
Introduction Extending types Forking More viewpoints Bonus: going further

Viewpoints on stability and forking
A micro-course for the intrigued

Rosario Mennuni

Wwu Münster
Shorth Model Theory Huddle 2

17th June 2021

Introduction Extending types Forking More viewpoints Bonus: going further

What is this?

• This is an informal overview of some central concepts in stability theory.
It mostly consists of examples, definitions and theorems.

• A proper course on this material, with proofs and all the trimmings,
would have taken significantly more time.

• Also, for many people in the audience (and for the speaker) it’s 5pm.
• Please do interrupt me at any time if you have questions, comments. . .
• . . . and if you feel like it, please put/leave your camera on.

It feels less like talking to a screen :)

Introduction Extending types Forking More viewpoints Bonus: going further

What is this?

• This is an informal overview of some central concepts in stability theory.
It mostly consists of examples, definitions and theorems.

• A proper course on this material, with proofs and all the trimmings,
would have taken significantly more time.

• Also, for many people in the audience (and for the speaker) it’s 5pm.
• Please do interrupt me at any time if you have questions, comments. . .
• . . . and if you feel like it, please put/leave your camera on.

It feels less like talking to a screen :)

Introduction Extending types Forking More viewpoints Bonus: going further

What is this?

• This is an informal overview of some central concepts in stability theory.
It mostly consists of examples, definitions and theorems.

• A proper course on this material, with proofs and all the trimmings,
would have taken significantly more time.

• Also, for many people in the audience (and for the speaker) it’s 5pm.

• Please do interrupt me at any time if you have questions, comments. . .
• . . . and if you feel like it, please put/leave your camera on.

It feels less like talking to a screen :)

Introduction Extending types Forking More viewpoints Bonus: going further

What is this?

• This is an informal overview of some central concepts in stability theory.
It mostly consists of examples, definitions and theorems.

• A proper course on this material, with proofs and all the trimmings,
would have taken significantly more time.

• Also, for many people in the audience (and for the speaker) it’s 5pm.
• Please do interrupt me at any time if you have questions, comments. . .

• . . . and if you feel like it, please put/leave your camera on.
It feels less like talking to a screen :)

Introduction Extending types Forking More viewpoints Bonus: going further

What is this?

• This is an informal overview of some central concepts in stability theory.
It mostly consists of examples, definitions and theorems.

• A proper course on this material, with proofs and all the trimmings,
would have taken significantly more time.

• Also, for many people in the audience (and for the speaker) it’s 5pm.
• Please do interrupt me at any time if you have questions, comments. . .
• . . . and if you feel like it, please put/leave your camera on.

It feels less like talking to a screen :)

Introduction Extending types Forking More viewpoints Bonus: going further

Plan of the talk
Introduction

Counting types
Stable and unstable theories

Extending types
Examples
“Nice” extensions

Forking
The French approach
Some cornerstone theorems

More viewpoints
Ideals and ranks
Stable and unstable formulas
Independence relations

Bonus: going further
Applications and generalisations (iff there is leftover time)
Bibliography

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.

• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.

Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?

Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it

⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

Why stability?
Structure from scarcity

• T complete first-order theory with infinite models.
• x, a, . . . are allowed to be finite tuples. (I don’t like writing x̄, ā, . . .)

• Everything embedded in a monster U � T . (κ-saturated, κ-strongly homogeneous; κ “big enough”)

• Denote by A a small subset of U, by M a small model of T . (small = of size < κ)

• We may assume quantifier elimination (Morleyise), so M ⊆ U =⇒M � U.
Given |A|, how big can |Sn(A)| be?
Types are in particular sets of formulas, so in every T we have |Sn(A)| ≤ 2|T |+|A|.

Definition
T is λ-stable iff for all A we have |A| ≤ λ =⇒ |Sn(A)| ≤ λ.
In fact, it is enough to check for n = 1. But it is not enough to check on one A of size λ, even if it is a model.

It is stable iff it is λ-stable for some λ.

The one thing to take away from this talk
There are so few types ⇔ there is a good reason for it ⇔ there are many such.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.

• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.

• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.

• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).

• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.

• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).

• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).

• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).

• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.

• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.

• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we talking about?
A list of stable theories

These theories/structures are stable: (a structure is stable iff its theory is)

• Any number of infinitely cross-cutting equivalence relations.
• Refining equivalence relations.
• Various classes of graphs, e.g. all planar ones.
• Certain incidence geometries (e.g. free projective planes).
• Any abelian group.
• In fact, any R-module (with R not part of the structure, but of the language: function symbols r · −).

• Algebraically closed fields (of fixed characteristic).
• In fact, separably closed fields (of fixed characteristic and degree of imperfection).
• Differentially closed fields (of fixed characteristic).
• Nonabelian free groups.
• Compact complex varieties (all in the same structure!), Zariski closed sets as relations.
• Anything interpretable in any of the above. (or, more generally, interpretable in a stable theory)

Warning: how easy it is to show that the things above are stable varies considerably.

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.

• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The field

s

Q

,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.

• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The field

s

Q

,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.

• Any graph with arbitrarily large half-graphs as induced subgraphs:
• • • • • • • • • •

• • • • • • • • • •
• The field

s

Q

,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •

• The field

s

Q

,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The field

s

Q

,R,Qp, any nonprincipal ultraproduct of finite fields.

• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R

,Qp, any nonprincipal ultraproduct of finite fields.

• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp

, any nonprincipal ultraproduct of finite fields.

• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp, any nonprincipal ultraproduct of finite fields.

• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.

• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.

• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

What are we NOT talking about?
A list of unstable theories

• (Every completion of) ZFC, PA, anything in which you can “code a lot of things”.
• Atomless Boolean algebras.
• The Random Graph.
• Any graph with arbitrarily large half-graphs as induced subgraphs:

• • • • • • • • • •

• • • • • • • • • •
• The fields Q,R,Qp, any nonprincipal ultraproduct of finite fields.
• The ordered group (Q,+, <). (but the group (Q,+) is stable)

• Even just (Q, <). In fact, any infinite linear order.
• Anything defining an infinite linear order. Even on a set which is not definable.
• Any theory interpreting any of the above. (or, more generally, interpreting an unstable theory)

Instability is usually easier to prove than stability. By the second-last point (more on this later).

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.

T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e.

Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T .

There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .

•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.

• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .

•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M .

How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .

•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Generic equivalence relation
Let T say “E is an equivalence relation with infinitely many classes, all infinite”.
T is complete with q.e. Fix M � T . There are three kinds of types in S1(M):
• Realised: ra(x) ≡ {x = a}.
• New point in old equivalence class:
qa(y) ≡ {E(y, a)} ∪ {y 6= d | d ∈M}

• Point in new equivalence class:
p(z) ≡ {¬E(z, d) | d ∈M}

. . .•
a=x

•
y

•
z

•
b=y

•
c=z

•
z

•
z

Enter B ⊇M . How can we complete the (now partial) types above to S1(B)?

ra(x): one choice only

r′a(x) ≡ {x = a}

(now as a type over B)

(we are implicitly taking deductive closures)

qa(y): two kinds of choice

r′b(y) ≡ {y = b}

q′a(y) ≡ {E(y, a) ∧ y 6= d | d ∈ B}

p: three kinds of choice

r′c(z) ≡ {y = c}

q′c(z) ≡ {E(y, c) ∧ y 6= d | d ∈ B}

p′(z) ≡ {¬E(z, d) | d ∈ B}

Note how some choices seem to “preserve the spirit” of the original type.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M .

Take B ⊇M . Extensions of p in S2(B)?

• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.

Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?

• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.

• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.

• There are more choices: for example p2 could say that both xi are transcendental
over B, but x0 − x1 = b ∈ B.

Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.

Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.

But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.

Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.

• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).
(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)

• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)

• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.

• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Algebraically closed fields of characteristic 0
Fix M � ACF0, and let p(x0, x1) ∈ S2(M) say that x0, x1 are not in M and
algebraically independent over M . Take B ⊇M . Extensions of p in S2(B)?
• p0 may say that x0, x1 are not in B and algebraically independent over B.
• p1 may say that x0 = b and x1 is transcendental over B.
• There are more choices: for example p2 could say that both xi are transcendental

over B, but x0 − x1 = b ∈ B.
Again, p1, p2 are clearly “pinning down” x0, x1 way more than p was.
But in p0, “B has no more ‘real’ information about x than M already had”.
Some ways to make this more precise:
• p1, p2 are introducing a new “shape of formula”, e.g. x0 = w or x0 − x1 = w.
• p1, p2 are not in the topological closure of {{x = m} | m ∈M2} ⊆ S2(B).

(spelled out, this means there are formulas in p1, p2 satisfied by no point of M)
• p0 has “the same definition” as p, only over B.
• p1, p2 have “small” sets, e.g. the line x0 − x1 = b.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).

• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).
ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).

• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.

2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).

3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).

4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).

Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Making “nice” precise
Let B ⊇M , p(x) ∈ S(M) and q(x) ∈ S(B) with p(x) ⊆ q(x).
• q is a heir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |b| with ϕ(x,m) ∈ p(x).

ϕ(x,w) ∈ L(M)

• q is a coheir of p iff for all ϕ(x, b) ∈ q(x) there is m ∈M |x| with � ϕ(m, b).
• tp(a/Mb) is a heir of tp(a/M) ⇐⇒ tp(b/Ma) is a coheir of tp(b/M). (exercise)

• Fact: ∀B ⊇M , every p ∈ S(M) has at least one heir and one coheir in S(B).

Theorem
The following are equivalent.
1. T is stable.
2. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique heir in Sn(B).
3. For all B ⊇M � T and all n, every p ∈ Sn(M) has a unique coheir in Sn(B).
4. For all B ⊇M � T every p ∈ S1(M) has a unique heir in S1(B).
5. For all B ⊇M � T every p ∈ S1(M) has a unique coheir in S1(B).
Moreover, if T is stable, the unique heir and coheir of p ∈ Sn(M) to B coincide.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition

(A ⊆M)

We call p(x) ∈ Sn(M) definable

[over A]

iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable

[over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition

(A ⊆M)

We call p(x) ∈ Sn(M) definable

[over A]

iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable

[over A].

The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.

Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.

Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.

So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.

• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable

⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Definable types
Definition (A ⊆M)
We call p(x) ∈ Sn(M) definable [over A] iff for every ϕ(x,w) ∈ L(∅) the set

dpϕ := {d ∈M |w| | ϕ(x, d) ∈ p(x)}

is definable [over A]. The map dp : ϕ(x,w) 7→ (dpϕ)(w) is the defining scheme of p.
Note that if p is definable then it is so over some A of size |A| ≤ |T |.
So (count defining schemes), there are at most |M ||T | definable types over M .

Theorem
• p ∈ Sn(M) is definable ⇐⇒ for every N �M it has a unique heir in Sn(N).

For the easy direction ⇒: use that a heir cannot contain ϕ(x, b) ∧ ¬(dpϕ)(b).

• If so, the unique heir is the M -definable type with the “same” defining scheme.
• T is stable ⇐⇒ every type over every model is definable
⇐⇒ T is λ-stable for some λ = λ|T | ⇐⇒ T is λ-stable for all λ = λ|T |.

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.

But what happens to these notions in unstable territory? Let M = (Q, <).

• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory?

Let M = (Q, <).

• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).

• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).
• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.

• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).
• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).
• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).

• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).
• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).
• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Dense linear orders
Things can be nice in different ways

Exercise: in the previous examples (they are stable), check that the “nice”
extensions are heirs, coheirs, and defined by the same defining scheme.
But what happens to these notions in unstable territory? Let M = (Q, <).
• p(x) ≡ tp(π/Q) is not definable, since {a ∈ Q | p(x) ` a ≤ x} is not definable.
• p(x) has two coheirs to R � Q. They are also heirs. They are

tp(π+/R) := {π < x < d | d ∈ R, d > π} tp(π−/R) := {π > x > d | d ∈ R, d < π}

• Let N � Q be ℵ1-saturated. Let q(x) := tp(+∞/Q).
• Then q has a unique heir and a unique coheir to N , but they are different.

They are tp(+∞/N) and tp(Q+/N) := {q < x < n | q ∈ Q, n ∈ N,n > Q}.
(exercise: find out which one is the coheir, prove it is one but it is not an heir; do the reverse for the heir)

• Exercise: find the heirs and coheirs of p over N .

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.

• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.

• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .

• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.

• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]
(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .

• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases

(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.

• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases
(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases
(teaser trailer)

• What if instead of p ∈ Sn(M) we want to start with p ∈ Sn(A)?
(this is way more useful than it may seem, e.g. to deal with prime models)

• Heirs and coheirs are not guaranteed to exist anymore. (ϕ(x,m) for m ∈ ∅?)

• Still, we want a notion of “nice extension”. (sadly, restricting to A 6= ∅ is not enough)

• p(x) ∈ S(M) represents ϕ(x,w) ∈ L(∅) iff there is d ∈M with ϕ(x, d) ∈ p.
• The class of p is [p] := {ϕ(x,w) ∈ L(∅) | p represents ϕ}.
• The fundamental order wrt x is {[p] |M � T, p(x) ∈ S(M)}. . .
• . . . with reverse inclusion: [p] ≥ [q] iff p represents fewer formulas than q.
• So if M ≺ N , p(x) ∈ S(M), q(x) ∈ S(N), and p ⊆ q, then [p] ≥ [q]

(the converse is NOT true! if p � ∅ = q � ∅ and p, q are both realised then [p] = [q])

• . . . and q ⊇ p is a heir of p if and only if [p] = [q] after naming all m ∈M .
• Fact: q ⊇ p is a heir of p if and only if [p] = [q] provided that T is stable.
• But we are still only dealing with models. What about arbitrary bases?

B R E A K !

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.

It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.

• Take as p(x) the unique member of S1(∅).
Look at extensions from A = ∅ to B = {b}.

• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy.

T := “E is an equivalence relation with 2 classes, both infinite”.

• Take as p(x) the unique member of S1(∅).
Look at extensions from A = ∅ to B = {b}.

• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.

• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.
• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.

• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.

• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b

•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.
• Any q ∈ S1(B) must represent more formulas than p.

• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b

•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.
• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b

•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.
• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.
• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

A toy example
[spoiler alert] it is less of a toy than you may expect

Naive idea: “nice extensions” are those which don’t represent more formulas.
It’s not that easy. T := “E is an equivalence relation with 2 classes, both infinite”.
• Take as p(x) the unique member of S1(∅).

Look at extensions from A = ∅ to B = {b}.
• Any q ∈ S1(B) must represent more formulas than p.
• While choosing x = b is clearly not “nice”,
{¬E(x, b)} and {E(x, b) ∧ x 6= b} look very much alike.

• If we pass to M ⊇ B, both {E(x, b) ∧ x 6= d | d ∈M}
and {E(x,m) ∧ x 6= d | d ∈M} represent the same formulas.

• Recap: we have two “nice” extensions,
representing the same formulas (as few as possible).

For the unique p(x) ∈ S1(∅) in (Q, <), we still have two extensions to S1(Q) representing as few formulas as

possible: tp(−∞/Q) and tp(+∞/Q). But the represented formulas are not the same! ({x < w} and {x > w}).

•
x

•
b
•
m

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].

2. Which maximal [q] can arise does not depend on M .
3. If T is stable, their is a unique maximal such [q], called the bound β(p).
4. If T is stable then [q] is maximal if and only if [q]A is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model.

Nonforking extensions always exist.
(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].
2. Which maximal [q] can arise does not depend on M .

3. If T is stable, their is a unique maximal such [q], called the bound β(p).
4. If T is stable then [q] is maximal if and only if [q]A is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model.

Nonforking extensions always exist.
(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].
2. Which maximal [q] can arise does not depend on M .
3. If T is stable, their is a unique maximal such [q], called the bound β(p).

4. If T is stable then [q] is maximal if and only if [q]A is maximal.
(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model.

Nonforking extensions always exist.
(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].
2. Which maximal [q] can arise does not depend on M .
3. If T is stable, their is a unique maximal such [q], called the bound β(p).
4. If T is stable then [q] is maximal if and only if [q]A is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model.

Nonforking extensions always exist.
(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].
2. Which maximal [q] can arise does not depend on M .
3. If T is stable, their is a unique maximal such [q], called the bound β(p).
4. If T is stable then [q] is maximal if and only if [q]A is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model.

Nonforking extensions always exist.
(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].
2. Which maximal [q] can arise does not depend on M .
3. If T is stable, their is a unique maximal such [q], called the bound β(p).
4. If T is stable then [q] is maximal if and only if [q]A is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model.

Nonforking extensions always exist.

(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Passing to arbitrary bases, for real
Theorem (of the bound)
Let A ⊆M and p(x) ∈ Sn(A).
1. Among the q(x) ∈ Sn(M) with q ⊇ p, there at least one with maximal [q].
2. Which maximal [q] can arise does not depend on M .
3. If T is stable, their is a unique maximal such [q], called the bound β(p).
4. If T is stable then [q] is maximal if and only if [q]A is maximal.

(i.e. [q] in the theory of M naming parameters from A)

Definition (T stable)
Let A ⊆ B, p ∈ Sn(A), q ∈ Sn(B), and p(x) ⊆ q(x).
We say that q is a nonforking extension of p iff β(p) = β(q). (forking extension otherwise)

In other words, nonforking extension = does not force more represented formulas
than necessary even after going to a model. Nonforking extensions always exist.
(“represents as few formulas as possible” is wrong: recall {¬E(x, b)} vs {E(x, b) ∧ x 6= b})

Introduction Extending types Forking More viewpoints Bonus: going further

Properties of forking

Fact
Let T be stable. Forking has these properties.
1. Transitivity: if p ⊆ q ⊆ r, then r ⊇ p is nonforking iff both r ⊇ q and q ⊇ p are.

2. Symmetry: tp(b/Ac) does not fork over A ⇐⇒ tp(c/Ab) does not fork over A.
(p does not fork over A iff it is a nonforking extension of p � A)

3. Base monotonicity: if A ⊆ B ⊆ C and p ∈ Sn(C) does not fork over A,
then it does not fork over B.

4. Local character: for every p ∈ Sn(A) there is A0 ⊆ A with |A0| ≤ |T |
such that p does not fork over A0.

5. Finite character: if p ∈ S(A) forks over A0, there is a finite A1 ⊆ A
such that p � A0 ∪A1 forks over A0.

6. Stationarity: if p ∈ Sn(M), then the nonforking extensions of p
are precisely the (unique!) heirs of p.

Introduction Extending types Forking More viewpoints Bonus: going further

Properties of forking

Fact
Let T be stable. Forking has these properties.
1. Transitivity: if p ⊆ q ⊆ r, then r ⊇ p is nonforking iff both r ⊇ q and q ⊇ p are.
2. Symmetry: tp(b/Ac) does not fork over A ⇐⇒ tp(c/Ab) does not fork over A.

(p does not fork over A iff it is a nonforking extension of p � A)

3. Base monotonicity: if A ⊆ B ⊆ C and p ∈ Sn(C) does not fork over A,
then it does not fork over B.

4. Local character: for every p ∈ Sn(A) there is A0 ⊆ A with |A0| ≤ |T |
such that p does not fork over A0.

5. Finite character: if p ∈ S(A) forks over A0, there is a finite A1 ⊆ A
such that p � A0 ∪A1 forks over A0.

6. Stationarity: if p ∈ Sn(M), then the nonforking extensions of p
are precisely the (unique!) heirs of p.

Introduction Extending types Forking More viewpoints Bonus: going further

Properties of forking

Fact
Let T be stable. Forking has these properties.
1. Transitivity: if p ⊆ q ⊆ r, then r ⊇ p is nonforking iff both r ⊇ q and q ⊇ p are.
2. Symmetry: tp(b/Ac) does not fork over A ⇐⇒ tp(c/Ab) does not fork over A.

(p does not fork over A iff it is a nonforking extension of p � A)

3. Base monotonicity: if A ⊆ B ⊆ C and p ∈ Sn(C) does not fork over A,
then it does not fork over B.

4. Local character: for every p ∈ Sn(A) there is A0 ⊆ A with |A0| ≤ |T |
such that p does not fork over A0.

5. Finite character: if p ∈ S(A) forks over A0, there is a finite A1 ⊆ A
such that p � A0 ∪A1 forks over A0.

6. Stationarity: if p ∈ Sn(M), then the nonforking extensions of p
are precisely the (unique!) heirs of p.

Introduction Extending types Forking More viewpoints Bonus: going further

Properties of forking

Fact
Let T be stable. Forking has these properties.
1. Transitivity: if p ⊆ q ⊆ r, then r ⊇ p is nonforking iff both r ⊇ q and q ⊇ p are.
2. Symmetry: tp(b/Ac) does not fork over A ⇐⇒ tp(c/Ab) does not fork over A.

(p does not fork over A iff it is a nonforking extension of p � A)

3. Base monotonicity: if A ⊆ B ⊆ C and p ∈ Sn(C) does not fork over A,
then it does not fork over B.

4. Local character: for every p ∈ Sn(A) there is A0 ⊆ A with |A0| ≤ |T |
such that p does not fork over A0.

5. Finite character: if p ∈ S(A) forks over A0, there is a finite A1 ⊆ A
such that p � A0 ∪A1 forks over A0.

6. Stationarity: if p ∈ Sn(M), then the nonforking extensions of p
are precisely the (unique!) heirs of p.

Introduction Extending types Forking More viewpoints Bonus: going further

Properties of forking

Fact
Let T be stable. Forking has these properties.
1. Transitivity: if p ⊆ q ⊆ r, then r ⊇ p is nonforking iff both r ⊇ q and q ⊇ p are.
2. Symmetry: tp(b/Ac) does not fork over A ⇐⇒ tp(c/Ab) does not fork over A.

(p does not fork over A iff it is a nonforking extension of p � A)

3. Base monotonicity: if A ⊆ B ⊆ C and p ∈ Sn(C) does not fork over A,
then it does not fork over B.

4. Local character: for every p ∈ Sn(A) there is A0 ⊆ A with |A0| ≤ |T |
such that p does not fork over A0.

5. Finite character: if p ∈ S(A) forks over A0, there is a finite A1 ⊆ A
such that p � A0 ∪A1 forks over A0.

6. Stationarity: if p ∈ Sn(M), then the nonforking extensions of p
are precisely the (unique!) heirs of p.

Introduction Extending types Forking More viewpoints Bonus: going further

Properties of forking

Fact
Let T be stable. Forking has these properties.
1. Transitivity: if p ⊆ q ⊆ r, then r ⊇ p is nonforking iff both r ⊇ q and q ⊇ p are.
2. Symmetry: tp(b/Ac) does not fork over A ⇐⇒ tp(c/Ab) does not fork over A.

(p does not fork over A iff it is a nonforking extension of p � A)

3. Base monotonicity: if A ⊆ B ⊆ C and p ∈ Sn(C) does not fork over A,
then it does not fork over B.

4. Local character: for every p ∈ Sn(A) there is A0 ⊆ A with |A0| ≤ |T |
such that p does not fork over A0.

5. Finite character: if p ∈ S(A) forks over A0, there is a finite A1 ⊆ A
such that p � A0 ∪A1 forks over A0.

6. Stationarity: if p ∈ Sn(M), then the nonforking extensions of p
are precisely the (unique!) heirs of p.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?

Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.

We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A).

So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.

It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are

• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are
• an equivalence relation E definable over A with finitely many classes, and

• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are
• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are
• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose.

The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are
• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

The Finite Equivalence Relation Theorem
We have seen that a type can have multiple nonforking extensions. How many?
Exercise: there are at most 2|T | of them. (hint: use Local Character and Stationarity)

Bonus info: for topological reasons, there are either finitely many or at least 2ℵ0 .

How do we tell them apart? (in all of this slide T is stable)

Let p ∈ Sn(A), A ⊆M , and q0, q1 ∈ Sn(M) nonforking extensions of p.
We know they represent the same formulas ϕ(x,w) ∈ L(∅), and in fact the same
ϕ(x,w, a) ∈ L(A). So they can only differ by the parameters to be plugged in w.
It turns out it is enough to look at very special ϕ(x,w, a).

Theorem (FERT, T stable)
Let p ∈ Sn(A), A ⊆M , and q0 6= q1 ∈ Sn(M) nonforking extensions of p. There are
• an equivalence relation E definable over A with finitely many classes, and
• ai with E(x, ai) ∈ qi (for i < 2) such that � ¬E(a0, a1).

In other words, nonforking extensions of p ∈ S(A) are determined by which classes
of A-definable finite equivalence relations they choose. The toy was a nice toy.

Introduction Extending types Forking More viewpoints Bonus: going further

Nice extensions imply stability
Theorem
Fix any complete T and n > 0. Then T is stable if and only if there is a notion of
“nice extension” of n-types p @ q (implying p ⊆ q) satisfying:
1. Invariance: p ⊆ q is invariant under Aut(U);

2. Local Character: there is a cardinal κ such that for all p ∈ Sn(A) there is A0 ⊆ A
with |A0| ≤ κ such that p � A0 @ p; and

3. Weak Boundedness: for all p ∈ Sn(A) there is µ such that for all B ⊇ A there are
at most µ-many q ∈ Sn(A) with p @ q.

Moreover, suppose that @ also satisfies:
4. Existence: if A ⊆ B, for all p ∈ Sn(A) there is q ∈ Sn(B) with p @ q;
5. Transitivity: p @ q @ r =⇒ p @ r; and
6. Weak Monotonicity: if p @ r and p ⊆ q ⊆ r then p @ q.
Then @ equals nonforking.

Introduction Extending types Forking More viewpoints Bonus: going further

Nice extensions imply stability
Theorem
Fix any complete T and n > 0. Then T is stable if and only if there is a notion of
“nice extension” of n-types p @ q (implying p ⊆ q) satisfying:
1. Invariance: p ⊆ q is invariant under Aut(U);
2. Local Character: there is a cardinal κ such that for all p ∈ Sn(A) there is A0 ⊆ A

with |A0| ≤ κ such that p � A0 @ p;

and
3. Weak Boundedness: for all p ∈ Sn(A) there is µ such that for all B ⊇ A there are

at most µ-many q ∈ Sn(A) with p @ q.
Moreover, suppose that @ also satisfies:
4. Existence: if A ⊆ B, for all p ∈ Sn(A) there is q ∈ Sn(B) with p @ q;
5. Transitivity: p @ q @ r =⇒ p @ r; and
6. Weak Monotonicity: if p @ r and p ⊆ q ⊆ r then p @ q.
Then @ equals nonforking.

Introduction Extending types Forking More viewpoints Bonus: going further

Nice extensions imply stability
Theorem
Fix any complete T and n > 0. Then T is stable if and only if there is a notion of
“nice extension” of n-types p @ q (implying p ⊆ q) satisfying:
1. Invariance: p ⊆ q is invariant under Aut(U);
2. Local Character: there is a cardinal κ such that for all p ∈ Sn(A) there is A0 ⊆ A

with |A0| ≤ κ such that p � A0 @ p; and
3. Weak Boundedness: for all p ∈ Sn(A) there is µ such that for all B ⊇ A there are

at most µ-many q ∈ Sn(A) with p @ q.

Moreover, suppose that @ also satisfies:
4. Existence: if A ⊆ B, for all p ∈ Sn(A) there is q ∈ Sn(B) with p @ q;
5. Transitivity: p @ q @ r =⇒ p @ r; and
6. Weak Monotonicity: if p @ r and p ⊆ q ⊆ r then p @ q.
Then @ equals nonforking.

Introduction Extending types Forking More viewpoints Bonus: going further

Nice extensions imply stability
Theorem
Fix any complete T and n > 0. Then T is stable if and only if there is a notion of
“nice extension” of n-types p @ q (implying p ⊆ q) satisfying:
1. Invariance: p ⊆ q is invariant under Aut(U);
2. Local Character: there is a cardinal κ such that for all p ∈ Sn(A) there is A0 ⊆ A

with |A0| ≤ κ such that p � A0 @ p; and
3. Weak Boundedness: for all p ∈ Sn(A) there is µ such that for all B ⊇ A there are

at most µ-many q ∈ Sn(A) with p @ q.
Moreover, suppose that @ also satisfies:
4. Existence: if A ⊆ B, for all p ∈ Sn(A) there is q ∈ Sn(B) with p @ q;

5. Transitivity: p @ q @ r =⇒ p @ r; and
6. Weak Monotonicity: if p @ r and p ⊆ q ⊆ r then p @ q.
Then @ equals nonforking.

Introduction Extending types Forking More viewpoints Bonus: going further

Nice extensions imply stability
Theorem
Fix any complete T and n > 0. Then T is stable if and only if there is a notion of
“nice extension” of n-types p @ q (implying p ⊆ q) satisfying:
1. Invariance: p ⊆ q is invariant under Aut(U);
2. Local Character: there is a cardinal κ such that for all p ∈ Sn(A) there is A0 ⊆ A

with |A0| ≤ κ such that p � A0 @ p; and
3. Weak Boundedness: for all p ∈ Sn(A) there is µ such that for all B ⊇ A there are

at most µ-many q ∈ Sn(A) with p @ q.
Moreover, suppose that @ also satisfies:
4. Existence: if A ⊆ B, for all p ∈ Sn(A) there is q ∈ Sn(B) with p @ q;
5. Transitivity: p @ q @ r =⇒ p @ r;

and
6. Weak Monotonicity: if p @ r and p ⊆ q ⊆ r then p @ q.
Then @ equals nonforking.

Introduction Extending types Forking More viewpoints Bonus: going further

Nice extensions imply stability
Theorem
Fix any complete T and n > 0. Then T is stable if and only if there is a notion of
“nice extension” of n-types p @ q (implying p ⊆ q) satisfying:
1. Invariance: p ⊆ q is invariant under Aut(U);
2. Local Character: there is a cardinal κ such that for all p ∈ Sn(A) there is A0 ⊆ A

with |A0| ≤ κ such that p � A0 @ p; and
3. Weak Boundedness: for all p ∈ Sn(A) there is µ such that for all B ⊇ A there are

at most µ-many q ∈ Sn(A) with p @ q.
Moreover, suppose that @ also satisfies:
4. Existence: if A ⊆ B, for all p ∈ Sn(A) there is q ∈ Sn(B) with p @ q;
5. Transitivity: p @ q @ r =⇒ p @ r; and
6. Weak Monotonicity: if p @ r and p ⊆ q ⊆ r then p @ q.
Then @ equals nonforking.

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.

We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent.

A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.

We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent.

A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.

We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent.

A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.

We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent.

A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.
We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent.

A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.
We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent.

A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.
We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent. A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.
We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent. A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.

Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

The forking ideal
Another approach: q ⊇ p ∈ S(A) forks ⇔ it implies a formula “A cannot pin down”.
We would like to consider these formulas to be “small”. So they better form an ideal.
Dual of a filter: a (proper nonempty) family of subsets closed under subsets and disjunctions.

Unfortunately in general, they are not closed under disjunction.

Definition
A formula ϕ(x, d) divides over A iff there is an A-indiscernible sequence (di)i<ω
with d = d0 such that {ϕ(x, di) | i < ω} is inconsistent. A partial type forks over A
iff it implies a finite disjunction

∨
i≤m ϕi(x, di) where each ϕi(x, di) divides over A.

Theorem
If T is stable, then formulas divide over
A if and only if they fork over A.
Moreover, a type forks over A if and only
if it forks over A in the previous sense.

. . .

ϕ ≡ E(x,w)

•
x

•
d0

•
x

•
d1

•
x

•
d2

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.

Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.

Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.

Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.

In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:

for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.

So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.

This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:

instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

Ranks
Ascending chains of forking extensions p0 ⊆ p1 ⊆ p2 ⊆ . . .
correspond to descending chains in the fundamental order.

Definition
A stable T is superstable iff the fundamental order is well-founded.
Equivalently, every type does not fork over some finite set.
Define a rank on types: U(p) ≥ α+ 1 iff there is a forking q ⊇ p with U(q) ≥ α, etc.
Then T is superstable precisely when all types are ranked by an ordinal.
In fact, one can define this rank without mentioning forking:
for p ∈ S(A), let U(p) ≥ α+ 1 iff for all cardinals λ there is B ⊇ A such that S(B)
contains at least λ-many extensions q ⊇ p with U(q) ≥ α.
So in the superstable case one can think of forking as “rank is decreasing”.
This idea can be adapted to the general stable case, but one needs a family of ranks:
instead of just one rank R, one has a rank R∆ for every finite family of formulas ∆.
An extension forks iff at least one of the ranks drops. (so this is another way to define forking)

Introduction Extending types Forking More viewpoints Bonus: going further

The binary tree property

Fact
T is unstable iff there are

• ϕ(x,w), and
• parameters {bs | s ∈ 2<ω}
such that each branch of this
tree is consistent:

x = x

¬ϕ(x, b〈〉)

¬ϕ(x, b1)

¬ϕ(x, b11)ϕ(x, b11)

ϕ(x, b1)

¬ϕ(x, b10)ϕ(x, b10)

ϕ(x, b〈〉)

¬ϕ(x, b0)

¬ϕ(x, b01)ϕ(x, b01)

ϕ(x, b0)

¬ϕ(x, b00)ϕ(x, b00)

These trees are related to the ranks R∆.
And to the number of ϕ-types: like types, but look only at ϕ(x, b) and ¬ϕ(x, b).
(which is in turn clearly related to the number of types)

Introduction Extending types Forking More viewpoints Bonus: going further

The binary tree property

Fact
T is unstable iff there are
• ϕ(x,w)

, and
• parameters {bs | s ∈ 2<ω}
such that each branch of this
tree is consistent:

x = x

¬ϕ(x, b〈〉)

¬ϕ(x, b1)

¬ϕ(x, b11)ϕ(x, b11)

ϕ(x, b1)

¬ϕ(x, b10)ϕ(x, b10)

ϕ(x, b〈〉)

¬ϕ(x, b0)

¬ϕ(x, b01)ϕ(x, b01)

ϕ(x, b0)

¬ϕ(x, b00)ϕ(x, b00)

These trees are related to the ranks R∆.
And to the number of ϕ-types: like types, but look only at ϕ(x, b) and ¬ϕ(x, b).
(which is in turn clearly related to the number of types)

Introduction Extending types Forking More viewpoints Bonus: going further

The binary tree property

Fact
T is unstable iff there are
• ϕ(x,w), and
• parameters {bs | s ∈ 2<ω}

such that each branch of this
tree is consistent:

x = x

¬ϕ(x, b〈〉)

¬ϕ(x, b1)

¬ϕ(x, b11)ϕ(x, b11)

ϕ(x, b1)

¬ϕ(x, b10)ϕ(x, b10)

ϕ(x, b〈〉)

¬ϕ(x, b0)

¬ϕ(x, b01)ϕ(x, b01)

ϕ(x, b0)

¬ϕ(x, b00)ϕ(x, b00)

These trees are related to the ranks R∆.
And to the number of ϕ-types: like types, but look only at ϕ(x, b) and ¬ϕ(x, b).
(which is in turn clearly related to the number of types)

Introduction Extending types Forking More viewpoints Bonus: going further

The binary tree property

Fact
T is unstable iff there are
• ϕ(x,w), and
• parameters {bs | s ∈ 2<ω}
such that each branch of this
tree is consistent:

x = x

¬ϕ(x, b〈〉)

¬ϕ(x, b1)

¬ϕ(x, b11)ϕ(x, b11)

ϕ(x, b1)

¬ϕ(x, b10)ϕ(x, b10)

ϕ(x, b〈〉)

¬ϕ(x, b0)

¬ϕ(x, b01)ϕ(x, b01)

ϕ(x, b0)

¬ϕ(x, b00)ϕ(x, b00)

These trees are related to the ranks R∆.
And to the number of ϕ-types: like types, but look only at ϕ(x, b) and ¬ϕ(x, b).
(which is in turn clearly related to the number of types)

Introduction Extending types Forking More viewpoints Bonus: going further

The binary tree property

Fact
T is unstable iff there are
• ϕ(x,w), and
• parameters {bs | s ∈ 2<ω}
such that each branch of this
tree is consistent:

x = x

¬ϕ(x, b〈〉)

¬ϕ(x, b1)

¬ϕ(x, b11)ϕ(x, b11)

ϕ(x, b1)

¬ϕ(x, b10)ϕ(x, b10)

ϕ(x, b〈〉)

¬ϕ(x, b0)

¬ϕ(x, b01)ϕ(x, b01)

ϕ(x, b0)

¬ϕ(x, b00)ϕ(x, b00)

These trees are related to the ranks R∆.

And to the number of ϕ-types: like types, but look only at ϕ(x, b) and ¬ϕ(x, b).
(which is in turn clearly related to the number of types)

Introduction Extending types Forking More viewpoints Bonus: going further

The binary tree property

Fact
T is unstable iff there are
• ϕ(x,w), and
• parameters {bs | s ∈ 2<ω}
such that each branch of this
tree is consistent:

x = x

¬ϕ(x, b〈〉)

¬ϕ(x, b1)

¬ϕ(x, b11)ϕ(x, b11)

ϕ(x, b1)

¬ϕ(x, b10)ϕ(x, b10)

ϕ(x, b〈〉)

¬ϕ(x, b0)

¬ϕ(x, b01)ϕ(x, b01)

ϕ(x, b0)

¬ϕ(x, b00)ϕ(x, b00)

These trees are related to the ranks R∆.
And to the number of ϕ-types: like types, but look only at ϕ(x, b) and ¬ϕ(x, b).
(which is in turn clearly related to the number of types)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are

• ϕ(x,w), and
• {ai | i ∈ ω}, {bi | i ∈ ω}
with � ϕ(ai, bj) ⇐⇒ i < j.

. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are
• ϕ(x,w)

, and
• {ai | i ∈ ω}, {bi | i ∈ ω}
with � ϕ(ai, bj) ⇐⇒ i < j.

. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are
• ϕ(x,w), and
• {ai | i ∈ ω}, {bi | i ∈ ω}

with � ϕ(ai, bj) ⇐⇒ i < j.
. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are
• ϕ(x,w), and
• {ai | i ∈ ω}, {bi | i ∈ ω}
with � ϕ(ai, bj) ⇐⇒ i < j.

. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are
• ϕ(x,w), and
• {ai | i ∈ ω}, {bi | i ∈ ω}
with � ϕ(ai, bj) ⇐⇒ i < j.

. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are
• ϕ(x,w), and
• {ai | i ∈ ω}, {bi | i ∈ ω}
with � ϕ(ai, bj) ⇐⇒ i < j.

. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

The order property
Fact
T is unstable iff there are
• ϕ(x,w), and
• {ai | i ∈ ω}, {bi | i ∈ ω}
with � ϕ(ai, bj) ⇐⇒ i < j.

. . .

. . .

•
a0 •

a1 •
a2 •

a3 •
a4 •

a5 •
a6 •

a7 •
a8 •

a9

•
b0

•
b1

•
b2

•
b3

•
b4

•
b5

•
b6

•
b7

•
b8

•
b9

How does this relate to the
binary tree property? x = x

x ≥ 1
2

x ≥ 3
4

x ≥ 7
8

x < 7
8

x < 3
4

x ≥ 5
8

x < 5
8

x < 1
2

x ≥ 1
4

x ≥ 3
8

x < 3
8

x < 1
4

x ≥ 1
8

x < 1
8

These definitions are local: we may talk of stable/unstable formulas (and types) in
arbitrary theories (T is stable iff it has no unstable formulas).
(also, this is the reason why T is stable iff every indiscernible sequence is an indiscernible set)

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .
In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:

• In Q-vector spaces, a |̂
C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .

In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:

• In Q-vector spaces, a |̂
C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .
In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:

• In Q-vector spaces, a |̂
C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .
In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:

• In Q-vector spaces, a |̂
C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .
In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:
• In Q-vector spaces, a |̂

C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .
In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:
• In Q-vector spaces, a |̂

C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Independence
Having “nice” extensions of types allows to define a notion of independence.

Definition (T stable)
a is independent from b over C, written a |̂

C

b, iff tp(a/Cb) does not fork over C.

This has a lot of nice properties (which we have already seen): Symmetry,
Transitivity, Local Character, Stationarity (over models). . .
In fact, the existence of an ternary relation on sets with enough properties is again
equivalent to stability (and such a relation must be nonforking independence).
(Warning: I have not listed all the properties you need to check)

In many familiar examples, nonforking independence is exactly what you expect:
• In Q-vector spaces, a |̂

C

b ⇐⇒ 〈aC〉 ∩ 〈bC〉 = 〈C〉.

• In ACF0, a |̂
C

b ⇐⇒ ∀d ∈ acl(aC)
(

trdeg(d/ acl(C)) = trdeg(d/ acl(bC))
)
.

• In planar graphs, a |̂
C

b iff every path from a to b goes through acl(C).

Introduction Extending types Forking More viewpoints Bonus: going further

Two applications
I cannot sketch all that can be done with stability theory in just one slide.

But:

Theorem (Shelah’s Main Gap)
Let T be countable and I(T, κ) the number of models of T of size κ up to iso.
Then either
• I(T,ℵα) = 2ℵα , or
• I(T,ℵα) < iω1(|ω + α|).
Moreover:
• In the second case, there is a structure theorem for models of T .
• The second case happens if and only if T is superstable and [satisfies additional

properties I am not going to define].

Theorem (Hrushovski)
Mordell–Lang for function fields. (a finiteness result in algebraic geometry)

Introduction Extending types Forking More viewpoints Bonus: going further

Two applications
I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah’s Main Gap)
Let T be countable and I(T, κ) the number of models of T of size κ up to iso.

Then either
• I(T,ℵα) = 2ℵα , or
• I(T,ℵα) < iω1(|ω + α|).
Moreover:
• In the second case, there is a structure theorem for models of T .
• The second case happens if and only if T is superstable and [satisfies additional

properties I am not going to define].

Theorem (Hrushovski)
Mordell–Lang for function fields. (a finiteness result in algebraic geometry)

Introduction Extending types Forking More viewpoints Bonus: going further

Two applications
I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah’s Main Gap)
Let T be countable and I(T, κ) the number of models of T of size κ up to iso.
Then either
• I(T,ℵα) = 2ℵα , or
• I(T,ℵα) < iω1(|ω + α|).

Moreover:
• In the second case, there is a structure theorem for models of T .
• The second case happens if and only if T is superstable and [satisfies additional

properties I am not going to define].

Theorem (Hrushovski)
Mordell–Lang for function fields. (a finiteness result in algebraic geometry)

Introduction Extending types Forking More viewpoints Bonus: going further

Two applications
I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah’s Main Gap)
Let T be countable and I(T, κ) the number of models of T of size κ up to iso.
Then either
• I(T,ℵα) = 2ℵα , or
• I(T,ℵα) < iω1(|ω + α|).
Moreover:
• In the second case, there is a structure theorem for models of T .

• The second case happens if and only if T is superstable and [satisfies additional
properties I am not going to define].

Theorem (Hrushovski)
Mordell–Lang for function fields. (a finiteness result in algebraic geometry)

Introduction Extending types Forking More viewpoints Bonus: going further

Two applications
I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah’s Main Gap)
Let T be countable and I(T, κ) the number of models of T of size κ up to iso.
Then either
• I(T,ℵα) = 2ℵα , or
• I(T,ℵα) < iω1(|ω + α|).
Moreover:
• In the second case, there is a structure theorem for models of T .
• The second case happens if and only if T is superstable and [satisfies additional

properties I am not going to define].

Theorem (Hrushovski)
Mordell–Lang for function fields. (a finiteness result in algebraic geometry)

Introduction Extending types Forking More viewpoints Bonus: going further

Two applications
I cannot sketch all that can be done with stability theory in just one slide. But:

Theorem (Shelah’s Main Gap)
Let T be countable and I(T, κ) the number of models of T of size κ up to iso.
Then either
• I(T,ℵα) = 2ℵα , or
• I(T,ℵα) < iω1(|ω + α|).
Moreover:
• In the second case, there is a structure theorem for models of T .
• The second case happens if and only if T is superstable and [satisfies additional

properties I am not going to define].

Theorem (Hrushovski)
Mordell–Lang for function fields. (a finiteness result in algebraic geometry)

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.

A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.
• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models.

Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.
• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.
• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types.

Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.
• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.
• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.

• Rosy theories (includes simple and o-minimal): theories with an independence
notion with certain nice properties.

• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.

• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Beyond stability
Many interesting theories are unstable. And a lot of recent model-theoretic
research concerns generalising methods from stable theories to other classes.
A quick list (with no presumption of exhaustivity):
• Simple theories: nonforking independence (defined via dividing) still behaves

well. Something is lost, e.g. stationarity over models. Examples: the Random
Graph, pseudofinite fields, algebraically closed fields with generic automorphism.

• NIP theories: a generalisation orthogonal to simplicity (stable=NIP+simple).
Good behaviour of measures on spaces of types. Examples: all o-minimal
theories (e.g. the exponential real field R), all ordered abelian groups,
algebraically closed valued fields, transseries, dense meet-trees.

• Plenty more classes: NSOP1, NTP2,. . . See Conant’s forkinganddividing.com.
• Rosy theories (includes simple and o-minimal): theories with an independence

notion with certain nice properties.
• Continuous structures: stability (and more) can be generalised in the setting of
continuous logic. For example, Hilbert spaces are stable.

http://forkinganddividing.com

Introduction Extending types Forking More viewpoints Bonus: going further

Where to read more?
“Introductions”: (all contain way more than just an introduction)

• Baldwin, Fundamentals of Stability Theory.
• Buechler, Essential Stability Theory.
• Lascar, Stability in Model Theory.
• Pillay, An Introduction to Stability Theory.
• Poizat, A Course in Model Theory.
• Tent–Ziegler, A Course in Model Theory.
Applications and more advanced material: (most also contain an introduction)

• Bouscaren et al, Model Theory and Algebraic Geometry.
• Marker et al, Model Theory of Fields.
• Pillay, Geometric Stability Theory.
• Poizat, Stable Groups.
• Shelah, Classification Theory.
• Wagner, Stable Groups.
Beyond stability:
• Casanovas, Simple Theories and Hyperimaginaries.
• Kim, Simplicity Theory.
• Simon, A guide to NIP Theories.
• Wagner, Simple Theories.

Thanks for listening!

Introduction Extending types Forking More viewpoints Bonus: going further

Where to read more?
“Introductions”: (all contain way more than just an introduction)

• Baldwin, Fundamentals of Stability Theory.
• Buechler, Essential Stability Theory.
• Lascar, Stability in Model Theory.
• Pillay, An Introduction to Stability Theory.
• Poizat, A Course in Model Theory.
• Tent–Ziegler, A Course in Model Theory.
Applications and more advanced material: (most also contain an introduction)

• Bouscaren et al, Model Theory and Algebraic Geometry.
• Marker et al, Model Theory of Fields.
• Pillay, Geometric Stability Theory.
• Poizat, Stable Groups.
• Shelah, Classification Theory.
• Wagner, Stable Groups.
Beyond stability:
• Casanovas, Simple Theories and Hyperimaginaries.
• Kim, Simplicity Theory.
• Simon, A guide to NIP Theories.
• Wagner, Simple Theories.

Thanks for listening!

	Introduction
	Counting types
	Stable and unstable theories

	Extending types
	Examples
	``Nice'' extensions

	Forking
	The French approach
	Some cornerstone theorems

	More viewpoints
	Ideals and ranks
	Stable and unstable formulas
	Independence relations

	Bonus: going further
	Applications and generalisations (iff there is leftover time)
	Bibliography

