Introduction

Extending types

Forking

More viewpoints

Bonus: going further

Viewpoints on stability and forking A micro-course for the intrigued

Rosario Mennuni

Wwu Münster Shorth Model Theory Huddle 2

 $17^{\rm th}$ June 2021

• This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.
- Also, for many people in the audience (and for the speaker) it's 5pm.

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.
- Also, for many people in the audience (and for the speaker) it's 5pm.
- Please do interrupt me at any time if you have questions, comments...

What is this?

- This is an informal overview of some central concepts in stability theory. It mostly consists of examples, definitions and theorems.
- A proper course on this material, with proofs and all the trimmings, would have taken significantly more time.
- Also, for many people in the audience (and for the speaker) it's 5pm.
- Please do interrupt me at any time if you have questions, comments...
- ... and if you feel like it, please put/leave your camera on. It feels less like talking to a screen :)

troductionExtending typesForkingMore viewpointsBonus: going further00000000000000000000

Plan of the talk

Introduction

Counting types Stable and unstable theories

Extending types

Examples "Nice" extensions

Forking

The French approach Some cornerstone theorems

More viewpoints

Ideals and ranks

Stable and unstable formulas

Independence relations

Bonus: going further

Applications and generalisations (iff there is leftover time) Bibliography

Introduction ●○○	Extending types	Forking 000000	More viewpoints	Bonus: going further
		Why stabili	ty?	
		Structure from sc	arcity	

 $\bullet~T$ complete first-order theory with infinite models.

Introduction	Extending types	Forking
●○○	00000	000000

More viewpoints

Bonus: going further

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)

uction	Extending types	Forking
	00000	000000

Introd

•00

More viewpoints

Bonus: going further

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")

oduction	Extending types	Forking	More viewpoints
	00000	000000	00000

Bonus: going further 000

Why stability?

Structure from scarcity

• T complete first-order theory with infinite models.

Introc

- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)

on	Extending types	Forking	More v
	00000	000000	00000

More viewpoints

Bonus: going further

Why stability?

Structure from scarcity

• T complete first-order theory with infinite models.

Introductio

000

- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$.

oduction	Extending types	Forking	More viewpoints
	00000	000000	00000

Bonus: going further

Why stability?

Structure from scarcity

• T complete first-order theory with infinite models.

Introd

000

- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$. Given |A|, how big can $|S_n(A)|$ be?

ion	Extending types	Forking	More view
	00000	000000	00000

Bonus: going further

Why stability?

Structure from scarcity

• T complete first-order theory with infinite models.

Introducti

•00

- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $\langle \kappa \rangle$)
- We may assume quantifier elimination (Morlevise), so $M \subset \mathfrak{U} \Longrightarrow M \prec \mathfrak{U}$. Given |A|, how big can $|S_n(A)|$ be?

Types are in particular sets of formulas, so in every T we have $|S_n(A)| < 2^{|T|+|A|}$.

Extendi	g types 🛛 🖡	-
00000	(0

More viewpoints

Bonus: going further

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$. Given |A|, how big can $|S_n(A)|$ be?

Types are in particular sets of formulas, so in every T we have $|S_n(A)| \leq 2^{|T|+|A|}$.

Definition

Introduction

000

T is λ -stable iff for all A we have $|A| \leq \lambda \Longrightarrow |S_n(A)| \leq \lambda$.

In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ , even if it is a model.

E	tending	types	
0	0000		

More vie 00000 Bonus: going further

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$. Given |A|, how big can $|S_n(A)|$ be?

Types are in particular sets of formulas, so in every T we have $|S_n(A)| \leq 2^{|T|+|A|}$.

Definition

Introduction

000

T is λ -stable iff for all A we have $|A| \leq \lambda \Longrightarrow |S_n(A)| \leq \lambda$.

In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ , even if it is a model. It is *stable* iff it is λ -stable for *some* λ .

Extending	types
00000	

More viewpoints

Bonus: going further

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$. Given |A|, how big can $|S_n(A)|$ be?

Types are in particular sets of formulas, so in every T we have $|S_n(A)| \leq 2^{|T|+|A|}$.

Definition

Introduction

000

 $T \text{ is } \lambda \text{-stable iff for } all A \text{ we have } |A| \leq \lambda \Longrightarrow |S_n(A)| \leq \lambda.$

In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ , even if it is a model. It is *stable* iff it is λ -stable for *some* λ .

The one thing to take away from this talk

There are so few types \Leftrightarrow there is a good reason for it

Extending	types
00000	

More viewpoi

Bonus: going further

Why stability?

Structure from scarcity

- T complete first-order theory with infinite models.
- x, a, \ldots are allowed to be finite tuples. (I don't like writing \bar{x}, \bar{a}, \ldots)
- Everything embedded in a monster $\mathfrak{U} \models T$. (κ -saturated, κ -strongly homogeneous; κ "big enough")
- Denote by A a small subset of \mathfrak{U} , by M a small model of T. (small = of size $< \kappa$)
- We may assume quantifier elimination (Morleyise), so $M \subseteq \mathfrak{U} \Longrightarrow M \preceq \mathfrak{U}$. Given |A|, how big can $|S_n(A)|$ be?

Types are in particular sets of formulas, so in every T we have $|S_n(A)| \leq 2^{|T|+|A|}$.

Definition

Introduction

000

 $T \text{ is } \lambda \text{-stable iff for } all A \text{ we have } |A| \leq \lambda \Longrightarrow |S_n(A)| \leq \lambda.$

In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ , even if it is a model. It is *stable* iff it is λ -stable for *some* λ .

The one thing to take away from this talk

There are so few types \Leftrightarrow there is a good reason for it \Leftrightarrow there are *many* such.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

Int

• Any number of infinitely cross-cutting equivalence relations.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.

In of

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.

In

• Various classes of graphs, e.g. all planar ones.

troduction	Extending types	Forking	More viewpoints	Bonus: going further
•0	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.

Int

- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).

troduction	Extending types	Forking	More viewpoints	Bonus: going further
•0	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.

Int

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
•0	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.

Int

• In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).

troduction	Extending types	Forking	More viewpoints	Bonus: going further
•0	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.

Int

- In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).
- Algebraically closed fields (of fixed characteristic).

troduction	Extending types	Forking	More viewpoints	Bonus: going further
•0	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.

Int

- In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).

troduction	Extending types	Forking	More viewpoints	Bonus: going further
•0	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.

Intr

- In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).
- Nonabelian free groups.

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).
- Nonabelian free groups.
- Compact complex varieties (all in the same structure!), Zariski closed sets as relations.

A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

- Any number of infinitely cross-cutting equivalence relations.
- Refining equivalence relations.
- Various classes of graphs, e.g. all planar ones.
- Certain incidence geometries (e.g. free projective planes).
- Any abelian group.
- In fact, any *R*-module (with *R* not part of the structure, but of the language: function symbols $r \cdot -$).
- Algebraically closed fields (of fixed characteristic).
- In fact, separably closed fields (of fixed characteristic and degree of imperfection).
- Differentially closed fields (of fixed characteristic).
- Nonabelian free groups.
- Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
- Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	000

In o

A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can "code a lot of things".

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	000

A list of unstable theories

- $\bullet\,$ (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.

In o

roduction	Extending types	Forking	More viewpoints	Bonus: going further
•	00000	000000	00000	000

A list of unstable theories

- $\bullet\,$ (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

Intr

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

• Any graph with arbitrarily large *half-graphs* as *induced* subgraphs:

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.
- Any graph with arbitrarily large *half-graphs* as *induced* subgraphs:

• The field \mathbb{O}

000

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

• Any graph with arbitrarily large *half-graphs* as *induced* subgraphs:

• The fields \mathbb{O}, \mathbb{R}

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

• Any graph with arbitrarily large *half-graphs* as *induced* subgraphs:

• The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

• Any graph with arbitrarily large *half-graphs* as *induced* subgraphs:

• The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$, any nonprincipal ultraproduct of finite fields.

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q}, +, <)$. (but the group $(\mathbb{Q}, +)$ is stable)

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q}, +, <)$. (but the group $(\mathbb{Q}, +)$ is stable)
- Even just $(\mathbb{Q}, <)$. In fact, any infinite linear order.

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q}, +, <)$. (but the group $(\mathbb{Q}, +)$ is stable)
- Even just $(\mathbb{Q}, <)$. In fact, any infinite linear order.
- Anything defining an infinite linear order. Even on a set which is not definable.

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q}, +, <)$. (but the group $(\mathbb{Q}, +)$ is stable)
- Even just $(\mathbb{Q}, <)$. In fact, any infinite linear order.
- Anything defining an infinite linear order. Even on a set which is not definable.
- Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

A list of unstable theories

- (Every completion of) ZFC, PA, anything in which you can "code a lot of things".
- Atomless Boolean algebras.
- The Random Graph.

000

- The fields $\mathbb{Q}, \mathbb{R}, \mathbb{Q}_p$, any nonprincipal ultraproduct of finite fields.
- The ordered group $(\mathbb{Q}, +, <)$. (but the group $(\mathbb{Q}, +)$ is stable)
- Even just $(\mathbb{Q}, <)$. In fact, any infinite linear order.
- Anything defining an infinite linear order. Even on a set which is not definable.
- Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory) Instability is usually easier to prove than stability. By the second-last point (more on this later).

Extending types

Forking

More viewpoints

Bonus: going further

Generic equivalence relation

Let T say "E is an equivalence relation with infinitely many classes, all infinite".

Forking 000000 More viewpoints

Bonus: going further

Generic equivalence relation

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e.

Extending types

Forking

More viewpoints

Bonus: going further

Generic equivalence relation

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$.

|--|

roduction	Extending types	Forking	More viewpoints	Bonus: going further
0	•••••	000000	00000	000

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$: • Realised: $r_a(x) \equiv \{x = a\}$.

a = x					
-------	--	--	--	--	--

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class: $p(z) \equiv \{\neg E(z, d) \mid d \in M\}$

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class:

 $p(z) \equiv \{\neg E(z,d) \mid d \in M\}$ Enter $B \supseteq M$.

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class:

 $p(z) \equiv \{\neg E(z,d) \mid d \in M\}$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_1(B)$?

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class:

 $p(z) \equiv \{\neg E(z,d) \mid d \in M\}$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_1(B)$?

 $r_a(x)$: one choice only

 $r_a'(x) \equiv \{x=a\}$

(now as a type over B)

(we are implicitly taking deductive closures)

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class:

 $p(z) \equiv \{\neg E(z,d) \mid d \in M\}$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_1(B)$?

 $r_a(x)$: one choice only $q_a(y)$: two kinds of choice

$$r'_a(x) \equiv \{x = a\} \qquad \qquad r'_b(y) \equiv \{y = b\}$$

(now as a type over B)
$$q_a'(y) \equiv \{E(y,a) \land y \neq d \mid d \in B\}$$

(we are implicitly taking deductive closures)

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class: $p(z) \equiv \{\neg E(z, d) \mid d \in M\}$

 $r_a(x)$: one choice only $q_a(y)$: two kinds of choice p: three kinds of choice

$$r_a'(x) \equiv \{x=a\} \qquad \qquad r_b'(y) \equiv \{y=b\} \qquad \qquad r_c'(z) \equiv \{y=c\}$$

(now as a type over B) $q'_a(y) \equiv \{E(y,a) \land y \neq d \mid d \in B\} \quad q'_c(z) \equiv \{E(y,c) \land y \neq d \mid d \in B\}$

(we are implicitly taking deductive closures)

 $p'(z) \equiv \{\neg E(z, d) \mid d \in \mathbf{B}\}$

Let T say "E is an equivalence relation with infinitely many classes, all infinite". T is complete with q.e. Fix $M \models T$. There are three kinds of types in $S_1(M)$:

- Realised: $r_a(x) \equiv \{x = a\}.$
- New point in old equivalence class: $q_a(y) \equiv \{E(y,a)\} \cup \{y \neq d \mid d \in M\}$
- Point in new equivalence class: $p(z) \equiv \{\neg E(z, d) \mid d \in M\}$

Enter $B \supseteq M$. How can we complete the (now partial) types above to $S_1(B)$?

 $r_a(x)$: one choice only $q_a(y)$: two kinds of choice p: three kinds of choice

$$r'_a(x) \equiv \{x = a\} \qquad \qquad r'_b(y) \equiv \{y = b\} \qquad \qquad r'_c(z) \equiv \{y = c\}$$

 $q'_{a}(y) \equiv \{E(y,a) \land y \neq d \mid d \in B\} \quad q'_{c}(z) \equiv \{E(y,c) \land y \neq d \mid d \in B\}$ closures) $p'(z) \equiv \{\neg E(z,d) \mid d \in B\}$

(we are implicitly taking deductive closures)

(now as a type over B)

Note how some choices seem to "preserve the spirit" of the original type.

Forking 000000 More viewpoints

Bonus: going further

Algebraically closed fields of characteristic 0

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M.

Introd	uction
000	

Extending types

Forking

More viewpoints

Bonus: going further

Algebraically closed fields of characteristic 0

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

roduction	Extending types	Forking	More viewpoints	Bonus: going further
0	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

• p_0 may say that x_0, x_1 are not in B and algebraically independent over B.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
>	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.

uction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

ction	Extending types	Forking	More viewpoints	Bonus: going further
	0000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

Again, p_1, p_2 are clearly "pinning down" x_0, x_1 way more than p was.

tion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

Again, p_1, p_2 are clearly "pinning down" x_0, x_1 way more than p was. But in p_0 , "B has no more 'real' information about x than M already had".

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

Again, p_1, p_2 are clearly "pinning down" x_0, x_1 way more than p was. But in p_0 , "*B* has no more 'real' information about x than M already had". Some ways to make this more precise:

• p_1, p_2 are introducing a new "shape of formula", e.g. $x_0 = w$ or $x_0 - x_1 = w$.

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

- p_1, p_2 are introducing a new "shape of formula", e.g. $x_0 = w$ or $x_0 x_1 = w$.
- p_1, p_2 are not in the topological closure of $\{\{x = m\} \mid m \in M^2\} \subseteq S_2(B)$.

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

- p_1, p_2 are introducing a new "shape of formula", e.g. $x_0 = w$ or $x_0 x_1 = w$.
- p₁, p₂ are not in the topological closure of {{x = m} | m ∈ M²} ⊆ S₂(B).
 (spelled out, this means there are formulas in p₁, p₂ satisfied by no point of M)

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

- p_1, p_2 are introducing a new "shape of formula", e.g. $x_0 = w$ or $x_0 x_1 = w$.
- p₁, p₂ are not in the topological closure of {{x = m} | m ∈ M²} ⊆ S₂(B).
 (spelled out, this means there are formulas in p₁, p₂ satisfied by no point of M)
- p_0 has "the same definition" as p, only over B.

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Fix $M \models \mathsf{ACF}_0$, and let $p(x_0, x_1) \in S_2(M)$ say that x_0, x_1 are not in M and algebraically independent over M. Take $B \supseteq M$. Extensions of p in $S_2(B)$?

- p_0 may say that x_0, x_1 are not in B and algebraically independent over B.
- p_1 may say that $x_0 = b$ and x_1 is transcendental over B.
- There are more choices: for example p_2 could say that both x_i are transcendental over B, but $x_0 x_1 = b \in B$.

- p_1, p_2 are introducing a new "shape of formula", e.g. $x_0 = w$ or $x_0 x_1 = w$.
- p_1, p_2 are not in the topological closure of $\{\{x = m\} \mid m \in M^2\} \subseteq S_2(B)$. (spelled out, this means there are formulas in p_1, p_2 satisfied by no point of M)
- p_0 has "the same definition" as p, only over B.
- p_1, p_2 have "small" sets, e.g. the line $x_0 x_1 = b$.

Extending types

Forking

More viewpoints

Bonus: going further

Making "nice" precise

uction	Extending types	Forking
	00000	000000

Making "nice" precise

Let $B \supseteq M$, $p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

• q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$.

Making "nice" precise

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.

Making "nice" precise

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)

Extending types

Forking 000000 More viewpoints

Bonus: going further

Making "nice" precise

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in S(B).

Extending types

Forking 000000 More viewpoints

Bonus: going further

Making "nice" precise

Let $B \supseteq M$, $p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in S(B).

Theorem

The following are equivalent.

1. T is stable.

Let $B \supseteq M$, $p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in S(B).

Theorem

The following are equivalent.

1. T is stable.

2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique heir in $S_n(B)$.

Let $B \supseteq M$, $p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in S(B).

Theorem

The following are equivalent.

- 1. T is stable.
- 2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique heir in $S_n(B)$.
- 3. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique coheir in $S_n(B)$.

Let $B \supseteq M$, $p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in S(B).

Theorem

The following are equivalent.

- 1. T is stable.
- 2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique heir in $S_n(B)$.
- 3. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique coheir in $S_n(B)$.
- 4. For all $B \supseteq M \vDash T$ every $p \in S_1(M)$ has a unique heir in $S_1(B)$.
- 5. For all $B \supseteq M \vDash T$ every $p \in S_1(M)$ has a unique coheir in $S_1(B)$.

Let $B \supseteq M$, $p(x) \in S(M)$ and $q(x) \in S(B)$ with $p(x) \subseteq q(x)$.

- q is a *heir* of p iff for all $\varphi(x, b) \in q(x)$ there is $m \in M^{|b|}$ with $\varphi(x, m) \in p(x)$. $\varphi(x, w) \in L(M)$
- q is a coheir of p iff for all $\varphi(x,b) \in q(x)$ there is $m \in M^{|x|}$ with $\vDash \varphi(m,b)$.
- tp(a/Mb) is a heir of $tp(a/M) \iff tp(b/Ma)$ is a coheir of tp(b/M). (exercise)
- Fact: $\forall B \supseteq M$, every $p \in S(M)$ has at least one heir and one coheir in S(B).

Theorem

The following are equivalent.

- 1. T is stable.
- 2. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique heir in $S_n(B)$.
- 3. For all $B \supseteq M \vDash T$ and all n, every $p \in S_n(M)$ has a unique coheir in $S_n(B)$.
- 4. For all $B \supseteq M \vDash T$ every $p \in S_1(M)$ has a unique heir in $S_1(B)$.
- 5. For all $B \supseteq M \vDash T$ every $p \in S_1(M)$ has a unique coheir in $S_1(B)$.

Moreover, if T is stable, the unique heir and coheir of $p \in S_n(M)$ to B coincide.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Definition

We call $p(x) \in S_n(M)$ definable iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Definition

We call $p(x) \in S_n(M)$ definable iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable

The map $d_p \colon \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the *defining scheme* of p.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq |T|$.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
2	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq |T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq |T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M. Theorem

• $p \in S_n(M)$ is definable \iff for every $N \succ M$ it has a unique heir in $S_n(N)$.

For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \land \neg(d_p \varphi)(b)$.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq |T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M. Theorem

- $p \in S_n(M)$ is definable \iff for every $N \succ M$ it has a unique heir in $S_n(N)$. For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \land \neg(d_p \varphi)(b)$.
- If so, the unique heir is the *M*-definable type with the "same" defining scheme.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq |T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M. Theorem

- $p \in S_n(M)$ is definable \iff for every $N \succ M$ it has a unique heir in $S_n(N)$. For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \land \neg(d_p \varphi)(b)$.
- If so, the unique heir is the *M*-definable type with the "same" defining scheme.
- T is stable \iff every type over every model is definable

oduction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Definition $(A \subseteq M)$

We call $p(x) \in S_n(M)$ definable [over A] iff for every $\varphi(x, w) \in L(\emptyset)$ the set

$$d_p \varphi \coloneqq \{ d \in M^{|w|} \mid \varphi(x, d) \in p(x) \}$$

is definable [over A]. The map $d_p: \varphi(x, w) \mapsto (d_p \varphi)(w)$ is the defining scheme of p. Note that if p is definable then it is so over some A of size $|A| \leq |T|$. So (count defining schemes), there are at most $|M|^{|T|}$ definable types over M. Theorem

- $p \in S_n(M)$ is definable \iff for every $N \succ M$ it has a unique heir in $S_n(N)$. For the easy direction \Rightarrow : use that a heir cannot contain $\varphi(x, b) \land \neg(d_p \varphi)(b)$.
- If so, the unique heir is the *M*-definable type with the "same" defining scheme.
- T is stable \iff every type over every model is definable $\iff T$ is λ -stable for some $\lambda = \lambda^{|T|} \iff T$ is λ -stable for all $\lambda = \lambda^{|T|}$.

Introduction 000 Extending types

Forking 000000 More viewpoints

Bonus: going further

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme.

Introduction 000 Extending types

Forking 000000 More viewpoints

Bonus: going further

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory?

Introduction 000 Extending types

Forking

More viewpoints

Bonus: going further

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.
 Introduction
 Extending types
 Forking
 More viewpoin

 000
 00000
 000000
 000000

Bonus: going further

Dense linear orders

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.

• $p(x) \equiv \operatorname{tp}(\pi/\mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.

- $p(x) \equiv \operatorname{tp}(\pi/\mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- p(x) has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$\operatorname{tp}(\pi^+/\mathbb{R}) \coloneqq \{\pi < x < d \mid d \in \mathbb{R}, d > \pi\} \qquad \operatorname{tp}(\pi^-/\mathbb{R}) \coloneqq \{\pi > x > d \mid d \in \mathbb{R}, d < \pi\}$$

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.

- $p(x) \equiv \operatorname{tp}(\pi/\mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- p(x) has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$\operatorname{tp}(\pi^+/\mathbb{R}) \coloneqq \{\pi < x < d \mid d \in \mathbb{R}, d > \pi\} \qquad \operatorname{tp}(\pi^-/\mathbb{R}) \coloneqq \{\pi > x > d \mid d \in \mathbb{R}, d < \pi\}$$

• Let $N \succ \mathbb{Q}$ be \aleph_1 -saturated. Let $q(x) \coloneqq \operatorname{tp}(+\infty/\mathbb{Q})$.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.

- $p(x) \equiv \operatorname{tp}(\pi/\mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- p(x) has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$\operatorname{tp}(\pi^+/\mathbb{R}) \coloneqq \{\pi < x < d \mid d \in \mathbb{R}, d > \pi\} \qquad \operatorname{tp}(\pi^-/\mathbb{R}) \coloneqq \{\pi > x > d \mid d \in \mathbb{R}, d < \pi\}$$

- Let $N \succ \mathbb{Q}$ be \aleph_1 -saturated. Let $q(x) \coloneqq \operatorname{tp}(+\infty/\mathbb{Q})$.
- Then q has a unique heir and a unique coheir to N, but they are different.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.

- $p(x) \equiv \operatorname{tp}(\pi/\mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- p(x) has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$\operatorname{tp}(\pi^+/\mathbb{R}) \coloneqq \{\pi < x < d \mid d \in \mathbb{R}, d > \pi\} \qquad \operatorname{tp}(\pi^-/\mathbb{R}) \coloneqq \{\pi > x > d \mid d \in \mathbb{R}, d < \pi\}$$

• Let $N \succ \mathbb{Q}$ be \aleph_1 -saturated. Let $q(x) \coloneqq \operatorname{tp}(+\infty/\mathbb{Q})$.

1

• Then q has a unique heir and a unique coheir to N, but they are different. They are $\operatorname{tp}(+\infty/N)$ and $\operatorname{tp}(\mathbb{Q}^+/N) := \{q < x < n \mid q \in \mathbb{Q}, n \in N, n > \mathbb{Q}\}.$

(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the "nice" extensions are heirs, coheirs, and defined by the same defining scheme. But what happens to these notions in unstable territory? Let $M = (\mathbb{Q}, <)$.

- $p(x) \equiv \operatorname{tp}(\pi/\mathbb{Q})$ is not definable, since $\{a \in \mathbb{Q} \mid p(x) \vdash a \leq x\}$ is not definable.
- p(x) has two coheirs to $\mathbb{R} \succ \mathbb{Q}$. They are also heirs. They are

$$\operatorname{tp}(\pi^+/\mathbb{R}) \coloneqq \{\pi < x < d \mid d \in \mathbb{R}, d > \pi\} \qquad \operatorname{tp}(\pi^-/\mathbb{R}) \coloneqq \{\pi > x > d \mid d \in \mathbb{R}, d < \pi\}$$

• Let $N \succ \mathbb{Q}$ be \aleph_1 -saturated. Let $q(x) \coloneqq \operatorname{tp}(+\infty/\mathbb{Q})$.

1

- Then q has a unique heir and a unique coheir to N, but they are different. They are $\operatorname{tp}(+\infty/N)$ and $\operatorname{tp}(\mathbb{Q}^+/N) := \{q < x < n \mid q \in \mathbb{Q}, n \in N, n > \mathbb{Q}\}.$ (exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)
- Exercise: find the heirs and coheirs of p over N.

uction	Extending types	Forking
	00000	00000

More viewpoints

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$

roduction	Extending types	Forking	More viewpoints	Bonus: going further
0	00000	•00000	00000	000

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)

ion	Extending types	Forking	More viewpoints
	00000	•00000	00000

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.

Extending types	Forking
00000	00000

More viewpoints

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$

Extending	types
00000	

More viewpoints

Bonus: going further

Passing to arbitrary bases

Forking

00000

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...

Extending	types
00000	

Forking

More viewpoints

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...
- ... with *reverse* inclusion: $[p] \ge [q]$ iff p represents *fewer* formulas than q.

Extending	types
00000	

Forking

More viewpoints

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

(this is way more useful than it may seem, e.g. to deal with prime models)

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...
- ... with reverse inclusion: $[p] \ge [q]$ iff p represents fewer formulas than q.
- So if $M \prec N$, $p(x) \in S(M)$, $q(x) \in S(N)$, and $p \subseteq q$, then $[p] \ge [q]$

(the converse is NOT true! if $p \upharpoonright \emptyset = q \upharpoonright \emptyset$ and p, q are both realised then [p] = [q])

Extending	types
00000	

Forking ●00000 More viewpoints

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

(this is way more useful than it may seem, e.g. to deal with prime models)

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...
- ... with *reverse* inclusion: $[p] \ge [q]$ iff p represents *fewer* formulas than q.
- So if $M \prec N$, $p(x) \in S(M)$, $q(x) \in S(N)$, and $p \subseteq q$, then $[p] \ge [q]$

(the converse is NOT true! if $p \restriction \emptyset = q \restriction \emptyset$ and p,q are both realised then [p] = [q])

• ... and $q \supseteq p$ is a heir of p if and only if [p] = [q] after naming all $m \in M$.

I	Extending	types
(00000	

Forking

More viewpoints

Bonus: going further

Passing to arbitrary bases

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

(this is way more useful than it may seem, e.g. to deal with prime models)

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...
- ... with *reverse* inclusion: $[p] \ge [q]$ iff p represents *fewer* formulas than q.
- So if $M \prec N$, $p(x) \in S(M)$, $q(x) \in S(N)$, and $p \subseteq q$, then $[p] \ge [q]$

(the converse is NOT true! if $p \upharpoonright \emptyset = q \upharpoonright \emptyset$ and p,q are both realised then [p] = [q])

- ... and $q \supseteq p$ is a heir of p if and only if [p] = [q] after naming all $m \in M$.
- Fact: $q \supseteq p$ is a heir of p if and only if [p] = [q] provided that T is stable.

Extending	types
00000	

Forking

More viewpoints

Bonus: going further

Passing to arbitrary bases (teaser trailer)

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

(this is way more useful than it may seem, e.g. to deal with prime models)

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}.$
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...
- ... with *reverse* inclusion: $[p] \ge [q]$ iff p represents *fewer* formulas than q.
- So if $M \prec N$, $p(x) \in S(M)$, $q(x) \in S(N)$, and $p \subseteq q$, then $[p] \ge [q]$

(the converse is NOT true! if $p \upharpoonright \emptyset = q \upharpoonright \emptyset$ and p,q are both realised then [p] = [q])

- ... and $q \supseteq p$ is a heir of p if and only if [p] = [q] after naming all $m \in M$.
- Fact: $q \supseteq p$ is a heir of p if and only if [p] = [q] provided that T is stable.
- But we are still only dealing with models. What about arbitrary bases?

tion	Extending types	Forking	More view
	00000	• 00 000	00000

Nore viewpoints

Bonus: going further

Passing to arbitrary bases (teaser trailer)

• What if instead of $p \in S_n(M)$ we want to start with $p \in S_n(A)$?

(this is way more useful than it may seem, e.g. to deal with prime models)

- Heirs and coheirs are not guaranteed to exist anymore. $(\varphi(x, m) \text{ for } m \in \emptyset?)$
- Still, we want a notion of "nice extension". (sadly, restricting to $A \neq \emptyset$ is not enough)
- $p(x) \in S(M)$ represents $\varphi(x, w) \in L(\emptyset)$ iff there is $d \in M$ with $\varphi(x, d) \in p$.
- The class of p is $[p] \coloneqq \{\varphi(x, w) \in L(\emptyset) \mid p \text{ represents } \varphi\}$. B R E A K
- The fundamental order wrt x is $\{[p] \mid M \vDash T, p(x) \in S(M)\}$...
- ... with *reverse* inclusion: $[p] \ge [q]$ iff p represents *fewer* formulas than q.
- So if $M \prec N, \, p(x) \in S(M), \, q(x) \in S(N)$, and $p \subseteq q$, then $[p] \ge [q]$

(the converse is NOT true! if $p \restriction \emptyset = q \restriction \emptyset$ and p,q are both realised then [p] = [q])

- ... and $q \supseteq p$ is a heir of p if and only if [p] = [q] after naming all $m \in M$.
- Fact: $q \supseteq p$ is a heir of p if and only if [p] = [q] provided that T is stable.
- But we are still only dealing with models. What about arbitrary bases?

Introd	uction
000	

Extending types

Forking ○●○○○○ More viewpoints

Bonus: going further

A toy example

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas. It's not that easy. T := "E is an equivalence relation with 2 classes, both infinite".

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

It's not that easy. $T\coloneqq ``E$ is an equivalence relation with 2 classes, both infinite''.

• Take as p(x) the unique member of $S_1(\emptyset)$.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

It's not that easy. $T \coloneqq "E$ is an equivalence relation with 2 classes, both infinite".

• Take as p(x) the unique member of $S_1(\emptyset)$. Look at extensions from $A = \emptyset$ to $B = \{b\}$.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

- Take as p(x) the unique member of $S_1(\emptyset)$. Look at extensions from $A = \emptyset$ to $B = \{b\}$.
- Any $q \in S_1(B)$ must represent more formulas than p.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

- Take as p(x) the unique member of $S_1(\emptyset)$. Look at extensions from $A = \emptyset$ to $B = \{b\}$.
- Any $q \in S_1(B)$ must represent more formulas than p.
- While choosing x = b is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \land x \neq b\}$ look very much alike.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

- Take as p(x) the unique member of $S_1(\emptyset)$. Look at extensions from $A = \emptyset$ to $B = \{b\}$.
- Any $q \in S_1(B)$ must represent more formulas than p.
- While choosing x = b is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \land x \neq b\}$ look very much alike.
- If we pass to $M \supseteq B$, both $\{E(x, b) \land x \neq d \mid d \in M\}$ and $\{E(x, m) \land x \neq d \mid d \in M\}$ represent the same formulas.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

[spoiler alert] it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

- Take as p(x) the unique member of $S_1(\emptyset)$. Look at extensions from $A = \emptyset$ to $B = \{b\}$.
- Any $q \in S_1(B)$ must represent more formulas than p.
- While choosing x = b is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \land x \neq b\}$ look very much alike.
- If we pass to $M \supseteq B$, both $\{E(x, b) \land x \neq d \mid d \in M\}$ and $\{E(x, m) \land x \neq d \mid d \in M\}$ represent the same formulas.
- Recap: we have two "nice" extensions, representing the same formulas (as few as possible).

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

$\left[\text{spoiler alert} \right]$ it is less of a toy than you may expect

Naive idea: "nice extensions" are those which don't represent more formulas.

It's not that easy. T := "E is an equivalence relation with 2 classes, both infinite".

- Take as p(x) the unique member of $S_1(\emptyset)$. Look at extensions from $A = \emptyset$ to $B = \{b\}$.
- Any $q \in S_1(B)$ must represent more formulas than p.
- While choosing x = b is clearly not "nice", $\{\neg E(x, b)\}$ and $\{E(x, b) \land x \neq b\}$ look very much alike.
- If we pass to $M \supseteq B$, both $\{E(x, b) \land x \neq d \mid d \in M\}$ and $\{E(x, m) \land x \neq d \mid d \in M\}$ represent the same formulas.
- Recap: we have two "nice" extensions, representing the same formulas (as few as possible).

For the unique $p(x) \in S_1(\emptyset)$ in $(\mathbb{Q}, <)$, we still have two extensions to $S_1(\mathbb{Q})$ representing as few formulas as possible: $tp(-\infty/\mathbb{Q})$ and $tp(+\infty/\mathbb{Q})$. But the represented formulas are not the same! ($\{x < w\}$ and $\{x > w\}$).

duction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

roduction	Extending types	Forking	More viewpoints	Bonus: going further
0	00000	000000	00000	000

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

2. Which maximal [q] can arise does not depend on M.

oduction	Extending types	Forking	More viewpoints	Bonus: going further
)	00000	000000	00000	000

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

- 2. Which maximal [q] can arise does not depend on M.
- 3. If T is stable, their is a unique maximal such [q], called the bound $\beta(p)$.

duction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

- 2. Which maximal [q] can arise does not depend on M.
- 3. If T is stable, their is a unique maximal such [q], called the bound $\beta(p)$.
- 4. If T is stable then [q] is maximal if and only if $[q]_A$ is maximal.

(i.e. $\left[q\right]$ in the theory of M naming parameters from A)

uction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

- 2. Which maximal [q] can arise does not depend on M.
- 3. If T is stable, their is a unique maximal such [q], called the bound $\beta(p)$.
- 4. If T is stable then [q] is maximal if and only if $[q]_A$ is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)

Let $A \subseteq B$, $p \in S_n(A)$, $q \in S_n(B)$, and $p(x) \subseteq q(x)$. We say that q is a nonforking extension of p iff $\beta(p) = \beta(q)$. (forking extension otherwise)

duction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

- 2. Which maximal [q] can arise does not depend on M.
- 3. If T is stable, their is a unique maximal such [q], called the bound $\beta(p)$.
- 4. If T is stable then [q] is maximal if and only if $[q]_A$ is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)

Let $A \subseteq B$, $p \in S_n(A)$, $q \in S_n(B)$, and $p(x) \subseteq q(x)$. We say that q is a *nonforking extension* of p iff $\beta(p) = \beta(q)$. (forking extension otherwise) In other words, nonforking extension = does not force more represented formulas than necessary even after going to a model.

("represents as few formulas as possible" is wrong: recall $\{\neg E(x, b)\}$ vs $\{E(x, b) \land x \neq b\}$)

Theorem (of the bound)

Let $A \subseteq M$ and $p(x) \in S_n(A)$.

1. Among the $q(x) \in S_n(M)$ with $q \supseteq p$, there at least one with maximal [q].

- 2. Which maximal [q] can arise does not depend on M.
- 3. If T is stable, their is a unique maximal such [q], called the bound $\beta(p)$.
- 4. If T is stable then [q] is maximal if and only if $[q]_A$ is maximal.

(i.e. $\left[q\right]$ in the theory of M naming parameters from A)

Definition (T stable)

Let $A \subseteq B$, $p \in S_n(A)$, $q \in S_n(B)$, and $p(x) \subseteq q(x)$. We say that q is a *nonforking extension* of p iff $\beta(p) = \beta(q)$. (forking extension otherwise) In other words, nonforking extension = does not force more represented formulas than necessary even after going to a model. Nonforking extensions always exist. ("represents as few formulas as possible" is wrong: recall $\{\neg E(x,b)\}$ vs $\{E(x,b) \land x \neq b\}$)

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

Fact

Let T be stable. Forking has these properties.

1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

Fact

- 1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
- 2. Symmetry: $\operatorname{tp}(b/Ac)$ does not fork over $A \iff \operatorname{tp}(c/Ab)$ does not fork over A.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Fact

- 1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
- 2. Symmetry: tp(b/Ac) does not fork over $A \iff tp(c/Ab)$ does not fork over A. (p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
- 3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_n(C)$ does not fork over A, then it does not fork over B.

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

Fact

- 1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
- 2. Symmetry: tp(b/Ac) does not fork over $A \iff tp(c/Ab)$ does not fork over A. (p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
- 3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_n(C)$ does not fork over A, then it does not fork over B.
- 4. Local character: for every $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq |T|$ such that p does not fork over A_0 .

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

Fact

- 1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
- 2. Symmetry: $\operatorname{tp}(b/Ac)$ does not fork over $A \iff \operatorname{tp}(c/Ab)$ does not fork over A. (p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
- 3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_n(C)$ does not fork over A, then it does not fork over B.
- 4. Local character: for every $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq |T|$ such that p does not fork over A_0 .
- 5. *Finite character*: if $p \in S(A)$ forks over A_0 , there is a finite $A_1 \subseteq A$ such that $p \upharpoonright A_0 \cup A_1$ forks over A_0 .

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	00000	00000	000

Fact

- 1. Transitivity: if $p \subseteq q \subseteq r$, then $r \supseteq p$ is nonforking iff both $r \supseteq q$ and $q \supseteq p$ are.
- 2. Symmetry: $\operatorname{tp}(b/Ac)$ does not fork over $A \iff \operatorname{tp}(c/Ab)$ does not fork over A. (p does not fork over A iff it is a nonforking extension of $p \upharpoonright A$)
- 3. Base monotonicity: if $A \subseteq B \subseteq C$ and $p \in S_n(C)$ does not fork over A, then it does not fork over B.
- 4. Local character: for every $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq |T|$ such that p does not fork over A_0 .
- 5. *Finite character*: if $p \in S(A)$ forks over A_0 , there is a finite $A_1 \subseteq A$ such that $p \upharpoonright A_0 \cup A_1$ forks over A_0 .
- 6. Stationarity: if $p \in S_n(M)$, then the nonforking extensions of p are precisely the (unique!) heirs of p.

Forking ○○○○●○ More viewpoints

Bonus: going further

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many?

oduction	Extending types	Forking	More viewpoints	Bonus: going further
)	00000	000000	00000	000

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

Introd	uction
000	

Forking ○○○○●○ More viewpoints

Bonus: going further

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable)

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide T is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of p.

ction	Extending types	Forking	More viewpoints	Bonus: going furt
	00000	000000	00000	000

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$.

ction	Extending types	Forking	More viewpoints	Bonus: going furt
	00000	000000	00000	000

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in *w*.

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in *w*. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0 \neq q_1 \in S_n(M)$ nonforking extensions of p. There are

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in *w*. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0 \neq q_1 \in S_n(M)$ nonforking extensions of p. There are

 $\bullet\,$ an equivalence relation E definable over A with finitely many classes, and

ion	Extending types	Forking	More viewpoints	Bonus: going furt
	00000	000000	00000	000

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in *w*. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0 \neq q_1 \in S_n(M)$ nonforking extensions of p. There are

- $\bullet\,$ an equivalence relation E definable over A with finitely many classes, and
- a_i with $E(x, a_i) \in q_i$ (for i < 2) such that $\vDash \neg E(a_0, a_1)$.

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in *w*. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0 \neq q_1 \in S_n(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_i with $E(x, a_i) \in q_i$ (for i < 2) such that $\vDash \neg E(a_0, a_1)$.

In other words, nonforking extensions of $p \in S(A)$ are determined by which classes of A-definable finite equivalence relations they choose.

ion	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

How do we tell them apart? (in all of this slide *T* is stable) Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of *p*. We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in *w*. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0 \neq q_1 \in S_n(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_i with $E(x, a_i) \in q_i$ (for i < 2) such that $\models \neg E(a_0, a_1)$.

In other words, nonforking extensions of $p \in S(A)$ are determined by which classes of A-definable finite equivalence relations they choose. The toy was a nice toy. Forking ○○○○●○

The Finite Equivalence Relation Theorem

We have seen that a type can have multiple nonforking extensions. How many? Exercise: there are at most $2^{|T|}$ of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2^{\aleph_0} .

How do we tell them apart? (in all of this slide T is stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0, q_1 \in S_n(M)$ nonforking extensions of p.

We know they represent the same formulas $\varphi(x, w) \in L(\emptyset)$, and in fact the same $\varphi(x, w, a) \in L(A)$. So they can only differ by the parameters to be plugged in w. It turns out it is enough to look at very special $\varphi(x, w, a)$.

Theorem (FERT, T stable)

Let $p \in S_n(A)$, $A \subseteq M$, and $q_0 \neq q_1 \in S_n(M)$ nonforking extensions of p. There are

- an equivalence relation E definable over A with finitely many classes, and
- a_i with $E(x, a_i) \in q_i$ (for i < 2) such that $\models \neg E(a_0, a_1)$.

In other words, nonforking extensions of $p \in S(A)$ are determined by which classes of A-definable finite equivalence relations they choose. The toy was a nice toy.

Nice extensions imply stability

Theorem

Fix any complete T and n > 0. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

1. Invariance: $p \subseteq q$ is invariant under Aut(\mathfrak{U});

Nice extensions imply stability

Theorem

Fix any complete T and n > 0. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

- 1. Invariance: $p \subseteq q$ is invariant under Aut(\mathfrak{U});
- 2. Local Character: there is a cardinal κ such that for all $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq \kappa$ such that $p \upharpoonright A_0 \sqsubset p$;

Theorem

Fix any complete T and n > 0. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

- 1. Invariance: $p \subseteq q$ is invariant under Aut(\mathfrak{U});
- 2. Local Character: there is a cardinal κ such that for all $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq \kappa$ such that $p \upharpoonright A_0 \sqsubset p$; and
- 3. Weak Boundedness: for all $p \in S_n(A)$ there is μ such that for all $B \supseteq A$ there are at most μ -many $q \in S_n(A)$ with $p \sqsubset q$.

Theorem

Fix any complete T and n > 0. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

- 1. Invariance: $p \subseteq q$ is invariant under Aut(\mathfrak{U});
- 2. Local Character: there is a cardinal κ such that for all $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq \kappa$ such that $p \upharpoonright A_0 \sqsubset p$; and
- 3. Weak Boundedness: for all $p \in S_n(A)$ there is μ such that for all $B \supseteq A$ there are at most μ -many $q \in S_n(A)$ with $p \sqsubset q$.

Moreover, suppose that \sqsubset also satisfies:

4. *Existence*: if $A \subseteq B$, for all $p \in S_n(A)$ there is $q \in S_n(B)$ with $p \sqsubset q$;

Theorem

Fix any complete T and n > 0. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

- 1. Invariance: $p \subseteq q$ is invariant under Aut(\mathfrak{U});
- 2. Local Character: there is a cardinal κ such that for all $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq \kappa$ such that $p \upharpoonright A_0 \sqsubset p$; and
- 3. Weak Boundedness: for all $p \in S_n(A)$ there is μ such that for all $B \supseteq A$ there are at most μ -many $q \in S_n(A)$ with $p \sqsubset q$.

Moreover, suppose that \sqsubset also satisfies:

- 4. *Existence*: if $A \subseteq B$, for all $p \in S_n(A)$ there is $q \in S_n(B)$ with $p \sqsubset q$;
- 5. Transitivity: $p \sqsubset q \sqsubset r \Longrightarrow p \sqsubset r;$

Theorem

Fix any complete T and n > 0. Then T is stable if and only if there is a notion of "nice extension" of n-types $p \sqsubset q$ (implying $p \subseteq q$) satisfying:

- 1. Invariance: $p \subseteq q$ is invariant under Aut(\mathfrak{U});
- 2. Local Character: there is a cardinal κ such that for all $p \in S_n(A)$ there is $A_0 \subseteq A$ with $|A_0| \leq \kappa$ such that $p \upharpoonright A_0 \sqsubset p$; and
- 3. Weak Boundedness: for all $p \in S_n(A)$ there is μ such that for all $B \supseteq A$ there are at most μ -many $q \in S_n(A)$ with $p \sqsubset q$.

Moreover, suppose that \square also satisfies:

- 4. *Existence*: if $A \subseteq B$, for all $p \in S_n(A)$ there is $q \in S_n(B)$ with $p \sqsubset q$;
- 5. Transitivity: $p \sqsubset q \sqsubset r \Longrightarrow p \sqsubset r$; and
- 6. Weak Monotonicity: if $p \sqsubset r$ and $p \subseteq q \subseteq r$ then $p \sqsubset q$.

Then \sqsubset equals nonforking.

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down".

Definition

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down".

Definition

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down".

Definition

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down".

Definition

Extending types

Forking 000000 More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down". We would like to consider these formulas to be "small". So they better form an *ideal*. Pual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Definition

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down". We would like to consider these formulas to be "small". So they better form an *ideal*.

Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions. Unfortunately in general, they are not closed under disjunction.

Definition

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down". We would like to consider these formulas to be "small". So they better form an *ideal*.

Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions. Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $(d^i)_{i < \omega}$ with $d = d^0$ such that $\{\varphi(x, d^i) \mid i < \omega\}$ is inconsistent. A partial type forks over A iff it implies a finite disjunction $\bigvee_{i < m} \varphi_i(x, d_i)$ where each $\varphi_i(x, d_i)$ divides over A.

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down". We would like to consider these formulas to be "small". So they better form an *ideal*.

Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions. Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $(d^i)_{i < \omega}$ with $d = d^0$ such that $\{\varphi(x, d^i) \mid i < \omega\}$ is inconsistent. A partial type forks over Aiff it implies a finite disjunction $\bigvee_{i < m} \varphi_i(x, d_i)$ where each $\varphi_i(x, d_i)$ divides over A.

Theorem

If T is stable, then formulas divide over A if and only if they fork over A.

Extending types

Forking

More viewpoints

Bonus: going further

The forking ideal

Another approach: $q \supseteq p \in S(A)$ forks \Leftrightarrow it implies a formula "A cannot pin down". We would like to consider these formulas to be "small". So they better form an *ideal*.

Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions. Unfortunately in general, they are not closed under disjunction.

Definition

A formula $\varphi(x, d)$ divides over A iff there is an A-indiscernible sequence $(d^i)_{i < \omega}$ with $d = d^0$ such that $\{\varphi(x, d^i) \mid i < \omega\}$ is inconsistent. A partial type forks over A iff it implies a finite disjunction $\bigvee_{i < m} \varphi_i(x, d_i)$ where each $\varphi_i(x, d_i)$ divides over A.

Theorem

If T is stable, then formulas divide over A if and only if they fork over A. Moreover, a type forks over A if and only if it forks over A in the previous sense.

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \dots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded.

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \supseteq p$ with $U(q) \ge \alpha$, etc.

Extending types

Forking 000000 More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \ge p$ with $U(q) \ge \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal.

Extending types

Forking 000000 More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \ge p$ with $U(q) \ge \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal. In fact, one can define this rank without mentioning forking:

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \supseteq p$ with $U(q) \ge \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal. In fact, one can define this rank without mentioning forking: for $p \in S(A)$, let $U(p) \ge \alpha + 1$ iff for all cardinals λ there is $B \supseteq A$ such that S(B)contains at least λ -many extensions $q \supseteq p$ with $U(q) \ge \alpha$.

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \supseteq p$ with $U(q) \ge \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal. In fact, one can define this rank without mentioning forking: for $p \in S(A)$, let $U(p) \ge \alpha + 1$ iff for all cardinals λ there is $B \supseteq A$ such that S(B)contains at least λ -many extensions $q \supseteq p$ with $U(q) \ge \alpha$. So in the superstable case one can think of forking as "rank is decreasing".

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \supseteq p$ with $U(q) \ge \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal. In fact, one can define this rank without mentioning forking: for $p \in S(A)$, let $U(p) \ge \alpha + 1$ iff for all cardinals λ there is $B \supseteq A$ such that S(B)contains at least λ -many extensions $q \supseteq p$ with $U(q) \ge \alpha$. So in the superstable case one can think of forking as "rank is decreasing".

This idea can be adapted to the general stable case, but one needs a *family* of ranks:

Extending types

Forking

More viewpoints

Bonus: going further

Ranks

Ascending chains of forking extensions $p_0 \subseteq p_1 \subseteq p_2 \subseteq \ldots$ correspond to descending chains in the fundamental order.

Definition

A stable T is *superstable* iff the fundamental order is well-founded. Equivalently, every type does not fork over some finite set.

Define a rank on types: $U(p) \ge \alpha + 1$ iff there is a forking $q \supseteq p$ with $U(q) \ge \alpha$, etc. Then T is superstable precisely when all types are ranked by an ordinal. In fact, one can define this rank without mentioning forking: for $p \in S(A)$, let $U(p) \ge \alpha + 1$ iff for all cardinals λ there is $B \supseteq A$ such that S(B)contains at least λ -many extensions $q \supseteq p$ with $U(q) \ge \alpha$. So in the superstable case one can think of forking as "rank is decreasing".

This idea can be adapted to the general stable case, but one needs a *family* of ranks: instead of just one rank R, one has a rank R_{Δ} for every finite family of formulas Δ . An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Extending types

Forking

More viewpoints

Bonus: going further 000

The binary tree property

Fact

 ${\cal T}$ is unstable iff there are

Extending types

Forking

More viewpoints

Bonus: going further 000

The binary tree property

Fact

 ${\cal T}$ is unstable iff there are

• $\varphi(x,w)$

Extending types

Forking

More viewpoints

Bonus: going further

The binary tree property

Fact

 ${\cal T}$ is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\{b_s \mid s \in 2^{<\omega}\}$

Extending types

Forking

More viewpoints

Bonus: going further

The binary tree property

Fact

 ${\cal T}$ is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\{b_s \mid s \in 2^{<\omega}\}$ such that each branch of this tree is consistent:

Extending types

Forking

More viewpoints

Bonus: going further

The binary tree property

Fact

 ${\cal T}$ is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\{b_s \mid s \in 2^{<\omega}\}$ such that each branch of this tree is consistent:

These trees are related to the ranks R_{Δ} .

Extending types

Forking

More viewpoints

Bonus: going further

The binary tree property

 ${\cal T}$ is unstable iff there are

- $\varphi(x, w)$, and
- parameters $\{b_s \mid s \in 2^{<\omega}\}$ such that each branch of this tree is consistent:

These trees are related to the ranks R_{Δ} . And to the number of φ -types: like types, but look only at $\varphi(x, b)$ and $\neg \varphi(x, b)$. (which is in turn clearly related to the number of types)

Extending types

Forking

More viewpoints

Bonus: going further 000

The order property

Fact T is unstable iff there are

Extending types

Forking

More viewpoints

Bonus: going further 000

The order property

Fact

- T is unstable iff there are
- $\varphi(x,w)$

Introduction	Extending types	Forking	More viewpoints	Bonus: going fu
000	00000	000000	00000	000

The order property

Fact

- ${\cal T}$ is unstable iff there are
- $\varphi(x, w)$, and
- $\{a_i \mid i \in \omega\}, \{b_i \mid i \in \omega\}$

Introduction	Extending types	Forking	More viewpoints	Bonus: going furthe
000	00000	000000	00000	000

The order property

Fact

 ${\cal T}$ is unstable iff there are

- $\varphi(x, w)$, and
- $\{a_i \mid i \in \omega\}, \{b_i \mid i \in \omega\}$ with $\vDash \varphi(a_i, b_j) \iff i < j.$

o cococ

Mo 000

More viewpoints

Bonus: going further

The order property

Forking

Fact

 ${\cal T}$ is unstable iff there are

- $\varphi(x,w)$, and
- $\{a_i \mid i \in \omega\}, \{b_i \mid i \in \omega\}$
- with $\vDash \varphi(a_i, b_j) \iff i < j$.

The order property

Fact

The order property

Fact

These definitions are *local*: we may talk of stable/unstable *formulas* (and types) in arbitrary theories (T is stable iff it has no unstable formulas).

(also, this is the reason why T is stable iff every indiscernible *sequence* is an indiscernible *set*)

Introduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C. This has a lot of nice properties (which we have already seen): Symmetry,

Transitivity, Local Character, Stationarity (over models)...

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...

In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation *must* be nonforking independence).

(Warning: I have not listed all the properties you need to check)

troduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...

In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation *must* be nonforking independence).

(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is *exactly what you expect*:

troduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...

In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation *must* be nonforking independence).

(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is *exactly what you expect*:

• In Q-vector spaces, $a \underset{C}{\downarrow} b \iff \langle aC \rangle \cap \langle bC \rangle = \langle C \rangle.$

troduction	Extending types	Forking	More viewpoints	Bonus: going further
0	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...

In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation *must* be nonforking independence).

(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is *exactly what you expect*:

• In Q-vector spaces, $a \underset{C}{\downarrow} b \iff \langle aC \rangle \cap \langle bC \rangle = \langle C \rangle.$

• In ACF₀,
$$a \underset{C}{\downarrow} b \iff \forall d \in \operatorname{acl}(aC) \left(\operatorname{trdeg}(d/\operatorname{acl}(C)) = \operatorname{trdeg}(d/\operatorname{acl}(bC))\right).$$

troduction	Extending types	Forking	More viewpoints	Bonus: going further
0	00000	000000	00000	000

Having "nice" extensions of types allows to define a notion of independence. Definition (T stable)

a is independent from b over C, written $a \underset{C}{\downarrow} b$, iff $\operatorname{tp}(a/Cb)$ does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry, Transitivity, Local Character, Stationarity (over models)...

In fact, the existence of an ternary relation on sets with enough properties is again equivalent to stability (and such a relation *must* be nonforking independence).

(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is *exactly what you expect*:

- In Q-vector spaces, $a \underset{C}{\downarrow} b \iff \langle aC \rangle \cap \langle bC \rangle = \langle C \rangle.$
- In ACF_0 , $a \underset{C}{\downarrow} b \iff \forall d \in \operatorname{acl}(aC) \left(\operatorname{trdeg}(d/\operatorname{acl}(C)) = \operatorname{trdeg}(d/\operatorname{acl}(bC)) \right)$.
- In planar graphs, $a \underset{C}{\bigcup} b$ iff every path from a to b goes through $\operatorname{acl}(C)$.

Introduction 000 Extending types

Forking

More viewpoints

Bonus: going further $\bullet \circ \circ$

Two applications

I cannot sketch all that can be done with stability theory in just one slide.

Introduction 000 Extending types

Forking 000000 More viewpoints

Bonus: going further

Two applications

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T, \kappa)$ the number of models of T of size κ up to iso.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	•00

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T,\kappa)$ the number of models of T of size κ up to iso. Then either

- $I(T, \aleph_{\alpha}) = 2^{\aleph_{\alpha}}, \text{ or }$
- $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\omega + \alpha|).$

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	•00

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T,\kappa)$ the number of models of T of size κ up to iso. Then either

- $I(T, \aleph_{\alpha}) = 2^{\aleph_{\alpha}}, \text{ or }$
- $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\omega + \alpha|).$

Moreover:

• In the second case, there is a structure theorem for models of T.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	•00

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T,\kappa)$ the number of models of T of size κ up to iso. Then either

- $I(T, \aleph_{\alpha}) = 2^{\aleph_{\alpha}}, \text{ or }$
- $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\omega + \alpha|).$

Moreover:

- In the second case, there is a structure theorem for models of T.
- The second case happens if and only if T is superstable and [satisfies additional properties I am not going to define].

troduction	Extending types	Forking	More viewpoints	Bonus: going further
00	00000	000000	00000	•00

I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah's Main Gap)

Let T be countable and $I(T,\kappa)$ the number of models of T of size κ up to iso. Then either

- $I(T, \aleph_{\alpha}) = 2^{\aleph_{\alpha}}, \text{ or }$
- $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\omega + \alpha|).$

Moreover:

- In the second case, there is a structure theorem for models of T.
- The second case happens if and only if T is superstable and [satisfies additional properties I am not going to define].

Theorem (Hrushovski)

Mordell-Lang for function fields. (a finiteness result in algebraic geometry)

Introduction 000 Extending types

Forking 000000 More viewpoints

Bonus: going further $0 \bullet 0$

Beyond stability

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

• *Simple* theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models.

ntroduction Extending types	Forking	More viewpoints	Bonus: going further
	000000	00000	○●○

Many interesting theories are unstable. And a lot of recent model-theoretic research concerns generalising methods from stable theories to other classes. A quick list (with no presumption of exhaustivity):

• Simple theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

	0 51	0		Bonus: going further ○●○
--	------	---	--	-----------------------------

- *Simple* theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types.

duction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

- *Simple* theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.

luction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

- *Simple* theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.
- Plenty more classes: $NSOP_1$, NTP_2 ,... See Conant's forkinganddividing.com.

uction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

- *Simple* theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.
- Plenty more classes: $NSOP_1$, NTP_2 ,... See Conant's forkinganddividing.com.
- *Rosy* theories (includes simple and o-minimal): theories with an independence notion with certain nice properties.

duction	Extending types	Forking	More viewpoints	Bonus: going further
	00000	000000	00000	000

- *Simple* theories: nonforking independence (defined via dividing) still behaves well. Something is lost, e.g. stationarity over models. Examples: the Random Graph, pseudofinite fields, algebraically closed fields with generic automorphism.
- NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple). Good behaviour of measures on spaces of types. Examples: all o-minimal theories (e.g. the exponential real field \mathbb{R}), all ordered abelian groups, algebraically closed valued fields, transseries, dense meet-trees.
- Plenty more classes: $NSOP_1$, NTP_2 ,... See Conant's forkinganddividing.com.
- *Rosy* theories (includes simple and o-minimal): theories with an independence notion with certain nice properties.
- *Continuous structures*: stability (and more) can be generalised in the setting of *continuous logic*. For example, Hilbert spaces are stable.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Where to read more?

"Introductions": (all contain way more than just an introduction)

- Baldwin, Fundamentals of Stability Theory.
- Buechler, Essential Stability Theory.
- Lascar, Stability in Model Theory.
- Pillay, An Introduction to Stability Theory.
- Poizat, A Course in Model Theory.
- Tent-Ziegler, A Course in Model Theory.

Applications and more advanced material: (most also contain an introduction)

- Bouscaren et al, Model Theory and Algebraic Geometry.
- Marker et al, Model Theory of Fields.
- Pillay, Geometric Stability Theory.
- Poizat, Stable Groups.
- Shelah, *Classification Theory*.
- Wagner, Stable Groups.

Beyond stability:

- Casanovas, Simple Theories and Hyperimaginaries.
- Kim, Simplicity Theory.
- Simon, A guide to NIP Theories.
- Wagner, Simple Theories.

ntroduction	Extending types	Forking	More viewpoints	Bonus: going further
000	00000	000000	00000	000

Where to read more?

"Introductions": (all contain way more than just an introduction)

- Baldwin, Fundamentals of Stability Theory.
- Buechler, Essential Stability Theory.
- Lascar, Stability in Model Theory.
- Pillay, An Introduction to Stability Theory.
- Poizat, A Course in Model Theory.
- Tent-Ziegler, A Course in Model Theory.

Applications and more advanced material: (most also contain an introduction)

- Bouscaren et al, Model Theory and Algebraic Geometry.
- Marker et al, Model Theory of Fields.
- Pillay, Geometric Stability Theory.
- Poizat, Stable Groups.
- Shelah, *Classification Theory*.
- Wagner, Stable Groups.

Beyond stability:

- Casanovas, Simple Theories and Hyperimaginaries.
- Kim, Simplicity Theory.
- Simon, A guide to NIP Theories.
- Wagner, Simple Theories.

Thanks for listening!