position of the rotations in the Q factor of an extended Hessenberg matrix is
described by a pattern, given by a position vector p ∈ {`, r}n−2 defined as follows:

pi =

{
`, if Qi is on the left of Qi+1,

r, if Qi is on the right of Qi+1.

The pattern associated with the Q factor of an irreducible extended Hessenberg ma-
trix is uniquely defined [15, Cor. 4]; in case of an irreducible matrix the eigenvalue
problem splits into smaller subproblems. So, without loss of generality, we can assume
irreducibility before running QR steps.

Two factorizations in rotations share the same pattern if they can be ordered so
that the graphical representation by brackets exhibits the same pattern. Note that
this definition does not imply equality of the rotations but only their position in the
factorization of Q.

The rotations in the QR factorization of an upper Hessenberg matrix are or-
dered according to p = (`, . . . , `). An inverse Hessenberg matrix corresponds to
p = (r, . . . , r), the position vector of a unitary CMV matrix1 equals p = (`, r, `, r, . . . ).
The following pictorial representations show these matrices and an arbitrary unstruc-
tured position vector.

��
��
��
��
��

××××××
×××××
××××
×××
××
×

Hessenberg matrix

��
��

��
��

��

××××××
×××××
××××
×××
××
×

inverse Hessenberg matrix

��

��

��

��

��

unitary CMV matrix

��
��

��
��
��

××××××
×××××
××××
×××
××
×

p = (`, r, r, `)

As rotations acting on disjoint rows commute, there is no ambiguity in putting rota-
tions on top or below each other as in the CMV or arbitrary case presented above.

As proved in [30], extended Hessenberg matrices can be used as a condensed form
for a QR type algorithm: the so-called extended QR algorithm, requiring also O(n2)
storage and O(n3) flops [30]. The name extended refers to the convergence behavior of
the extended QR algorithm which is governed by extended Krylov subspaces [23,31].

1.3. Unitary K-symplectic core transformations. K-symplectic matrices
preserve the K-Hamiltonian structure; as we focus on QR type algorithms we need

1CMV matrices are already around for a long time, e.g., [20, 33], but they acquired their name
recently from the initials Cantero, Moral, and Velazquez [13].
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unitary K-symplectic matrices. We consider K-symplectic core transformations of
two types: QSi = QiQ2n−i for i < n, with active parts fulfilling Qi(i : i + 1, i :
i + 1) = ΦQ2n−i(2n − i : 2n − i + 1, 2n − i : 2n − i + 1)Φ; and QSn = Qn, where
the active part Qn(n : n + 1, n : n + 1) = eiψ

[
c −s
s c

]
, with ψ, c, s ∈ R. In particular

Qn(n : n+ 1, n : n+ 1) could be a real rotation.
Since K-symplectic rotations have a simple structure we have decided to restrict

the rest of the paper to rotations only. In order to design the extended QR algorithm,
we need some ways to manipulate rotations: we use the fusion (to fuse), the turnover
(to turn over), and the transfer through an upper triangular (to transfer through)
operations.

The product of two rotations acting on the same rows of a matrix is a new rotation,
This operation is called fusion and is depicted as � �� �

= �� . As a result, also the
product of two (K-)symplectic rotations acting on the same rows is a (K-)symplectic
rotation and a fusion can be applied.

If Uk+1 and Wk+1 are two rotations acting on rows k + 1 and k + 2 of a matrix,
and Vk is a rotation acting on rows k and k + 1, then three rotations Ũk, Ṽk+1, and
W̃k exist, such that Ũk and W̃k act on rows k and k+1, Ṽk+1 acts on rows k+1 and
k + 2, and Uk+1VkWk+1 = ŨkṼk+1W̃k. The result is graphically depicted as

�
�

�
�� � =

� ��
�

�
� .

We call this operation a turnover. Indeed, switching from the one factorization to
the other we turn over the shape of the rotations. Again, we can generalize this to
(K-)symplectic rotations with i 6= n, where two turnovers, one in the lower and one
in the upper half are executed simultaneously.

If we apply a rotation from the left to a nonsingular upper triangular matrix,
then an unwanted non-zero entry in the lower triangular part is created. This non-
zero entry can be removed by pulling out a rotation from the right. Graphically this
process can be depicted as

��


× × × ×

× × ×
× ×

×

 =


× × × ×

× × ×
× × ×

×

 =


× × × ×

× × ×
× ×

×

 �� ,

where the second and third row and column are altered in the process. This operation
will be used in both directions; from left to right and from right to left and is the
transfer through an upper triangular operation. This operation extends naturally to
(K-)symplectic rotations.

1.4. Extended QR algorithms. In this subsection the extended QR algorithm
is presented (for more info see [30,31]). For simplicity we restrict ourselves to explain
the complex single shift case.

1.4.1. Chasing misfits instead of bulges. The extended QR algorithm uses,
as a condensed form, extended Hessenberg matrices, written as a product of rotations
and an upper triangular matrix as described in Section 1.2.

Before describing the general case, we consider the case in which the condensed
matrix is of Hessenberg form. In this case, one step of the extended QR algorithm is
identical to one step of the customary QR algorithm. However, in the latter case we
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operate on the Hessenberg matrix, whereas in the first case on its QR factorization.
Operating on the Hessenberg matrix leads to the usual “chase the bulge” procedure,
acting on the factored form is a “chase the misfit” procedure. In the upcoming figures,
the bulge chase is depicted on the right, the misfit-chasing is shown on the left.

The iteration starts by picking a shift µ (typically an eigenvalue of the trailing
2× 2 submatrix [40]), and by computing a rotation B1 that fulfills

BH1

Q1


r11
0
...
0

−


µ
0
...
0


 = BH1


a11 − µ
a21
0
...
0

 =


×
0
0
...
0

 .

Next, the similarity transformation BH1 QRB1 = BH1 AB1 is executed. Pictorially, for
n = 4 we have

�� ��
��

��


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×


��

=

��

× × × ×
× × × ×
0 × × ×
0 0 × ×


��

.

In the classical Hessenberg case the matrix multiplication is performed explicitly and
a bulge, shown in the right-hand side of (1.3) is created. On the left-hand side, we
retain a factored form. The rotationBH1 is therefore fused withQ1, and we transfer the
rotation B1 on the right through the upper triangular matrix. We notice a remaining
redundant rotation, that is the misfit, and it will be chased off the matrix.

Pictorially, we end up with

� ��
�

�
�

��


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 =


× × × ×
× × × ×
× × × ×
0 0 × ×

 . (1.3)

Next we will try to chase the bulge on the right-hand side and the misfit on the
left-hand side. To do so, we first perform a turnover on the left and on the right we
annihilate the bulge by pulling out a rotation.

�
�

�
�� �

��


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 = ��


× × × ×
× × × ×
0 × × ×
0 0 × ×

 .
The leftmost rotations on both sides are essentially identical and can be brought
simultaneously to the other side by a single similarity transformation. New rotations
emerge on the right of both matrices. Next, we transfer the rotation through the
upper triangular matrix (left-hand side) or apply it to the upper Hessenberg matrix
(right-hand side). Pictorially, we have

��
� ��

�
�

�


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 =


× × × ×
× × × ×
0 × × ×
0 × × ×

 .
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Clearly the bulge and the misfit have moved down. We continue now this procedure
until the bulge and misfit slide off the bottom of the matrix.

An identical procedure as before, a turnover on the left and pulling out a rotation
on the right, leads to

��
�

�
�

�� �


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 =
��


× × × ×
× × × ×
0 × × ×
0 0 × ×

 .
A last chase, a similarity transformation, a transfer through upper triangular, and
a fusion, restore the upper Hessenberg form on the left. Also on the right after the
similarity and multiplying out the factors we get a new Hessenberg matrix. This
completes one step of the (extended) QR algorithm with implicit shift.

Overall, every step of the QR-like algorithm proceeds as follows: create a per-
turbation (bulge or misfit), chase the perturbation to the bottom of the matrix, and
finally push it off the matrix. Iterating this process will make the matrix closer and
closer to a reducible form allowing to subdivide (deflate) the problem in smaller sub-
problems. Deflations are signaled by tiny subdiagonal elements in the Hessenberg
case and rotations close to the identity in the factored form. From now on we focus
only on the factored form.

1.4.2. Extended QR iteration. The extended QR algorithm works essentially
in the same way as the misfit chasing presented in Section 1.4.1 but with an arbitrary
extended Hessenberg matrix as condensed form. We execute an initial similarity
transformation creating an auxiliary rotation called the misfit, we chase the misfit,
and finally get rid of it by a fusion. More in detail we get the following.

First we generate the misfit. Compute

x = (A− µI)e1 = Q1

[
r11
0

]
−
[
µ
0

]
, if p1 = `, or

x = (I − µA−1)e1 = e1 − µR−1QH1 e1 if p1 = r. (1.4)

Notice that in both cases only Q1 and few entries of R are required. Once x has been
obtained we compute the rotation BH1 with BH1 x = ‖x‖e1. After applying the simi-
larity transformation determined by B1 and transferred the matrix B1 appearing on
the left through the upper triangular matrix, we arrive at the following factorization:
BH1 Qσ(1) . . . Qσ(n−1)B̃1R̃. One between BH1 and B̃1 can be fused and the other one
becomes the misfit. More precisely, if p1 = `, then BH1 will be fused with Q1 and the

misfit will be B̃1, while if p1 = r, then Q1 will be fused with B̃1 and the misfit will
be B1.

So far, we have only seen how to chase misfits on descending sequences of rota-
tions (associated with Hessenberg matrices). Suppose for now that we have executed
already one chasing step and we have arrived in a situation where the misfit operates
on rows two and three and is positioned to the left of the factored matrix. A step of
the flow to push the misfit further down is depicted as

��
��

��
��

��

××××××
×××××
××××
×××
××
×

��
�� ����

,

1
2

3
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where the arrows describe the path the misfit follows.

In the beginning we have the factorization A = B2Q5Q4Q3Q2Q1R, where B2 is
the misfit, Qi are rotations and R is upper triangular. The matrix B2 acts on rows 2
and 3 and thus commutes with Q5 and Q4 and we can write A = Q5Q4B2Q3Q2Q1R.
The arrow labeled with 1 corresponds to a turnover, where the product B2Q3Q2 is
transformed into the product of three new rotations Q̃3Q̃2B̃3 and we get the new
factorization A = Q5Q4Q̃3Q̃2Q1B̃3R; where we have used the fact that B̃3 and Q1

commute. The arrow labeled with 2 depicts a transfer through operation B̃3 which
leads to the new factorization A = Q5Q4Q̃3Q̃2Q1R̃B̂3. Finally, the arrow labeled
with 3 corresponds to a similarity with B̂3, which leads to the new factorization
A = B̂3Q5Q4Q̃3Q̃2Q1R̃, and the misfit has been shifted down one row.

We know now how to chase rotations in case of a complete descending or a com-
plete ascending sequence. It remains to describe what happens at a bend, i.e., a
transition from ` to r or from r to ` in the position vector. We will see that in this
case the misfit will get stuck and cannot be chased any further to the bottom; on the
other hand, however, there is another rotation acting on the same rows which can be
chased and therefore will take over the role as misfit.

A bend from descending (`) to ascending (r) and the associated chasing step can
be depicted as

��
��Q2

��
��

��

××××××
×××××
××××
×××
××
×

��B2
⇒

��
��
��

��
��

××××××
×××××
××××
×××
××
×

��
�� ���� ⇒

��
��Q̃2��

��
��

××××××
×××××
××××
×××
××
×

��̃B3 .

1
2

3

The role of the misfit B2 is overtaken by Q2. The arrow labeled with 1 corresponds to
a turnover, the one labeled with 2 to a transfer through operation and the one labeled
with 4 to a similarity. After these operations we see indeed that the misfit has moved
down a row. Moreover, we can also see, when comparing the pattern before and after
the chasing step, that the bend has moved up one position; originally it was acting
on rows 3 and 4, now on rows 2 and 3.

A bend in the other direction can be done analogously. Pictorially, we get:

��
��

��
��
��

××××××
×××××
××××
×××
××
×

��
⇒

��
��

��
��
��

××××××
×××××
××××
×××
××

×
��

�� ���� ⇒

��
��
��
��
��

××××××
×××××
××××
×××
××
×

��
.

1

3

2

Where again we have a turnover (arrow 1), a similarity (arrow 2), followed by a
transfer through operation (arrow 3). Also here, clearly the bend has moved up. In
fact after all chasing steps the entire pattern will have moved up a row; so the first
rotation of the sequence drops off, and at the very end we will have to add a new one
as we shall see.

After having completed all chasing steps the misfit has reached the bottom two
rows and we have arrived pictorially at:
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��
��
��
��
��

××××××
×××××
××××
×××
××
×��

.

Now we can make a choice and remove either of the two rotations acting on the last
two rows. A similarity, pass through, and fusion are sufficient to remove the left one;
a pass through, similarity, and fusion allow us to remove the right one. So we can
choose which rotation to retain and which to dispose off. This flexibility, as a result
of the upward movement of the pattern, allows us in fact to change the pattern’s
tail each QR step. We will see that in the extended Hamiltonian QR algorithm this
flexibility is much more limited.

The important difference between the QR algorithm and the extended QR al-
gorithm is the convergence behavior: the classical QR algorithm links to Krylov
subspaces [39], the extended QR algorithm links to extended Krylov subspaces [31].
As a result, the convergence speed differs and a cleverly chosen combination of shifts
and position vectors can accelerate convergence [30]. We will illustrate this in the
numerical experiments.

2. Extended K-Hamiltonian QR iteration. A (K-)Hamiltonian QR algo-
rithm is described in [12]. The main trick is to execute QR steps with shifts µ simul-
taneously with RQ steps having shifts −µ. Implicitly, this means that one chases a
bulge from top to bottom (QR step) and simultaneously a bulge from the bottom to
the top (RQ step). In the middle the bulges meet and swap place (bulge exchange)
so that they can continue their upward and downward chase. This bidirectional chase
has been described for multiple shifts and general matrices in [32,35]. In our case we
will restrict ourselves to the complex single shift case with shifts µ and −µ and for
simplicity we operate on K-Hamiltonian matrices.

In the extended K-Hamiltonian QR algorithm we have to take into account,
that in order to preserve the structure, we will only execute unitary K-symplectic
transformations and moreover we chase misfits instead of bulges. The algorithm
proceeds as follows. First we initialize the procedure by generating two misfits. The
chasing is almost identical to the procedure described in Section 1.4.2, except that now
we chase one misfit down and another one up at the same time, by executing unitary
symplectic transformations. The chasing procedure stops as soon as the misfits reach
the middle and interfere with each other. To continue, we exchange them and after
that we chase them towards the top and bottom of the matrix. This completes one
step of the implicit extended K-Hamiltonian QR algorithm.

We point out that the structure of the extended Hessenberg matrices which are
moreover K-Hamiltonian allows one to factor them in a symmetric form.2

Definition 2.1 (see [15]). An extended K-Hamiltonian Hessenberg matrix

H =

[
A G
F −ΦAHΦ

]
2In [15] also another type of factorization, the ascending type, is presented, where essentially the

two outer matrices of (2.1) are swapped. The algorithm described in this article works also for these
matrices without significant changes. In order to keep things simple we have opted to describe the
algorithm for one factorization only.
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can be written as (descending type)

H =

[
Q 0
0 I

][
R̃ G̃

F̃ −ΦR̃HΦ

] [
I 0
0 ΦQHΦ

]
, (2.1)

with [
Q 0
0 I

]
= Qσ(1)Qσ(2) · · ·Qσ(n−1) and F̃ = fe1e

T
n .

An extended K-Hamiltonian Hessenberg matrix is thus completely defined by the
sequence Q1, . . . , Qn−1, σ, f , the upper triangular matrix R, and the upper left tri-
angular part of G̃, since G̃ is per-Hermitian.

In Section 2.1 we show how to initialize the chasing; Section 2.2 describes the
chase of the misfits until they meet each other; Section 2.3 presents a way to swap
the misfits; and finally, in Section 2.4 we describe how to continue the chasing until
the misfits slide off the matrix.

2.1. Misfit generation. First of all, we have to pick a shift. For the misfit
chased from the top to the bottom, the Wilkinson shift is defined by the eigenvalue
of the block H(2n − 1 : 2n, 2n − 1 : 2n) closest to H(2n : 2n). To retain the K-
Hamiltonian structure we have to take −µ as shift for the upward chase.

The rotation B1 to initialize the procedure is the same as the one described in
Section 1.4.1. The rotation for the upward chase is ΦBH1 Φ, which is thus implicitly
known. We apply the K-symplectic similarity transformation defined by B1 to H,
factored as in (2.1), and we get[

BH1 0
0 ΦBH1 Φ

] [
Q 0
0 I

] [
R G
F −ΦRHΦ

] [
I 0
0 ΦQHΦ

] [
B1 0
0 ΦB1Φ

]
. (2.2)

First, we need a fusion to remove already two rotations. Assume here that p1 = `,
thus, we can fuse the top-left BH1 with Q1, and as a consequence the bottom-right
ΦB1Φ with ΦQH1 Φ. Second, we will pass the top right B1 through R to move it close
enough to the sequence of rotations so that the chasing can start; of course a similar
action takes place in the lower half where ΦBH1 Φ is passed through −ΦRHΦ. We
arrive at the following situation[

Q̃ 0
0 I

] [
B̃1 0
0 I

] [
R̃ G̃

F −ΦR̃HΦ

] [
I 0

0 ΦB̃1Φ

] [
I 0

0 ΦQ̃HΦ

]
, (2.3)

with [
Q̃ 0
0 I

]
= Q̃σ(1) · · ·Qσ(n−1) (2.4)[

I 0

0 ΦQ̃HΦ

]
= ΦQHσ(n−1)Φ · · ·ΦQ̃Hσ(1)Φ. (2.5)

The matrices with a tilde have been changed during the procedure.
When p1 = r, the matrix BH1 cannot be fused with Q1, but we can fuse Q1 with

B̃1 (for n > 2).
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2.2. Misfit chasing (before the exchange). The two misfits that have been
generated are chased in opposite directions. The misfit on the top has to be brought to
the complete bottom of the matrix; whereas the misfit at the bottom has to move all
the way up to the top. Unfortunately, we cannot do this at once as in Section 1.4.2.
When the two misfits meet each other during their downward and upward move,
they block each others way. Therefore we chase the misfit on the left of the upper
triangular matrix down until half of the matrix, i.e., until it acts on rows n−1 and n.
The other misfit is chased upwards until it reaches rows n+ 1 and n+ 2. After that
the two misfits interfere with each other and they need to be exchanged. Of course,
because of the execution of unitary K-symplectic transformations, preserving the K-
Hamiltonian structure, the upward and downward chase are executed simultaneously.
In the practical implementation we will operate on R only and updateG appropriately.

2.3. Misfit exchange. We have chased the two misfits simultaneously to the
middle of the matrix. Since the misfits are blocking each other, further chasing is not
possible and, in order to continue the procedure, the misfits must be exchanged.

In [35] Watkins shows that in the implicit QR step, the bulge contains the shift
information (as an eigenvalue of a suitable pencil constructed from the bulge) and
explains how to exchange two bulges which meet after a chase from opposite directions.
The exchange is made preserving the shift information and allowing their further chase
until the QR step is concluded.

A similar argument could be used to show that misfits carry the shift information
in the implicit step of the extended QR algorithm. Each misfit contains its shift
information, that means, the misfit coming from the top should contain µ and the
one coming from the bottom −µ. The misfit exchange will swap the shift information
contained in the two misfits so that chasing can be continued.

Directly after the chasing and before the misfit exchange we are in the following
situation

××××××
×××××
××××
×××
××
×

×

��
�� ��

�� ��
��

.

We remark that this is a generic situation, independent of the value of the last entry
of the position vector. Of course this value stipulates that the misfit arrives from the
left or from the right to the sequence Qσ(1) · · ·Qσ(n), but regardless of whether the
misfit is positioned left or right, the situation looks like this. Moreover, the bulge
exchange does not need to know which one was the misfit.

After a K-symplectic similarity transformation that brings the outermost two ro-
tations to the other side (note that none of the rotations is blocked by other rotations),
we end up with

××××××
×××××
××××
×××
××
×

×

��
����

����
��

.

There are only four rotations acting in the bulge exchange, let us therefore focus on
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the essential block, the 4× 4 one in the middle:

××××
×××
××
×

×
����

����
=


x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

 = X. (2.6)

The symmetry imposed by the K-Hamiltonian structure implies that the top-left
rotation CHn−1 is related to the bottom-right rotation ΦCn−1Φ; a similar connection
holds for the top-right and bottom-left rotation.

To perform the the misfit exchange we form the dense matrix X, so that we are
exactly in the same situation as the one arising in the bulge exchange described in [35]
and we can apply the argument there.

When the two bulges correspond to one shift each, the shift exchange consists of
executing a single unitary K-symplectic similarity transformation acting on rows and
columns n and n + 1, such that we end up with a factorization similar to (2.6) with
the important difference that the shift information is exchanged.

Because of its K-Hamiltonian structure x43 = −x21 and x33 = −x22. Note also
that the submatrix X(3 : 4, 1 : 2) must be of rank 1. Thus, the K-symplectic unitary
transformation acting on rows n and n+1, we are looking for, must preserve the rank
of that submatrix. We will show that such a similarity transformation is essentially
unique, when nontrivial, and thus it performs the misfit exchange.

A K-symplectic similarity transformation operating on the middle rows of X, is
a real rotation and hence form

Y = SHn XSn =


1

c s
−s c

1



x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44



1

c −s
s c

1



=


x11 cx12 + sx13 · · ·

cx21 + sx31 c2x22 + csx32 + csx23 + s2x33 · · ·
cx31 − sx21 c2x32 − csx22 + csx33 − s2x23 · · ·

x41 cx42 + sx43 · · ·

 ,
with c, s ∈ R. As we desire Y to be of the same form as (2.6), we impose that the
submatrix [

cx31 − sx21 c2x32 − scx22 + csx33 − s2x23
x41 cx42 + sx43

]
(2.7)

has to be of rank 1.
It is easy to show that there are only two possible solutions to this problem, of

which one is trivial and hence does not exchange the shift information, while the other
one does. We have the trivial solution with s = 0 and |c| = 1, but of course nothing
happens and the shifts would not be exchanged. To find the other solution we use
the rank 1 structure of (2.7). We have that (2.7) is of rank 1 if and only if

(cx31 − sx21)(cx42 + sx43) = x41(c
2x32 − scx22 + csx33 − s2x23).

The matrix [ x31 x32
x41 x42

] is of rank 1, hence x41x32 = x31x42. Since s 6= 0, the equation
above can be rewritten as

c(−x21x42 + x31x43 + x22x41 − x33x41) + s(−x21x43 + x23x41) = 0.
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With x43 = −x21, x33 = −x22, and x31 = x42 we obtain

Sn

[
−x41x23 − x21x21

−x21x31 − x21x31 + (x22 + x22)x41

]
=

[
×
0

]
, (2.8)

which defines Sn. Since x41, x23 ∈ R, the rotation Sn is real and thus is aK-symplectic
rotation. As the rotation Sn clearly differs from the trivial solution, we know that
the shift information must have been exchanged. In the numerical experiments (Sec-
tion 3.2) we will compute the shift information in a bulge and examine how accurately
the shift information is exchanged.

To summarize: for the misfit exchange one first has to form X; then one has to
compute Sn by (2.8) followed by the similarity transformationM → SHn MS2. Finally,
the matrix resulting from the similarity must be factored again like in (2.6) providing
the new misfits and updated rotation Qσ(n−1).

2.4. Misfit chasing (after the exchange) and final step. The misfit that
originally started at the top, carrying the information of the shift µ is now acting on
rows n+1 and n+2. It is not blocked anymore by the other misfit, and we continue the
classical chasing procedure until it reaches the bottom of the matrix and can get fused
into the sequence of rotations of the factorization of the K-Hamiltonian Hessenberg
matrix. Of course, because of the execution of unitary K-symplectic similarities, the
other misfit carrying the information of the shift −µ moves upward until it disappears
as well.

There is one more interesting remark related to the final pattern, after the entire
chasing, that needs to be made. In the first part of the chasing, before the exchange,
we see that the misfit starting at top, has pushed the entire pattern at the upper half
up one position. The misfit that started at the bottom pushed the lower half of the
pattern down one position. As a consequence the top rotation of the pattern, and
the bottom rotation are gone. Continuing the chase after the exchange, the misfit
carrying the information of µ proceeds its way to the bottom and pushes the pattern
back up a position. On the other side, the opposite happens, the misfit linked to −µ
pushes the pattern back down. Finally at the very end of the chasing step, we have
some flexibility in executing the fusion on the left or on the right of the pattern of
rotations. As a result we see that the pattern of the rotations in the factorization of
the K-Hamiltonian Hessenberg is forced to be identical to the original pattern, except
only for the last (and first) rotation, which we could have put either to the left or to
the right of the preceding (following) rotations.

2.5. Deflation. An extended K-Hamiltonian Hessenberg matrix is factorized
as a product of rotations and a quasi-upper triangular K-Hamiltonian matrix (2.1)
where R is upper triangular and F = fe1e

T
n . In extended QR algorithms deflations

are signaled by almost diagonal rotations [25]. Additionally, there is the rare but
very valuable deflation when ‖F ‖ = |f | becomes small. For this entry, we perform
a test of the form ‖F ‖ < ε(|hn,n| + |hn+1,n+1|) following [21, Section 1.3.4]. In the
K-Hamiltonian we use ε(|hn,n| + |hn+1,n+1|) = 2ε |hn,n| to simplify this criterion to
‖F ‖ < 2ε |hn,n|.

When |f | becomes tiny enough we can split the eigenvalue problem in two parts,
since we can decouple the K-Hamiltonian matrix into its upper and lower half. The
deflation is valuable since it only remains to compute the eigenvalues of the upper
part. We get the eigenvalues of the lower part for free because an eigenvalue λ of
the top part implies that −λ̄ is an eigenvalue of the lower part. To compute the
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eigenvalues of the upper part we do not need to use the K-Hamiltonian QR algorithm
anymore, we can just run the extended QR algorithm.

With each regular deflation the matrix splits into three submatrices whose eigen-
values we can compute separately. A deflation in the top part also implies a deflation
in the bottom part, hence we have a submatrix before the deflation, a submatrix
between the two deflations, and a trailing submatrix following the last deflation. The
eigenvalues of the top part can be computed again via the extended QR algorithm.
The middle matrix is still of K-Hamiltonian form and we run the K-Hamiltonian QR
algorithm. We do not compute the eigenvalues −λ̄ of the trailing submatrix, as they
are for free once the eigenvalues λ of the top block are available.

3. Numerical experiments. We have tested our Matlab implementation of
the extended Hamiltonian QR algorithm on a compute server with two Intel Xeon
E5-2697v3 CPUs running at 2.60 GHz with Matlab version 9.1.0.441655 (R2016b).
We tested the accuracy of the bulge exchange in Section 3.2; the number of iterations
per eigenvalue and the accuracy of the extended QR algorithm in Section 3.3; and the
performance for different position vectors in Section 3.4. We have further tested the
code with two examples from the CAREX package [6] in Section 3.5. Before discussing
the numerical experiments, we will describe some details of the implementation.

3.1. Implementation details. We have implemented the single shift extended
Hamiltonian QR algorithm in Matlab. Many subroutines, e.g., fusion and turnover,
of the Matlab implementation are based on those of eiscor [2]. Our implementation
is available from https://people.cs.kuleuven.be/raf.vandebril/.

We store the factored extended K-Hamiltonian Hessenberg matrix

H =

[
Q 0
0 I

] [
R G
F −ΦRHΦ

] [
I 0
0 ΦQHΦ

]
,

with Q = Qσ(1)Qσ(2) · · ·Qσ(n−1), and σ according to the position vector p. We keep
only f1n, G,R, p, and the rotations in Q. For R and G we store the full square matrix.
The storage could be optimized for G and R by exploiting the per-Hermitian and the
upper triangular structure, respectively.

For the implementation we use rotations
[
c −s
s c

]
with real sine, s ∈ R, and

|c|2 + s2 = 1, thus, for each rotation we store only three real values. Furthermore,
rotations with real sines are advantageous, since a turnover of three rotations with
real sines results again in three rotations with real sines. The result of a fusion of
two rotations with real sines, however, is a rotation with a possible complex sine.
By multiplying the rotation by a diagonal matrix the rotation can be transformed
back into a rotation with real sine. The diagonal matrix can be passed through other
rotations and merged into the upper triangular matrix R.

Additionally, one may choose to do two preparation steps. Eigenvalues should
be deflated if the structure allows it, so that the resulting extended K-Hamiltonian
Hessenberg matrix is irreducible. Further, the accuracy of the computations typically
benefits from balancing the matrix (see also [36]). These steps have been investigated
in [3] for dense matrices and in [4] for sparse matrices.

3.2. Misfit exchange. In extended QR algorithms the shift information is en-
coded in the misfit. In floating point arithmetic this shift information is perturbed
during the misfit chasing: the shifts get blurred. In some cases, e.g., in multishift im-
plementations, the effect of shift blurring is so extreme that no useful shift information
reaches the bottom of the matrix and the convergence stalls (see [34]).
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f = 1 f = 1 e−10

after misfit generation 5.6871 e−15 5.6871 e−15
after one chase 8.8818 e−15 8.8818 e−15
before misfit exchange 2.7748 e−14 2.7748 e−14
after misfit exchange 2.8087 e−14 3.2330 e−14
after next chase 2.3915 e−14 2.9843 e−14
before fusion 3.9919 e−14 2.6407 e−14

f = 1 e−15 r100,100 = 1 e−10

after misfit generation 5.6871 e−15 5.6871 e−15
after one chase 8.8818 e−15 8.8818 e−15
before misfit exchange 2.7748 e−14 2.7748 e−14
after misfit exchange 2.8917 e−14 2.8436 e−14
after next chase 3.2036 e−14 2.0716 e−14
before fusion 7.6698 e−14 5.7320 e−14

Table 3.1
Perturbation of the shift during misfit chasing and misfit exchange, for different choices of

f := f1n and r100,100.

In the extended K-Hamiltonian QR algorithm we have an additional possible
source of perturbations: the misfit exchange. To examine this we have generated
random extended K-Hamiltonian Hessenberg matrices of dimension 200 × 200 (n =
100), with a random position vector, complex random G and R, and random rotations
Qi with real sines. We set G = Gr + GHr , where Gr is a random complex matrix,
generated with Matlab’s randn function. The matrix R is taken from the QR-
decomposition of a randomly generated matrix.3 The tests have been executed for
various sizes of f and we also tested it for a tiny r100,100. Table 3.1 depicts the
absolute distance between the actual shift and the shift retrieved from the misfit at
four occasions: immediately after the misfit is generated, before the exchange, after
the exchange, and at the end of the chasing procedure.

We can deduce from Table 3.1 that the perturbation created by exchanging the
misfits is not particularly larger than the perturbations introduced during the chasing.
Moreover, considering tiny f and r100,100 appears not significant for the accuracy of
the shift.

3.3. Iterations per eigenvalue and accuracy. In this section we examine the
average number of iterations and the accuracy of the Hamiltonian QR algorithm. The
matrices have been generated as in Section 3.2 and we have tested the algorithm for
n = 25, 50, 100, and 200. For each n we have generated 250 extended K-Hamiltonian
Hessenberg matrices. The pattern of the rotations in the extended Hamiltonian Hes-
senberg matrix has been generated randomly. Since every QR step chases two misfits,
the number of chases is twice the number of iterations. Dividing the number of chases
by the matrix size 2n we get an average of the number of misfit chases that are re-
quired for each eigenvalue; this value equals the number of iterations divided by n.
Table 3.2 shows that the average number of iterations is approximately 4.6 for these
examples. The table further shows the relative backward error based on the computed

3We have not taken a randomly upper triangular matrix as they are typically very ill-conditioned.
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n 25 50 100 200

no. iterations / n 4.61 4.51 4.55 4.68
relative backward error 4.68 e−15 6.40 e−15 9.10 e−15 1.42 e−14

Table 3.2
Average number of iterations per eigenvalue for a random Hamiltonian matrix of size 2n.

K-Hamiltonian Schur decomposition V HTV , where T is a K-Hamiltonian upper tri-
angular matrix and V the accumulation of the performed K-symplectic similarity
transformations, namely

relative backward error =
‖H − V HTV ‖2

‖H ‖2
.

3.4. The effect of different position vectors. Different position vectors can
influence the convergence behavior of the extended QR algorithm [30]. We test this
fact here for the extended K-Hamiltonian QR algorithm and execute similar experi-
ments as in [30].

We generate a K-Hamiltonian Hessenberg matrix with rankF = 1 and prescribed
eigenvalues 1+ k/n and −1− k/n for k = 1, . . . , n. To do so, we use an inverse eigen-
value problem based on rotation chasing described in [24] that we have adapted to the
K-Hamiltonian setting. We arrange the eigenvalues on the diagonal obeying the K-
Hamiltonian structure, then apply a real rotation to the rows n and n+1 to bring F to
rank 1. Finally we apply the inverse eigenvalue code based on [24]. The result is a K-
Hamiltonian Hessenberg matrix. Now we apply a random unitary K-symplectic ma-

trix,
[
Q 0
0 ΦQΦ

]
, to H and reduce the resulting matrix back to extended K-Hamiltonian

Hessenberg form [15]. Thus, we have generated an extended K-Hamiltonian Hessen-
berg matrix with eigenvalues close to a desired distribution. Unfortunately the inverse
eigenvalue problem perturbs the eigenvalues by about 10−12. Hence, we use the rela-
tive backward error of the Schur decomposition as accuracy measure and not a forward
error such as the distance to the given eigenvalues.

In Figure 3.1 the relative backward error (solid line) and the number of iterations
divided by n (dashed line) are plotted. We observe that the shape does not influence
the relative backward error of the Schur decomposition. However, the Hessenberg
and the inverse Hessenberg shape require significant less iterations than the CMV
and the random shape. The inverse Hessenberg shape is slightly below 3 iterations
per eigenvalue. Next, we have tested the extended Hamiltonian QR algorithm for
the eigenvalue distributions ±k/n, for k = 1, . . . , n, see Figure 3.2, and ±n/k, for
k = 1, . . . , n, see Figure 3.3: the results are very similar.

We find it surprising that the inverse Hessenberg shape always requires the least
number of iterations. This is not in accordance with the observation for extended
QR algorithms on general matrices: in [30] the inverse Hessenberg pattern performed
worse than the standard Hessenberg pattern when the eigenvalues were distributed as
in Figure 3.3. A better understanding of how a particular chosen shape influences the
convergences behavior in the K-Hamiltonian setting deserves further investigations.

3.5. CAREX. We test the reduction to extended Hamiltonian Hessenberg form
and the computation of the Hamiltonian Schur form for two examples, Example 14 and
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Fig. 3.1. Relative backward error (left scale, solid line) and number of iterations (right scale,
dashed line) for different shapes for eigenvalues (1 + k/n and −1− k/n for k = 1, . . . , n).
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Fig. 3.2. Relative backward error (left scale, solid line) and number of iterations (right scale,
dashed line) for different shapes for eigenvalues (±k/n, for k = 1, . . . , n).
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Fig. 3.3. Relative backward error (left scale, solid line) and number of iterations (right scale,
dashed line) for different shapes for eigenvalues ( ±n/k, for k = 1, . . . , n).



An extended Hamiltonian QR algorithm 19

Example n shape ρred # it./n ρQR

14 4 Hessenberg 9.02 e−16 8.25 4.72 e−15
14 4 inv. Hess. 5.17 e−16 5.50 2.88 e−15
14 4 CMV 5.27 e−16 5.50 1.54 e−14
14 4 random 5.27 e−16 5.50 9.07 e−15

18 100 Hessenberg 9.00 e−15 3.09 1.37 e−14
18 100 inv. Hess. 7.68 e−15 2.84 7.09 e−15
18 100 CMV 4.50 e−14 3.24 1.40 e−14
18 100 random 9.88 e−15 3.30 1.25 e−14

Table 3.3
Number of iterations per eigenvalue (# it./n), relative backward error for the reduction to

extended Hamiltonian Hessenberg form (ρred) and for the computation of the Hamiltonian Schur
form (ρQR) for CAREX examples 14 and 18 and different patterns.

Example 18, from the benchmark collection CAREX for continuous algebraic Riccati
equations [6]. The other examples are either very small (n = 2), have rankF > 1,
or are already almost in Hamiltonian Schur form. The examples from CAREX are
parameter dependent; we used the standard parameter setting.

The results are shown in Table 3.3, there ρred is the relative backward error for the
reduction to extended Hamiltonian Hessenberg form and ρQR the relative backward
error of the Hamiltonian Schur form computed by the extended Hamiltonian QR
algorithm. If we compare the different shapes, then we see the same picture as in
the tests above: the inverse Hessenberg shape needs the least iterations followed by
the Hessenberg shape for example 18. Example 14 is arguably too small to draw
conclusions from the iterations per eigenvalue.

4. Conclusions and future work. We have presented a new structure preserv-
ing algorithm for computing the Hamiltonian Schur form of an extended Hamiltonian
Hessenberg matrix. The numerical experiments performed so far have confirmed the
validity of our approach.

The numerical experiments are based on a simple single shift implementation. We
are convinced that including well-known features, such as, aggressive early deflation
[9, 25], multishift or multibulge steps with blocking [10, 19, 31], and changing to a
higher order programming language, such as Fortran, would significantly improve the
speed of the algorithm. For real Hamiltonian matrices it is also relevant to perform
the QR iterations in real arithmetic to preserve the eigenvalue symmetry with respect
to the real axis. This requires a double shift version of the algorithm which is more
complicated than the single shift case and could be a subject of future research.

Acknowledgments. We would like to thank the referees for their detailed com-
ments, which have led to a significantly improved version of the article.
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