Viewpoints on stability and forking
 A micro-course for the intrigued

Rosario Mennuni

Wwu Münster
Shorth Model Theory Huddle 2

$$
17^{\text {th }} \text { June } 2021
$$

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.
- Also, for many people in the audience (and for the speaker) it's 5 pm .

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.
- Also, for many people in the audience (and for the speaker) it's 5 pm .
- Please do interrupt me at any time if you have questions, comments...

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.
- Also, for many people in the audience (and for the speaker) it's 5 pm .
- Please do interrupt me at any time if you have questions, comments...
- ... and if you feel like it, please put/leave your camera on.

It feels less like talking to a screen :)

Plan of the talk

Introduction

Counting types
Stable and unstable theories

Extending types

Examples
"Nice" extensions
Forking
The French approach
Some cornerstone theorems
More viewpoints
Ideals and ranks
Stable and unstable formulas
Independence relations
Bonus: going further
Applications and generalisations (iff there is leftover time)
Bibliography

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$. Given $|A|$, how big can $\left|S_{n}(A)\right|$ be?

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

Given $|A|$, how big can $\left|S_{n}(A)\right|$ be?
Types are in particular sets of formulas, so in every T we have $\left|S_{n}(A)\right| \leq 2^{|T|+|A|}$.

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

Given $|A|$, how big can $\left|S_{n}(A)\right|$ be?
Types are in particular sets of formulas, so in every T we have $\left|S_{n}(A)\right| \leq 2^{|T|+|A|}$.

Definition

T is λ-stable iff for all A we have $|A| \leq \lambda \Longrightarrow\left|S_{n}(A)\right| \leq \lambda$.
In fact, it is enough to check for $n=1$. But it is not enough to check on one A of size λ, even if it is a model.

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

Given $|A|$, how big can $\left|S_{n}(A)\right|$ be?
Types are in particular sets of formulas, so in every T we have $\left|S_{n}(A)\right| \leq 2^{|T|+|A|}$.

Definition

T is λ-stable iff for all A we have $|A| \leq \lambda \Longrightarrow\left|S_{n}(A)\right| \leq \lambda$.
In fact, it is enough to check for $n=1$. But it is not enough to check on one A of size λ, even if it is a model.
It is stable iff it is λ-stable for some λ.

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

Given $|A|$, how big can $\left|S_{n}(A)\right|$ be?
Types are in particular sets of formulas, so in every T we have $\left|S_{n}(A)\right| \leq 2^{|T|+|A|}$.

Definition

T is λ-stable iff for all A we have $|A| \leq \lambda \Longrightarrow\left|S_{n}(A)\right| \leq \lambda$.
In fact, it is enough to check for $n=1$. But it is not enough to check on one A of size λ, even if it is a model.
It is stable iff it is λ-stable for some λ.
The one thing to take away from this talk
There are so few types \Leftrightarrow there is a good reason for it

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \vDash T$. (κ-saturated, κ-strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U}, by M a small model of T. (small $=$ of size $<\kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

Given $|A|$, how big can $\left|S_{n}(A)\right|$ be?
Types are in particular sets of formulas, so in every T we have $\left|S_{n}(A)\right| \leq 2^{|T|+|A|}$.

Definition

T is λ-stable iff for all A we have $|A| \leq \lambda \Longrightarrow\left|S_{n}(A)\right| \leq \lambda$.
In fact, it is enough to check for $n=1$. But it is not enough to check on one A of size λ, even if it is a model.
It is stable iff it is λ-stable for some λ.
The one thing to take away from this talk
There are so few types \Leftrightarrow there is a good reason for it \Leftrightarrow there are many such.

What are we talking about?

A list of stable theories
 These theories/structures are stable: (a structure is stable iff its theory is)
 - Any number of infinitely cross-cutting equivalence relations.

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).
- Algebraically closed fields (of fixed characteristic).

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).
- Nonabelian free groups.

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).
- Nonabelian free groups.
- Compact complex varieties (all in the same structure!), Zariski closed sets as relations.

What are we talking about?

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any R-module (with R not part of the structure, but of the language: function symbols $r \cdot-$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).
- Nonabelian free groups.
- Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
- Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The field \mathbb{Q}

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields \mathbb{Q}, \mathbb{R}

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$, any nonprincipal ultraproduct of finite fields.

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q},+,<)$. (but the group $(\mathbb{Q},+)$ is stable)

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q},+,<)$. (but the group $(\mathbb{Q},+)$ is stable)
- Even just $(\mathbb{Q},<)$. In fact, any infinite linear order.

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q},+,<)$. (but the group $(\mathbb{Q},+)$ is stable)
- Even just $(\mathbb{Q},<)$. In fact, any infinite linear order.
- Anything defining an infinite linear order. Even on a set which is not definable.

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q},+,<)$. (but the group $(\mathbb{Q},+)$ is stable)
- Even just $(\mathbb{Q},<)$. In fact, any infinite linear order.
- Anything defining an infinite linear order. Even on a set which is not definable.
- Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

What are we NOT talking about?

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large half-graphs as induced subgraphs:

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q},+,<)$. (but the group $(\mathbb{Q},+)$ is stable)
- Even just $(\mathbb{Q},<)$. In fact, any infinite linear order.
- Anything defining an infinite linear order. Even on a set which is not definable.
- Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite".

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e.

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$.

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

- Point in new equivalence class:

$$
p(z) \equiv\{\neg E(z, d) \mid d \in M\}
$$

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

- Point in new equivalence class:

$$
p(z) \equiv\{\neg E(z, d) \mid d \in M\}
$$

Enter $B \supseteq M$.

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

- Point in new equivalence class:

$$
p(z) \equiv\{\neg E(z, d) \mid d \in M\}
$$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_{1}(B)$?

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

- Point in new equivalence class:

$$
p(z) \equiv\{\neg E(z, d) \mid d \in M\}
$$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_{1}(B)$? $r_{a}(x)$: one choice only

$$
r_{a}^{\prime}(x) \equiv\{x=a\}
$$

(now as a type over B)
(we are implicitly taking deductive closures)

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

- Point in new equivalence class:

$$
p(z) \equiv\{\neg E(z, d) \mid d \in M\}
$$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_{1}(B)$? $r_{a}(x)$: one choice only $\quad q_{a}(y)$: two kinds of choice

$$
r_{a}^{\prime}(x) \equiv\{x=a\} \quad r_{b}^{\prime}(y) \equiv\{y=b\}
$$

(now as a type over B)

$$
q_{a}^{\prime}(y) \equiv\{E(y, a) \wedge y \neq d \mid d \in B\}
$$

[^0]
Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

$$
p(z) \equiv\{\neg E(z, d) \mid d \in M\}
$$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_{1}(B)$?
$r_{a}(x)$: one choice only $\quad q_{a}(y)$: two kinds of choice p : three kinds of choice

$$
r_{a}^{\prime}(x) \equiv\{x=a\} \quad r_{b}^{\prime}(y) \equiv\{y=b\} \quad r_{c}^{\prime}(z) \equiv\{y=c\}
$$

(now as a type over B)

$$
q_{a}^{\prime}(y) \equiv\{E(y, a) \wedge y \neq d \mid d \in B\} \quad q_{c}^{\prime}(z) \equiv\{E(y, c) \wedge y \neq d \mid d \in B\}
$$

$$
p^{\prime}(z) \equiv\{\neg E(z, d) \mid d \in B\}
$$

Generic equivalence relation

Let T say " E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \vDash T$. There are three kinds of types in $S_{1}(M)$:

- Realised: $r_{a}(x) \equiv\{x=a\}$.
- New point in old equivalence class:

$$
q_{a}(y) \equiv\{E(y, a)\} \cup\{y \neq d \mid d \in M\}
$$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_{1}(B)$?
$r_{a}(x)$: one choice only $\quad q_{a}(y)$: two kinds of choice p : three kinds of choice

$$
r_{a}^{\prime}(x) \equiv\{x=a\} \quad r_{b}^{\prime}(y) \equiv\{y=b\} \quad r_{c}^{\prime}(z) \equiv\{y=c\}
$$

(now as a type over B)

$$
q_{a}^{\prime}(y) \equiv\{E(y, a) \wedge y \neq d \mid d \in B\} \quad q_{c}^{\prime}(z) \equiv\{E(y, c) \wedge y \neq d \mid d \in B\}
$$

(we are implicitly taking deductive closures)

$$
p^{\prime}(z) \equiv\{\neg E(z, d) \mid d \in B\}
$$

Note how some choices seem to "preserve the spirit" of the original type.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was. But in p_{0}, " B has no more 'real' information about x than M already had".

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was. But in p_{0}, " B has no more 'real' information about x than M already had". Some ways to make this more precise:
- p_{1}, p_{2} are introducing a new "shape of formula", e.g. $x_{0}=w$ or $x_{0}-x_{1}=w$.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was. But in p_{0}, " B has no more 'real' information about x than M already had". Some ways to make this more precise:
- p_{1}, p_{2} are introducing a new "shape of formula", e.g. $x_{0}=w$ or $x_{0}-x_{1}=w$.
- p_{1}, p_{2} are not in the topological closure of $\left\{\{x=m\} \mid m \in M^{2}\right\} \subseteq S_{2}(B)$.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was. But in p_{0}, " B has no more 'real' information about x than M already had". Some ways to make this more precise:
- p_{1}, p_{2} are introducing a new "shape of formula", e.g. $x_{0}=w$ or $x_{0}-x_{1}=w$.
- p_{1}, p_{2} are not in the topological closure of $\left\{\{x=m\} \mid m \in M^{2}\right\} \subseteq S_{2}(B)$. (spelled out, this means there are formulas in p_{1}, p_{2} satisfied by no point of M)

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was.
But in p_{0}, " B has no more 'real' information about x than M already had". Some ways to make this more precise:
- p_{1}, p_{2} are introducing a new "shape of formula", e.g. $x_{0}=w$ or $x_{0}-x_{1}=w$.
- p_{1}, p_{2} are not in the topological closure of $\left\{\{x=m\} \mid m \in M^{2}\right\} \subseteq S_{2}(B)$. (spelled out, this means there are formulas in p_{1}, p_{2} satisfied by no point of M)
- p_{0} has "the same definition" as p, only over B.

Algebraically closed fields of characteristic 0

Fix $M \vDash \mathrm{ACF}_{0}$, and let $p\left(x_{0}, x_{1}\right) \in S_{2}(M)$ say that x_{0}, x_{1} are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_{2}(B)$?

- p_{0} may say that x_{0}, x_{1} are not in B and algebraically independent over B.
- p_{1} may say that $x_{0}=b$ and x_{1} is transcendental over B.
- There are more choices: for example p_{2} could say that both x_{i} are transcendental over B, but $x_{0}-x_{1}=b \in B$.
Again, p_{1}, p_{2} are clearly "pinning down" x_{0}, x_{1} way more than p was.
But in p_{0}, " B has no more 'real' information about x than M already had". Some ways to make this more precise:
- p_{1}, p_{2} are introducing a new "shape of formula", e.g. $x_{0}=w$ or $x_{0}-x_{1}=w$.
- p_{1}, p_{2} are not in the topological closure of $\left\{\{x=m\} \mid m \in M^{2}\right\} \subseteq S_{2}(B)$. (spelled out, this means there are formulas in p_{1}, p_{2} satisfied by no point of M)
- p_{0} has "the same definition" as p, only over B.
- p_{1}, p_{2} have "small" sets, e.g. the line $x_{0}-x_{1}=b$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
$\bullet \operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$.(exercise)

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
- $\operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$. (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in $S(B)$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
- $\operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$. (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in $S(B)$.

Theorem
The following are equivalent.

1. T is stable.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
- $\operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$. (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in $S(B)$.

Theorem
The following are equivalent.

1. T is stable.
2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique heir in $S_{n}(B)$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
- $\operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$. (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in $S(B)$.

Theorem
The following are equivalent.

1. T is stable.
2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique heir in $S_{n}(B)$.
3. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique coheir in $S_{n}(B)$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
- $\operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$. (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in $S(B)$.

Theorem
The following are equivalent.

1. T is stable.
2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique heir in $S_{n}(B)$.
3. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique coheir in $S_{n}(B)$.
4. For all $B \supseteq M \vDash T$ every $p \in S_{1}(M)$ has a unique heir in $S_{1}(B)$.
5. For all $B \supseteq M \vDash T$ every $p \in S_{1}(M)$ has a unique coheir in $S_{1}(B)$.

Making "nice" precise

Let $B \supseteq M, p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a heir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m, b)$.
- $\operatorname{tp}(a / M b)$ is a heir of $\operatorname{tp}(a / M) \Longleftrightarrow \operatorname{tp}(b / M a)$ is a coheir of $\operatorname{tp}(b / M)$. (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in $S(B)$.

Theorem
The following are equivalent.

1. T is stable.
2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique heir in $S_{n}(B)$.
3. For all $B \supseteq M \vDash T$ and all n, every $p \in S_{n}(M)$ has a unique coheir in $S_{n}(B)$.
4. For all $B \supseteq M \vDash T$ every $p \in S_{1}(M)$ has a unique heir in $S_{1}(B)$.
5. For all $B \supseteq M \vDash T$ every $p \in S_{1}(M)$ has a unique coheir in $S_{1}(B)$.

Moreover, if T is stable, the unique heir and coheir of $p \in S_{n}(M)$ to B coincide.

Definable types

Definition

We call $p(x) \in S_{n}(M)$ definable
iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable

Definable types

Definition

We call $p(x) \in S_{n}(M)$ definable iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable
The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p.

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p.

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable $[$ over $A]$ iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq|T|$.

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable $[$ over $A]$ iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq|T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M.

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable [over $\left.A\right]$ iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p.
Note that if p is definable then it is so over some A of size $|A| \leq|T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M.

Theorem

- $p \in S_{n}(M)$ is definable \Longleftrightarrow for every $N \succ M$ it has a unique heir in $S_{n}(N)$.

For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \wedge \neg\left(d_{p} \varphi\right)(b)$.

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable $[$ over $A]$ iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p.
Note that if p is definable then it is so over some A of size $|A| \leq|T|$.
So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M.
Theorem

- $p \in S_{n}(M)$ is definable \Longleftrightarrow for every $N \succ M$ it has a unique heir in $S_{n}(N)$.

For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \wedge \neg\left(d_{p} \varphi\right)(b)$.

- If so, the unique heir is the M-definable type with the "same" defining scheme.

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable [over $\left.A\right]$ iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p.
Note that if p is definable then it is so over some A of size $|A| \leq|T|$.
So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M.

Theorem

- $p \in S_{n}(M)$ is definable \Longleftrightarrow for every $N \succ M$ it has a unique heir in $S_{n}(N)$.

For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \wedge \neg\left(d_{p} \varphi\right)(b)$.

- If so, the unique heir is the M-definable type with the "same" defining scheme.
- T is stable \Longleftrightarrow every type over every model is definable

Definable types

Definition $(A \subseteq M)$

We call $p(x) \in S_{n}(M)$ definable [over $\left.A\right]$ iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$
d_{p} \varphi:=\left\{d \in M^{|w|} \mid \varphi(x, d) \in p(x)\right\}
$$

is definable [over A]. The map $d_{p}: \varphi(x, w) \mapsto\left(d_{p} \varphi\right)(w)$ is the defining scheme of p.
Note that if p is definable then it is so over some A of size $|A| \leq|T|$.
So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M.

Theorem

- $p \in S_{n}(M)$ is definable \Longleftrightarrow for every $N \succ M$ it has a unique heir in $S_{n}(N)$.

For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \wedge \neg\left(d_{p} \varphi\right)(b)$.

- If so, the unique heir is the M-definable type with the "same" defining scheme.
- T is stable \Longleftrightarrow every type over every model is definable $\Longleftrightarrow T$ is λ-stable for some $\lambda=\lambda^{|T|} \Longleftrightarrow T$ is λ-stable for all $\lambda=\lambda^{|T|}$.

Dense linear orders

Things can be nice in different ways
Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme.

Dense linear orders

Things can be nice in different ways
Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory?

Dense linear orders

Things can be nice in different ways
Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

Dense linear orders

Things can be nice in different ways
Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

- $p(x) \equiv \operatorname{tp}(\pi / \mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.

Dense linear orders

Things can be nice in different ways
Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

- $p(x) \equiv \operatorname{tp}(\pi / \mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- $p(x)$ has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$
\operatorname{tp}\left(\pi^{+} / \mathbb{R}\right):=\{\pi<x<d \mid d \in \mathbb{R}, d>\pi\} \quad \operatorname{tp}\left(\pi^{-} / \mathbb{R}\right):=\{\pi>x>d \mid d \in \mathbb{R}, d<\pi\}
$$

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

- $p(x) \equiv \operatorname{tp}(\pi / \mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- $p(x)$ has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$
\operatorname{tp}\left(\pi^{+} / \mathbb{R}\right):=\{\pi<x<d \mid d \in \mathbb{R}, d>\pi\} \quad \operatorname{tp}\left(\pi^{-} / \mathbb{R}\right):=\{\pi>x>d \mid d \in \mathbb{R}, d<\pi\}
$$

- Let $N \succ \mathbb{Q}$ be \aleph_{1}-saturated. Let $q(x):=\operatorname{tp}(+\infty / \mathbb{Q})$.

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

- $p(x) \equiv \operatorname{tp}(\pi / \mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- $p(x)$ has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$
\operatorname{tp}\left(\pi^{+} / \mathbb{R}\right):=\{\pi<x<d \mid d \in \mathbb{R}, d>\pi\} \quad \operatorname{tp}\left(\pi^{-} / \mathbb{R}\right):=\{\pi>x>d \mid d \in \mathbb{R}, d<\pi\}
$$

- Let $N \succ \mathbb{Q}$ be \aleph_{1}-saturated. Let $q(x):=\operatorname{tp}(+\infty / \mathbb{Q})$.
- Then q has a unique heir and a unique coheir to N, but they are different.

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

- $p(x) \equiv \operatorname{tp}(\pi / \mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- $p(x)$ has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$
\operatorname{tp}\left(\pi^{+} / \mathbb{R}\right):=\{\pi<x<d \mid d \in \mathbb{R}, d>\pi\} \quad \operatorname{tp}\left(\pi^{-} / \mathbb{R}\right):=\{\pi>x>d \mid d \in \mathbb{R}, d<\pi\}
$$

- Let $N \succ \mathbb{Q}$ be \aleph_{1}-saturated. Let $q(x):=\operatorname{tp}(+\infty / \mathbb{Q})$.
- Then q has a unique heir and a unique coheir to N, but they are different. They are $\operatorname{tp}(+\infty / N)$ and $\operatorname{tp}\left(\mathbb{Q}^{+} / N\right):=\{q<x<n \mid q \in \mathbb{Q}, n \in N, n>\mathbb{Q}\}$. (exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let $M=(\mathbb{Q},<)$.

- $p(x) \equiv \operatorname{tp}(\pi / \mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- $p(x)$ has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$
\operatorname{tp}\left(\pi^{+} / \mathbb{R}\right):=\{\pi<x<d \mid d \in \mathbb{R}, d>\pi\} \quad \operatorname{tp}\left(\pi^{-} / \mathbb{R}\right):=\{\pi>x>d \mid d \in \mathbb{R}, d<\pi\}
$$

- Let $N \succ \mathbb{Q}$ be \aleph_{1}-saturated. Let $q(x):=\operatorname{tp}(+\infty / \mathbb{Q})$.
- Then q has a unique heir and a unique coheir to N, but they are different. They $\operatorname{are} \operatorname{tp}(+\infty / N)$ and $\operatorname{tp}\left(\mathbb{Q}^{+} / N\right):=\{q<x<n \mid q \in \mathbb{Q}, n \in N, n>\mathbb{Q}\}$. (exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)
- Exercise: find the heirs and coheirs of p over N.

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m)$ for $m \in \emptyset$?)

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$
- ... with reverse inclusion: $[p] \geq[q]$ iff p represents fewer formulas than q.

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$
- ... with reverse inclusion: $[p] \geq[q]$ iff p represents fewer formulas than q.
- So if $M \prec N, p(x) \in S(M), q(x) \in S(N)$, and $p \subseteq q$, then $[p] \geq[q]$
(the converse is NOT true! if $p \upharpoonright \emptyset=q \upharpoonright \emptyset$ and p, q are both realised then $[p]=[q]$)

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$
- ... with reverse inclusion: $[p] \geq[q]$ iff p represents fewer formulas than q.
- So if $M \prec N, p(x) \in S(M), q(x) \in S(N)$, and $p \subseteq q$, then $[p] \geq[q]$ (the converse is NOT true! if $p \upharpoonright \emptyset=q \upharpoonright \emptyset$ and p, q are both realised then $[p]=[q])$
- \ldots and $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ after naming all $m \in M$.

Passing to arbitrary bases

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$
- ... with reverse inclusion: $[p] \geq[q]$ iff p represents fewer formulas than q.
- So if $M \prec N, p(x) \in S(M), q(x) \in S(N)$, and $p \subseteq q$, then $[p] \geq[q]$ (the converse is NOT true! if $p \upharpoonright \emptyset=q \upharpoonright \emptyset$ and p, q are both realised then $[p]=[q]$)
- ... and $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ after naming all $m \in M$.
- Fact: $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ provided that T is stable.

Passing to arbitrary bases
 (teaser trailer)

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$.
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$
- ... with reverse inclusion: $[p] \geq[q]$ iff p represents fewer formulas than q.
- So if $M \prec N, p(x) \in S(M), q(x) \in S(N)$, and $p \subseteq q$, then $[p] \geq[q]$ (the converse is NOT true! if $p \upharpoonright \emptyset=q \upharpoonright \emptyset$ and p, q are both realised then $[p]=[q])$
- ... and $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ after naming all $m \in M$.
- Fact: $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ provided that T is stable.
- But we are still only dealing with models. What about arbitrary bases?

Passing to arbitrary bases
 (teaser trailer)

- What if instead of $p \in S_{n}(M)$ we want to start with $p \in S_{n}(A)$?
(this is way more useful than it may seem, e.g. to deal with prime models)
- Heirs and coheirs are not guaranteed to exist anymore. ($\varphi(x, m)$ for $m \in \emptyset$?)
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p]:=\{\varphi(x, w) \in L(\emptyset) \mid p$ represents $\varphi\}$. B R E A K
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\} \ldots$
- ... with reverse inclusion: $[p] \geq[q]$ iff p represents fewer formulas than q.
- So if $M \prec N, p(x) \in S(M), q(x) \in S(N)$, and $p \subseteq q$, then $[p] \geq[q]$ (the converse is NOT true! if $p \upharpoonright \emptyset=q \upharpoonright \emptyset$ and p, q are both realised then $[p]=[q])$
- ... and $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ after naming all $m \in M$.
- Fact: $q \supseteq p$ is a heir of p if and only if $[p]=[q]$ provided that T is stable.
- But we are still only dealing with models. What about arbitrary bases?

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy.

A toy example

[spoiler alert] it is less of a toy than you may expect
Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$.

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$. Look at extensions from $A=\emptyset$ to $B=\{b\}$.

A toy example
 [spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$. Look at extensions from $A=\emptyset$ to $B=\{b\}$.
- Any $q \in S_{1}(B)$ must represent more formulas than p.

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$. Look at extensions from $A=\emptyset$ to $B=\{b\}$.
- Any $q \in S_{1}(B)$ must represent more formulas than p.
- While choosing $x=b$ is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \wedge x \neq b\}$ look very much alike.

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$. Look at extensions from $A=\emptyset$ to $B=\{b\}$.
- Any $q \in S_{1}(B)$ must represent more formulas than p.
- While choosing $x=b$ is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \wedge x \neq b\}$ look very much alike.
- If we pass to $M \supseteq B$, both $\{E(x, b) \wedge x \neq d \mid d \in M\}$ and $\{E(x, m) \wedge x \neq d \mid d \in M\}$ represent the same formulas.

A toy example
 ```[spoiler alert] it is less of a toy than you may expect```

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$. Look at extensions from $A=\emptyset$ to $B=\{b\}$.
- Any $q \in S_{1}(B)$ must represent more formulas than p.
- While choosing $x=b$ is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \wedge x \neq b\}$ look very much alike.
- If we pass to $M \supseteq B$, both $\{E(x, b) \wedge x \neq d \mid d \in M\}$ and $\{E(x, m) \wedge x \neq d \mid d \in M\}$ represent the same formulas.

- Recap: we have two "nice" extensions, representing the same formulas (as few as possible).

A toy example
 [spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.
It's not that easy. $T:=$ " E is an equivalence relation with 2 classes, both infinite".

- Take as $p(x)$ the unique member of $S_{1}(\emptyset)$. Look at extensions from $A=\emptyset$ to $B=\{b\}$.
- Any $q \in S_{1}(B)$ must represent more formulas than p.
- While choosing $x=b$ is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \wedge x \neq b\}$ look very much alike.
- If we pass to $M \supseteq B$, both $\{E(x, b) \wedge x \neq d \mid d \in M\}$ and $\{E(x, m) \wedge x \neq d \mid d \in M\}$ represent the same formulas.

- Recap: we have two "nice" extensions, representing the same formulas (as few as possible).

For the unique $p(x) \in S_{1}(\emptyset)$ in $(\mathbb{Q},<)$, we still have two extensions to $S_{1}(\mathbb{Q})$ representing as few formulas as possible: $\operatorname{tp}(-\infty / \mathbb{Q})$ and $\operatorname{tp}(+\infty / \mathbb{Q})$. But the represented formulas are not the same! $(\{x<w\}$ and $\{x>w\})$.

Passing to arbitrary bases, for real

Theorem (of the bound)
Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal $[q]$.

Passing to arbitrary bases, for real

Theorem (of the bound)
Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal [q].
2. Which maximal $[q]$ can arise does not depend on M.

Passing to arbitrary bases, for real

Theorem (of the bound)
Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal $[q]$.
2. Which maximal $[q]$ can arise does not depend on M.
3. If T is stable, their is a unique maximal such $[q]$, called the bound $\beta(p)$.

Passing to arbitrary bases, for real

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal $[q]$.
2. Which maximal $[q]$ can arise does not depend on M.
3. If T is stable, their is a unique maximal such $[q]$, called the bound $\beta(p)$.
4. If T is stable then $[q]$ is maximal if and only if $[q]_{A}$ is maximal.

Passing to arbitrary bases, for real

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal [$\left.q\right]$.
2. Which maximal $[q]$ can arise does not depend on M.
3. If T is stable, their is a unique maximal such $[q]$, called the bound $\beta(p)$.
4. If T is stable then $[q]$ is maximal if and only if $[q]_{A}$ is maximal.
(i.e. $[q]$ in the theory of M naming parameters from A)

Definition (T stable)

Let $A \subseteq B, p \in S_{n}(A), q \in S_{n}(B)$, and $p(x) \subseteq q(x)$.
We say that q is a nonforking extension of p iff $\beta(p)=\beta(q)$.(forking extension otherwise)

Passing to arbitrary bases, for real

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal $[q]$.
2. Which maximal $[q]$ can arise does not depend on M.
3. If T is stable, their is a unique maximal such $[q]$, called the bound $\beta(p)$.
4. If T is stable then $[q]$ is maximal if and only if $[q]_{A}$ is maximal.
(i.e. $[q]$ in the theory of M naming parameters from A)

Definition (T stable)

Let $A \subseteq B, p \in S_{n}(A), q \in S_{n}(B)$, and $p(x) \subseteq q(x)$.
We say that q is a nonforking extension of p iff $\beta(p)=\beta(q)$.(forking extension otherwise)
In other words, nonforking extension $=$ does not force more represented formulas than necessary even after going to a model.
("represents as few formulas as possible" is wrong: recall $\{\neg E(x, b)\}$ vs $\{E(x, b) \wedge x \neq b\}$)

Passing to arbitrary bases, for real

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_{n}(A)$.

1. Among the $q(x) \in S_{n}(M)$ with $q \supseteq p$, there at least one with maximal $[q]$.
2. Which maximal $[q]$ can arise does not depend on M.
3. If T is stable, their is a unique maximal such $[q]$, called the bound $\beta(p)$.
4. If T is stable then $[q]$ is maximal if and only if $[q]_{A}$ is maximal.
(i.e. $[q]$ in the theory of M naming parameters from A)

Definition (T stable)

Let $A \subseteq B, p \in S_{n}(A), q \in S_{n}(B)$, and $p(x) \subseteq q(x)$.
We say that q is a nonforking extension of p iff $\beta(p)=\beta(q)$.(forking extension otherwise)
In other words, nonforking extension $=$ does not force more represented formulas than necessary even after going to a model. Nonforking extensions always exist.
("represents as few formulas as possible" is wrong: recall $\{\neg E(x, b)\}$ vs $\{E(x, b) \wedge x \neq b\}$)

Properties of forking

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.

Properties of forking

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
2. Symmetry: $\operatorname{tp}(b / A c)$ does not fork over $A \Longleftrightarrow \operatorname{tp}(c / A b)$ does not fork over A.
(p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)

Properties of forking

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
2. Symmetry: $\operatorname{tp}(b / A c)$ does not fork over $A \Longleftrightarrow \operatorname{tp}(c / A b)$ does not fork over A.
(p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_{n}(C)$ does not fork over A, then it does not fork over B.

Properties of forking

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
2. Symmetry: $\operatorname{tp}(b / A c)$ does not fork over $A \Longleftrightarrow \operatorname{tp}(c / A b)$ does not fork over A.
(p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_{n}(C)$ does not fork over A, then it does not fork over B.
4. Local character: for every $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq|T|$ such that p does not fork over A_{0}.

Properties of forking

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
2. Symmetry: $\operatorname{tp}(b / A c)$ does not fork over $A \Longleftrightarrow \operatorname{tp}(c / A b)$ does not fork over A.
(p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_{n}(C)$ does not fork over A, then it does not fork over B.
4. Local character: for every $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq|T|$ such that p does not fork over A_{0}.
5. Finite character: if $p \in S(A)$ forks over A_{0}, there is a finite $A_{1} \subseteq A$ such that $p \upharpoonright A_{0} \cup A_{1}$ forks over A_{0}.

Properties of forking

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
2. Symmetry: $\operatorname{tp}(b / A c)$ does not fork over $A \Longleftrightarrow \operatorname{tp}(c / A b)$ does not fork over A.
(p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_{n}(C)$ does not fork over A, then it does not fork over B.
4. Local character: for every $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq|T|$ such that p does not fork over A_{0}.
5. Finite character: if $p \in S(A)$ forks over A_{0}, there is a finite $A_{1} \subseteq A$ such that $p \upharpoonright A_{0} \cup A_{1}$ forks over A_{0}.
6. Stationarity: if $p \in S_{n}(M)$, then the nonforking extensions of p are precisely the (unique!) heirs of p.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_{n}(A), A \subseteq M$, and $q_{0} \neq q_{1} \in S_{n}(M)$ nonforking extensions of p. There are

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)
How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_{n}(A), A \subseteq M$, and $q_{0} \neq q_{1} \in S_{n}(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)
How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_{n}(A), A \subseteq M$, and $q_{0} \neq q_{1} \in S_{n}(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_{i} with $E\left(x, a_{i}\right) \in q_{i}($ for $i<2)$ such that $\vDash \neg E\left(a_{0}, a_{1}\right)$.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_{n}(A), A \subseteq M$, and $q_{0} \neq q_{1} \in S_{n}(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_{i} with $E\left(x, a_{i}\right) \in q_{i}($ for $i<2)$ such that $\vDash \neg E\left(a_{0}, a_{1}\right)$.

In other words, nonforking extensions of $p \in S(A)$ are determined by which classes of A-definable finite equivalence relations they choose.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_{n}(A), A \subseteq M$, and $q_{0} \neq q_{1} \in S_{n}(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_{i} with $E\left(x, a_{i}\right) \in q_{i}($ for $i<2)$ such that $\vDash \neg E\left(a_{0}, a_{1}\right)$.

In other words, nonforking extensions of $p \in S(A)$ are determined by which classes of A-definable finite equivalence relations they choose. The toy was a nice toy.

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)
Bonus info: for topological reasons, there are either finitely many or at least $2^{\aleph_{0}}$.
How do we tell them apart? (in all of this slide T is stable)
Let $p \in S_{n}(A), A \subseteq M$, and $q_{0}, q_{1} \in S_{n}(M)$ nonforking extensions of p.
We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_{n}(A), A \subseteq M$, and $q_{0} \neq q_{1} \in S_{n}(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_{i} with $E\left(x, a_{i}\right) \in q_{i}($ for $i<2)$ such that $\vDash \neg E\left(a_{0}, a_{1}\right)$.

In other words, nonforking extensions of $p \in S(A)$ are determined by which classes of A-definable finite equivalence relations they choose. The toy was a nice toy.

Nice extensions imply stability

Theorem
Fix any complete T and $n>0$. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under $\operatorname{Aut}(\mathfrak{U})$;

Nice extensions imply stability

Theorem

Fix any complete T and $n>0$. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under $\operatorname{Aut}(\mathfrak{U})$;
2. Local Character: there is a cardinal κ such that for all $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq \kappa$ such that $p \upharpoonright A_{0} \sqsubset p$;

Nice extensions imply stability

Theorem

Fix any complete T and $n>0$. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under $\operatorname{Aut}(\mathfrak{U})$;
2. Local Character: there is a cardinal κ such that for all $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq \kappa$ such that $p \upharpoonright A_{0} \sqsubset p$; and
3. Weak Boundedness: for all $p \in S_{n}(A)$ there is μ such that for all $B \supseteq A$ there are at most μ-many $q \in S_{n}(A)$ with $p \sqsubset q$.

Nice extensions imply stability

Theorem

Fix any complete T and $n>0$. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under $\operatorname{Aut}(\mathfrak{U})$;
2. Local Character: there is a cardinal κ such that for all $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq \kappa$ such that $p \upharpoonright A_{0} \sqsubset p$; and
3. Weak Boundedness: for all $p \in S_{n}(A)$ there is μ such that for all $B \supseteq A$ there are at most μ-many $q \in S_{n}(A)$ with $p \sqsubset q$.
Moreover, suppose that \sqsubset also satisfies:
4. Existence: if $A \subseteq B$, for all $p \in S_{n}(A)$ there is $q \in S_{n}(B)$ with $p \sqsubset q$;

Nice extensions imply stability

Theorem

Fix any complete T and $n>0$. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under $\operatorname{Aut}(\mathfrak{U})$;
2. Local Character: there is a cardinal κ such that for all $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq \kappa$ such that $p \upharpoonright A_{0} \sqsubset p$; and
3. Weak Boundedness: for all $p \in S_{n}(A)$ there is μ such that for all $B \supseteq A$ there are at most μ-many $q \in S_{n}(A)$ with $p \sqsubset q$.
Moreover, suppose that \sqsubset also satisfies:
4. Existence: if $A \subseteq B$, for all $p \in S_{n}(A)$ there is $q \in S_{n}(B)$ with $p \sqsubset q$;
5. Transitivity: $p \sqsubset q \sqsubset r \Longrightarrow p \sqsubset r$;

Nice extensions imply stability

Theorem

Fix any complete T and $n>0$. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under $\operatorname{Aut}(\mathfrak{U})$;
2. Local Character: there is a cardinal κ such that for all $p \in S_{n}(A)$ there is $A_{0} \subseteq A$ with $\left|A_{0}\right| \leq \kappa$ such that $p \upharpoonright A_{0} \sqsubset p$; and
3. Weak Boundedness: for all $p \in S_{n}(A)$ there is μ such that for all $B \supseteq A$ there are at most μ-many $q \in S_{n}(A)$ with $p \sqsubset q$.
Moreover, suppose that \sqsubset also satisfies:
4. Existence: if $A \subseteq B$, for all $p \in S_{n}(A)$ there is $q \in S_{n}(B)$ with $p \sqsubset q$;
5. Transitivity: $p \sqsubset q \sqsubset r \Longrightarrow p \sqsubset r$; and
6. Weak Monotonicity: if $p \sqsubset r$ and $p \subseteq q \subseteq r$ then $p \sqsubset q$.

Then \sqsubset equals nonforking.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down".

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down".

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down".

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down".

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down". We would like to consider these formulas to be "small". So they better form an ideal. Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down". We would like to consider these formulas to be "small". So they better form an ideal.

Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.
Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down". We would like to consider these formulas to be "small". So they better form an ideal.

Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.
Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent. A partial type forks over A iff it implies a finite disjunction $\bigvee_{i \leq m} \varphi_{i}\left(x, d_{i}\right)$ where each $\varphi_{i}\left(x, d_{i}\right)$ divides over A.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down". We would like to consider these formulas to be "small". So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.
Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent. A partial type forks over A iff it implies a finite disjunction $\bigvee_{i \leq m} \varphi_{i}\left(x, d_{i}\right)$ where each $\varphi_{i}\left(x, d_{i}\right)$ divides over A.

Theorem

If T is stable, then formulas divide over A if and only if they fork over A.

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula " A cannot pin down". We would like to consider these formulas to be "small". So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.
Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $\left(d^{i}\right)_{i<\omega}$ with $d=d^{0}$ such that $\left\{\varphi\left(x, d^{i}\right) \mid i<\omega\right\}$ is inconsistent. A partial type forks over A iff it implies a finite disjunction $\bigvee_{i \leq m} \varphi_{i}\left(x, d_{i}\right)$ where each $\varphi_{i}\left(x, d_{i}\right)$ divides over A.

Theorem

If T is stable, then formulas divide over A if and only if they fork over A.
Moreover, a type forks over A if and only
 if it forks over A in the previous sense.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal. In fact, one can define this rank without mentioning forking:

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking: for $p \in S(A)$, let $U(p) \geq \alpha+1$ iff for all cardinals λ there is $B \supseteq A$ such that $S(B)$ contains at least λ-many extensions $q \supseteq p$ with $U(q) \geq \alpha$.

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking: for $p \in S(A)$, let $U(p) \geq \alpha+1$ iff for all cardinals λ there is $B \supseteq A$ such that $S(B)$ contains at least λ-many extensions $q \supseteq p$ with $U(q) \geq \alpha$.
So in the superstable case one can think of forking as "rank is decreasing".

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for $p \in S(A)$, let $U(p) \geq \alpha+1$ iff for all cardinals λ there is $B \supseteq A$ such that $S(B)$ contains at least λ-many extensions $q \supseteq p$ with $U(q) \geq \alpha$.
So in the superstable case one can think of forking as "rank is decreasing". This idea can be adapted to the general stable case, but one needs a family of ranks:

Ranks

Ascending chains of forking extensions $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is superstable iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.
Define a rank on types: $U(p) \geq \alpha+1$ iff there is a forking $q \supseteq p$ with $U(q) \geq \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for $p \in S(A)$, let $U(p) \geq \alpha+1$ iff for all cardinals λ there is $B \supseteq A$ such that $S(B)$ contains at least λ-many extensions $q \supseteq p$ with $U(q) \geq \alpha$.
So in the superstable case one can think of forking as "rank is decreasing". This idea can be adapted to the general stable case, but one needs a family of ranks: instead of just one rank R, one has a rank R_{Δ} for every finite family of formulas Δ. An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

The binary tree property

Fact
T is unstable iff there are

The binary tree property

Fact
T is unstable iff there are
- $\varphi(x, w)$

The binary tree property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\left\{b_{s} \mid s \in 2^{<\omega}\right\}$

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\left\{b_{s} \mid s \in 2^{<\omega}\right\}$ such that each branch of this tree is consistent:

The binary tree property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\left\{b_{s} \mid s \in 2^{<\omega}\right\}$ such that each branch of this tree is consistent:

These trees are related to the ranks R_{Δ}.

The binary tree property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\left\{b_{s} \mid s \in 2^{<\omega}\right\}$
$\varphi\left(x, b_{00}\right) \neg \varphi\left(x, b_{00}\right) \varphi\left(x, b_{01}\right) \neg \varphi\left(x, b_{01}\right) \quad \varphi\left(x, b_{10}\right) \neg \varphi\left(x, b_{10}\right) \varphi\left(x, b_{11}\right) \neg \varphi\left(x, b_{11}\right)$
 such that each branch of this tree is consistent:

These trees are related to the ranks R_{Δ}.
And to the number of φ-types: like types, but look only at $\varphi(x, b)$ and $\neg \varphi(x, b)$.
(which is in turn clearly related to the number of types)

The order property

Fact
T is unstable iff there are

The order property

Fact

T is unstable iff there are

- $\varphi(x, w)$

The order property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- $\left\{a_{i} \mid i \in \omega\right\},\left\{b_{i} \mid i \in \omega\right\}$

The order property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- $\left\{a_{i} \mid i \in \omega\right\},\left\{b_{i} \mid i \in \omega\right\}$
with $\vDash \varphi\left(a_{i}, b_{j}\right) \Longleftrightarrow i<j$.

The order property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- $\left\{a_{i} \mid i \in \omega\right\},\left\{b_{i} \mid i \in \omega\right\}$
with $\vDash \varphi\left(a_{i}, b_{j}\right) \Longleftrightarrow i<j$.

The order property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- $\left\{a_{i} \mid i \in \omega\right\},\left\{b_{i} \mid i \in \omega\right\}$

$$
x<\frac{1}{8}
$$

$x \geq \frac{1}{8}$
$x<\frac{3}{8}$
$x \geq \frac{3}{8}$

$$
x<\frac{5}{8} \quad x \geq \frac{5}{8}
$$

$$
x<\frac{7}{8} \quad x \geq \frac{7}{8}
$$ with $\vDash \varphi\left(a_{i}, b_{j}\right) \Longleftrightarrow i<j$.

How does this relate to the binary tree property?

The order property

Fact

T is unstable iff there are

- $\varphi(x, w)$, and
- $\left\{a_{i} \mid i \in \omega\right\},\left\{b_{i} \mid i \in \omega\right\}$

$$
x<\frac{1}{8}
$$

$$
x \geq \frac{1}{8}
$$

$$
x<\frac{3}{8}
$$

$$
x \geq \frac{3}{8}
$$ with $\vDash \varphi\left(a_{i}, b_{j}\right) \Longleftrightarrow i<j$.

How does this relate to the binary tree property?

$$
x<\frac{5}{8} \quad x \geq \frac{5}{8}
$$

$$
x<\frac{7}{8} \quad x \geq \frac{7}{8}
$$

$x<\frac{1}{4}$

$$
x \geq \frac{1}{4}
$$

$$
x<\frac{3}{4} \quad x \geq \frac{3}{4}
$$

These definitions are local: we may talk of stable/unstable formulas (and types) in arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Independence

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)
a is independent from b over C, written $a \downarrow b, \operatorname{iff} \operatorname{tp}(a / C b)$ does not fork over C. C

Independence

Having "nice" extensions of types allows to define a notion of independence.

Definition (T stable)

a is independent from b over C, written $a \downarrow b$, $\operatorname{iff} \operatorname{tp}(a / C b)$ does not fork over C. C
This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...

Independence

Having "nice" extensions of types allows to define a notion of independence.

Definition (T stable)

a is independent from b over C, written $a \downarrow b$, $\operatorname{iff} \operatorname{tp}(a / C b)$ does not fork over C. C
This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...
In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

Independence

Having "nice" extensions of types allows to define a notion of independence.

Definition (T stable)

a is independent from b over C, written $a \downarrow b$, iff $\operatorname{tp}(a / C b)$ does not fork over C. C
This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...
In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)
In many familiar examples, nonforking independence is exactly what you expect:

Independence

Having "nice" extensions of types allows to define a notion of independence.

Definition (T stable)

a is independent from b over C, written $a \downarrow b$, iff $\operatorname{tp}(a / C b)$ does not fork over C.
This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...
In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)
In many familiar examples, nonforking independence is exactly what you expect:

- In \mathbb{Q}-vector spaces, $a \underset{C}{\downarrow} b \Longleftrightarrow\langle a C\rangle \cap\langle b C\rangle=\langle C\rangle$.

Independence

Having "nice" extensions of types allows to define a notion of independence.

Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, $\operatorname{iff} \operatorname{tp}(a / C b)$ does not fork over C.
This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...
In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)
In many familiar examples, nonforking independence is exactly what you expect:

- In \mathbb{Q}-vector spaces, $a \underset{C}{\downarrow} b \Longleftrightarrow\langle a C\rangle \cap\langle b C\rangle=\langle C\rangle$.
- In $\mathrm{ACF}_{0}, a \underset{C}{\downarrow} b \Longleftrightarrow \forall d \in \operatorname{acl}(a C)(\operatorname{trdeg}(d / \operatorname{acl}(C))=\operatorname{trdeg}(d / \operatorname{acl}(b C)))$.

Independence

Having "nice" extensions of types allows to define a notion of independence.

Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a / C b)$ does not fork over C.
This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...
In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)
In many familiar examples, nonforking independence is exactly what you expect:

- In \mathbb{Q}-vector spaces, $a \underset{C}{\downarrow} b \Longleftrightarrow\langle a C\rangle \cap\langle b C\rangle=\langle C\rangle$.
- In $\mathrm{ACF}_{0}, a \underset{C}{\downarrow} b \Longleftrightarrow \forall d \in \operatorname{acl}(a C)(\operatorname{trdeg}(d / \operatorname{acl}(C))=\operatorname{trdeg}(d / \operatorname{acl}(b C)))$.
- In planar graphs, $a \underset{C}{\downarrow} b$ iff every path from a to b goes through $\operatorname{acl}(C)$.

Two applications

I cannot sketch all that can be done with stability theory in just one slide.

Two applications

I cannot sketch all that can be done with stability theory in just one slide. But: Theorem (Shelah's Main Gap)
Let T be countable and $I(T, \kappa)$ the number of models of T of size κ up to iso.

Two applications

I cannot sketch all that can be done with stability theory in just one slide. But: Theorem (Shelah's Main Gap)
Let T be countable and $I(T, \kappa)$ the number of models of T of size κ up to iso. Then either

- $I\left(T, \aleph_{\alpha}\right)=2^{\aleph_{\alpha}}$, or
- $I\left(T, \aleph_{\alpha}\right)<\beth_{\omega_{1}}(|\omega+\alpha|)$.

Two applications

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T, \kappa)$ the number of models of T of size κ up to iso.
Then either

- $I\left(T, \aleph_{\alpha}\right)=2^{\aleph_{\alpha}}$, or
- $I\left(T, \aleph_{\alpha}\right)<\beth_{\omega_{1}}(|\omega+\alpha|)$.

Moreover:

- In the second case, there is a structure theorem for models of T.

Two applications

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T, \kappa)$ the number of models of T of size κ up to iso.
Then either

- $I\left(T, \aleph_{\alpha}\right)=2^{\aleph_{\alpha}}$, or
- $I\left(T, \aleph_{\alpha}\right)<\beth_{\omega_{1}}(|\omega+\alpha|)$.

Moreover:

- In the second case, there is a structure theorem for models of T.
- The second case happens if and only if T is superstable and [satisfies additional properties I am not going to define].

Two applications

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T, \kappa)$ the number of models of T of size κ up to iso.
Then either

- $I\left(T, \aleph_{\alpha}\right)=2^{\aleph_{\alpha}}$, or
- $I\left(T, \aleph_{\alpha}\right)<\beth_{\omega_{1}}(|\omega+\alpha|)$.

Moreover:

- In the second case, there is a structure theorem for models of T.
- The second case happens if and only if T is superstable and [satisfies additional properties I am not going to define].

Theorem (Hrushovski)

Mordell-Lang for function fields. (a finiteness result in algebraic geometry)

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.
- Plenty more classes: $\mathrm{NSOP}_{1}, \mathrm{NTP}_{2}, \ldots$ See Conant's forkinganddividing.com.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.
- Plenty more classes: NSOP_{1}, NTP $_{2}, \ldots$ See Conant's forkinganddividing.com.
- Rosy theories (includes simple and o-minimal): theories with an independence notion with certain nice properties.

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

- Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP + simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.
- Plenty more classes: NSOP_{1}, NTP $_{2}, \ldots$ See Conant's forkinganddividing. com.
- Rosy theories (includes simple and o-minimal): theories with an independence notion with certain nice properties.
- Continuous structures: stability (and more) can be generalised in the setting of continuous logic. For example, Hilbert spaces are stable.

Where to read more?

"Introductions": (all contain way more than just an introduction)

- Baldwin, Fundamentals of Stability Theory.
- Buechler, Essential Stability Theory.
- Lascar, Stability in Model Theory.
- Pillay, An Introduction to Stability Theory.
- Poizat, A Course in Model Theory.
- Tent-Ziegler, A Course in Model Theory.

Applications and more advanced material: (most also contain an introduction)

- Bouscaren et al, Model Theory and Algebraic Geometry.
- Marker et al, Model Theory of Fields.
- Pillay, Geometric Stability Theory.
- Poizat, Stable Groups.
- Shelah, Classification Theory.
- Wagner, Stable Groups.

Beyond stability:

- Casanovas, Simple Theories and Hyperimaginaries.
- Kim, Simplicity Theory.
- Simon, A guide to NIP Theories.
- Wagner, Simple Theories.

Where to read more?

"Introductions": (all contain way more than just an introduction)

- Baldwin, Fundamentals of Stability Theory.
- Buechler, Essential Stability Theory.
- Lascar, Stability in Model Theory.
- Pillay, An Introduction to Stability Theory.
- Poizat, A Course in Model Theory.
- Tent-Ziegler, A Course in Model Theory.

Applications and more advanced material: (most also contain an introduction)

- Bouscaren et al, Model Theory and Algebraic Geometry.
- Marker et al, Model Theory of Fields.
- Pillay, Geometric Stability Theory.
- Poizat, Stable Groups.

Thanks for listening!

- Shelah, Classification Theory.
- Wagner, Stable Groups.

Beyond stability:

- Casanovas, Simple Theories and Hyperimaginaries.
- Kim, Simplicity Theory.
- Simon, A guide to NIP Theories.
- Wagner, Simple Theories.

[^0]: (we are implicitly taking deductive closures)

