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Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di laurea magistrale in Matematica

Tesi di Laurea

Rational Krylov methods for
linear and nonlinear eigenvalue problems

Relatore
Prof. Dario A. Bini

Controrelatore
Prof. Luca Gemignani

Candidato
Giampaolo Mele

ANNO ACCADEMICO 2012-2013



2



3

To my family



4



Contents

1 Introduction 7
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Linear eigenvalue problem 9
2.1 Arnoldi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Convergence of the Arnoldi algorithm . . . . . . . . . . . . . . . . . . 14
2.3 Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 26
2.5 Shift–and–invert Arnoldi . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Rational Krylov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Nonlinear eigenvalue problem 35
3.1 Rational Krylov based on Hermite interpolations . . . . . . . . . . . . 36

3.1.1 Newton polynomials and Hermite interpolation . . . . . . . . 36
3.1.2 Semianalytical computation of Hermite interpolation . . . . . 39
3.1.3 Hermite Interpolation Rational Krylov (HIRK) . . . . . . . . 43
3.1.4 Exploiting low rank structure of coefficient matrices . . . . . . 50

3.2 Iterative projection methods . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Regula falsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Nonlinear Rational Krylov (NLKR) . . . . . . . . . . . . . . . 53
3.2.3 Iterative projection method . . . . . . . . . . . . . . . . . . . 61

4 Applications 63
4.1 Linear eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Tubolar reactor model . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 A stability problem in aerodynamic . . . . . . . . . . . . . . . 67
4.1.3 Stability of a flow in a pipe . . . . . . . . . . . . . . . . . . . 69

4.2 Nonlinear eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Gun problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Vibrating string with elastically attached mass . . . . . . . . . 75
4.2.3 Fluid-solid structure interaction . . . . . . . . . . . . . . . . . 76

5 Conclusions and future developments 81

5



6 CONTENTS



Chapter 1

Introduction

One of the most active research fields of numerical analysis and scientific computa-
tion is concerned with the development and analysis of algorithms for problems of
big size. The process that leads to them starts with the discretization of a contin-
uum problem. The more accurate the approximation of the continuum problem, the
bigger the size of the discrete problem.

In this thesis modern algorithms to solve big sized eigenproblems are studied.
They come from various fields as mathematics, informatics, engineering, scientific
computing, etc. Usually not all the solutions are needed but just a well defined
subset according to the specific application. The large size of the problem makes
it impossible to use general algorithms that do not exploit other features of the
involved matrices like sparsity or structure.

For the linear eigenproblem the most popular algorithm is Arnoldi iteration (and
its variants). A modern algorithm is Rational Krylov algorithm. This algorithm can
be adapted to deal with nonlinear eigenproblem.

The thesis is organized in the following way: In chapter 2 the Arnoldi and ratio-
nal Krylov algorithms for the linear eigenproblem are presented. In chapter 3 the
rational Krylov algorithm is applied/extended to solve the nonlinear eigenproblem.
In chapter 4 a few applications, mainly from fluid dynamics, are presented and used
to test the algorithms.

1.1 Notation

We denote with lowercase letters both vectors and numbers; the nature of a variable
will be clear from the context. Capital letters are used for matrices. The subscripts
denote the size, e.g., Hj+1,j is a matrix with j + 1 rows and j columns. In the cases
where the number of rows is clear, the subscript denotes the number of columns e.g.,
Vj is a matrix with j columns. Given a vector v we denote with v[i] a sub–vector
which usually forms a part in a block subdivision.

7
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1.2 Basic definitions

In this thesis we use as synonymous the terms eigenvalue problem and eigenproblem.
Consider an application

A(·) : C→ Cn×n

and a set Ω ⊂ C. Solving an eigenproblem means to find all pairs (λ, x) ∈ C×Cn×n

such that A(λ)x = 0. The pair (λ, x) is called eigenpair. In case A(λ) is linear then
we call the problem linear eigenvalue problem or generalized eigenvalue problem
(GEP). We can express a linear eigenproblem as

Ax = λBx,

where A,B ∈ Cn×n. In case B is the identity matrix, we have a classic eigenproblem.
If the application A(λ) is not linear then we call the problem nonlinear eigenvalue

problem (NLEP). In case A(λ) is polynomial, that is,

A(λ) =
N∑
i=0

λiAi,

where Ai ∈ Cn×n, we call the problem polynomial eigenvalue problem (PEP). A
linearization of a NLEP is a linear eigenproblem such that its eigenpairs in Ω are
near in norm to the eigenpairs of the original NLEP.

We will often use an improper terminology regarding the convergence. Given a
matrix A ∈ Cn×n, a small number tol and a finite sequence {θi}ni=1, then we say that
at step k the sequence “convergence” to an eigenvalue λ of A if |θk − λ| < tol. This
means that numerically θk is an eigenvalue of A. This terminology is not correct but
is convenient to not have hard notation.



Chapter 2

Linear eigenvalue problem

In this chapter we describe the Arnoldi algorithm for the classical eigenvalue prob-
lem, see [15] or [19]. A non-Hermitian version of thick-restart [22] [23] will is devel-
oped. The generalized eigenvalue problem (GEP) is solved with Arnoldi algorithm
and the shift-and-invert Arnoldi is introduced. Finally we present the Rational
Krylov algorithm as formulated in [12].

2.1 Arnoldi algorithm

Let A ∈ Cn×n be an n×n matrix of which we want to compute the eigenvalues. Let
us start by introducing the concept of Krylov subspace.

Definition 2.1.1 (Krylov subspace). Given a vector x and A ∈ Cn×n define the
Krylov subspace as

Km(A, x) := span
{
x,Ax,A2x, . . . , Am−1x

}
.

Any vector that lies in such space can be written as v = p(A)x where p is a
polynomial of degree less then m.

The idea of the Arnoldi algorithm is to approximate eigenvectors of the matrix
A with vectors of Krylov subspace. In order to do that, a suitable orthonormal basis
of such space is constructed.

Let us define v1 := x/‖x‖, inductively we orthogonalize Avj with respect to the
vectors previously computed by using the Gram–Schmidt algorithm and we arrive
at the following equations

hj+1,jvj+1 := Avj − h1,jv1 − h2,jv2 − · · · − hj,jvj, j = 1, . . . ,m.

In compact way, set Vk := [v1|v2| . . . |vk], and find that

AVm = Vm+1Hm+1,m,

or equivalently

AVm = VmHm,m + hm+1,mvm+1e
T
m.

By construction the matrix Hj+1,j is in Hessenberg form.

9
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Remark 2.1.1. The vectors vi are an orthonormal basis of the Krylov subspace,
the matrix Hm+1,m is in Hessenberg form, the coefficients hi,j are obtained from the
orthogonalization process while hj+1,j from the normalization. Therefore, we may
choose hj+1,j positive numbers.

Definition 2.1.2 (Arnoldi’s sequence). A sequence of normal vectors v1, . . . , vm
is called Arnoldi’s sequence if it exists a Hessenberg matrix Hm,m+1 with positive
elements in the subdiagonal such that

AVm = Vm+1Hm+1,m.

It is clear how to continue the Arnoldi sequence; if we have v1, . . . , vm+1 then
w = Avm+1 − h1,m+1v1 − h2,m+1v2 − · · · − hm+1,m+1vm+1 orthogonalization,

hm+2,m+1 = ‖w‖
vm+2 = w/hm+2,m+1 normalization

Now we will show that the Arnoldi sequence is deeply connected with the Krylov
subspace.

Proposition 2.1.1. If the matrices Vm+1 and Wm+1 are orthonormal, the first col-
umn of both is v1 and there exist two Hessenberg matrices Hm+1,m and Km+1,m with
positive subdiagonal entries such that

AVm = Vm+1Hm+1,m,

AWm = Wm+1Km+1,m.

Then Vm+1 = Wm+1 and Hm+1,m = Km+1,m.

Proof. Let us prove the claim by induction. If m = 1 there is nothing to prove, then
v1 = w1. Let us prove the case m = 2 in order to understand the idea. We have the
two equations

h2,1v2 = Av1 − h1,1v1,

k2,1w2 = Av1 − k1,1v1.

By using the orthonormality, multiplying by v1 (that is equal to w1) both equations,
we find

0 = vH1 Av1 − h1,1,

0 = vH1 Av1 − k1,1.

Then we have h1,1 = k1,1, now coming back at the original equation,

h2,1v2 = Av1 − h1,1v1 = Av1 − k1,1v1 = k2,1w2.
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Then we have h2,1v2 = k2,1w2, but by assumption we have h2,1, k2,1 > 0 and v2, w2

are normal, so it holds that h2,1 = k2,1 and v2 = w2. Let us suppose the thesis true
for m, so Vm = Wm and Hm,m−1 = Km,m−1. Then by assumption we have the last
equations

hm+1,mvm+1 = Avm − h1,mv1 − · · · − hm,mvm,
km+1,mwm+1 = Awm − k1,mw1 − · · · − km,mwm.

Since vi = wi for i ≤ m, we can rewrite the equations as

hm+1,mvm+1 = Avm − h1,mv1 − · · · − hm,mvm,
km+1,mwm+1 = Avm − k1,mv1 − · · · − km,mvm.

By using the orthonormality, multiplying both equations by vi for i ≤ m (that is
equal to wi) we find that

0 = vHi Avm − hi,mvi,
0 = vHi Avm − ki,mvi.

Then we have hi,m = ki,m. Replacing the latter equation in the former we have
hm+1.mvm+1 = km+1,mwm+1. Since hm+1.m, km+1.m > 0 and vm+1, wm+1 are unitary
we find that hm+1.m = km+1,m and vm+1 = wm+1.

Remark 2.1.2. Any Arnoldi sequence AVm = Vm+1Hm+1,m is generated in a unique
way by the Gram–Schmidt process starting from the first column vector of Vm+1. So
the columns of Vm+1 generates the Krylov subspace Km(A, v1).

Observation 2.1.1. If in the construction of the Arnoldi sequence it holds that
hj+1,j = 0 for some j, then we cannot continue the sequence. However, looking at
the equation

hj+1,jvj+1 := Avj − h1,jv1 − h2,jv2 − · · · − hj,jvj,

we find that the vectors v1, . . . , vj, and then x,Ax, . . . , Aj−1x, are linearly dependent.

Definition 2.1.3. Let AVm = Vm+1Hm+1,m be an Arnoldi sequence, if Hm,my = θy
then θ is called Ritz value and Vmy Ritz vector. The pairs formed by a Ritz value
and a Ritz vector are called Ritz pairs.

Proposition 2.1.2. Let AVm = Vm+1Hm+1,m be an Arnoldi sequence and (θ, Vmy)
a Ritz pair, then it holds that

AVmy − θVmy = hm+1,me
H
my vm+1.
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Proof. It is possible to write the Arnoldi sequence as

AVm = VmHm,m + hm+1,mvm+1e
H
m.

By using this formula we find that

AVmy = (VmHm,m + hm+1,mvm+1e
H
m)y,

= θVmy + hm+1,m(eHmy)vm+1.

This completes the proof.

In general we can define ωm(y) := hm+1|eHmy| and say that if this number is
small enough then Vmy is a good approximation of an eigenvector of A. It would be
desirable that also θ be a good approximation of an eigenvalue of A. To this regard
it is useful to recall a well know theorem.

Theorem 2.1.1 (Bauer–Fike). Let A ∈ Cn×n be a diagonalizable matrix and V ∈
Cn×n the eigenvectors matrix. If (λ̃, ṽ) is an approximate eigenpair, let us define the

residual r := Aṽ − λ̃ṽ, then it exists an eigenpair (λ, v) of A such that

|λ− λ̃| ≤ Kp(V )
‖r‖p
‖ṽ‖p

,

‖v − ṽ‖p
‖ṽ‖p

≤ ‖r‖p‖(A− λ̃I)+‖p[1 +Kp(V )],

where Kp(V ) = ‖V ‖p‖V −1‖p is the condition number.

Applying this theorem, if (θ, Vmy) is a Ritz pair, then it exists an eigenpair (λ, v)
of A such that

|λ− θ| ≤ K2(V )ωm(y),

‖v − Vmy‖2 ≤ ‖(A− λ̃I)+‖2[1 +K2(V )]ωm(y).

Remark 2.1.3. If (θ, Vmy) is a Ritz pair and z = Vmy, then it exists an eigenpair
(θ, v) such that the following inequalities hold

‖Az − θz‖2 ≤ ωm(y),

|λ− θ| ≤ K2(V )ωm(y),

‖z − v‖2 ≤ ‖(A− λ̃I)+‖2[1 +K2(V )]ωm(y).

Note that if A is a Hermitian matrix then K2(V ) = 1. Moreover from these inequal-
ities we have that if the last component of y is zero then (θ, Vmy) is an eigenpair of
A. If hm+1,m is zero then all the eigenvalues of Hm,m are eigenvalues of A and all
the Ritz vectors are eigenvectors of A.

Now we can summarize the Arnoldi process in algorithm 1.
In this algorithm we compute the Arnoldi sequence for m steps and whenever

the residual is small enough we store the approximation to the eigenpair; moreover,
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Algorithm 1 Arnoldi’s algorithm

1: Chose a vector x.
2: Normalize v1 := x/‖x‖.
3: for i = 1, . . . ,m do
4: r = Avi.
5: hi = V H

i r.
6: r = r − Vihi.
7: hi+1,i = ‖r‖.
8: Compute the eigenpairs (θk, yk) of Hi,i, for k = 1, . . . , i.
9: if hi+1,i = 0 then
10: Store (θk, Vmyk) as eigenpair of A, where k = 1, . . . , i.
11: break
12: else
13: vi+1 = r/hi+1,i.
14: end if
15: for k = 1, . . . , i do
16: if ωi(yk) < tol then
17: Store (θk, Vmyk) as approximation of an eigenpair of A.
18: end if
19: end for
20: end for

if hi+1,i = 0 for some i, then i exact eigenpairs are delivered. We want to point
out that if hi,i+1 6= 0 for all the values of i up to n (size of the matrix A), then
hn+1,n is zero. This way, exact eigenpairs are computed. Indeed, the advantage of
this method relies on the fact that for small values of m a few eigenpair can be
computed. In particular, if at some step vi is an exact eigenvector of A then hi+i,i is
zero and the algorithm breaks down. More specifically, if we choose x as eigenvector
the algorithm stops right after one step.

If the matrix A is Hermitian then it is possible to show that Hm,m is tridiagonal
so we can use appropriate strategies for this case. For instance, we can use suitable
and more effective algorithm to compute the eigenvalues of a tridiagonal matrix. In
this case we call this process Lanczos algorithm [15].

We want to give an idea about convergence properties. Convergence analysis will
be better developed in the next section.

The convergence of the algorithm depends on the magnitude of hm+1,m and
this is related to the linear dependence of the vectors v1, . . . , vm or equivalently
of x,Ax, . . . , Am−1x. If these vectors are linearly dependent then hm+1,m = 0, if
they are near to be independent (or are numerically dependent) then |hm,m+1| is
small. But how many iteration do we need to perform in order that |hm,m+1| is
small enough? Let us suppose A diagonalizable with (λ1, v1), . . . , (λn, vn) eigenpairs
and let us suppose |λ1| > |λ2| ≥ · · · ≥ |λn|. If x = c1v1 + . . . cnvn then

Amx = λm1 c1v1 + λm2 c2v2 + · · ·+ λmn cnvn,

Amx = c1λ
m
1

[
v1 +

c2

c1

(
λ2

λ1

)m
+ . . .

cm
c1

(
λm
λ1

)m
vm

]
.
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We deduce that the sequence Amx converges to the dominant eigenvector with a
rate |λ2/λ1|. Intuitively, if the value |λ2/λ1|m is close to zero then the vectors Amx
and Am+1x are close to be linearly dependent and also |hm+1,m| is close to zero.
Numerical convergence can occur even before, in fact, this computation shows the
worst case.

We can have the idea that the number of iterations needed to approximate eigen-
values depends on the location of the eigenvalues and on the choice of the first vector
x, in fact if we choose c1 = 0 then Amx will converge to the second dominant eigen-
vector.

A practical issue is related to the orthogonality. In fact if m is not small, orthog-
onality will be numerically lost. In this case it can be needed to add a reorthogonal-
ization process. To do that we have to add in algorithm 1 after the row 7 the rows
of algorithm 2.

Algorithm 2 Reorthogonalization

ci = V H
i r.

r = r − Vici.
ci+i,i = 0.
hi = hi + ci.

This will simply perform another time the Gram–Schmidt orthogonalization and
in exact arithmetic the matrix C would be zero and nothing will change. It is
important to point out that also with a reorthogonalization process when m is too
big, orthogonality is numerically lost in any case. Moreover it is possible to prove
that perform more than one reorthogonalization do not give advantages. The only
way to solve this problem is to use a restart strategy as explained in the next sections.

In the next section we will answer to two important questions:
• How long have to be the Arnoldi sequence to have a good approximation of a

few eigenvalues of A?
• Which eigenvalues of A will be estimated first?

2.2 Convergence of the Arnoldi algorithm

In this section we will explain the convergence behavior of the Arnoldi process. Till
now we proved that, given an Arnoldi sequence, some Ritz values are near some
eigenvalues for a certain m. The following theorem shows that, if the distance
between the Krylov subspace and an eigenvector is small, then there is a Ritz vector
near such eigenvector. To prove that, we need to recall some results.

Lemma 2.2.1. Given u and v unitary vectors and θ(u, v) the angle between them,
then it holds

‖u− v‖2 = 2

[
1−

√
1− sin2(θ(u, v))

]
.
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This lemma tells us that if the angle between two unitary vectors becomes small
then also the distance becomes small and conversely.

Lemma 2.2.2. Let V be a finite C-vector space and W a subspace. Set P : V → W
be the orthogonal projection, u a vector and θ(u,W ) the angle between u and W .
Then

θ(u,W ) = θ(u, Pu).

Theorem 2.2.1 (Saad [15]). Let Pm be the orthogonal projection into Km(A, x),

γ = ‖PmA(I − Pm)‖2, (λ, u) an eigenpair of A and (λ̃, ũ) the Ritz pair where λ̃ is
the Ritz value closer to λ, δ the distance between λ and the set of Ritz values other
than λ̃,. Then

sin(θ(u, ũ)) ≤
√

1 +
γ2

δ2
sin(θ(u,Km(A, x))).

From theorem 2.2.1 and by using Lemma 2.2.2 we find that

sin(θ(u, ũ)) ≤
√

1 +
γ2

δ2
sin(θ(u, Pm(u))).

It means that if the distance between u and Pu is small then the distance between
u and ũ is small as well.

Notice that ‖u − Pm(u)‖ is the distance between u and the Krylov subspace as
the following theorem states.

Theorem 2.2.2 (Projection theorem). Let V be a finite C-vector space and W a
subspace, P : V → W the orthogonal projection. Then we have the following formula
to compute the distance d(u,W ) between a vector u ∈ V and the subspace W

d(u,W ) := inf
w∈W
‖u− w‖ = ‖u− Pu‖.

Remark 2.2.1. It is important to point out that the Ritz vectors are not the best
approximations in Km to the corresponding eigenvectors. However, they are close to
such best approximations. Moreover we show that if the distance between a particular
eigenvector u and Km is small then it exists a Ritz vector ũ near u.

At this point we just need to examine ‖(I − Pm)u‖ to show the convergence of
the algorithm.

Theorem 2.2.3 (Saad [15]). Let A ∈ Cn×n be a diagonalizable matrix, (λ1, u1), . . . ,
(λn, un) the eigenpairs with ui unitary, and Km(A, x) the Krylov subspace where to
approximate eigenvectors. If AVm = Vm+1Hm+1,m is the Arnoldi sequence and

v1 =
n∑
k=1

αkuk,

then

‖(I − P )u1‖2 ≤ ξ1ε
(m),
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where

ξ1 =
n∑
k=1
k 6=i

|αk|
|α1|

, ε
(m)
1 =

m+1∑
j=2

m+1∏
k=2
k 6=j

|λk − λi|
|λk − λj|


−1

.

Looking at ε
(m)
1 it can be seen that if λ1 is in the outermost part of the spectrum,

that is, |λk − λ1| > |λk − λj| for j 6= 1, then ε
(m)
1 is small. We can conclude that

generally eigenvalues in the outermost part of the spectrum are likely to be well
approximated. Moreover the distance between u1 and Km(A, x) depends also on the
first vector of the Arnoldi sequence v1. That is, if v1 is already a good approximation
of u1 then less steps are needed to reach convergence.

Example 1. We can have experience of the previous theorem by using a simple
program in matlab. Let us consider the diagonal matrix D ∈ Cn×n with D =
diag(n, n − 1, . . . , 1). Then the outermost eigenvalues are 1 and n, and Ae1 = ne1.
Let us consider a unitary matrix Q –in matlab we can generate it as [Q R] =
qr(rand(n))– and construct A := QHDQ. Then the dominant eigenvector of A is
QHe1. The goal of this example is to show that the closer x (the vector that generates
the Krylov subspace) to QHe1, the faster the convergence. So we set n = 100 and
x = QHe1 + εw where w is a unitary random vector. In the table in Figure 2.1 the
value of ωm(y) is reported where y is the dominant eigenvector of the matrix Hm,m.

m ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

1 28.4188 23.0878 3.0643 0.3087 0.0305
5 4.0535 0.9543 0.1251 0.0097 9.0556e− 04
10 0.8929 0.1384 0.0179 0.0016 1.5411e− 04
15 0.4577 0.0314 0.0061 9.9966e− 04 5.9527e− 05
20 0.1876 0.0174 0.0020 3.3721e− 04 1.9557e− 05
25 0.0436 0.0070 0.0010 1.2662e− 04 9.6067e− 06
30 0.0065 0.0019 2.8252e− 04 3.1552e− 05 3.7785e− 06

Figure 2.1: Convergence to dominant eigenvalue with starting vector close to it

Example 2. Let us consider the matrix

A =


0 1

1
. . .
. . .

. . .

1 0


The eigenvalues of this matrix are the roots of the unity and all the eigenvalues are
outermost eigenvalues, so that there are no eigenvalues that will be well approxi-
mated for m small. In fact, the Arnoldi algorithm is very slow in this case and the
speed of convergence depends mainly on x. For a complete analysis of this case see
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[15]. This one is also a pathological example. In fact, if n is the size of A and we
start the Arnoldi sequence with e1 then for every m < n the Ritz values are just zero.
We need exactly n steps to compute eigenvalues, so with a naive implementation of
the algorithms we have an inefficient program.

Remark 2.2.2. At a glance we have:
• For a moderate m the Ritz values approximate the outermost eigenvalues,
• If the eigenvalues are not clustered the algorithm is fast,
• The closer x to the eigenvector u1 the faster the convergence to u1 of the Ritz

vector.

Keeping in mind these three points, it is easier to understand the ideas behind
the restart strategy that are presented in the next section.

2.3 Restart

Restarted Arnoldi

In practical applications it can happen that m becomes too big and the algorithm
still does not provide a good approximation of eigenvalues.

There are several problems related to the fact that m becomes big, first of all
the increase of the computational cost, then the loss of orthogonality and, because
of errors, the computation of some possible spurious eigenvalues.

In order to solve this problem we can use the results of the previous section. We
know that in general the Ritz pairs provide approximations to the outermost eigen-
pairs. Assume that our goal is to approximate the dominant eigenpair (eigenvalue
with the largest norm and its eigenvector) and that after m steps there is still no
convergence. This means that if (θ, Vmy) is the dominant Ritz pair, ωm(y) is not
small enough. We know that, even though Vmy is not good enough, it is anyway
an estimation of the dominant eigenvector. Therefore we can restart the algorithm
with x = Vmy. In fact, we know that the convergence of the algorithm depends on
the distance between x and the sought eigenvector and indeed Vmy is closer than x
to the dominant eigenvector.

We can summarize the Restarted Arnoldi in the following algorithm. 3.

Algorithm 3 Restarted Arnoldi’s algorithm

1: Chose a vector x.
2: while ω(y) > tol (the dominant Ritz value did not converge) do
3: Arnoldi(x,m) performs m steps of Arnoldi’s sequence (Algorithm 1 ).
4: x = Vmy where y is the dominant Ritz vector.
5: x = x/‖x‖.
6: end while

If we want to approximate the first k dominant eigenvectors then it is possible
to modify the previous algorithm. The idea is to do m steps of Arnoldi algorithm,
compute the first k dominant Ritz vectors and put, for instance, x =

∑k
i=1 Vmyi or
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choose some other linear combination. We can summarize this in the algorithm 4,
for a deeper discussion see [15].

Algorithm 4 Generalized restarted Arnoldi’s algorithm

1: Chose a vector x
2: while ω(y) > tol (the dominant Ritz value did not converge) do
3: Arnoldi(x,m) performs m steps of Arnoldi’s sequence (algorithm 1 ).
4: Choose α1, . . . , αk.
5: x =

∑k
i=1 αiVmyi where yi are the first k dominant Ritz vectors.

6: x = x/‖x‖.
7: end while

Note that we can decide to compute also other kind of eigenpairs, e.g., the
eigenvalues with biggest real part, then repeat the same argument as above by
replacing the words “dominant Ritz pairs” with “ Ritz pairs with biggest real part”.
In fact we have shown in the previous section that, also if the outermost eigenvalues
are well approximated for a moderate value of m, the convergence depends also from
the distance of x from the desired eigenvector.

There are also other restart strategies. One of the most popular is the implicit
restart. Here, we prefer to explore instead the thick restart. The idea is similar to the
generalized restarted Arnoldi strategy, but relies on a deeper theoretical background
and is well suited for the Rational Krylov algorithm.

Thick restart

In [22] [23] Kesheng and Horst presented the thick restart for the Lanczos algorithm
and in [12] Ruhe suggested to use a non–Hermitian version of this restart also for
the Arnoldi algorithm. To present this algorithm we need a few technical lemmas.

Preliminary results

Lemma 2.3.1 (Householder matrix). Let x ∈ Cn then there exists a unitary matrix
P ∈ Cn×n such that Px = αe1, the matrix P is called Householder matrix.

Proof. Let us define

α = −ei arg x(1)‖x‖, u = x− αe1, v =
u

‖u‖
, β = xHv/vHx.

Then let us set

P = I − (1 + β)vvH

Whit a direct computation we can check that this is the sought matrix.

Lemma 2.3.2 (Hessenberg form). Given a matrix L ∈ C(n+1)×n there exists a
unitary matrix P ∈ Cn×n such that

L =

(
1 0
0 P

)
HPH .

where H is a Hessenberg matrix.
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Proof. Let P1 be the Householder matrix such that P1L(2 : n + 1, 1) = αe1 where
L(2 : n+ 1, 1) is the first column of L from the second element to the last. Then it
holds that

(
1 0
0 P1

)
LPH

1 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0
... L̂
0

 .

Again we can find a matrix P2 such that P2L(3 : n+ 1, 2) = α̂e1 and then

1 0 0
0 1 0
0 0 P2

(1 0
0 P1

)
LPH

1

(
1 0
0 P2

)H
=



∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0
...

...
ˆ̂
L

0 0


.

Iterating this computation we have the thesis.

In our computations it will be better to have a different factorization where,
unlike in the previous lemma, 1 is at the bottom line. Later on we will explain why.

Lemma 2.3.3 (Hessenberg down-up form). Given a matrix L ∈ C(n+1)×n there
exists a unitary matrix P ∈ Cn×n such that

L =

(
P 0
0 1

)
HPH .

Proof. Let us consider the matrix

Π =

 1

. .
.

1

 .

It is easy to see that Π2 = I, then by using lemma 2.3.2 we find that

(Πm+1LΠm)H =

(
1 0
0 P

)
HPH ,

then we have

Πm+1LΠm =

(
1 0
0 P

)H
HHP.

So

L = Πm+1

(
1 0
0 P

)H
HHPΠm
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=

[
Πm+1

(
1 0
0 P

)H
Πm+1

] [
Πm+1H

HΠm

]
[ΠmPΠm]

=

(
ΠmPΠm 0

0 1

)H [
Πm+1H

HΠm

]
[ΠmPΠm] .

Note that ΠmPΠm is unitary and Πm+1H
HΠm is Hessenberg. Setting

P̃ := (ΠmPΠm)H , H̃ := Πm+1H
HΠm,

we have

L =

(
P̃ 0
0 1

)
H̃P̃H

.

Lemma 2.3.4. Given a Hessenberg matrix H ∈ C(n+1)×n with real numbers in the
subdiagonal, there exists a diagonal matrix S ∈ Rn×n with elements 1 and −1 such
that (

S 0
0 1

)
HS

has positive numbers in the subdiagonal.

Proof. Let us consider Si the diagonal matrix with ones on the diagonal except in
the position (i, i) where there is a −1. Then(

Si 0
0 1

)
HSi

is a matrix equal to H where we have multiplied for −1 the i-th row and the i-th
row. Then the idea is to change the sign of the subdiagonal of H starting from
the bottom. If the last one element of the subdiagonal of H is negative then we
perform the transformation with Sn, otherwise we check the previous element on
the subdiagonal. Notice that if we perform the transformation with Sn we change
the sign also to the element hn,n−1. We can summarize the proof in Algorithm 5.

Algorithm 5 Hessenberg matrix with positive subdiagonal entries (real case)

1: for i = n, . . . , 1 do
2: if hi+1,i < 0 then

3: H :=

(
Si 0
0 1

)
HSi.

4: S = SSi.
5: end if
6: end for
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Lemma 2.3.5. Given a Hessenberg matrix H ∈ C(n+1)×n, there exists a diagonal
matrix S ∈ Cn×n with unitary elements, called phase matrix, such that(

S 0
0 1

)
HS.

has positive numbers in the subdiagonal.

Proof. The idea is similar to the one used in Lemma 2.3.4. We first recall that given
a complex number z there exists θ ∈ [0 2π] such that eiθz = |z|. Now consider the
diagonal matrix Si(θ) with ones on the diagonal except in the position (i, i) where
there is the element eiθ. Then, as in Lemma 2.3.4, starting from the bottom, we
perform the transformation with Sn(θ)

H :=

(
Sn(θ) 0

0 1

)
HSn(θ).

After this operation hn+1,n is positive, then we repeat with the previous element in
the subdiagonal. We can summarize the procedure in Algorithm 6.

Algorithm 6 Hessenberg matrix with positive subdiagonal entries

1: for i = n, . . . , 1 do
2: θ = − arg(hi+i,i).

3: H :=

(
Si(θ) 0

0 1

)
HSi(θ).

4: S = SSi(θ).
5: end for

Remark 2.3.1. Given a Hessenberg matrix H ∈ Cn×n there exists a phase matrix
S such that (

S 0
0 1

)
HS,

has positive elements in the subdiagonal.

By using the results of this section we arrive at the following result.

Theorem 2.3.1. Given a matrix L ∈ C(n+1)×n there exists a unitary matrix P ∈
Cn×n such that

L =

(
P 0
0 1

)
HPH ,

and H is a Hessenberg matrix with positive elements on the subdiagonal.

Theorem 2.3.1 provides a matrix H with positive elements on the subdiagonal.
This is a very important property since it enables us to interpret these elements as
norms of vectors providing the connection with the Arnoldi sequence. This theorem
concludes the part of preliminary results.
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The thick restart algorithm

Let us consider the Arnoldi sequence AVm = Vm+1Hm+1,m, suppose that m is too
big and the Ritz values still do not reach convergence, so that a restart is needed.
Assume we are interested in a few dominant eigenvalues (we can be interested also
in some other kind of eigenvalues, say, eigenvalues with positive real part). Then
we can choose k Ritz pairs to preserve and restart the algorithm with them. Let us
consider the first k dominant Ritz pairs. The number k is called thickness.

Lemma 2.3.6. Let Hm+1,m ∈ C(m+1)×m and (θ1, y1), . . . , (θk, yk) be a few eigenpairs
of Hm,m where yi are normal. Then there exists a unitary matrix P ∈ Cn×n such
that

Hm+1,m =

(
P 0
0 1

)


θ1 ∗ ∗ ∗ ∗ . . . ∗
θ2 ∗ ∗ ∗ . . . ∗

. . . ∗ ∗ . . . ∗
θk ∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

∗ ∗ . . . ∗ ∗ . . . ∗


PH .

Proof. Let P1 be the unitary matrix such that P1e1 = y1, (it is simply the conjugate
of the Householder matrix Q such that Qy1 = e1). Then, since the first row of P1 is
y1 we have

(
PH

1 0
0 1

)
Hm+1,mP1 =


θ1 ∗ ∗ ∗ ∗ ∗ ∗
0
... Hm,m−1

0
∗

 .

Now we want to repeat the same computation with Hm,m−1. Note that we already
know its eigenvalues, they are (P1yi)(2 : m + 1) that is, the components from 2 to
m+1 of the vector P1yi. To simplify the notation let us call them ŷi. Let us consider
the unitary matrix P2 such that P2e1 = ŷ2. Then we have

1 0 0
0 PH2 0
0 0 1



θ1 ∗ ∗ ∗ ∗ ∗ ∗
0
... Hm,m−1

0
∗


(
1 0
0 P2

)
=



θ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 θ2

... 0

...
... Hm−1,m−2

0 0
∗ ∗


.

We can iterate these computations an arrive at the thesis.

Let AVm = Vm+1Hm+1,m be the Arnoldi sequence and (θ1, Vmy1), . . . , (θk, Vmyk)
the Ritz pairs that we want to preserve in order to improve the estimated eigenpair.
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Then using lemma 2.3.6 we have

Hm+1,m =

(
P 0
0 1

)


θ1 ∗ ∗ ∗ ∗ . . . ∗
θ2 ∗ ∗ ∗ . . . ∗

. . . ∗ ∗ . . . ∗
θk ∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

∗ ∗ . . . ∗ ∗ . . . ∗


PH .

From the Arnoldi sequence we have

AVmP = Vm+1

(
P 0
0 1

)


θ1 ∗ ∗ ∗ ∗ . . . ∗
θ2 ∗ ∗ ∗ . . . ∗

. . . ∗ ∗ . . . ∗
θk ∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

∗ ∗ . . . ∗ ∗ . . . ∗


.

Setting

Wm+1 :=

(
P 0
0 1

)
Vm+1,

we have

AWm = Wm+1



θ1 ∗ ∗ ∗ ∗ . . . ∗
θ2 ∗ ∗ ∗ . . . ∗

. . . ∗ ∗ . . . ∗
θk ∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

∗ ∗ . . . ∗ ∗ . . . ∗


.

Now let W̃k+1 := [w1| . . . |wk|wm+1], it holds

AW̃k = W̃k+1


θ1 ∗ ∗ ∗

θ2 ∗ ∗
. . . ∗

θk
∗ ∗ . . . ∗

 .

Now we use the theorem 2.3.1 then we have

AW̃kP = W̃k+1

(
P 0
0 1

)
H̃k+1,k,
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then setting

Ṽk+1 := W̃k+1

(
P 0
0 1

)
,

we have AṼk = Ṽk+1H̃k+1,k and this is an Arnoldi sequence. Notice that the eigen-

values of H̃k,k are θ1, . . . , θk that in our case are the dominant Ritz values. Then
it is like if we start the Arnoldi sequence with the first k vectors near the first k
dominant eigenvectors then the convergence will be faster.

We can summarize this process in the algorithm 7.

Remark 2.3.2. The thick restart is a generalization of the classic restart strategy,
such kind of restart is equivalent to start the Arnoldi sequence with the first k vectors
near the k desired eigenvectors. Using the results of section 2.2 we have that the
convergence after restart is faster than the convergence obtained by the customary
restart with a random vector.

Observation 2.3.1. We can change the thickness every time we restart the algo-
rithm. The idea is that if we want for instance the eigenvalues with positive real
part for every restart we can restart taking all the Ritz values near the real axis,
then of course this number will not be fixed.

Observation 2.3.2. If we do a restart taking just k converged Ritz values then
there are two possibilities: the algorithm stops with such converged Ritz values or
the error grows. In fact the problem is that during restart we have to transform the
following formula

AW̃k = W̃k+1


θ1 ∗ ∗ ∗

θ2 ∗ ∗
. . . ∗

θk
∗ ∗ . . . ∗


in an Arnoldi sequence, but if the Ritz values are close to convergence then the
elements in the last row are small. Then the operation that transforms such matrix
in the Hessenberg form is ill–conditioned. In general, we have the same problem if
the first Ritz value that we lock has converged. Then if we need to restart with k
Ritz values, maybe some of them converged, then the idea is to sort such values so
that θ1 is far from convergence.

One can wonder why we need to restart with a converged Ritz value, the idea is
to avoid that this Ritz value converges again after restart, this operation is called
“lock” and it will be explained better later on.
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Algorithm 7 Thick restarted Arnoldi algorithm

1: Chose a vector x and set k = 1.
2: while ω(yi) > tol (the desired Ritz value has not converged) do
3: Starting from Arnoldi’s sequence AVk = Vk+1Hk+1,k continue the sequence till

m (Algorithm 1 ).
4: Choose k ≥ 1 pairs (θ1, Vmy1), . . . , (θk, Vmyk) (Ritz pairs to preserve).
5: Compute the factorization

Hm+1,m =

(
P 0
0 1

)


θ1 ∗ ∗ ∗ ∗ . . . ∗
θ2 ∗ ∗ ∗ . . . ∗

. . . ∗ ∗ . . . ∗
θk ∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

∗ ∗ . . . ∗ ∗ . . . ∗


PH .

6: Set

W̃k+1 := [Pv1| . . . |Pvk|vm+1],

H̃k+1,k :=


θ1 ∗ ∗ ∗

θ2 ∗ ∗
. . . ∗

θk
∗ ∗ . . . ∗

 .

7: Compute the Hessenberg form with positive subdiagonal entries

H̃k+1,k =

(
P 0
0 1

)
Hk+1,kP

H .

8: Set

Vk+1 =

(
P 0
0 1

)
W̃k+1.

9: end while

A connection between Arnoldi and the Power Method

A very well know method to estimate the dominant eigenvalue of a matrix A is the
Power Method. Starting from a normal vector v1 the Power Method generates a
sequence (hm+1,m, vm) where

hm+1,m =‖Avm‖, (2.1)

vm+1 =Avm/hm+1,m. (2.2)

It holds that (hm+1,m, vm) converges to the dominant eigenpair of A under mild
assumptions.
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From (2.2) we have Avm = hm+1,m that in vectorial form becomes

AVm = Vm+1Hm+1,m.

This is not an Arnoldi sequence because Vm is not orthonormal. We can orthonor-
malize this matrix with a QR factorization, then

AVm = Vm+1Hm+1,m,

AQmRm,m = Qm+1Rm+1,m+1Hm+1,m,

AQm = Qm+1Rm+1,m+1Hm+1,mR
−1
m,m.

Now we use Theorem 2.3.1 with the matrix Rm+1,m+1Hm+1,mR
−1
m,m, so we have

AQmPm,m = Qm+1

(
Pm,m 0

0 1

)
H̃m+1,m,

setting

Vm+1 := Qm+1

(
Pm,m 0

0 1

)
.

That is we obtain the Arnoldi sequence AVm = Vm+1H̃m+1,m.
Therefore, if we are using the Power Method and we store all the sequence, then it

is possible to compute not just the dominant eigenpair but a few of them. Unluckily
this is not a practical algorithm since generally, the closer vm to convergence the
larger the condition number of Rm,m.

2.4 Generalized eigenvalue problem

Let us consider the generalized eigenvalue problem

Ax = λBx,

where A,B ∈ Cn×n and B is nonsingular.
One simple way to solve this problem is to compute B−1 and then the eigenvalues

of B−1A. But since we are interested in large–scale and sparse problems we have to
avoid the computation of B−1 and we rather prefer to solve linear systems with the
matrix B.

We can use the Arnoldi algorithm, the only wariness to use is that during the
computation of the next vector of the sequence, we have to split the computation of
r = B−1Avi into two steps. Firstly we compute r̂ = Avi and then we solve Br = r̂.

The Arnoldi sequence for the GEP isB−1AVm = Vm+1Hm+1,m that can be written
also as AVm = BVm+1Hm+1,m. We can summarize this process in Algorithm 8.

Note that the reorthogonalization process and the restart can be used also in
this case without any change, in fact we are simply applying the Arnoldi algorithm
to the matrix B−1A and the only practical difference in the algorithm is the way to
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compute the Arnoldi sequence. For every step we have to solve a linear system with
the matrix B, since in many applications B is sparse, we have two main strategy:
it is possible to use some iterative method or compute a sparse LU factorization of
B, then the initialization will be slow but the subsequent steps faster.

Another possibility, that we will not investigate, is when the matrix B is positive
definite, in this case we can compute a B-orthogonal Arnoldi’s sequence. Moreover if
A is also Hermitian then the matrix Hm,m will be tridiagonal with all the consequent
computational advantages. For details [9].

Algorithm 8 Arnoldi’s algorithm for GEP

1: Chose a vector x.
2: Normalize v1 := x/‖x‖.
3: for i = 1, . . . ,m do
4: r̂ = Avi.
5: Solve the linear system Br = r̂.
6: hi = V H

i r.
7: r = r − Vihi.
8: hi+1,i = ‖r‖.
9: Compute eigenpair (θk, yk) of Hi,i, where k = 1, . . . , i.
10: if hi+1,i = 0 then
11: Store (θk, Vmyk) as eigenpair of the pencil (A,B), where k = 1, . . . , i.
12: break
13: else
14: vi+1 = r/hi+1,i.
15: end if
16: for k = 1, . . . , i do
17: if ωi(yk) < tol then
18: Store (θk, Vmyk) as approximation of eigenpair of the pencil (A,B).
19: end if
20: end for
21: end for

2.5 Shift–and–invert Arnoldi

In the previous sections we showed that the Arnoldi method is suitable to compute
eigenvalues in the outermost part of the spectrum, in the practical applications often
it is needed to compute eigenvalues near some points or in a bounded (or unbounded)
region of the complex plane. The shift–and–invert Arnoldi allows one to compute
eigenvalues of a generalized eigenvalue problem Ax = λBx near a point σ ∈ C where
σ is not an eigenvalue.

Lemma 2.5.1. If (θ, x) is an eigenpair of (A − σB)−1B then (σ + 1/θ, x) is an
eigenpair of the pencil (A,B).

Proof. It is a direct computation

(A− σB)−1Bx = θx,
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Bx = θ(A− σB)x,

1

θ
Bx = Ax− σBx,

Ax =

(
σ +

1

θ

)
Bx.

If θ1, . . . , θn are eigenvectors of (A − σB)−1B then σ + 1/θ1, . . . , σ + 1/θn are
eigenvalues of the pencil (A,B). Moreover if |θ1| ≥ · · · ≥ |θn| then |σ + 1/θ1| ≤
· · · ≤ |σ+ 1/θn| in particular, if θ1 is the outermost eigenvalue of (A−σB)−1B then
σ + 1/θ1 is the eigenvalue of the pencil (A,B) nearest σ.

Remark 2.5.1. From the outermost eigenvalues of (A−σB)−1B we can compute the
eigenvalues of the pencil (A,B) nearest σ. Then we can use the Arnoldi algorithm
1 if needed with some restarting strategy like in the Algorithms 3, 4 of better 7 to
compute outermost eigenvalues of (A−σB)−1B and Lemma 2.5.1 to transform into
the eigenvalues of the pencil (A,B) nearest to σ.

We are now in the same situation of Section 2.4, in fact we have to use the
Arnoldi algorithm with the matrix (A− σB)−1B but we want to avoid to compute
(A − σB)−1. In the applications of interest, A and B are sparse or structured, so
that is more convenient to solve linear systems rather than inverting matrices. The
process can be summarized in Algorithm 9.

Algorithm 9 Shift–and–invert Arnoldi’s algorithm for GEP

1: Chose a vector x.
2: Normalize v1 := x/‖x‖.
3: for i = 1, . . . ,m do
4: r̂ = Bvi.
5: Solve the linear system (A− σB)r = r̂.
6: hi = V H

i r.
7: r = r − Vihi.
8: hi+1,i = ‖r‖.
9: Compute eigenpair (θk, yk) of Hi,i, where k = 1, . . . , i.

10: if hi+1,i = 0 then
11: Store (σ + 1/θk, Vmyk) as eigenpair of (A,B), where k = 1, . . . , i.
12: break
13: else
14: vi+1 = r/hi+1,i.
15: end if
16: for k = 1, . . . , i do
17: if ωi(yk) < tol then
18: Store (σ + 1/θk, Vmyk) as approximation of eigenpair of (A,B).
19: end if
20: end for
21: end for
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A practical issue is how to solve for every step the linear system with the matrix
(A− σB). An idea can be to use an iterative method, otherwise if the matrices are
sparse, one can compute a sparse LU factorization. Before to perform the sparse
LU factorization can be needed to reduce the bandwidth of the matrix. This step is
usually needed in these kind of iterative algorithms.

2.6 Rational Krylov

As explained in Section 2.5, in many application it is needed to compute a few
eigenvalues in a bounded (or unbounded) region of interest in the complex plane.
Most popular examples are eigenvalues with positive real parts, with zero imaginary
parts, near zero, inside a given rectangle, etc.

The easiest way to solve the problem can be: start with a point σ1 inside the
region of interest by using Shift–and–Invert Arnoldi (Algorithm 9) compute eigen-
values near such point, after that choose another point σ2 inside the region of interest
(for example we can choose a Ritz value that did not converge before) and use again
Shift–and–Invert Arnoldi. This algorithm looks slow. The main problem is that in
order to compute eigenvalues near σ1 it is needed to have an enough long Arnoldi
sequence say m1 (possibly doing a few restart). When we want to compute eigen-
values near σ2 we have to discard everything and start again from the beginning
to have an enough long Arnoldi sequence say m2. The rational Krylov method as
exposed in [12] solves exactly this problem.

The idea of the algorithm is to start from an Arnoldi sequence (A−σ1B)−1BVm =
Vm+1Hm+1,m and with a few algebraic manipulations to get another Arnoldi sequence

(A− σ2B)−1BWm = Wm+1H̃m+1,m.
Let us start with the Arnoldi sequence pointed in σ1

(A− σ1B)−1BVm = Vm+1Hm+1,m,

BVm = (A− σ1B)Vm+1Hm+1,m.

adding (σ1 − σ2)BVm+1Hm+1,m in both sides

(σ1 − σ2)BVm+1Hm+1,m +BVm = (A− σ2B)Vm+1Hm+1,m,

BVm+1[(σ1 − σ2)Hm+1,m + Im+1,m] = (A− σ2B)Vm+1Hm+1,m.

Let us define Km+1,m := (σ1 − σ2)Hm+1,m + Im+1,m, so we have

(A− σ2B)−1BVm+1Km+1,m = Vm+1Hm+1,m.

Now with a QR factorization of Km+1,m

(A− σ2B)−1BVm+1Qm+1,m+1

(
Rm,m

0

)
= Vm+1Hm+1,m,

(A− σ2B)−1BVm+1Qm+1,m = Vm+1Hm+1,mR
−1
m,m,

(A− σ2B)−1BVm+1Qm+1,m = Vm+1Qj+1,j+1(QH
j+1,j+1Hm+1,mR

−1
m,m).
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Let Lj+1,j := QH
j+1,j+1Hm+1,mR

−1
m,m then

(A− σ2B)−1BVm+1Qm+1,m = Vm+1Qm+1,m+1Lm+1,m.

In view of Theorem 2.3.1 we have

Lm+1,m =

(
Pm,m 0

0 1

)
H̃m+1,mP

H
m,m

Where H̃m+1,m is a Hessenberg matrix with positive elements in the subdiagonal.
Replacing we get

(A− σ2B)−1BVm+1Qm+1,mPm,m = Vm+1Qm+1,m+1

(
Pm,m 0

0 1

)
H̃m+1,m.

Let us define

Wm+1 := Vm+1Qm+1,m+1

(
Pm,m 0

0 1

)
.

Then finally we get

(A− σ2B)−1BWm = Wm+1H̃m+1,m,

and this is an Arnoldi sequence. We can summarize this process in Algorithm 10.

Observation 2.6.1. Note that the space generated by the columns of Vm+1 is the
same generated by the columns of Wm+1. In fact, this matrix is obtained as linear
combination of the columns of Vm+1. These algebraic manipulations were used
to transform the Arnoldi sequence (A − σ1B)−1BVm = Vm+1Hm+1,m into another

sequence (A− σ2B)−1BWm = Wm+1H̃m+1,m.

As already explained in Section 2.5 it is not convenient to compute (A−σiB)−1B,
instead it is preferable to solve systems with the matrix A−σiB. This way, as usual,
we have two possibilities: using iterative methods or sparse LU factorization.

The numbers σi are called shifts or poles (the latter term will be clarified later
on). A practical issue is that if we choose a shift σi too close to the same eigenvalue
of the pencil (A,B) then the matrix A − σB is close to be singular and numerical
errors will occur. Special strategies are needed in order to choose new shifts.
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Algorithm 10 Rational Krylov’s algorithm for GEP

1: Chose a vector x and a first shift σ1.
2: Normalize v1 := x/‖x‖.
3: while ω(yk) > tol (the desired Ritz value did not converge) do
4: Expand the Arnoldi sequence (A − σiB)−1BVm = Vm+1Hm+1,m checking if

Ritz values converge and doing restart when needed .
5: Determine new shift σi+1 in the interesting region.
6: Factorize Im+1,m + (σi − σi+1)Hm+1,m = Qm+1,m+1Rm+1,m.
7: Get the Hessenberg form

Hm+1,m :=

(
PH
m,m 0
0 1

)
QH
m+1,m+1Hm+1,mR

−1
m,mPm,m.

8: Vm+1 := Vm+1Qm+1,m+1

(
Pm,m 0

0 1

)
.

9: end while

Why rational?

In the classic Arnoldi algorithm we approximate the eigenvectors of A in the Krylov
subspace

Km(A, x) = span
(
x,Ax, . . . , Am−1x

)
,

so the Ritz vectors can be written as p(A)x where p(t) is a polynomial of degree less
then m. The original idea of A. Ruhe [10] was to use rational functions r(t) instead
than polynomials, so to build the Rational Krylov subspace

Rm(A, x) = span (φ1(A)x, . . . , φm(A)x) ,

where the most natural choise for these functions isφ1(t) = 1

φi+1(t) =
φi(t)

t− σi
,

and the sequence of vectors is xi+1 = (A−σiI)−1xk. Then we compute the sequence
untill the vectors became independet

0 = c1x1 + · · ·+ cmxm

= c1φ1(A)x+ · · ·+ cmφm(A)

= (c1φ1(t) + · · ·+ cmφm(t)) (A)x.

Then let us define

φ(t) := c1φ1(t) + · · ·+ cmφm(t)

= c1 +
c2

t− σ1

+ · · ·+ cm
(t− σ1) . . . (t− σm−1)

.
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then with an easy computation it is possible to show that the zeros of this function
are eigenalues of A and they are near the poles σi. In general we can seek an
approximate linear dependece by using the singular value decomposition Xm =
UmΣmV

H
m and choose c = vm. The problem of this approach is that there is no

theory to explain the convergence.

In later articles like [11], A. Ruhe proposed a different algorithm with a deeper
theoretical background preserving the main feature: the possibility to change shift.
The problem related with this second version is that the Ritz values are computed
by solving a Hessenberg GEP. Whereas in the last version [12] that we presented,
the Ritz values are computed as eigenvalues of a Hessenberg matrix. Moreover the
theory of convergence can be taken from the classical Arnoldi algorithm.

2.7 Practical issues

In this section we report some heuristics and recipes concerning the implementation
of the Rational Krylov algorithm as suggested in [11].

In the Rational Krylov algorithm 10 there are three important points:

• solve the linear system in the step 4,
• choice of the shifts,
• when to do a restart.

Assume we are interested in computing the eigenvalues of the pencil (A,B) in a
region of interest Ω ⊂ C, where Ω can be bounded or not. If this region is bounded
and we have no information about the distribution of eigenvalues then the first shift
σ1 has to be in the middle of Ω, or at least not near the border set.

If Ω is not bounded, e.g., we are interested in eigenvalues along real axis and
B = I, then we start with σ1 = ±‖A‖. Similar strategies can be used for the GEP
once we located the outermost eigenvalues (e.g. with Arnoldi algorithm).

When we are in the step 4 of the algorithm 10, for every iteration we need to solve
a linear system with the matrix A− σiB, then we can do a sparse LU factorization
(once reducing the bandwidth if needed) and keep the same shift for a few steps.

It is suggested to keep the same shift until enough Ritz values, say cstep, con-
verged. Usually cstep is a small number depending on the problem, in our test we
chose cstep = 2 and cstep = 4. Anyway if after a too larger number of steps, say
mstep, the Ritz values did not converge then it is better to change shift. After that
we will choose the next shift. The main strategy can be to choose the next shift as
the average of the cstep not converged Ritz values closest to the current shift. If the
Ritz values are clustered, then it is better to chose the next shift as the average of
the Ritz values in the bigger cluster.

From the numerical experimentation it seems that after a few steps where the
algorithm gathers information (building the Kylov subspace), the Ritz values start
to converge linearly to some eigenvalues. Then, if we did j steps of the Arnoldi
sequence, let us consider j1 the number of Ritz values we are interested (inside the
region of interest and not too far from the shift), then j − j1 are purgeable Ritz
values. The computational cost to do other k steps with (j − j1) purgeable Ritz
vectors is 4n(j − j1) where reorthogonalization is done for every step. Instead if we
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do a restart, the computational cost is j×j1×n (we neglected the cost of operations
with k as the transformation in Hessenberg form after restart because k << n). If
we purge the j − j1 unwanted Ritz vectors, the number of vectors will grow again.
If nothing special happens, when after restart we do j − j1 steps we are in te same
decision situation, then we can say that if doing a restart is cheaper than doing other
j − j1 steps with j − j1 unwanted Ritz vector, then it is better to do a restart. So
with k = j − j1 we will restart when

4n(j − j1)2 > njj1,

that is when

j > 1.6j1.

Anyway it is important to point out that this is a heuristic that works well for a
few cases. In our numerical experimentation we used an easier restarting strategy,
we restart when the length of the sequence is more that jmax and we kept jkept
Ritz values. It is worth recalling that a restart is performed to reduce the length of
the Arnoldi sequence and this is needed mainly for two reasons. The first is that
with a long sequence, convergence is faster (less steps are needed) but the size of
the reduced problem is big and every step is slow. The second reason to have a not
long sequence is to avoid the loss of orthogonality, then in a restart strategy we have
to consider also this point. Unfortunately, in many real problems, having a long
sequence is needed to arrive at convergence.

In the rational Krylov algorithm, restarting strategy is also connected to the idea
of lock and purge. If we are computing eigenvalues inside a region of interest Ω then
during restart we can purge Ritz values outside this region, it means that we will not
store them for the restart. It is worth pointing out that if we purge Ritz values near
the shift already converged, after restart they will converge again and this would
be a waste of resources. Then the idea is to take also them for the restarting, this
operation is called lock. Moreover, the comments reported in Section 2.3 still hold
true, we also need to take for the restart the sought Ritz values of which we want
to improve convergence.

Remark 2.7.1. At a glance we have:
• a good strategy is to keep the same shift σi for a few steps, e.g., untill cstep

Ritz pair converged, the number cstep depends on the problem, in general is
small;
• in order to solve the linear systems we perform a sparse LU factorization of
A− σiB;
• under the assumption that the Ritz value converges lineary, we can restart when
j > 1.6j1 where j1 are the wanted Ritz values, for instance inside the region of
interest and not far from the shift;
• during restart we can purge unwanted Ritz values and lock the ones already

converged near the shift. Moreover the sought Ritz values near convergence
will be also used for the restart.

If the goal is computing eigenvalues in a bounded set Ω ⊂ C we need to know
how many eigenalues are inside this region.
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In [7] a strategy is proposed based on residue theorem, the idea is to find a
method to compute

NΩ =
1

2πi

∫
∂Ω

f ′(z)

f(z)
dz,

where f(z) = det(A− zB), and NΩ is the number of eigenvalues inside Ω.
In Rational Krylov algorithm, as stop criterium we choose ωm(y) ≤ tol where

ωm(y) = hm+1,m|eHmy|, because we proved that ‖(A − σB)−1Vmy − θVmy‖ = ωm(y)
but in the algorithm there are a few sources of error, e.g., for every step we have
to solve a linear system, during the change of the shift we need to invert a matrix,
loss of orthogonality etc. If (λ1, z1), . . . (λm, zm) are the converged Ritz values,in
particular for the last ones, it holds

‖Azi − λiBzi‖ ≥ tol.

Anyway the computed Ritz pairs are a good estimation of eigenpairs, then we
need to refine. There are few strategies to refine, if we have a classic problem we
can use Rayleigh quotient iteration, in the general case instead we can use Shift–
and–Invert Arnoldi pointed in the Ritz value that we want to refine and starting
with the corresponding Ritz vector. We can also use the Shifted Inverse Power
method. In general after few steps numerical converge is reached. The problem is
that during the refine process ill–conditioned linear systems must be solved. For
example in the Rayleigh quotient for every step we need to solve a system with the
matrix A−µkI where after every step µk is closer to some eigenvalue of A, the same
happens with the Shifted Inverse Power Method. The idea suggested by Wilkinson
in [21] is to do a few steps with such methods that are faster, when the linear systems
become too ill–conditioned, take the last approximation to the eigenvector and use
it to start an Arnoldi sequence. The classic Arnoldi algorithm 1 converges to the
sought eigenvector (see Theorem 2.2.1), the convergence is slower but the algorithm
is stable.



Chapter 3

Nonlinear eigenvalue problem

The nonlinear eigenvalue problem (NLEP) can be formulated in the following way:

given A(·) : C→ Cn×n, compute the pairs (λ, x) such that A(λ)x = 0.

λ is called eigenvalue, x eigenvector and the pair (λ, x) is called eigenpair.
We can see A in different ways, for istance as a matrix depending on a parameter.

In this case, solving the NLEP means to find the values of this parameter which
make the matrix singular and then compute the nullspace. We can also see A as a
matrix with coefficients that are functions ai,j(λ). The first interpretation is useful
to understand the meaning of solving a NLEP, the second one is suitable to find
numerical algorithms to estimate the solutions.

It is important to point out that it is possible to write

A(λ) =
m∑
i=1

fi(λ)Bi. (3.1)

For instance, a naive way to write the application A(λ) in this form is

A(λ) =
n∑

i,j=0

ai,j(λ)Ei,j,

where Ei,j denote the matrices of the canonical basis of Rn×n, i.e., Ei,j has zero entries
except for the entry in position (i, j) which is 1. Here, we adopt the formulation of
the NLEP given in the form (3.1).

Usually, we are interested in computing the eigenvalues belonging to a given set
Ω ⊂ C analogously to the linear case. Moreover we suppose that fi(λ) is regular
enough. Note that the generalized (and then the classic) eigenvalue problem can be
formulated also as NLEP by setting A(λ) = A− λB.

If the functions fi(λ) are polynomials the problem is called polynomial eigenvalue
problem PEP and it is very easy to write an equivalent GEP. The basic idea of the
algorithms to solve NLEP is to write a GEP such that the eigenpairs (in Ω) of
this easier problem are good approximations to the eigenpairs (in Ω) of the original
problem, this operation is called linearization.

35
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The first algorithm that is presented in this thesis is HIRK (Hermite Interpolation
Rational Krylov) and the idea is to Hermite–interpolate the function A(λ) in a few
points and take advantage of this representation in solving the linearized problem
with the Rational Krylov algorithm presented in the previous chapter.

Another algorithm is NLRK (NonLinear Rational Krylov). This is an extension
of Rational Krylov algorithm for the nonlinear case and consists in estimate A(λ)
with linear interpolations. This second algorithm is faster but it works well just in
a few cases, e.g., if the NLEP is a small perturbation of a linear problem.

3.1 Rational Krylov based on Hermite interpola-

tions

The idea of Meerbergen et al. [18] is to replace the functions fi(λ) with polynomials
using Hermite interpolation. After that, it is very easy to write a GEP. The structure
of this GEP will be exploited and we will show that a suitable way to solve the
linearized problem is using Rational Krylov algorithm.

We will present a slight variant of the algorithm proposed in [18], in particular
the original algorithm uses the old version of Rational Krylov algorithm to solve the
linearized problem. We have modified the algorithm in order to use the last version
of Rational Krylov algorithm as presented the previous chapter.

In the next subsection we will recall basic ideas of Hermite interpolation.

3.1.1 Newton polynomials and Hermite interpolation

Let suppose we want interpolate a function f(x) at the points σ0, . . . , σN . That is,
we are looking for a polynomial pN(x) of degree N such that pN(σi) = f(σi). The
classical strategy is to use Lagrange polynomials. Given the interpolation points
σ0, . . . , σN , consider the Lagrange polynomials defined as

l
(N)
i (x) =

N∏
j=0

x− σj
σi − σj

, i ≤ N,

then we express the interpolation polynomial using the basis of Lagrange polynomials
that is

pN(x) =
N∑
i=0

α
(N)
i l

(N)
i (x).

The coefficients α
(N)
i are called interpolation coefficients. A drawback is that when

we want to add a new interpolation point using Lagrange interpolations, the inter-
polations coefficients already computed must be updated. That is, if we know the
interpolation polynomial pN at the nodes σ0, . . . , σN and we want to add another
interpolation point σN+1, then

pN+1(x) =
N+1∑
i=0

α
(N+1)
i l

(N+1)
i (x).



3.1. RATIONAL KRYLOV BASED ON HERMITE INTERPOLATIONS 37

All Lagrange basis polynomials have to be recalculated. Moreover α
(N)
i 6= α

(N+1)
i

for i ≤ N . Our goal is to build a linearization of a NLEP using the interpolation
coefficients, for this reason we prefer that adding an interpolation point does not
change already computed coefficients. This is possible using Newton polynomials.

Given the interpolation points σ0, . . . , σN , consider the Newton polynomials de-
fined as 

n0(x) := 1,

ni(x) :=
i−1∏
j=0

(x− σj).

Note that the degree of ni(x) is i (unlike the Lagrange polynomials which are of
the same degree). We want to express the interpolation polynomial pN as linear
combination of Newton polynomials.

pN(x) =
N∑
i=0

αini(x).

It is possible to prove that the coefficients of this linear combination are the divided
differences

αi = f [σ0, . . . , σi] .

The divided differences are defined asf [σi] := f(σi),

f [σν , . . . , σν+j] :=
f [σν+1, . . . , σν+j]− f [σν , . . . , σν+j−1]

σν+j − σν
.

Now we will give an easy algorithm to compute the coefficients αi based on the
divided differences table.

Consider the following table, called divided differences table

σ0 f [σ0]
σ1 f [σ1] f [σ0, σ1]
σ2 f [σ2] f [σ1, σ2] f [σ0, σ1, σ2]
σ3 f [σ3] f [σ2, σ3] f [σ1, σ2, σ3] f [σ0, σ1, σ2, σ3]
σ4 f [σ4] f [σ3, σ4] f [σ2, σ3, σ4] f [σ1, σ2, σ3, σ4] f [σ0, σ1, σ2, σ3, σ4]
...

...
...

...
...

...
. . .

It is easy to compute this table. For instance, using the definition of divided differ-
ences we can compute

f [σ1, σ2, σ3] =
f [σ2, σ3]− f [σ1, σ2]

σ3 − σ1
=

f [σ3]−f [σ2]
σ3−σ2 − f [σ2]−f [σ1]

σ2−σ1
σ3 − σ1

=

f(σ3)−f(σ2)
σ3−σ2 − f(σ2)−f(σ1)

σ2−σ1
σ3 − σ1

.

For the problem of interpolation we are interested in computing the diagonal
elements of this table but it is obvious that we need to compute all the table. This
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table gives us a recipe to build a matrix that we will call DD (divided differences
matrix) such that

DD(i, j) = f [σj−i, . . . , σi−1].

Then with a direct computation it is easy to see that the divided differences table
it is equivalent to

σ0 DD(1, 1)
σ1 DD(2, 1) DD(2, 2)
σ2 DD(3, 1) DD(3, 2) DD(3, 3)
σ3 DD(4, 1) DD(4, 2) DD(4, 3) DD(4, 4)
σ4 DD(5, 1) DD(5, 2) DD(5, 3) DD(5, 4) DD(5, 5)
...

...
...

...
...

...
. . .

We can build the matrix DD column by column, in fact using the definition of
divided differences we get

DD(i, 1) = f(σi−1),

DD(i, j) =
DD(i, j − 1)−DD(i− 1, j − 1)

σi−1 − σj−i
,

i ≥ j

j ≥ 2
.

At this point we have an algorithm to perform interpolation using Newton poly-
nomials. If we want to interpolate f(x) in the nodes σ0, . . . , σN then we need to
compute the matrix DD ∈ R(N+1)×(N+1), then define αi = DD(i + 1, i + 1) and the
interpolation polynomial is

pN(x) =
N∑
i=0

αini(x).

It is important to point out that if we want to add an interpolation point σN+1

we need to compute another row and another column of DD and then αN+1 =
DD(N + 2, N + 2), so we get

pN+1(x) =
N+1∑
i=0

αini(x).

Relying on the same ideas, we describe the Hermite interpolation. In this case
we are given nodes σ0, . . . , σN with the possibility of some repetition. In a certain
sense, we are interpolating more then one time on the same node. This means that
if the node σi appears k times in the sequence then the polynomial interpolates f
and the first k − 1 derivatives in σi, that is f (t)(σi) = p(t)(σi) for 1 ≤ t ≤ k − 1. To
perform this task we can use the same strategy applied to the Hermite interpolating
polynomial.
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Define

f [σi, . . . , σi︸ ︷︷ ︸
j + 1 times

] :=
f (j)(σi)

j!
.

Then the rule to compute the divided differences in this case is

f [σi] := f(σi),

f [σν , . . . , σν+j] :=
f [σν+1, . . . , σν+j]− f [σν , . . . , σν+j−1]

σν+j − σν
σν 6= σν+j,

f [σi, . . . , σi︸ ︷︷ ︸
j + 1 times

] :=
f (j)(σi)

j!
.

We can construct again the divided differences table. Nothing is changed, we just
need to pay attention when we compute f [σi, . . . , σi] (the same interpolation point).
For instance, like in the previous example, we want to compute f [σ0, σ1, σ2] where
σ1 = σ2. Then we have

f [σ1, σ2, σ3] = f [σ1, σ2, σ2] =
f [σ2, σ2]− f [σ1, σ2]

σ2 − σ1
=
f ′(σ2)− f [σ2]−f [σ1]

σ2−σ1

σ2 − σ1
=
f ′(σ2)− f(σ2)−f(σ1)

σ2−σ1

σ2 − σ1
.

With the same computation we can build the divided differences matrix using the
following rule

DD(i, 1) = f(σi−1),

DD(i, j) =
DD(i, j − 1)−DD(i− 1, j − 1)

σi−1 − σj−i
i ≥ j

j ≥ 2
,

DD(i, j) =
f (j−1)(σi)

(j − 1)!

i ≥ j

σi−1 = σi−j
.

Example 3. Consider the function f(x) = cos(2πx) and perform Hermite interpo-
lation

From this example we can understand that doing few interpolations in the same
point, like−0.6 or 0.6, can be crucial to have a good approximation. If we interpolate
more then one time where we already have a good approximation, like in 0, then
it is a waste of resources. Notice that the derivative of the function in 0 and the
derivative of p4(x) was already equal to 0, this means that p5(x) = p4(x).

3.1.2 Semianalytical computation of Hermite interpolation

Consider the function f , and the goal is Hermite–interpolating it at the points
σ0, . . . , σN using Newton polynomials. So we have

pN(x) =
N∑
i=0

αini(x).
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Figure 3.1: The blu line is the function, the red stars the interpolation points, the
red dashed line the interpolation polynomial
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In the previous subsection we have shown how to do it efficiently by using the
divided differences table/matrix. But if we need to make interpolation at a large
number of nodes this method is numerical unstable. For this reason sometimes
it is better to compute the coefficients semi–analytically. With this expression we
mean that in a practical implementation, part of the computation is performed
symbolically –say the computation of derivatives– and part is performed numerically,
say the evaluation of functions.

Suppose that the interpolation node σi is repeated mi times. Then the first
interpolation point σ0 is repeated m0 times. Let t0(x) be the Taylor series truncated
ad m0

t0(x) = f(σ0) + f ′(σ0)(x− σ0) + · · ·+ f (m0−1)(σ0)

(m0 − 1)!
(x− σ0)m0−1.

From this we get the first m0 coefficients of Hermite interpolation

αi =
f (i)(σ0)

i!
i = 0, . . . ,m0 − 1,
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Now let us define the new function

f1(x) =
f(x)− t0(x)

(x− σ0)m0
.

Using this new function again, we can compute the next m1 coefficients of Hemite
interpolation, in fact let t1(x) the Taylor series of f1(x) truncated ad m1 then

t1(x) = f1(σ1) + f ′1(σ1)(x− σ1) + · · ·+ f
(m1−1)
1 (σ1)

(m1 − 1)!
(x− σ1)m1−1,

then we have

αi =
f

(i)
1 (σ1)

i!
i = m0, . . . ,m1 − 1.

Again we define

f2(x) =
f1(x)− t1(x)

(x− σ1)m1

and iterate this process. We can summarize this method to compute the coefficients
of Hermite–interpolation in the algorithm 11.

Algorithm 11 Semianalytical computation of coefficients of Hermite interpolation

1: f0(x) := f(x)
2: for i = 0, . . . , N do
3: Compute Taylor series truncated to mi

ti(x) = fi(σi) + f ′i(σi)(x− σi) + · · ·+ f
(mi−1)
i (σi)

(mi − 1)!
(x− σi)mi−1.

4: Store the coefficients of Hermite interpolation

αk =
f

(k)
i (σi)

k!
k = mi−1, . . . ,mi − 1.

5: Define

fi+1(x) :=
fi(x)− ti(x)

(x− σi)mi
.

6: end for

We implemented this algorithm in MATLAB using the symbolic toolbox. In
a practical implementation we need to be careful because in every iteration the
function fi(x) becomes more and more complicated. In order to solve this problem
in MATLAB, after definition of fi(x), we can simplifying such expression with the
function simplify . In the algorithm 11 the use of this function is needed after
the step 5. The function simplify try (when possible) to simplify the form of
fi(x) for instance performing divisions and multiplications.
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Example 4. Consider the same example of [18] concerning the Hermite-interpolation
of the function f(x) = e−x at the points σi = 0.1, 0.2, 0.3, 0.4, 0.5 with mi = 5. It
is possible to show that the coefficients of this interpolation must decrease but if
we use the divided differences matrix to compute such coefficients in floating point
arithmetic at a certain point they will start to diverge to infinity. This does not
happen by computing the coefficients semi–analytically as shown in figure 3.2.

0 5 10 15 20
10−18

10−13

10−8

10−3

102

iteration

|α
i|

Figure 3.2: Stars indicate the norm of coefficients computed with divided differences
matrix, circles the norm of the coefficients computed semi–analytically

We can see the effect of these errors in figure 3.3. Therefore, when the number
of interpolation points is large, it is needed to compute the coefficients of Hermite
interpolation semi–analytically .

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Figure 3.3: Stars denote the interpolation points, red dotted line the interpolation
polynomial where we computed coefficients with the divided differences matrix. The
green dashed line is the interpolation polynomial where we computed coefficients
semi–analytically
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3.1.3 Hermite Interpolation Rational Krylov (HIRK)

Now we describe the core of the Hemrite interpolation rational Krylov method
(HIRK) presented in [18]. As already mentioned before, we can write A(λ) as

A(λ) =
m∑
i=1

fi(λ)Bi.

Let σ0, . . . , σN be some points where we want to interpolate the functions fi(λ)
(repetitions are allowed), then we can replace the functions fi(λ) with the Hermite
interpolations pi(λ). We have

PN (λ) =

m∑
j=1

Bjpj(λ) =

m∑
j=1

Bj

N∑
i=0

αi,jni(λ) =

N∑
i=0

 m∑
j=1

αi,jBj

ni(λ) =:

N∑
i=0

Aini(λ).

Then Pn(λ)x = 0 is a PEP. The following theorem provides a linearization of such
PEP.

Theorem 3.1.1 (Companion-type linearization). The pair (λ, x) 6= 0 is an eigenpair
of the PEP if and only if ANyN = λBNyN where

AN :=


A0 A1 A2 . . . AN
σ0I I

σ1I I
. . .

. . .

σN−1I I

 ,BN :=


0
I 0

I 0
. . .

. . .

I 0

 , yN :=



x
n1(λ)x
n2(λ)x
n3(λ)x

...
nN (λ)x


.

The proof of this theorem is a direct computation.

Remark 3.1.1. Starting from the NLEP defined by A(λ), Hermite–interpolating at
N + 1 points yields the PEP defined by PN . Using Theorem 3.1.1 we arrive at a
GEP defined by the pencil (AN ,BN). Then we can consider (AN ,BN) as linerization
of A(λ).

To understand why this is a linearization, in the sense that we expect that so-
lutions of GEP approximate solution of NLEP, we can restrict to the case of one-
dimensional problem where N = 1. In this case we are approximating the zeros of
a function with the zeros of the Hermite interpolating polynomial. It is important
to point out that the linearization can provide spurious eigenvalues, e.g., if we take
the classical eigenvalue problem and we consider it as NLEP, then the linearization
with N > 1 has n ·N eigenvalues meanwhile A has just n eigenvalues.

Observation 3.1.1. If we want to include an additional interpolation point, AN+1

and BN+1 are obtained by adding one block column to the right and one block row
at the bottom of the matrices AN and BN already computed.

An important step of the algorithm is the computation of the matrices Ai, then
it is important to focus on them. A practical way to build these matrices is to
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construct the following table: on the columns there are the interpolation coefficients
of fi and therefore on the rows there are the coefficients to construct Ai.

p1 p2 p3 . . . pm
A0 α0,1 α0,2 α0,3 . . . α0,m

A1 α1,1 α1,2 α1,3 . . . α1,m

A2 α2,1 α2,2 α2,3 . . . α2,m

...
...

...
...

. . .
...

AN αN,1 αN,2 αN,3 . . . αN,m

Then we have

Ai =
m∑
j=1

αi,jBj.

Computing AN+1 means adding an interpolation point σN+1 and then to compute
another coefficient of interpolation and write another row of this table. Then it is
possible to store implicitly the linearization using the interpolation coefficients αi,j.

There are four important lemmas that are the key of the algorithm that we will
present later on.

Lemma 3.1.1. Given AN and BN the linearization matrices and

yj = vec
(
y

[1]
j , y

[2]
j , . . . , y

[j+1]
j , 0, . . . , 0

)
,

where yj ∈ C(N+1)n and y
[i]
j ∈ Cn for i = 1, . . . , j + 1. Then for all j such that

1 ≤ j ≤ N the solution xj of the system

(AN − σjBN)xj = yj,

has the following structure

xj = vec
(
x

[1]
j , x

[2]
j , . . . , x

[j+1]
j , 0, . . . , 0

)
,

where again xj ∈ C(N+1)n and x
[i]
j ∈ Cn for i = 1, . . . , j + 1.

Proof. Expand the linear system (AN − σjBN)xj = yj, in order to simplify the

notation we define µ
(j)
i := σj − σi where i = 0, . . . , N − 1, then we have

A0 A1 . . . Aj Aj+1 Aj+2 . . . AN
−µ(j)

0 I I
. . .

. . .

−µ(j)
j−1I I

0 I

−µ(j)
j+1I I

. . .
. . .

−µ(j)
N−1I I





x
[1]
j

x
[2]
j
...

x
[j+1]
j

x
(j+2)
j

x
(j+3)
j
...
xN+1
j


=



y
[1]
j

y
[2]
j
...

y
[j+1]
j

0
0
...
0


.
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At this point the variables x
[i]
j for i > j + 1 are the solution of the subsystem

I

−µ(j)
j+1I I

. . .
. . .

−µ(j)
N−1I I




x
[j+2]
j

x
[j+3]
j
...

x
[N+1]
j

 =


0
0
...
0

 .

The matrix that defines this system is not singular so that the only solution is xij = 0
for i > j + 1

Now we apply the rational Krylov algorithm 10 for the GEP defined by the lin-
earization matrices AN and BN . To exploit the structure of such problem we choose
a particular starting vector as suggested by lemma 3.1.2 and the interpolations point
as shifts.

Lemma 3.1.2. Consider the GEP defined by linearization (AN ,BN). We solve it
with rational Krylov algorithm 10. We choose as shifts the interpolation points and
as starting vector

v1 := vec
(
v

[1]
1 , 0, . . . , 0

)
,

where v1 ∈ C(N+1)n and v
[1]
1 ∈ Cn. Then it holds that at the j-th step of rational

Krylov algorithm 10 the vectors of the Arnoldi sequence have the following structure

vk = vec
(
v

[1]
k , v

[2]
k , . . . , v

[j]
k , 0, . . . , 0

)
, for k ≤ j,

where v
[i]
k ∈ Cn for i = 1, . . . , j.

Proof. We prove this lemma by induction. For j = 1 there is nothing to prove. If
j = 2 then v1 is the starting vector, let v2 be the solution of

(AN − σ1BN)v2 = BNv1.

We can expand this system, the effect of the matrix BN is a block down–shift:

A0 A1 A2 A3 . . . AN
−µ(1)

0 I I
0 I

−µ(1)
2 I I

. . .
. . .

−µ(1)
N−1 I


v2 =



0

v
[1]
1

0
0
...
0


.

Using the previous lemma we have that the solution has the form

v2 = vec
(
v

[1]
2 , v

[2]
2 , 0, . . . , 0

)
.
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So that the only first two block of v2 are nonzero. At this point v2 is not the next
vector of the Arnoldi sequence. We need to apply normalization and after that we
modify v1 that takes the form

v1 = vec
(
v

[1]
1 , v

[2]
1 , 0, . . . , 0

)
.

In fact, in our version of rational Krylov algorithm, we change basis every time we
change shift. This concludes the proof for the case j = 2. Let now suppose that the
lemma holds for j, then we have that the vectors vk take the form

vk = vec
(
v

[1]
k , v

[2]
k , . . . , v

[j]
k , 0, . . . , 0

)
, for k ≤ j.

Consider the solution of the system

(AN − σjBN)vj+1 = BNvj,

and expand it so that it holds

A0 A1 . . . Aj Aj+1 Aj+2 . . . AN
−µj0I I

. . .
. . .

−µ(j)
j−1I I

0 I

−µ(j)
j+1I I

. . .
. . .

µ
(j)
N−1I I


vj+1 =



0

v
[1]
j
...

v
[j]
j

0
0
...
0


.

Using the previous lemma we have that the solution of such system has the form

vj+1 = vec (v
[1]
j+1, . . . , v

[j+1]
j+1 , 0, 0, . . . , 0).

This is not the next vector of the Arnoldi sequence. We need to apply normalization
and after that to change basis. This leads to a linear combination of the vk for
k ≤ j + 1. Then the new vectors of the basis have the first (k + 1)–blocks generally
nonzero while the remaining blocks are zero.

Lemma 3.1.3. At each iteration j of the rational Krylov algorithm 10, only the
top-left parts of the matrices AN − σjBN are used to compute the nonzero top parts
ṽj+1 of the vectors vj+1, i.e.,

(Aj − σjBj)ṽj+1 = Bj ṽj,

where

ṽj+1 = vec
(
v

[1]
j+1, v

[2]
j+1, . . . , v

[j+1]
j+1

)
,

and

ṽj = vec
(
v

[1]
j , v

[2]
j , . . . , v

[j]
j , 0

)
,
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The proof of this lemma is a direct consequence of the previous lemma.

Lemma 3.1.4. The linear system (Aj − σjBj)ṽj+1 = Bj ṽj can be efficiently solved
by using the following equations

A(σj)v
[1]
j+1 = y

(j)
0 ,

where

y
(j)
0 = −

j∑
i=1

Aj

(
v

[i]
j +

i−1∑
k=1

(
i−1∏
l=k

µ
(j)
l

)
v

[k]
j

)
,

and

v
[2]
j+1 = v

[1]
j + µ

(j)
0 v

[1]
j+1,

v
[3]
j+1 = v

[2]
j + µ

(j)
1 v

[2]
j+1,

... ,

v
[j+1]
j+1 = v

[j]
j + µ

(j)
j−1v

[j]
j+1.

Proof. Expand the system (Aj − σjBj)ṽj+1 = Bj ṽj , recall that Bj, perform a block
down–shift and get

A0 A1 A2 . . . Aj

−µ(j)
0 I I

−µ(j)
1 I I

. . .
. . .

−µ(j)
j−1 I





v
[1]
j+1

v
[2]
j+1

v
[3]
j+1

...

v
[j+1]
j+1


=



0

v
[1]
j

v
[2]
j

...

v
[j]
j


.

Now the block equations from the second to the last yield

v
[2]
j+1 = v

[1]
j + µ

(j)
0 v

[1]
j+1,

v
[3]
j+1 = v

[2]
j + µ

(j)
1 v

[2]
j+1,

... ,

v
[j+1]
j+1 = v

[j]
j + µ

(j)
j−1v

[j]
j+1,

that is a part of the thesis. Consider the first equation

j∑
i=0

Aiv
[i]
j+1 = 0.
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Using the previous equations yields

A1v
[1]
j+1 + A2v

[2]
j+1 + A3v

[3]
j+1 + · · ·+ Ajv

[j]
j+1 = 0,

A1v
[1]
j+1 + A2(v

[1]
j + µ

(j)
0 v

[1]
j+1) + A3(v

[2]
j + µ

(j)
1 v

[2]
j+1) + · · ·+ Aj(v

[j]
j + µ

(j)
j−1v

[j]
j+1) = 0.

Recursively replacing v
[i]
j+1 in the previous formula we get(

A0 + µ
(j)
0 A1 + µ

(j)
0 µ

(j)
1 A2 + µ

(j)
0 µ

(j)
1 µ

(j)
2 A3 + · · ·+ µ

(j)
0 µ

(j)
1 . . . µ

(j)
j−1Aj

)
v

[1]
j+1 =

− A1v
[1]
j − A2

(
v

[2]
j + µ

[j]
1 v

[1]
j

)
− A3

(
v

[3]
j + µ

(j)
2 v

[2]
j + µ

(j)
1 µ

(j)
2 v

[1]
j

)
− . . .

− Aj
(
v

[j]
j + µ

(j)
j−1v

[j−1]
j + µ

(j)
j−2µ

(j)
j−1v

[j−2]
j + · · ·+ µ

(j)
1 µ

[j]
2 . . . µ

(j)
j−1v

[1]
j

)
.

Note that the left-hand side is equal to PN(σj), that is the evaluation of the poly-
nomials that interpolate A(λ), then it holds that PN(σj) = A(σj). The right part is
what we wanted.

At this point we have an algorithm for the NLEP, we start by linearising A(λ)
in σ0, after that we choose a starting vector v1 ∈ Cn and a shift σ1 and start the
Arnoldi sequence.

At each step it holds

(Aj − σjBj)−1BjṼj = H̃j,j−1Vj−1,

and we need to expand the vectors vi by adding zeros block so that at the j-th step it
holds that vi ∈ Cjn. This process is summarized in the algorithm 12. At step 11 we
use lemma 3.1.4 to effectively compute the next vector of the sequence. Moreover,
if the same shift is repeated more times, then it is convenient to compute an LU
factorization of A(σi). Of course, we do not store the matrices Aj and Bj but we
just need to store the divided difference matrices Aj. If the problem has the form
3.1 then we just need to store the interpolation coefficients αi,j.

In algorithm 12 we wanted to emphasize that the process can be understood as
expansion and rational Krylov step. It is easy to see that this is the Rational Krylov
algorithm 10 applied to a matrix that for every step becomes bigger and bigger. But
the new elements that we add do not affect the previous elements of the basis Vj.
We can look at the NLEP as to a linear eigenvalue problem with matrices of the
pencil that have infinite elements. Because we have an (infinite) linear problem we
can use also tipical strategy of linear algorithms as thick restart 2.3.
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Algorithm 12 HIRK (Hermite Interpolation Rational Krylov Method)

1: Choose the shift σ0 and the starting vector v1.
2: for j = 1, . . . ,m do
3: EXPANSION PHASE.
4: Choose the shift σj.
5: Compute the next divided difference: Aj.
6: Expand Aj, Bj and Vj.
7: RATIONAL KRYLOV STEP
8: if σj−1 6= σj then
9: Change the basis Vj → Ṽj and the matrix Hj,j−1 → H̃j,j−1

(according to the algorithm of Rational Krylov 10)
such that the Arnoldi sequence is

(Aj − σjBj)−1BjṼj = H̃j,j−1Vj−1.

10: end if
11: Compute next vector of the sequence:

r = (Aj − σjBj)−1Bjvj,
r = v − Vjhj, where hj = V H

j r orthogonalization,

vj+1 = r/hj+1,j, where hj+1,j = ‖r‖ normalization.

12: Compute the eigenpairs (θi, yi) for i = 1, . . . , j of Hj,j−1 and then the Ritz
pairs (θi, Vjyi).

13: Test the convergence for the NLEP.
14: end for
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3.1.4 Exploiting low rank structure of coefficient matrices

Consider the NLEP defined by

A(λ) =
m∑
i=1

fi(λ)Bi.

In many applications, the matrices Bi have a low rank structure, the goal of this
section is to exploit this property. In general, we can write A(λ) by splitting the
polynomial part and nonpolynomial part as

A(λ) =

p∑
j=0

λjBj︸ ︷︷ ︸
polynomial

+
m∑
j=1

fj(λ)Cj︸ ︷︷ ︸
nonpolynomial

.

We will assume that matrices Ci have low rank revealing decompositions

Cj = LjU
H
j with Lj ∈ Cn×rj , UH

j ∈ Crj×n,

where rj is the rank of Cj. Now let us interpolate the NLEP at the points σ0, σ1, . . . , σN .
Let pj be the polynomial that interpolates λj (note that the degree is less then p)
and qj the polynomial that interpolate fj. Then we have

PN(λ) =

p∑
j=0

Bjpj(λ) +
m∑
j=1

Cjqj(λ)

=

p∑
j=0

Bj

p∑
i=0

βi,jni(λ) +
m∑
j=1

Cj

N∑
i=0

γi,jni(λ)

=

p∑
i=0

(
p∑
j=0

βi,jBj

)
ni(λ) +

N∑
i=0

(
m∑
j=1

γi,jCj

)
ni(λ).

Now define

B̃i :=

p∑
j=0

βi,jBj, C̃i :=
m∑
j=1

γi,jCj.

Then we have

PN(λ) =

p∑
i=0

B̃ini(λ) +
N∑
i=0

C̃ini(λ) =

p∑
i=0

(
B̃i + C̃i

)
ni(λ) +

N∑
i=p+1

C̃ini(λ).

As we did in previous subsection PN(λ) define the PEP which we expect the
eigenpairs approximate the eigenpairs of the NLEP. Define the matrices

L̃i := (γi,1L1|γi,2L2| . . . |γi,mLm) ,

Ũ := (U1|U2| . . . |Um) ,

where L̃i, Ũ ∈ Cn×r with r = r1 + . . . rm. At this point we are ready to extend the
results of the previous subsection.
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Theorem 3.1.2 (Low–rank companion-type linearization). The pair (λ, x) 6= 0 is

an eigenpair of the PEP if and only if ÃN ỹN = λB̃N ỹN where

ÃN =



B̃0 + C̃0 B̃1 + C̃1 . . . B̃p + C̃p L̃p+1 L̃p+2 . . . L̃N
σ0I I

. . .
. . .

σp−1I I

σpŨ
H I

. . .
. . .

σN−1I I



B̃N =



I
. . .

I

ŨH

. . .

I


ỹN =



x
n1(λ)x

...
np(λ)x

np+1(λ)Ũ
Hx

np+2(λ)Ũ
Hx

...

nN (λ)Ũ
H


Observation 3.1.2. If N < p then the linearization is equivalent to the companion–
tipe linearization done by theorem 3.1.1. If N > p the size of the identities on the
block diagonal are different, this point will be emphasized later on.

Lemma 3.1.1 holds with the difference that this time the vectors have different
size block structure, in particular y

[i]
j , x

[i]
j ∈ Cn if i ≤ p + 1 and y

[i]
j , x

[i]
j ∈ Cr if

i ≥ p+ 2. As in lemma 3.1.2 we choose as starting vector

v1 = vec
(
v

[1]
1 , 0, . . . , 0

)
,

and again we have that at the j-th step of rational Krylov algorithm 10 the vectors
of Arnoldi sequence have the following structure

vk = vec
(
v

[1]
k , v

[2]
k , . . . , v

[j]
k , 0, . . . , 0

)
, for k ≤ j,

where v
[i]
k ∈ Cn if i ≤ p+ 1 and v

[i]
k ∈ Cr if i ≥ p+ 2. Moreover lemma 3.1.3 holds.

These results are easy to prove, the critical part is to compute a formula to
extend the Arnoldi sequence as in lemma 3.1.4.

Lemma 3.1.5. The linear system (Aj − σjBj)ṽj+1 = Bj ṽj can be efficiently solved
by using the following equations

A(σj)v
[1]
j+1 = y

(j)
0 ,
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where

y
(j)
0 =−

p∑
i=1

(
B̃i + C̃i

)(
v

[i]
j +

i−1∑
k=1

(
i−1∏
l=k

µ
(j)
l

)
v

[k]
j

)
+

− C̃p+1

(
v

[p+1]
j +

p∑
k=1

(
p∏
l=k

µ
(j)
l

)
v

[k]
j

)
+

−
j∑

i=p+2

C̃i

(
p+1∑
k=1

(
i−1∏
l=k

µ
(j)
l

)
v

[k]
j

)
+

−
j∑

i=p+2

L̃i

(
v

[i]
j +

i−1∑
k=p+2

(
i−1∏
l=k

µ
(j)
l

)
v

[k]
j

)

and

v
[k+1]
j+1 = v

[k]
j + µ

(j)
k−1v

[k]
j+1 if j 6= p+ 2

v
[p+2]
j+1 = ŨH

(
v

[p+1]
j + µ(j)

p v
[p+1]
j+1

)

The advantage in exploiting the low rank property is that the vectors of the
sequence are shorter and the Gram–Smith process is faster.

3.2 Iterative projection methods

In this section we will present another class of algorithms based on Rational Krylov
method for the linear case. These algorithms are fast but less effective and work
just on some NLEP. In particular they are based on the approximation of A(λ)
with a linear interpolation and as we expect they work nice if the NLEP is a small
perturbation of a linear problem or if we are interested in eigenvalues in a region
where the NLEP is almost linear.

The original idea of Axel Ruhe can be found in [14] and other works of the same
author. We prefer to follow the description given by Elias Jarlebring in [6] and
[5]. In this class of algorithms it is exended the idea of Arnoldi algorithms for the
nonlinear case and, as we will explain, it is possible to change shift at every step
solving a projected eigenvalue problem.

In order to understand the most efficient algorithm that we will call Nonlinear
Rational Krylov, or shortly, NLRK, we will present firstly an inefficient algorithm
called regula falsi. At the end of the chapter will be showed that NLEP is a particular
case of a largest class of algorithms called iterative projection algorithms.
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3.2.1 Regula falsi

Given the matrix-function A(λ) we use the Lagrange interpolation between two
points σ (pole) and λ1 (shift), then we have

A(λ) =
λ− λ1

σ − λ1

A(σ) +
λ− σ
λ1 − σ

A(λ1) + highter order terms.

If we neglect the higher order terms we can approximate the NLEP A(λ)x = 0 with

A(σ)−1A(λ1)x = θx,

where θ = (λ − λ1)/(λ − σ). In other words we can solve the GEP given by the
pencil (A(σ), A(λ1)) and then if (θ, x) is an eigenpair of such problem we compute

λ = λ1 +
θ

1− θ
(λ1 − σ),

and (λ, x) is an approximation of an eigenpair of the NLEP. For large θ we have that
the approximation given by λ is near σ and for small θ we have that λ approximate
eigenvalues near λ1. In general the other eigenvalues of the linearization do not
provide a good approximation for the NLEP. Then we are interested only in the
smallest eigenvalues of the linearized problem. As we know from theorem 2.2.3 the
Arnoldi algorithm is suitable for this task. Then we will use the Arnoldi algorithm
to compute the outermost eigenvalues of the linearization provided by (A(σ), A(λ1)),
in particular we will choose the smallest λ2 and we will use it as next shift. This is
the idea of the regula falsi, we can summarize this process in the algorithm 13.

Algorithm 13 Regula falsi

1: Choose a pole σ and the first shift λ1.
2: for j = 1, . . . ,m do
3: Compute θj the smallest (in norm) eigenvalue of the linearization provided by

(A(σ), A(λj−1))
4:

λj = λj−1 +
θ

1− θ
(λj−1 − σ),

5: end for

Then the strategy is to choose σ and θ1 inside the zone of interest Ω where we
want to compute the eigenvalues of the NLEP. After each step, we can change shift
in order to improve the approximation given by λj. With this algorithm we can
approximate one eigenvalue of the NLEP or in general the eigenvalues near λj. It
turns out that this is not an efficient algorithm, we can use it if the problem is not
big or as rafinement method.

3.2.2 Nonlinear Rational Krylov (NLKR)

The idea is to merge the Arnoldi and regula falsi algorithm. We will perform steps
of the Arnoldi algorithm by changing shift at every iteration like in regula falsi and
we also update the projection matrix (this step is not needed in linear case).
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Define the matrix–function T (λ) := A(σ)−1A(λ). As we already said, the shift
λj is changed at every step. Let us now introduce a new definition

Definition 3.2.1 (Generalized Arnoldi’s sequence). Given the matrix–function A(λ),
a shift λm and a pole σ, then a sequence of vectors v1, . . . , vm is called generalized
Arnoldi’s sequence if it exists a Hessenberg matrix Hm+1,m with positive elements in
the subdiagonal such that

A(σ)−1A(λm)Vm = Vm+1Hm+1,m

Now we will show how to generate inductively a generalized Arnoldi sequence.
Suppose we have a generalized Arnoldi sequence (this can hold approximately) of
length j − 1.

T (λj−1)Vj−1 = VjHj,j−1.

Then we want to perform another step of Arnoldi sequence by changing shift. For
the nonlinear case we expect that it is needed to upload the projection matrix Hj,j−1.
Then in the next step we require that

T (λj)Vj = Vj+1H̄j+1,j. (3.2)

Now we propose a method to update the projection matrix. Suppose we can
express

H̄j+1,j =

(
αHj,j−1 − βIj,j−1 kj

0 ‖r⊥‖

)
, (3.3)

where

kj = V H
j rj, r⊥ = rj − VjV H

j rj, rj = T (λj)vj.

Note that in the linear case we choose α = 1 and β = 0. We want to choose α and β
in order to approximately fulfill the generalized Arnoldi sequence. If we substitute
(3.3) in (3.2) in order to approximately fulfill the generalized Arnoldi’s sequence we
get

T (λj)Vj = [T (λj)Vj−1, rj] =

Vj+1H̄j+1,j = [Vj(αHj,j−1 − βIj,j−1), Vjkj + ‖r⊥‖vj+1]

= [αT (λj−1)Vj−1 − βVj−1, rj]

= [(αT (λj−1)− βI)Vj−1, rj].

If we impose that the relation holds componentwise we get

T (λj)Vj−1 = (αT (λj−1)− βI)Vj−1.

Then a sufficient condition in order that this relation is satisfied is to impose that

T (λj) = αT (λj−1)− βI.
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At this point, in order to find a reasonable choice of the parameters α and β we have
to Lagrange–interpolate T (λ) between λj−1 and σ and to evaluate in λj. Notice that
T (σ) = I. Then we have

T (λj) =
λj − σ
λj−1 − σ

T (λj−1)− λj − λj−1

λj − σ
I.

Therefore a reasonable and possible choice of such parameters is
α =

λj − σ
λj−1 − σ

β =
λj − λj−1

λj − σ

Now we design a strategy to choose the shifts. The first one will be chosen in the
region of interest. In general we wish that λj is an approximation of one eigenvalue
of A(λ) and we already have shown that with the Lagrange–interpolation when we
compute the eigenvalues of the pencil (A(σ), A(λj)), the smallest θ is such that

λj+1 = λj +
θ

1− θ
(λj − σ)

is an estimation of one eigenvalue of the NLEP near λj. Then with this algorithm
the sequence λj will estimate better and better an eigenvalue of the NLEP.

With this choice of the next shift we have a better way to write the parameters
α =

1

1− θ

β =
θ

1− θ

At this point we can understand why NLRK works well just with NLEP that are
a small perturbation of linear eigenvalues problem. In fact the point is that a linear
approximation is good if we are approximating a near–linear function. Sometimes
it can be difficult to understand when this can be done. A practical way to check it
is to choose a tolerance (like tol = 10−5 or bigger, depending on the problem) and
stop the algorithm when

‖A(λj)Vj − A(σ)Vj+1Hj+1,j‖ > tol.

Sometimes in order to avoid this problem we can take the same shift for a few steps.
We are ready to write a preliminary version of the NLRK see algorithm 14 (this is
actually the first version of the algorithm proposed by Ruhe [13]).

The updating process does not work well for the initial steps in the iteration as
the approximation varies a lot. A naive way to solve this problem is perform at
the start a couple of exact steps without changing shift. That is the reason for the
if–statement in step 8, MINIT is selected as small as possible.
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Algorithm 14 NLRK (preliminary version)

1: Choose a starting vector v1 with ‖v1‖ = 1, a starting shift λ1 and a pole σ.
2: r = A(σ)−1A(λ1)v1

3: for j = 1, 2, . . . until convergence do
4: Orthogonalize hj = V Hr, r⊥ = r − V hj
5: hj+1,j = ‖r⊥‖
6: Compute the smallest (in norm) eigenpair (θ, y) of Hj,j

7: Set (θ, Vjy) (Ritz pair)
8: if j > MINIT then
9:

λj+1 = λj +
θ

1− θ
(λj − σ)

10: Update H

Hj+1,j =
1

1− θ
Hj+1,j −

θ

1− θ
Ij+1,j

11: else
12: λj+1 = λj
13: end if
14: vj+1 = r⊥/‖r⊥‖
15: r = A(σ)−1A(λj+1)vj+1

16: end for

In this version of the algorithm at each step the eigenpairs of the projection of
the pencil (A(σ), A(λj)) are computed, that is a linearization of the NLEP. It means
that we compute the eigenpairs of V A(σ)−1A(λj)V

H that is an approximation of the
projected NLEP V HA(σ)−1A(λ)V . The idea to improve the algorithm is to compute
instead the eigenpairs of the projected original NLEP. This means that we compute
directly the eigenpairs of V HA(σ)−1A(λ)V . Note that the projected NLEP is small
sized.

We have defined the generalized Arnoldi sequence 3.2.1 as

T (λj)Vj = Vj+1Hj+1,j,

In the next step we have (by updating the projection H as in algorithm 14 step 10 )

T (λj+1)Vj+1 = Vj+2H̄j+2,j+1.

It is not difficult, by computing componentwise, to obtain

T (λj+1)Vj = VjH̄j,j + vj+1e
H
j . (3.4)

It is worth pointing out that these relations hold approximately and that they be-
came sharp in the linear case.
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Consider the linear case and let (θ, s) be an eigenpair of Hj,j (before the update,
algorithm 14 step 7). After the update, it holds that H̄j,js = 0, and multiplying
(3.4) by s yields

T (λj+1)Vjs = hj+1vj+1e
H
j s = hj+1vj+1sj. (3.5)

Equation (3.5) tells us that T (λj+1)Vjs is orthogonal to Vj (because is a multiple of
vj+1). This does not hold in the nonlinear case but we can enforce it to hold.

From (3.5) we have that

T [Vj−1 Vjs] = Vj[H̄j,j−1 kj] + hj+1,jsjvj+1e
H
j , (3.6)

where kj = V H
j T (λj+1)Vjs. We can rewrite (3.6) as

TVj

(
Ij−1 s̃

0 sj

)
= Vj[H̄j,j−1 kj] + hj+1,jsjvj+1e

H
j , (3.7)

where s̃ is the leading j−1 vector of s. Now we multiply by the inverse of the matrix
in brackets from the right and by V H

j and we get

V H
j T (λj+1)Vj = [H̄j,j−1 kj]

(
Ij−1 −s−1

j s̃
0 s−1

j

)
= [H̄j,j−1 − s−1

j H̄j,j−1s̃+ s−1
j kj].

Using that H̄j,js = H̄j,j−1s̃+ sjhj = 0 we have

V H
j T (λj+1)Vj = [Hj,j−1 hj − s−1

j kj].

Notice that in the linear case kj = 0 and all these computations are useless.
The idea of Ruhe ([14] and [5]) is to choose the next vector of the sequence

(algorithm 14 step 15) as r := T (λj+1)Vjs, vj+1 := r/‖r‖, (according to (3.5))
hj+1,j := ‖r‖/sj and to modify the last column of H̄j,j by replacing it with hj−s−1

j kj.
After that (λj+1, s) and H̄ will be updated according to the steps 7, 9 and 10 of
algorithm 14. These operations will be repeated till ‖kj‖ becomes small enough.
These iterations are called inner iterations. We can summarize this in the final
version of the algorithm NLRK 15. In the next subsection we will explain how to
change pole.

As we already said, the inner iterations are inside the while, instead the rest is
the outer iteration.

The strategy to choose the next θ and s (step 20) is to select the Ritz value not
converging near to the current pole.

Lemma 3.2.1. If the inner iterations converges, then it converges to a pair (λ̂, x),

where x = V s, and (λ̃, s) is an eigenpair of the projected nonlinear eigenproblem
V H
j T (λ)Vj.

Proof. At the i–th inner iteration (and j-th outer iteration) it holds

‖k(i)
j ‖ = ‖V H

j T (λ(i))Vjs‖.

If ‖k(i)
j ‖ → 0 then V H

j T (λ̂)Vjs = 0.
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Algorithm 15 NLRK (final version)

1: Choose a starting vector v1 with ‖v1‖ = 1, a starting shift λ1 and a pole σ and
set j = 1.

2: OUTER ITERATION
3: Set hj = 0; s = ej = (0, . . . , 0, 1)H ∈ Rj;x = vj;
4: Compute r = A(σ)−1A(λ)x and kj = V H

j r
5: while ‖kJ‖ > ResTol do
6: INNER ITERATION
7: Orthogonalize r = r − V kj
8: Set hj = hj + s−1

j kj
9: Compute (θ, s) smallest eigenpair of Hj,j

10: x = Vjs
11: Update λ = λ+ θ

1−θ (λ− θ)
12: Update Hj,j = 1

1−θHj,j − θ
1−θI

13: Compute r = A(σ)−1A(λ)x and kj = V H
j r

14: end while
15: Compute hj+1,j = ‖r‖/sj
16: if |hj+1,jsj| > EigTol then
17: vj+1 = r/‖r‖; j = j + 1; GOTO 3
18: end if
19: Store (θ, x) as eigenpair
20: If more eigenvalues are wanted, choose the next θ and s, and GOTO 10

It can happen that the inner iterations do not converge. For this reason, in the
implementation it is convenient to choose a maximum number of inner iterations.
In case we exceed this number the algorithm will continue with the outer iterations.
In certain cases it happens that the inner iterations do not converge at a step j but
the algorithm still works. So far there is no proofs/condition to have convergence
of the inner iteration. In our numerical test it was sufficient to set the maximum
number of inner iterations to 20.

Remark 3.2.1. In the first version or NLRK (algorithm 14) we choose next shift
as the smallest eigenvalue of the projected linearization of the NLEP. In the final
version of NLEP (algorithm 15) we choose the next shift as an eigenvalue of the
projected NLEP. Also in this last version of the algorithm for every step we have
that the generalized Arnoldi sequence 3.2.1 approximately holds.

Updates of pole

Consider the problem of updating the shift and the pole. If we already performed
j steps of the algorithm and the current pole–shift is (σ, λ) the generalized Arnoldi
sequence holds approximately

A(σ)−1A(λ)Vj = Vj+1Hj+1,j.

Now we want to change the shift–pole and use the pair (σ̄, λ̄), the idea to do
that is very similar to the linear case (chapter 2 section 2.6). Under the hypothesis
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that the NLEP is a small perturbation of a linear eigevalue problem and that the
new pair (σ̄, λ̄) is near the old one (σ, λ), then it holds approximately (Lagrange
interpolation) that

A(λ) =
λ− σ̄
λ̄− σ̄

A(λ̄) +
λ̄− λ
λ̄− σ̄

A(σ̄)

A(σ) =
σ − σ̄
λ̄− σ̄

A(λ̄) +
λ̄− σ
λ̄− σ̄

A(σ̄)

Substituting these relations in the generalized Arnoldi sequence we have

A(λ̄)Vj+1Kj+1,j = A(σ̄)Vj+1Lj+1,j, (3.8)

where

Kj+1,j =
λ− σ̄
λ̄− σ̄

Ij+1,j −
σ − σ̄
λ̄− σ̄

Hj+1,j,

Lj+1,j =
λ̄− σ
λ̄− σ̄

Hj+1,j −
λ̄− λ
λ̄− σ̄

Ij+1,j.

At this point, starting from (3.8) with a QR factorization of Kj+1,j we get

A(λ̄)Vj+1Qj+1,j+1

(
Rj,j

0

)
= A(σ̄)Vj+1Lj+1,j,

and then

A(λ̄)Vj+1Qj+1,j = A(σ̄)Vj+1Qj+1,j+1Q
H
j+1,j+1Lj+1,jR

−1
j,j .

Using theorem 2.3.1 on the matrix QH
j+1,j+1Lj+1,jR

−1
j,j , we have

A(λ̄)Vj+1Qj+1,j = A(σ̄)Vj+1

(
Pj,j 0
0 1

)
H̃j+1,jP

H
j,j.

Let us define the new basis as

Wj+1 = Vj+1Qj+1,j+1

(
Pj,j 0
0 1

)
.

Then we finally have

A(λ̄)Wj = A(σ)Wj+1H̃j+1,j.

This last relation is a generalized Arnoldi sequence with the new shift–pole (λ̄, σ̄).
In practical applications the shift is never changed we just change the pole. The
same pole will be fixed for few step till enough Ritz values have converged. Then
as before it can be useful to compute a sparse LU factorization (if needed reducing
the bandwidth). Usually the strategy to change the pole depends on the problem.
A naive idea can be to choose a convex combination between the old pole and the
new shift.
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Thick restart

During the execution of the algorithm NLRK it can happen that the dimension of
the basis Vj becomes too big and a restart is needed. Our aim is to not discard
information taken till now. Therefore we want to lock converged Ritz pairs and
purge the others. We can repeat exacly the same computations done in the linear
case (see subsection 2.3).

Now we will show how to make it in the nonlinear case. For details we refer to
the linear case already explained before.

Let us start from the generalized Arnoldi sequence

A(σ)−1A(λj)Vj = Vj+1Hj+1,j,

with the aim to lock the Ritz values θ1, . . . , θk. Then we have (subsection 2.3))

A(σ)−1A(λj)VjPj,j = Vj+1

(
Pj,j 0
0 1

)


θ1 ∗ ∗ ∗ ∗ . . . ∗
θ2 ∗ ∗ ∗ . . . ∗

. . . ∗ ∗ . . . ∗
θk ∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

∗ ∗ . . . ∗ ∗ . . . ∗


.

If we define

Wj+1 =

(
Pj,j 0
0 1

)
Vj+1,

and W̃k+1 = [w1| . . . |wk|wj+1] then we have

A(σ)−1A(λj)W̃k = W̃k+1


θ1 ∗ ∗ ∗

θ2 ∗ ∗
. . . ∗

θk
∗ ∗ . . . ∗

 .

Using theorem 2.3.1 we have

A(σ)−1A(λj)W̃kPk,k = Wk+1

(
Pk,k 0

0 1

)
H̃k+1,k.

Let us define

Ṽk+1 := W̃k+1

(
P 0
0 1

)
,

Then we have

A(σ)−1A(λj)Ṽk = Ṽk+1H̃k+1,k.
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The eigenvalues of H̃k,k are the Ritz values that we wanted to lock. Heuristically
it seems that a hard purging must be done. It means that every time that a Ritz
value converges we lock it together with the other converged Ritz values and purge
all the others except the second smallest one (that still did not converged), that
hopefully will be the next to converge.

We recall that in the locking process we cannot chose only converged Ritz values
otherwise a break down occurs. Moreover if θ1 is the smallest eigenvalue of Hj+1,j

and it converged, and if θ2 is the second smallest eigenvalue, then the idea is to
change shift according to step 9 of the algorithm 15 and update H according to step
10. At this point we can complete the algorithm 15. When a Ritz pair converges a
hard purge will be performed and after a few steps we can change pole.

3.2.3 Iterative projection method

As explained in previous section, performing inner iterations is a way to solve the
projected NLEP. Then the idea of Jarlebring [6] is to use also other algorithms to
solve such projected problem, see algorithm 16.

Algorithm 16 Iterative projection method

1: Choose a unitary starting vector v1, initial shift λ and pole σ
2: for j = 1, 2, . . . untill convergence do
3: Solve the projected eigenproblem V HA(σ)−1A(λ)V s = 0 for (λ, s)
4: Compute the Ritz vector x = V s and the residual r = A(σ)−1A(λ)x
5: Orthogonalize r = r − V V Hr
6: Expand the search space V = [V, r/‖r‖]
7: end for

It is clear that NLRK is a particular case of algorithm 16 where the inner iter-
ations are used to solve the projected eigenproblem. Moreover it is worth pointing
out that projected eigenproblems are small sized so that we can use more expen-
sive/sharp algorithms. For details see [6].
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Chapter 4

Applications

In this chapter, a few application of linear and nonlinear eigenproblems are presented
together with some experiments in order to test the algorithms presentend in this
thesis. In particular it is pointed out when the Rational Krylov works better than
the shifted–and–inverted Arnoldi. In the nonlinear case, it is shown how to use the
algorithms presented and which errors can occur. All the implementations of the
algorithms are done in a matlab-environment [8] on a quad core amd athlon ii x4 640
processor running Linux. For the last example of the set reported in this chapter, it
was used FreeFem++ [4] to discretize the problem.

4.1 Linear eigenvalue problems

A few non-Hermitian eigenvalue problems can be found in the collection [1], we
tested the algorithms on few of them and on a classic problem of fluid dynamics.

4.1.1 Tubolar reactor model

Let us start with a problem that arises from computational fluid dynamics [1].
The conservation of reactant and energy in a homogeneous tube of length L in

dimensionless form is modeled by the differential equation:

L

v

dy

dt
= − 1

Pem

∂2y

∂X2
+
∂y

∂X
+Dyeγ−γT

−1

,

L

v

dT

dt
= − 1

Peh

∂2T

∂X2
+
∂T

∂X
+ β(T − T0)−BDyeγ−γT−1

,

where y and T represent concentration and temperature, and 0 ≤ X ≤ 1 denote the
spatial coordinate. The boundary conditions are y′(0) = Pemy(0), T ′(0) = PehT (0),
y′(1) = 0 and T ′(1) = 0. The parameters in the differential equation are set to
Pem = Peh = 5, B = 0, 5, γ = 25; β = 3, 5 and D = 0, 2662.

The method of lines is used for the numerical solution of this differential equation
and central differences are used to semi–discretize it in space.

For x = (y1, T1, y2, T2, . . . , yN/2, TN/2) the equations can be written as ẋ = Ax.
With the discretization step h = 1/50 we get the Jacobi matrix A ∈ R100×100 where A
is a banded matrix with bandwidth 5. In order to choose a stable time discretization
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it is needed to compute the rightmost eigenvalues. In particular it can be needed to
compute a big number of eigenvalues in order to choose a time discretization with a
large step ∆t that is also stable.

We already know that all eigenvalues have negative real part. This small problem
is useful because we can use the algorithms without restart and we can understand
how they work with a real problem.

We compare three Algorithms: classic Arnoldi, shift–and–invert Arnoldi and
Rational Krylov without using restarting strategies. We consider a Ritz pair (θ, z)
converged if ωm(y) ≤ 10−12 (see 2.1.2) that hopefully means that ‖Az−θz‖ ≈ 10−12

(in general it is bigger because of the rounding off errors in the LU factorizations
and solution of linear systems).

Consider the Arnoldi algorithm with 20 iterations, starting from a random vector
and compute the Ritz values. In figure 4.1 we can see the results. The Ritz values
are bad approximation of eigenvalues. To undertand why, it is needed to see theorem
2.2.3. In general the outermost eigenvalues will be well approximated after a few
steps under the condition that they are enough separated from the others, this is
not the case.

In conclusion with 20 steps Arnoldi’s algorithm does not provide approximation
to the eigenvalues since no Ritz value converged.

−2,000 −1,500 −1,000 −500 0 500
−4

−2

0

2

4
Eigenvalues
Ritz values

Figure 4.1: Arnoldi with m = 20

Consider the shift–and–invert Arnoldi without change of shift, so we are looking
for eigenvalues near zero. The results of algorithm are in Figure 4.1.1, 6 Ritz values
are marked as converged but for two of them ‖Az − θz‖ ≈ 10−11. Moreover 2 Ritz
values are near convergence with ‖Az − θz‖ ≈ 10−6.

Let now consider the Shift–and–invert Arnoldi with 20 iterations and changing
shifts, we start with the shift zero and change shift every 5 steps taking as new shift
the average of unconverged Ritz values. The results are in Figure 4.3. We have no
convergence and the closer Ritz value near convergence satisfies ‖Az − θz‖ ≈ 10−1.

Now we apply Rational Krylov with 20 steps, starting with the shift zero and
changing shift every 5 steps taking as new shift the average of unconverged Ritz
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Figure 4.2: Shift–and–invert Arnoldi with m = 20
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Figure 4.3: Shift–and–invert Arnoldi with m = 20 and 5 shifts

values. The results are in Figure 4.4. In this case the situation is much better, in
fact 8 Ritz values converge and approximate the 8 rightmost eigenvalues. Concerning
accuracy, we notice that for the converged Ritz values it holds ‖Az − θz‖ ≈ 10−9

that is a good result. Moreover others 2 Ritz values are near convergence with
‖Az − θz‖ ≈ 10−6.

In conclusion for this example we have that Rational Krylov works better but
the eigensolution have to be refined, moreover changing shift with shift–and–invert
is not a good idea. There is a light difference between Rational Krylov and shift–
and–invert Arnoldi without shift, the reason is because in both cases we start to
look from eigenvalues near zero. If we start a little far from origin, Rational Krylov
is faster. Anyway in this example we wanted to show that also for an extimation of
outermost eigenvalues, Arnoldi algorithm can fail. It is interesting to point out that
it was not used the optimal strategy to change shift as explained in the subsection
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Figure 4.4: Rational Krylov with m = 20 and k = 5

2.7. We will follow that strategy from now on.
Consider the same problem with a discretization step h = 1/500, in that case

A ∈ R1000×1000. The algorithm of Arnoldi does not work for this problem. We
show it for the small case, then we can compare the shift-and-invert Arnoldi, that
is the most used algorithm for such problems, and Rational Krylov. We will flag as
converged the Ritz pairs such that ωi(z) ≤ 10−12. We have already explained that
after this process it is needed a refinement but we will neglect it. The goal is to
compute the first k rightmost eigenvalues, so shift-and-invert Arnoldi will be pointed
in zero and Rational Krylov will start with the first shift in zero. In Rational Krylov
algorithm we set cstep = 2, this means that we change shift when at least 2 Ritz
values converged.

Results are in the Figure 4.5. The number of steps, in this case without restart,
coincides with the length of the Arnoldi sequence.

Wanted eigenvalues Shift–and–inverted Rational Krylov Savings percentage

( number of steps ) ( number of steps ) (steps)

20 45 38 16 %
40 79 64 19 %
60 112 89 21 %
80 144 113 22 %

Figure 4.5: Convergence of the rightmost eigenvalues with Shift-and-inverted
Arnoldi and with Rational Krylov

In Figure 4.6 it is showed how Rational Krylov works and how shifts move.
The saving in computations depends mainly on the problem. In this case Rational

Krylov works better than shift–and–invert Arnoldi but one can see that the difference
is not so big. We stress that already with this problem that is not so big, when we
compute 60 eigenvalues both algorithms became slow and errors grow up, therefore
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Figure 4.6: Rational Krylov algorithm to compute 60 rightmost eigenvalues

a restart is needed.

The problem of shift–and–invert Arnoldi is that we need to lock all converged
Ritz values for every restart otherwise a loop is encountered because after restart
Ritz values near zero will converge again.

This means that we need to have an Arnoldi sequence at least of 60 vectors.
With Rational Krylov we have not this problem, but we have eigenvalues very near
to each other. Then during restart we have to take enough Ritz values otherwise we
will restart the process with already converged Ritz values.

This means that the error will grow, see observation 2.3.2. For instance, for
computing the first 100 rightmost eigenvalues we can consider the following restart
strategy: we restart when the length of the Arnoldi sequence is more than 60 and
we lock the first 30 Ritz values. This means that we lock the 30 Ritz values nearest
to the current shift. If we do not use this restarting strategy the algorithm will be
five times slower. We have this because the most expansive part of the algorithm is
the Gram–Schmidt process and if we do not perform the restart the dimension of
Krylov subspace is greater than 180. This is a lucky example because at least with
a long Arnoldi sequence the orthogonality is approximatly preserved.

In this case there will be error after every restart because the eigenvalues are
too close to each other, so we need to apply refinement after the computation. The
important point is that this restart strategy is possible with Rational Krylov and
impossible with shift–and–invert Arnoldi.

4.1.2 A stability problem in aerodynamic

The Tolosa matrix arises in the stability analysis of a model of an airplane in flight
[1]. The interesting modes of this system are described by complex eigenvalues
whose imaginary parts lie in a prescribed frequency range. We will consider the
Tolosa matrix of size 2000, we are interested in computing the 23 eigenvalues in the
rectangle −750 < Reλ < −650 and 2200 < Imλ < 2400. We will compare Arnoldi,
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shift–and–invert Arnoldi and Rational Krylov, where the first shift for Rational
Krylov is −750+2390i, this is also the shift of shifted–and–inverted Arnoldi. In this
case the basic Arnoldi does not work well because these eigenvalues are the worst
conditioned ones. If we run Arnoldi without restart the algorithm stops after 223
steps, but the errors are big and Ritz values are flagged as converged while they are
far from convergence. Figure 4.7 reports the results.

We can solve this problem using a restart strategy but it is clear that in this case
Arnoldi it is not suitable. If we run Rational Krylov algorithm we have much better
results, see Figure 4.8.

−730 −720 −710 −700 −690
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2,250

2,300

2,350 Eigenvalues
Converged Ritz values

Figure 4.7: Arnoldi algorithm to compute 23 eigenvalues in the rectangle −750 <
Reλ < −650 and 2200 < Imλ < 2400
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Figure 4.8: Rational Krylov algorithm to compute 23 eigenvalues in the rectangle
−750 < Reλ < −650 and 2200 < Imλ < 2400

If we use the Shift–and–invert Arnoldi algorithm we need 80 steps to reach con-
verge while with Rational Krylov we need 57 steps (Savings percentage: 29 %).
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4.1.3 Stability of a flow in a pipe

Let us consider a pipe flow with the goal of studying the stability of the system.
The derivation of the problem is very well explained in [16] (Section 3.1.5) and it is
technical and long. We can summarize the derivation of the problem in these steps:
the Navier–Stokes equation for incompressible flow in circular coordinates in a fixed
base flow are linearized. A bidimensional (sinusoidal) perturbation is introduced.
After a few manipulations (for details see [16]) the following monodimensional linear
eigenproblem is obtained



{(D2 − α)2 − iαRe[U0(D2 − α2)− U ′′0 ]} ṽ = −icαRe(D2 − α2)ṽ

ṽ(1) = 0

ṽ(−1) = 0

Dṽ(1) = 0

Dṽ(−1) = 0

We used the same notation of [16]. In this case U0(y) = (1− y)(1 + y), α and Re are
fixed numbers. The indipendent variable is y and the problem is defined in [−1, 1].
D is the derivative, and the powers have to be read as formal powers, in sense that
(D2 − α2)2 = D4 − 2αD2 + α4. The variable ṽ denotes the eigenfunction and c the
eigenvalue.

We are interesting in computing the smallest eigenpairs. In particular if Im(c) >
0 the disturbance is unstable otherwise is stable. At this point we discretize the
problem by means of finite difference method. The domain [−1, 1] is uniformly
discretized in N nodes. We used the following schems

(D2ṽ)j =
ṽj+1 − 2ṽj + ṽj−1

∆y2
, (D4ṽ)j =

ṽj−2 − 4ṽj−1 + 6ṽj − 4ṽj+1 + ṽj+2

∆y4
.

For the border conditions we used the decentred schemes

ṽ1 = 0, ṽN = 0,

(Dṽ)1 =
−3ṽ1 + 4ṽ2 − ṽ3

2∆y
, (Dṽ)N =

3ṽN − 4ṽN−1 − ṽN−2

2∆y
.

With a consistency analysis we have that these schemes are accurate at the second
order. After discretization we can write the problem as a generalized eigenvalue
problem

Aṽ = cBṽ,

where ṽ = (ṽ1, . . . , ṽN)H and B is a singular matrix, in particular it has rank N −
4, this depends on the border conditions. Finally we are ready to perform some
numerical test on this problem.

In our test we will consider α = 1 and Re = 10000. It is possible to prove that
the spectrum of the continuum problem has a branch structure, in particular it looks
like a Y see picture 4.9.
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Figure 4.9: Continuous spectrum

We are interested in computing the branch connected to zero. In the discrete case
some spurious eigenvalues appear. Let now consider N = 100, the goal is to compute
first 15 eigenvalues in the branch connected with zero. In this case Rational Krylov
is faster (in steps and time of exection) and works correctly see Figure 4.10. Shifted–
inverted Arnoldi instead converges to a couple of spurious eigenvalues (spurious for
the continuum case) see Figure 4.11. This is because the spurious eigenvalues are
near the origin (see theorem 2.2.3). Our goal instead was to compute eigenvalues in
the branch. Rational Krylov method is suitable for this goal because in some way
this algorithm follows the eigenvalues and go in the direction of Ritz values already
converged. This problem does not occur anymore when N gets larger.

In Figure 4.12 it is shown how many iterations the algorithms need to compute
the 15 eigenvalues nearest zero. For N = 10000 shifted–inverted Arnoldi needed
more than the double of time of Rational Krylov. For this example it happened
that increasing the discretization, other eigenvalues near zero appear more than for
N = 10000, but we need less steps.

Also for this application we can use a restarting strategy. For instance we can
restart when the dimension of the Krylov subspace is bigger than 40 and lock 20
Ritz values nearest the current shift. With N = 5000 with the goal of computing
the 15 smallest eigenvalues, applying a restart speeds up the algorithm (23% of
time computation saved). In this example we can also avoid the restart since the
eigenvalues that we want to compute are few and the length of the Arnoldi sequence
is short.
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Figure 4.10: Ritz values computed with Rational Krylov, where N = 100
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Figure 4.11: Ritz values computed with Shifted–inverted Arnondi, where N = 100

N Shift–and–inverted Rational Krylov Savings percentage

( number of steps ) ( number of steps ) (steps)

100 79 68 14 %
1000 113 84 26 %
10000 99 78 38 %

Figure 4.12: Convergence of the rightmost eigenvalues with Shift-and-inverted
Arnoldi and with Rational Krylov
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4.2 Nonlinear eigenvalue problems

A few test problems can be found in the Manchester collection of NLEPs [2], we run
the algorithms on the GUN problem. Moreover we tested the algorithms also on the
problem of vibrating string with elastically attached mass ([17], [3] and [2]) and on
a problem of fluid-solid structure interaction ([20], [5] and [6]).

4.2.1 Gun problem

We will test our algorithms on the Gun problem from the Manchester collection of
NLEPs [2]. This is a large-scale NLEP that models a radio frequency gun cavity
and is of the form

F (λ)x =

(
K − λM + i

√
λ− σ2

1W1 + i
√
λ− σ2

2W2

)
= 0

Where M,K,W1 and W2 are real symmetric matrices of size 9956 × 9956, K is
positive semidefinite, and M is positive definite. We take σ1 = 0 and σ2 = 108.8774,
the notation of the complex square root,

√
· denotes the principal branch. The

domain of interest is

Ω = {λ ∈ C such that |λ− µ| ≤ γ and Im(λ) ≥ 0}

where γ = 50000 and µ = 62500. Before solving this problem we will perform a shift
and scale in order to improve convergence, then we will consider the map

φ : C → C

λ → λ− µ
γ

It is clear that with this map we transform the domain of interest Ω in the upper
part of the unit circle. Then we consider

λ̂ = φ(λ) =
λ− µ
γ

then we have λ = γλ̂+ µ, so we have the NLEP in this new coordinates

F̂ (λ̂)x =

(
K − (γλ̂+ µ)M + i

√
γλ̂+ µ− σ2

1W1 + i

√
γλ̂+ µ− σ2

2W2

)
= 0

For measuring the convergence of an approximate eigenpair (λ, x) we use the relative
residual norm

E(λ, x) =
‖F (λ)x‖2(

‖K‖1 + |λ|‖M‖1 +
√
|λ− σ2

1|‖W‖1 +
√
|λ− σ2

2|‖W2‖1

)
‖x‖2

To solve this problem we apply HIRKM algorithm. In Figure 4.13 there are the
eigenvalues computed with 60 iterations. We got exactly the same results of [18]
though we did a light different change in the original algorithm. In Figure 4.14 the
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Figure 4.13: Eigenvalues of gun problem computed with 60 itarations

errors of the first four Ritz values are reported. After a few steps the rounding off
errors appear, this explain why it seems that at the start the errors decrease and
then grow again.

If we try to run the algorithm expploiting the low rank of coefficients we find
that r = 84 and the algorithm becomes faster because the more expensive part is
the Gram–Schmidt process and in this case with shorter vectors we improve this
step. For this problem the NLRK algorithm does not work since we are far from
linearity.
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Figure 4.14: Relative Residual norm E(λ, x) history for the first four Ritz values
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(b) Second Ritz value
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(c) Third Ritz value
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4.2.2 Vibrating string with elastically attached mass

The analysis of eigenvibrations for mechanical structures with elastically attached
masses frequently leads to nonlinear eigenvalue problems. As a model problem, we
consider here a limp string of unit length, which is clamped at one end. The other
end is free but has a mass m attached to it via an elastic spring of stiffness k, see
Figure 4.15.

Figure 4.15: Illustration of a vibrating string, which is clamped at the left end and
has a vertically moving mass attached to the right end via an elastic spring.

Under these circumstances, the eigenvibrations of the string are governed by the
eigenvalue problem ([17], [3] and [2]).


−u′′(x) = λu(x)

u(0) = 0

u′(1) + k λ
λ−k/mu(1) = 0

where u denotes the displacement. Furthermore, it is assumed that the clamped
end resides at x = 0 and the free end with the mass at x = 1. This eigenproblem
is simple enough to admit a semi–analytic solution. One easily calculates that the
differential equation together with the boundary condition at x = 0 implies

u(x) = C sin(
√
λx). (4.1)

Inserting this expression into the boundary condition at x = 1 and rearranging
shows that λ is an eigenvalue if and only if

tan(
√
λ) =

1

mλ
−
√
λ

k
. (4.2)

Solving the above equation numerically yields approximations to all the eigen-
frequencies λ of the string. The corresponding eigenmodes are then given by 4.1.
Discretizing the eigenvalue problem with finite elements P1 on the uniform grid
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{xi = i/N : i = 0, . . . , N} of size h = 1/N yields a nonlinear matrix eigenvalue
problem of the form

A− λB + k
λ

λ− k/m
C = 0, (4.3)

where

A =
1

h


2 −1

−1
. . .

. . .
. . . 2 −1

−1 1

, B =
h

6


4 1

1
. . .

. . .
. . . 4 1

1 2

, C = ene
H
n .

Observe that if k = 0 we have a linear eigenvalue problem. Moreover if k is small
enough or m is big we have a little perturbation of a linear eigenvalue problem so
that NLRK is a suitable algorithm to solve it.

For this example we set ResTol = 10−6 and EigTol = 10−6. We are itenterested
in computing the second smallest eigenvalue [17].

Let us start with m = 1, k = 0.01. It is possible to compute the eigenvalues
of the continuum problem by solving numerically 4.2. We find that the first two
eigenvalues are λ1 ' 0.0461 and λ2 ' 2.4874, we are itenterested in computing the
second one. We choose the first pole in 1 and the fist shift in 2.

With N = 100 the algorithm needed 5 steps to converge to 2.4875 that is a good
estimation of the sought eigevalue. In fact the error has the order of 10−3 but we
have to take into account the error due to the discretization. Moreover very few
inner iterations are done, at most 2 inner iterations for every outer iteration.

If we choose N = 10000 the algorithm is again fast, again in 5 steps we have
numerical convergence and this time the error is of the order of 10−5. In every case
this is a lucky example since k is small, this means that near 0 the problem is linear
and in fact the residual of Arnoldi sequence is of the order of 10−6.

If we choose k = 0.1, the sought eigevalue is 2.6679. The problem is less linear
but as before, with N = 100 the algorithm needs again 5 steps to converge but it is
needed to perform a large number of inner iterations, sometimes 3 inner iterations
for one outer iteration. This time NLRK converge to 2.6709 and we get an error of
10−2 (due mainly to the discretization error).

Moreover the Arnoldi sequence residual is 10−5. Again if we increase N we can
decrease the discretization error. If k = 1 the algorithm succeeds to maintain small
the residual of the Arnoldi sequence for the first steps, and after that diverges.

This example points out that NLRK works well (mainly) with a nonlinear eigen-
value problem that is a small perturbation of a linear problem.

In conclusion, if we want to do a comparison with HIRKM, this is slower and
converge just if we chose the poles near the desired eigenvalues. The advantage of
this second algorithm is that we can solve the problem also for k = 1 or larger values.

4.2.3 Fluid-solid structure interaction

We consider a mathematical model which describes the problem governing free vi-
brations of a tube bundle immersed in a slightly compressible fluid (see [20], [5] and
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[6]).
We will study the problem under the following simplifying assumptions: the

tubes are assumed to be rigid, assembled in parallel inside the fluid, and elastically
mounted in such a way that they can vibrate transversally, but they can not move in
the direction perpendicular to their sections. The fluid is assumed to be contained
in a cavity which is infinitely long, and each tube is supported by an independent
system of springs (which simulates the specific elasticity of each tube). Due to these
assumptions, three-dimensional effects are neglected, and so the problem can be
studied in any transversal section of the cavity. Considering small vibrations of the
fluid (and the tubes) around the state of rest, it can also be assumed that the fluid
is irrotational.

We can describe the problem in the following way: let Ω ⊂ R2 the section of the
cavity and Ωj for j = 1, . . . , k the sections of the tubes. We assume that Ωj ⊂ Ω

and Ωi ∩Ωj = ∅ if i 6= j. Define Ω0 = Ω \
⋃k
j=1 Ωj. Let Γj the border of Ωj. Then it

is possible to write the problem as: find λ ∈ R and u ∈ H1(Ω0) such that for every
v ∈ H1(Ω0)

c2

∫
Ω0

∇u · ∇vdx = λ

∫
Ω0

uvdx+
∑
j=1k

λρ0

kj − λmj

∫
Γj

unds ·
∫

Γj

vnds

Here u is the potential of the velocity of the fluid, c denotes the speed of sound in
the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant of
the spring system supporting the tube j, mj is the mass per unit length of the tube
j, and n is the outward unit normal to the boundary of Ω0.

We consider the rational eigenvalue problem where Ω is the ellipse with center
(0, 0) and length of semiaxes 8 and 4, and Ωj , j = 1, . . . , 9 are circles with radius
0.3 and centers (−4,−2), (0,−2), (4,−2), (−5, 0), (0, 0), (5, 0), (−4, 2), (0, 2) and
(4, 2). All constants in the problem are set equal to 1.

We discretized the problem by finite elements with FreeFem++ [4] using P1
triangular elements getting the nonlinear eigenvalue problem

A(λ)x = −Ax+ λBx+
λ

1− λ
Cx = 0

where C collects the contributions of all tubes, A, B, and C are symmetric matrices,
A and C are positive semidefinite, and B is positive definite. See Figure 4.16 to have
idea of the discretization performed.

There are 28 eigenvalues in [0, 1), we tried to execute the NLRK (algorithm
15) to compute the first 10 eigenvalues. We set ResTol = 10−6, EigTol = 10−6

and the maximum number of inner iterations at 20 (as suggested in [5]). We tried
different discretization sizes. In FreeFem++ the border of domain is discretized with
a piecewise–linear curve. It is possible to choose how many points to use to describe
the border of domain before to perform a linear interpolation. We choose n points
for the ellipse (outer border) and m points for the circles (inner border). We denote
with N the size of the matrices obtained with the discretization. We performed a
change of pole every 10 iterations. In Figure 4.17 there is the convergence history.

We also tried to run the algorithm on the original matrices of [6], in this case we
do not now how discretization was performed, convergence history is in Figure 4.18.
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Figure 4.16: Example of discretization of domain with FreeFem++ where m = 10
and n = 50

The reason why NLRK works well for this problem is not know. In fact this problem
is not a little perturbation of one linear eigenproblem. One possible explanation can
be found in [5]. In the linear case we have that the eigenvectors of a symmetric real
matrix are orthogonal and the eigenvalues real. This nonlinear problem has a similar
propriety, the eigenvalues in [0, 1) are real and the eigenvectors are nearly-orthogonal.
Therefore one can think that this is a connection with the linear problem. In order
to deeply understand this point other test must be performed. As for the previous
example, HIRK succeeds to compute eigenvalues but is very slow and unusable when
the discretization parameter N is big.
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Figure 4.17: Convergence history of Ritz values computed with the discretization
of FreeFem++
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(a) n = 50, m = 10, N = 1636
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(b) n = 100, m = 10, N = 2156
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(c) n = 200, m = 10, N = 3277
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(d) n = 400, m = 10, N = 5604
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Figure 4.18: Convergence history of Ritz values computed on the matrices provided
by Voss
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(a) N = 2350
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Chapter 5

Conclusions and future
developments

In this thesis we showed how is possible to solve big sized eigenproblem by means
of Rational Krylov algorithm. Regarding the linear case the biggest problem is the
loss of orthogonality, this problem occur when the Arnoldi sequence is too long.
To avoid this problem we presented the thick restart. Sometimes it happened that
this is not sufficient and after a few restart the residual of the Arnoldi sequence
became big, that is the algorithm diverge. An idea to solve this problem can be
to modify the orthogonalization process. It is possible in fact to use Householder
transformations to orthogonalize. This approach is numerically stable but inefficient.
An idea can be to perform the orthogonalization with Gramm–Schmit and a selective
reorthogonalization using Householder matrices.

Regarding the nonlinear case we showed two algorithm: HIRK and NLRK (and
iterative methods). The first one is sharp and effective algorithm but is it not
efficient. A way to solve this problem can be to use the low rank structure of
the matrices coefficients, in general we think that also other structures (e.g. semi
separability) can be exploited. The NLRK algorithm instead is very fast but it is
based on linear interpolations, it means that works well just if the problem is a small
perturbation of a linear problem. A possible solution can be to use instead iterative
projection methods. In these algorithms an important step is the hard purging that
till now it is just proposed heuristically. One can wonder if other restarting strategies
can works better or at least give a deeper explanation of the hard purging.
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