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Readme

What is this? This document contains notes for a graduate course in model
theory, held in the spring of 2022 at the Università di Pisa.

What is this not?

Going to change much anytime soon. Unless someone points out mistakes in
them, I do not plan on editing these notes. If you want to let me know of
any needed corrections, please write me at the email address below.

A book. There are already several beautiful books on model theory. Some are
listed in the bibliography.

The only thing you should read. It is a good idea to look in the bibliography for
examples, exercises, interesting topics, etc. Look, these are lecture notes,
not a monograph, so, please, also consult other sources. Also, some of
those books are really well written.

Original work. Of course nothing in these notes is an original result of the au-
thor. The exposition also owes various debts to multiple sources, notably
Chapter 6 borrows heavily from [Che19] and Chapter 8 from [Mar02].

Why couldn’t you choose a normal title? It’s a tribute to two quite
influential texts. Also, I like making references too much.

Why do pages move left and right? Because you are looking at a digital
copy, but this version is made to be printed. If you really don’t like this, just
recompile with twoside replaced by oneside (see below for the source files).

Notation From some point on, lowercase letters like a, x, etc. will denote
tuples of parameters or variables. To stress that a tuple has length 1, I write
|x| = 1. On the other hand, if you read something like x0, . . . , xn, it probably
(but not necessarily) means that they are single variables, and not tuples.

Acknowledgements Many thanks to Roberto Di Virgilio, Mariaclara Ra-
gosta, and Alessandro Sferlazza for pointing out several inaccuracies in a previ-
ous version.
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Info You can contact me at R.Mennuni@posteo.net. This version has been
compiled on the 11th December 2023. To get the source code click on the
leftmost paper clip. The bibliography source file is in the rightmost one.

Rosario Mennuni
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\paragraph{What is this?}
This document contains notes for a graduate course in model theory,  held in the spring of 2022 at the Universit\`a di Pisa.

\paragraph{What is this not?}
\begin{description}
\item [Going to change much anytime soon.] Unless someone points out mistakes in them, I do not plan on editing these notes. If you want to let me know of any needed corrections, please write me at the email address below.
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\item [The only thing you should read.]  It is a good idea to look in the bibliography for examples, exercises, interesting topics, etc. Look, these are lecture notes, not a monograph, so, please, also consult other sources. Also, some of those books are \emph{really} well written. 
\item [Original work.] Of course nothing in these notes is an original result of the author. The exposition also owes various debts to multiple sources, notably \Cref{ch:stability} borrows heavily from~\cite{chernotes} and \Cref{ch:groups} from \cite{marker}.
\end{description}

\paragraph{Why couldn't you choose a normal title?}
It's a tribute to two quite influential texts. Also, I like making references too much.

\paragraph{Why do pages move left and right?}
Because you are looking at a digital copy, but this version is made to be printed. If you really don't like this, just recompile with \texttt{twoside} replaced by \texttt{oneside} (see below for the source files).

\paragraph{Notation}
From some point on, lowercase letters like $a, x$, etc.\ will denote \emph{tuples} of
parameters or variables. To stress that a tuple has length $1$, I
write $\abs x=1$. On the other hand, if you read something like
$x_0,\ldots, x_n$, it probably (but not necessarily) means that they
are single variables, and not tuples.
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\paragraph{Info}
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\mainmatter
\setcounter{chapter}{-1}
\chapter{Structures and formulas}
\section{First-order structures}
\subsection{A ``definition by example''}\label{subsec:defeg}
\begin{eg}\label{eg:loag}
The \emph{language of ordered abelian groups} is $L_\mathrm{oag}\coloneqq \set{+,0,-,<}$, where $+$ is a \emph{binary function symbol},  $0$ is a \emph{constant symbol},  $-$ is a \emph{unary function symbol} and $<$ is a \emph{binary relation symbol}.
\end{eg}

The ``natural'' way to define an \emph{$L_\mathrm{oag}$-structure} $\mathcal R\coloneqq(\mathbb R, +,0,-,<)$ on the real numbers is as follows. The \emph{domain} of $\mathcal R$ is $\mathbb R$, and we \emph{interpret} $+$ as the function sending $x,y$ to their usual sum, $0$ as the usual number zero we all know and love, $-$ as the function sending $x$ to its additive inverse, and $<$ as the usual order relation, that is, as the set of those $(x,y)\in \mathbb R^2$ such that $x$ is strictly smaller than $y$.

The previous paragraph has a lot of words in order to avoid writing things like
\begin{equation}
  \textnormal{``we interpret $<$ as $<\coloneqq \set{(x,y)\in \mathbb R^2\mid x<y}$''}\label{eq:threeless}
\end{equation}
Here there is a lot of abuse of notation going on: the first instance of $<$ is a symbol; the second a subset of $\mathbb R^2$; and the third one means what you expect. If we want to distinguish between, say the symbol $<$, its interpretation in $\mathcal R$, and maybe we also want to be able to write $<$ to refer to the usual order of the reals (as in the third instance), we could for example use $\sqsubset$ as a symbol and write
\begin{equation*}
  \textnormal{``we interpret $\sqsubset$ as $\sqsubset^\mathcal R\coloneqq \set{(x,y)\in \mathbb R^2\mid x<y}$''}\label{eq:threedifferentless}
\end{equation*}
In practice, once these distinctions are understood, writing things like $<^\mathcal R$ every time becomes very boring very quickly, so abuses of notation as in~\eqref{eq:threeless} are commonplace. 

To stress the point further: it is completely legitimate to define an $L_\mathrm{oag}$-structure $\mathcal S$ with domain $\mathbb R$ by setting the interpretation $+^{\mathcal S}$ to be multiplication, $-^\mathcal S$ to be the function sending $x$ to $e^x/x^3$, $0^\mathcal S\coloneqq 23579$, and $<^\mathcal S$ to be the open unit disc intersected with $\mathbb Q^2$. But of course, while $\mathcal R$ is actually an ordered abelian group,\footnote{In which sense? See~\cref{sec:flasths}.} $\mathcal S$ is not, so if for some reason we want to study $\mathcal S$ it would be better to use a language with different symbols, instead of $L_\mathrm{oag}$.


\subsection{An actual definition (or two)}
Let's give a couple of precise definitions.
\begin{defin}\label{defin:ssfol}
  A \emph{(single-sorted, first-order) language} is a quadruple $L=(L_\mathrm{c}, L_\mathrm{f}, L_\mathrm{r}, \mathrm{ar}_L)$, where
  \begin{enumerate}
  \item $L_\mathrm{c}, L_\mathrm{f}, L_\mathrm{r}$ are pairwise disjoint sets, respectively the sets of \emph{constant symbols}, \emph{function symbols}, and \emph{relation symbols}\footnote{Relation( symbol)s are sometimes also called \emph{predicates}.} of $L$; and
  \item $\mathrm{ar}_L$ is a function $L_\mathrm{f}\cup L_\mathrm{r}\to \mathbb N\setminus \set 0$.  \end{enumerate}
  \begin{itemize}
  \item If $s\in L_\mathrm{f}$, we call $\mathrm{ar}_L(s)$ the
    \emph{arity} of $s$, and say that $s$ is a
    \emph{$\mathrm{ar}_L(s)$-ary} function symbol.
  \item  If $s\in L_\mathrm{r}$, we call $\mathrm{ar}_L(s)$ the \emph{arity} of $s$, and say that $s$ is a \emph{$\mathrm{ar}_L(s)$-ary} relation symbol.
  \end{itemize}
\end{defin}
For instance, in~\Cref{eg:loag}, we have $\operatorname{ar}_{L_\mathrm{oag}}(+)=2$, and we call $+$ a $2$-ary function symbol.  Synonyms such as ``binary'' instead of ``$2$-ary'', are also used.

In practice, one abuses the notation and just lists the symbols of a language in a single set and specifies in some way which symbols are constants, which are functions, and which are relations, as in~\Cref{eg:loag}. Another shorthand is to write arities as superscripts, as in ``$L_\mathrm{oag}\coloneqq \set{\pow +2,0,\pow-1,\pow<2}$''.

\begin{defin}
  Let $L$ be a language. An \emph{$L$-structure} $\mathcal M$ is given by the following.
  \begin{enumerate}
  \item A set $M$, called the \emph{domain} (or \emph{universe}) of $\mathcal M$.
  \item For each constant symbol $c\in L_\mathrm{c}$, an element $c^\mathcal M\in M$.
  \item For each function symbol $f\in L_\mathrm{f}$, a function $f^\mathcal M\from M^{\operatorname{ar}(f)}\to M$.
  \item For each relation symbol $R\in L_\mathrm{r}$, a subset $R^\mathcal M\subseteq M^{\operatorname{ar}(R)}$.
  \end{enumerate}
  If $s$ is a symbol, we call $s^\mathcal M$ its \emph{interpretation} in $\mathcal M$.
\end{defin}
\begin{rem}\label{rem:emptydomain}
Some authors only allow structures with nonempty domain. Sometimes this is convenient, sometimes it is not, see e.g.~\cite[page 22]{poizat}.
\end{rem}

\begin{eg}
The \emph{language of graphs} is $L_\mathrm{graph}\coloneqq\set{\pow E2}$. Your favourite graph $G$ can be made into an $L_\mathrm{graph}$-structure $\mathcal G\coloneqq(G, E^\mathcal G)$, where $E^\mathcal G$ is the set of $(x,y)\in G^2$ such that there is an edge between $x$ and $y$. 
\end{eg}
\begin{eg}
  Again, formally, \emph{any} set $G$ with \emph{any} subset of $G^2$ is a perfectly legit $L_\mathrm{graph}$-structure.
\end{eg}

It is also commonplace to use the same notation for a structure and its domain, as in ``the $L_\mathrm{oag}$-structure $\mathbb R$'', with the understanding that the interpretation of each symbol is clear from context. For the time being we will keep the notation distinct (but not for very long).

\begin{rem}
Slightly different approaches exist. For instance one may replace constant symbols by $0$-ary function symbols; some authors also allow $0$-ary relation symbols, which are interpreted as ``always true'' or ``always false''.
\end{rem}


\subsection{Expansions and reducts}

\begin{defin}
Let $L, L'$ be languages.  We say that $L'$ is a \emph{sublanguage} of $L$, and write $L'\subseteq L$, iff $L_\mathrm{c}'\subseteq L_\mathrm{c}$, $L_\mathrm{f}'\subseteq L_\mathrm{f}$, $L_\mathrm{r}'\subseteq L_\mathrm{r}$, and $\mathrm{ar}_{L'}=\mathrm{ar}_{L}\restr L_\mathrm{f}'\cup L_\mathrm{r}'$.
\end{defin}
So a sublanguage of $L$ is just a language with fewer symbols.
\begin{defin}\label{defin:redexp}
  Let $\mathcal M$ be an $L$-structure and $L'\subseteq L$. The \emph{reduct} $\mathcal M\restr L'$ of $\mathcal M$ to $L'$ is the $L'$-structure $\mathcal M'$ with the same domain as $\mathcal M$, and where every symbol $s\in L'$ is interpreted as $s^{\mathcal M'}=s^{\mathcal M}$. We call $\mathcal M$ an \emph{expansion} of $\mathcal M'$ to $L$.
\end{defin}
In other words, the reduct of an $L$-structure to $L'\subseteq L$ is obtained by forgetting the interpretations of symbols in $L\setminus L'$.

By the way, $s\in L'$, $L\setminus L'$, etc, are more abuses of notation: formally we should say, for example, ``the constant symbols in $L_\mathrm{c}\setminus L_\mathrm{c}'$, the function symbols in\ldots''. Hopefully, by now it should be clear what kinds of pedantries are happening in the background, so we will stop commenting on them.

\section{Formulas and theories}\label{sec:flasths}
We still have a bunch of definitions to give but, as it is probably clear from the previous section, spelling out everything formally tends to be more lengthy than enlightening. So I am going to be brief and compensate with some examples.
To see the details spelled out more precisely, see the literature, or the notes of a course in logic. Some references are \cite{changkeisler, hilsloeser, hodges, kirby, marcjatoffalori, marker, poizat, tent-ziegler}.

\subsection{Formulas}

Fix a language $L$, and fix a countably infinite\footnote{For most purposes, countably many variables suffice, so we will assume this, but in some applications one needs larger sets of variables. Everything generalises fairly easily.} set $V$ of \emph{variables}, e.g.\ $V=\set{x_0,x_1, x_2,\ldots}$. 

\begin{defin}
  Let $L$ be a language. The set of \emph{terms} of $L$ is the closure of $L_\mathrm{c}\cup V$ under the functions of $L_\mathrm{f}$. We write $t(\bla x0,n)$ to denote a term in which the set of variables appearing is included in $\set{\bla x0,n}$.
\end{defin}
\begin{eg}
  \begin{enumerate}
  \item In $L_\mathrm{oag}$, examples of terms are $x_0$, $0$. Another example is $+(x_0,0)$, but we also denote it by $x_0+0$. Yet another example is $(x_0+0)+(-x_1)$. 
  \item In $L_\mathrm{graph}$ the only terms are the
    variables. The same is true in every \emph{relational} language,
    that is, a language with only relation symbols.
\end{enumerate}
\end{eg}
\begin{rem}\label{rem:varinc}
  A term $t(\bla x0,n)$ need not necessarily mention all the variables $\bla x0,n$. For example it is perfectly legit to write $t(\bla x0,7)\coloneqq x_0+x_{4}$. It is also perfectly legit to write $t(x_0, x_4)\coloneqq x_0+x_{4}$. Or simply $x_0+x_4$, but this is yet another (useful!) abuse of notation, and we may need to specify whether we regard this as a term in $2$ or $8$ variables (cf.~\Cref{rem:termfun}).
\end{rem}
\begin{noneg}
$x_0<0$ is \emph{not} a term: it contains a relation symbol. $x_0+x_1+x_2$ is, strictly speaking, not a term: we need parentheses somewhere (no one guarantees that $+$ will be interpreted as an associative operation).  
\end{noneg}
\begin{rem}\label{rem:termfun}
If $\mathcal M$ is an $L$-structure, every term $t(\bla x0,{n-1})$ of $L$ induces a function $M^n\to M$, obtained in the obvious way.
\end{rem}
\begin{eg}
In the structure $\mathcal R$ that we encountered in~\Cref{subsec:defeg}, the $L_\mathrm{oag}$-term $t(x_0,x_1,x_2)\coloneqq x_0+x_2$ induces the function $\mathbb R^3\to \mathbb R$ summing the first and last coordinate.
\end{eg}
\begin{defin}
  An \emph{atomic formula} of $L$ is either:
  \begin{enumerate}
  \item $t_0(\bla x0,{n-1})=t_1(\bla x0,{n-1})$, where $t_0, t_1$ are terms, or
  \item $R(t_0(\bla x0,{n-1}),\ldots, t_{m-1}(\bla x0,{n-1}))$, where the $t_i$ are $L$-terms and $R$ is an $m$-ary relation symbol of $L$.
  \end{enumerate}
\end{defin}
So, in a sense, every structure is automatically equipped with the binary relation $=$. While other symbols in $L$ can be interpreted in any way (consistent with their arity), $=$  \emph{must} be interpreted as the diagonal.
\begin{eg}\label{eg:loag_at_flas}
 In $L_\mathrm{oag}$, examples of atomic formulas are
 \begin{itemize}
 \item $x_0+x_1=x_2$
 \item $x_0+x_1<0$
 \end{itemize}
\end{eg}
\begin{defin}
  The set of \emph{first-order $L$-formulas} is the closure of the set of $L$-atomic formulas under:
  \begin{enumerate}
  \item Boolean connectives $\land, \lor, \neg$.
  \item First-order quantifiers $\exists x$, $\forall x$, where $x$ is a variable.
  \end{enumerate}
\end{defin}Usual conventions about dropping parentheses apply. We also use the abbreviations $\phi\implica \psi$ for $(\neg \phi)\lor \psi$ and $\phi\coimplica \psi$ for $(\phi\implica \psi)\land (\psi\implica \phi)$.

``First-order'' means that quantifiers (well, variables, to begin with) range over $M$; that is, variables stand for elements of the domain. So, for example we cannot quantify over subset of $M$, topologies on $M$, etc. Unless otherwise specified, every formula we consider will be first-order, so we just say ``formula'' instead of ``first-order formula''.


One also defines the set of \emph{free variables} of a formula: those which, at least once, occur not in the scope of any quantifier. This is one of the things were I will avoid giving a precise definition, refer to the literature, and supply examples instead. 
\begin{eg}
  Examples of $L_\mathrm{oag}$-formulas:
  \begin{enumerate}
  \item Those in \Cref{eg:loag_at_flas}.
  \item $(x_0<0)\land (x_0>0)$.
  \item\label{point:zerobound} $\exists x_0\; \bigl(((x_1+x_0>0)\lor (x_1+x_0=0))\land (\forall x_2\; (x_2<x_1))\bigr)$
  \item\label{point:zerofree} $\exists x_3\; \bigl(((x_1+x_0>0)\lor (x_1+x_0=0))\land (\forall x_2\; (x_2<x_1))\bigr)$
  \item\label{point:usedtwice} $(\exists x_0\; (x_0=0))\land (x_0>0)$.
  \end{enumerate}
\end{eg}
Note that $x_0$ is not free in \Cref{point:zerobound}, but it is free in \Cref{point:zerofree}. The fact that $x_3$ is never mentioned after the quantifier in \Cref{point:zerofree} is not a problem. In \Cref{point:usedtwice} $x_0$ \emph{is} free. Formally, a variable may be used both free and bound in the same formula, but of course this has a tendency to make the reader angry, and it is good practice to use a fresh variable whenever possible.\footnote{Well, in fact there \emph{are} instances where minimising the number of variables used in a formula is useful, and one tries to recycle them as much as possible, but we will not talk about it in this course.}

\begin{noneg}
  These are \emph{not} first-order $L_\mathrm{oag}$ formulas:
  \begin{enumerate}
  \item  $\exists n\in \mathbb N\; x_0=n$. Formulas are allowed to talk about elements of the domain of the structure in which they will be interpreted; they do not know about natural numbers.
  \item The usual formula saying that $\mathbb R$ is complete: we are not allowed to quantify over subsets of the domain.\footnote{Allowing that results in \emph{second-order} logic. Allowing also quantification over families of subsets yields \emph{third-order} logic, etc.}
  \end{enumerate}
\end{noneg}


\begin{rem}\label{rem:varincflas}
If we write $\phi(\bla x0,n)$ we mean that $\phi$ is a formula with free variables \emph{included in} $\set{\bla x0,n}$. The same abuse of notation as in \Cref{rem:varinc} applies, so we may for example write $\phi(x_0)\coloneqq(x_0<0)\land (x_0>1)$ but also $\phi(x_0, x_1)\coloneqq(x_0<0)\land (x_0>1)$. This becomes relevant when using formulas to \emph{define} sets, see \Cref{defin:deflesets}.
\end{rem}


One more tedious thing to define is what it means to \emph{substitute} a term for a free variable in a formula. An example is: let $\phi(y)\coloneqq y<0$, let $t(x_0, x_1)\coloneqq x_0+x_1$; then $\phi(t(x_0, x_1))$ is $x_0+x_1<0$. One just needs to be careful for variables not to be \emph{captured}, that is, a substitution should not bound variables to a quantifier, as in substituting $x_0$ for $y$ inside $\phi(y)\coloneqq\exists x_0\; (\neg x_0=y)$. These problems disappear if one uses fresh variables whenever possible.

Another thing that works as you expect is what it means for a point to \emph{satisfy} a formula in a structure. To say that $(\bla a0,{n-1})\in M^n$ satisfies  $\phi(\bla x0,{n-1})$ in $\mathcal M$, we write $\mathcal M\models \phi(\bla a0,{n-1})$.
\begin{eg}
In $\mathcal R$, let $(a_0, a_1)=(-5,3)$ and $\phi(x_0,x_1)\coloneqq x_0<x_1$. Then $\mathcal R\models \phi(a_0,a_1)$. If $\psi(x_0,x_1)\coloneqq \exists y\; ((x_1<y)\land (y<x_0)$, then $\mathcal R\centernot\models \psi(a_0,a_1)$. Also, $\mathcal R\models (\exists z\; (\phi\land \neg \psi))(a_0,a_1)$ (yes, that $\exists z$ is entirely superfluous).
\end{eg}
The formal definition is by induction on the complexity of the formula: $\mathcal M\models (\phi\land\psi)(\bla a0,n)$ iff $\mathcal M\models \phi(\bla a0,n)$ and $\mathcal M\models \psi(\bla a0,n)$, while $\mathcal M\models \exists x\; \phi(\bla a0,n, x)$ iff there is $b\in \mathcal M$ such that $\mathcal M \models\phi(\bla a0,n, b)$, etc.

While we are here, let us say that a formula with no free variables is called a \emph{sentence}. If $\phi$ is a sentence, then either $\mathcal M\models \phi$ or $\mathcal M \models \neg \phi$ (with no need to assign a point to free variables, since there are none). For example, $\mathcal R\models \forall x\; x+0=x$.

So, what sentences \emph{do} in a structure is either holding or not holding. What formulas with free variables do is \emph{defining sets}. 
\subsection{Definable sets}
\begin{defin}\label{defin:deflesets}
  The set \emph{defined} by an $L$-formula $\phi(\bla x0,{n-1})$ in $\mathcal M$ is
  \[
    \mathcal \phi(\mathcal M)\coloneqq \set{(\bla a0,{n-1})\in M^n\mid \mathcal M \models \phi(\bla a0,{n-1})}
  \]
  A subset of $M^n$ is \emph{definable} (in $\mathcal M$) iff it is defined by some $L$-formula.
\end{defin}
\begin{eg}
In $\mathcal R$, the formula $\phi(x_0, x_1, x_2)\coloneqq x_0+x_1=x_2$ defines the graph of addition.
\end{eg}

\begin{noneg}
Using techniques that we will develop later in the course,  it is possible to prove that the set $\mathbb Z$ is \emph{not} definable in $\mathcal R$.
\end{noneg}

Quite often it is necessary to look at formulas with \emph{parameters} from some subset $A\subseteq M$. It means what you expect, but formally this is what one does.
\begin{defin}\label{defin:expbyparam}
  Let $\mathcal M$ be an $L$-structure and $A\subseteq M$. Define a language $L(A)\supseteq L$ by adding to $L$ a new constant symbol $c_a$ for every $a \in A$. Expand $\mathcal M$ to an $L(A)$ structure $\mathcal M_A$ by interpreting each $c_a$ with $a$. A subset of $M^n$ is \emph{$A$-definable}, or \emph{definable over $A$} iff it is definable in $\mathcal M_A$.
\end{defin}

\begin{eg}
  In $\mathcal R$, the set $\set{(x_0,x_1)\in \mathbb R^2\mid x_0<x_1+5}$ is definable over $\mathbb Z$ (or even just over $\set 5$).
\end{eg}
See the literature for more lists of examples, e.g.~\cite[Section~1.3]{marker} has some nice, more convoluted (and more interesting!) ones.


Sometimes we say that a set is $\emptyset$-definable to emphasise that it is definable without using parameters. Depending on the context, people use the work \emph{definable} to mean ``definable over $\emptyset$'' or ``definable over $M$''. For now, we stick to the first meaning.

\begin{rem}\label{rem:ZndR}
  The set $\mathbb Z$ is \emph{not} $\mathbb Z$-definable in $\mathcal R$. We cannot prove this yet, but for now observe that the natural attempt to a $\mathbb Z$-formula defining it would use an \emph{infinite} disjunction $\bigvee_{i\in \mathbb Z} x=i$. This is \emph{not} a first-order formula.
\end{rem}

\begin{rem}
Definable sets in a given dimension form a boolean algebra, with the operations induced by the connectives $\land, \lor, \neg$, which of course correspond to intersection, disjunction, and complement of definable sets.
\end{rem}

\subsubsection{Some spoilers}  Boolean algebras of definable sets, and their Stone duals,\footnote{If you do not know what this means, then I recommend reading about Stone duality \emph{after} you get familiar with types, later on in the course. But of course, if you are going to read about it straight away I will not try to stop you.} are central objects of study in model theory, to the point that some people would go as far as saying that contemporary model theory \emph{is} the study of definable sets in ``tractable'' structures. Of course one needs to make ``tractable'' precise ---actually, the word ``tame'' is usually more popular in this context--- and in fact there are several different notions of ``tameness'', that apply to different structures and have different consequences. For example, the fact that, in every dense linear order with no endpoints $\mathcal M$, for every $n$, there are only finitely many $\emptyset$-definable subsets of $M^n$, is intimately connected to the fact that all countable dense linear orders without endpoints are  isomorphic to $(\mathbb Q, <)$ (we will see this later on in the course). Hence, looking at definable sets can allow us to say something about certain classes of structures.

Things also work in the other direction, and definable sets are at the centre of several applications of model theory: one is interested in a certain family of sets, and uses their definability in some tame structure to say something about them. For example, we will prove later that the sets which are $\mathbb R$-definable in $\mathcal R$ are precisely the \emph{semilinear} sets: that is, boolean combinations of sets defined by inequalities between affine functions, e.g.~polyhedra. One specific flavour of tameness enjoyed by the structure $\mathcal R$ implies, among other things, that:
\begin{itemize}
\item semilinear sets have certain decompositions in finitely many semilinear pieces of a nice form; this implies, for example, that semilinear sets have finitely many connected components;
\item for every $n$, functions definable in $\mathcal R$ are piecewise $\mathcal C^n$;
\item definable families of semilinear sets are learnable by certain kinds of algorithms.\footnote{The precise statement is that they have finite Vapnik--Chervonenkis dimension.}
\end{itemize}
Now, one of the reasons $\mathcal R$ is our recurring example is that it is quite understandable, so,
for semilinear sets, the things above can probably be proven directly and quite painlessly. The point is that the same notion of tameness applies to more complicated structures, and then the statements above become quite nontrivial. For instance, the same notion of tameness\footnote{Which, by the way, is called \emph{o-minimality}. A standard reference is~\cite{ttaos}.}, hence the consequences above, hold for sets definable in the expansion of $\mathcal R$ by the field structure, the exponential functions, and the restrictions to bounded boxes of all analytic functions (simultaneously!).

At this point, the above will probably make little sense. That's normal. The point is that definable sets are important, and the subsection where they are introduced should definitely be at least one page long, but we still need to set up a bunch of things, so for now I could only give a couple of definitions and examples. I guess that this is enough rambling to make this longer than one page, so maybe it's time to stop.


If you do not like formulas, \sout{then why are you even reading th}  there is an alternative presentation of definable sets: see~\cite[Proposition~1.3.4]{marker}.



\subsection{Theories}

As remarked above, if we are given an $L_\mathrm{oag}$-structure $\mathcal M$, there is no guarantee that, for example, the symbol $+$ will be interpreted as an associative operation. But associativity of $+$ can be expressed by a sentence, namely\footnote{Of course   $\forall x_0,x_1,x_2$ is an abbreviation for $\forall x_0 ( \forall x_1 (\forall x_2\ldots ))$}
\[
  \forall x_0,x_1,x_2\; \bigl((x_0+x_1)+x_2=x_0+(x_1+x_2)\bigr)
\]
If we want to study ordered abelian groups, we may then write a set of $L_\mathrm{oag}$-sentences such that, if a structure $\mathcal M$ satisfies them, then it actually is an ordered abelian group. A set of sentences which is satisfied in at least one structure is called a \emph{theory}.


\begin{defin}Let $\Phi$ be a set of $L$-sentences. 
  \begin{enumerate}
  \item 
    An $L$-structure $\mathcal M$ \emph{satisfies} $\Phi$, or is a \emph{model} of
    $\Phi$, written $\mathcal M\models \Phi$, iff for all
    $\phi\in \Phi$ we have $\mathcal M\models \phi$. 
  \item We say that
    $\Phi$ is \emph{consistent} iff it has a model, i.e.\ iff there is
    $\mathcal M$ with $\mathcal M\models \Phi$.
  \item An \emph{$L$-theory} is a consistent set of $L$-sentences.
  \item If $T$ is a theory, its elements are called its \emph{axioms}.
\end{enumerate}
\end{defin}
Some authors use ``theory'' to mean just ``set of sentences'', without requiring consistency.
\begin{eg}
  The \emph{theory of ordered abelian groups} $T_\mathrm{oag}$ is the $L_\mathrm{oag}$-theory containing the axioms:
  \begin{enumerate}
  \item   $\forall x_0,x_1,x_2\; \bigl((x_0+x_1)+x_2=x_0+(x_1+x_2)\bigr)$
  \item  $\forall x_0\; \bigl(x_0+0=x_0\bigr)$
  \item  $\forall x_0, x_1\; \bigl(x_0+x_1=x_1+x_0\bigr)$
  \item  $\forall x_0\; \bigl(x_0+(-x_0)=0\bigr)$
  \item $\forall x_0,x_1, x_2\; \bigl((x_0<x_1)\implica(x_0+x_2<x_1+x_2)\bigr)$
  \end{enumerate}
\end{eg}
For some other standard examples of theories, see e.g.~\cite[Section~1.2]{marker} or~\cite[Section~2.2]{hodges}.

\begin{defin}
  If $T$ is an $L$-theory and $\phi$ is an $L$-sentence, we write $T\proves \phi$,\footnote{We may also write $T\models \phi$. There is a subtle difference which you should know if you have taken a course in logic. Otherwise, you may take them as synonyms.} and say that $\phi$ is a \emph{consequence} of $T$, iff for all $\mathcal M \models T$ we have $\mathcal M\models \phi$. The \emph{deductive closure} of $T$ is the set of its consequences.
\end{defin}
 One says that $\Phi$ is an \emph{axiomatisation} of $T$ to mean $T$ and $\Phi$ have the same consequences, i.e., the same deductive closure. For many purposes, it is convenient to identify a theory $T$ with its deductive closure;\footnote{Sometimes, the distinction is important, e.g.\ sometimes it is important to know whether certain theories can be \emph{finitely axiomatised}.} from now on, we will adopt this convention.


\begin{defin}
  An $L$-theory $T$ is \emph{complete} iff, for every $L$-sentence $\phi$, either $T\proves \phi$ or $T\proves \neg \phi$.
\end{defin}


\begin{noneg}
  $T_\mathrm{oag}$ is not complete: if $\phi$ is the sentence
  \[
    \phi\coloneqq \forall x\; \exists y\; y+y=x
  \]
  then $\mathcal R\models \phi$, but $\mathbb Z\models \neg \phi$ (where $\mathbb Z$ is made into an $L_\mathrm{oag}$-structure in the natural way).
\end{noneg}

\begin{eg}\label{eg:infsets}
  Let $T$ be  the \emph{theory of infinite sets}, that is, the theory in the empty language $L$ (so, the only atomic formulas are equalities between variables) axiomatised by $\set{\phi_n\mid n\in \mathbb N\setminus \set 0}$, where\footnote{Below there are a bunch of abuses of notation going on, such as $x_i\ne x_j$ for $\neg (x_i=x_j)$; hopefully the meaning is clear.}
  \[
    \phi_n\coloneqq \exists\bla x0,{n-1}\; \bigwedge_{i\ne j<n} x_i\ne x_j
  \]
With tools to be developed soon,  it is possible to prove that $T$ is complete.
\end{eg}

\begin{eg}
  If $\mathcal M$ is any $L$-structure, the theory $\Th(\mathcal M)$, defined to be the set of $L$-sentences that hold in $\mathcal M$, is (trivially) complete. 
\end{eg}
The example above is trivial, but typical:
\begin{exr}
Prove the following statements.\footnote{Hint: the second one follows from the first.}
\begin{enumerate}
\item An $L$-theory is complete if and only if its deductive closure is maximal under inclusion (among $L$-theories, that is,
  \emph{consistent} sets of $L$-formulas). 
\item  For every complete $L$-theory $T$, there is an $L$-structure $\mathcal M$ such  that $T=\Th(\mathcal M)$.
\end{enumerate}
\end{exr}



Of course, having the same complete theory, that is, satisfying the same sentences, deserves a name. And so does having the same models.

\begin{defin}
  Two $L$-structures $\mathcal M$ and $\mathcal N$ are \emph{elementarily equivalent}, written $\mathcal M\equiv \mathcal N$, iff $\Th(\mathcal M)=\Th(\mathcal N)$.
\end{defin}
\begin{defin}
Let $T$ be an $L$-theory.  Two $L$-sentences $\phi, \psi$ are \emph{equivalent modulo $T$} iff, for every $\mathcal M\models T$, we have $\mathcal M\models \phi\iff \mathcal M\models \psi$.  Two formulas $\phi(\bla x0,{n})$ and $\psi(\bla x0,{n})$ are \emph{equivalent modulo $T$} iff, for all $\mathcal M\models T$, we have $\phi(\mathcal M)=\psi(\mathcal M)$. 
\end{defin}
\begin{rem}
Two formulas   $\phi(\bla x0,{n})$ and $\psi(\bla x0,{n})$ are equivalent modulo $T$ if and only if $T\proves \forall \bla x0,n\; (\phi(\bla x0,n)\coimplica \psi(\bla x0,n))$.
\end{rem}
If we say that $\phi,\psi$ are \emph{equivalent}, or \emph{logically equivalent}, without specifying $T$ (and without having a fixed $T$ which is clear from context), we mean that they are equivalent modulo $T=\emptyset$, or modulo $T=\set{\exists x\; x=x}$ if we want to exclude empty structures, cf.~\Cref{rem:emptydomain}. Usually the second convention is used; note that, for example, $\forall x\; x=x$ and $\exists x\; x=x$ are equivalent under the second convention but not under the first one.

It is harmless, and also quite convenient, to introduce a logical symbol $\bot$ for ``false''. That is, $\bot$ is an atomic formula and is false in every structure.
\begin{rem}
Up to equivalence, we may write every formula using only $\land,\neg,\bot, \exists$, and recover $\forall$ and $\lor$ from them in the usual way.
\end{rem}
This is useful when proving things by induction on (complexity of) formulas, since it allows to consider fewer cases (see e.g.~the proof of \Cref{thm:tvt}).


\subsection{Substructures}

\begin{defin}
We say that the $L$-structure $\mathcal M$ is a \emph{substructure} of the $L$-structure $\mathcal N$ (and that $\mathcal N$ is an \emph{extension}\footnote{Not to be confused with \emph{expansion}, cf.~\Cref{defin:redexp}.} of $\mathcal M$), and write $\mathcal M\subseteq \mathcal N$, iff:
\begin{enumerate}
\item $M\subseteq N$;
\item for every constant symbol $c\in L$, we have $c^{\mathcal M}=c^{\mathcal N}$;
\item for every $n$-ary function symbol $f\in L$, we have $f^{\mathcal M}=f^{\mathcal N}\restr M^n$; and
\item for every $n$-ary relation symbol $R\in L$, we have $R^{\mathcal M}=R^{\mathcal N}\cap M^n$; in other words, for every $\bla a0,{n-1}\in M$, we have $\mathcal M\models R(\bla a0,{n-1})\iff \mathcal N\models R(\bla a0,{n-1})$.
\end{enumerate}
\end{defin}


\begin{eg}
  Seen as $L_\mathrm{oag}$-structures with the usual interpretations, we have $\mathbb Z\subseteq \mathbb Q$ and $\mathbb Q\subseteq \mathbb R$.
\end{eg}
\begin{eg}
  If $\mathcal G$ is a graph, viewed as an $L_\mathrm{graph}$ structure in the natural way\footnote{I'll stop writing this kind of stuff. If an interpretation is not specified, it's supposed to be the natural one.}, then a substructure of $\mathcal G$ is the same as an \emph{induced} subgraph of $\mathcal G$. 
\end{eg}
\begin{noneg}
Let $\mathcal G$ be the complete graph on $\mathbb N$, and let $\mathcal H$ be a graph on $\mathbb N$ with no edge between $3$ and $64$. Then $\mathcal H$ is \emph{not} a substructure of $\mathcal G$.
\end{noneg}
\begin{noneg}\label{noneg:posets}
  Let $\mathcal P$ be a poset in the language $\set{\le}$, and suppose $a,b\in P$ are not comparable, that is, $\mathcal P\models (\neg (a\le b))\land (\neg (b\le a))$. Let $\mathcal P'$ be some linear order with domain $P$ extending the order of $\mathcal P$. Then $\mathcal P$ is \emph{not} a substructure of $\mathcal P'$ (nor the other way around).
\end{noneg}
\begin{eg}
  If $L$ is a relational language, and $\mathcal M$ an $L$-structure, then every $A\subseteq M$ can be made into an $L$-substructure of $\mathcal M$ in a unique way.
\end{eg}
\begin{eg}\label{eg:substrgen}
  More generally, if $A\subseteq M$, and $B$ is the closure of $A$ under the functions and constants of $L$, then $B$ can be (uniquely) made into a substructure of $M$. Of course, this substructure is called the \emph{substructure of $\mathcal M$ generated by $A$}.
\end{eg}
\begin{defin}
  An injective map $M\to N$ is an \emph{embedding} of $\mathcal M$ into $\mathcal N$ iff its image is a substructure of $\mathcal N$.
\end{defin}
Almost by definition, embeddings are injective maps preserving atomic formulas, that is, an injective map $\iota\from M\to N$ is an embedding $\mathcal M\to \mathcal N$ if and only if, for every atomic formula $\phi(\bla x0,n)$ and $\bla a0,n\in M$, we have
\begin{equation}
  \mathcal M\models \phi(\bla a0,n)\iff \mathcal N\models \phi(\iota(a_0),\ldots, \iota(a_n))\label{eq:emb}
\end{equation}
We will not use them, but it is worth mentioning that \emph{morphisms} of $L$-structures are defined similarly, by dropping the requirement of injectivity and weakening~\eqref{eq:emb} by replacing $\iff$ with $\then$. For instance, in \Cref{noneg:posets}, the identity map $P\to P$ is a morphism (but not an embedding) $\mathcal P\to \mathcal P'$. And I do not want to risk offending any of you by telling you what an \emph{isomorphism} is, or what \emph{automorphisms} are.

Anyway, we were saying, embeddings preserve atomic formulas. A bit more is true.
\begin{defin}
  A formula $\phi(\bla x0,n)$ is \emph{quantifier-free} if no quantifier appears in $\phi$.
\end{defin}
\begin{exr}\label{exr:qfabs}
If $\mathcal M\subseteq \mathcal N$ and $\phi(\bla x0,n)$ is quantifier-free, then for every $\bla a0,n\in M$ we have $\mathcal M\models \phi(\bla a0,n)\iff \mathcal N\models \phi(\bla a0,n)$.
\end{exr}
The assumption that $\phi$ is quantifier-free is important:
\begin{eg}
  Let $L=\set{<}$, $\mathcal M= (\mathbb Z, <)$ and $\mathcal N= (\mathbb Q, <)$. Then $\mathcal M\subseteq \mathcal N$. Let $\phi(x_0, x_1)$ be the formula $\exists y\; \bigl((x_0< y)\land (y<x_1)\bigr)$. Then $\phi(0,1)$ holds in $\mathcal N$, but not in $\mathcal M$. 
\end{eg}
In particular, $\phi(\mathcal M)\ne \phi(\mathcal N)\cap M^2$. Even if $0,1\in M$, whether $\phi(0,1)$ holds or not depends on whether we check in $\mathcal M$ or in $\mathcal N$.

Substructures where this never happens are called \emph{elementary}.
\begin{defin}
  We say that   $\mathcal M$ is an \emph{elementary substructure} of $\mathcal N$ (and $\mathcal N$ an \emph{elementary extension} of $\mathcal M$), written $\mathcal M\preceq \mathcal N$, iff $\mathcal M\subseteq \mathcal N$ and, for every formula $\phi(\bla x0,n)$ and $\bla a0,n\in M$, we have
  \[
    \mathcal M\models \phi(\bla a0,n)\iff \mathcal N\models \phi(\bla a0,n)
  \]
  An embedding $\mathcal M\to \mathcal N$ is an \emph{elementary embedding} iff its image is an elementary substructure of $\mathcal N$.
\end{defin}

These easy observations are essentially exercises in spelling out definitions, but are quite important:
\begin{rem}\label{rem:preceqfacts}   Let $\mathcal M\subseteq \mathcal N$.
  \begin{itemize}
  \item  $\mathcal M\preceq \mathcal N$ if and only if, for every
    formula $\phi(\bla x0,{n-1})$, we have
    $\phi(\mathcal M)=\phi(\mathcal N)\cap M^n$.\footnote{\label{fn:functors}If you are particularly categorically-minded, you may like to think of definable sets as (a particular kind of) functors from the category of $L$-structures with elementary embeddings to the category of sets with injective maps.}
  \item $\mathcal M\preceq \mathcal N$ if and only if they have the same $L(M)$-theory.
  \item In particular,  if $\mathcal M\preceq \mathcal N$, then $M\equiv N$.
\end{itemize}
\end{rem}
At the risk of offending someone, let me point out that isomorphisms are elementary embeddings. Nevertheless, elementarity is really a condition on the embedding, and not just on the isomorphism type:
\begin{eg}
  Let $\mathcal N\coloneqq (\mathbb Z, <)$ and $\mathcal M=(2 \mathbb Z, <)$. Then $\mathcal M\subseteq \mathcal N$, $\mathcal M\cong \mathcal N$, but $\mathcal M\centernot \preceq \mathcal N$, as can be checked by looking at the formula $\exists x\; 0<x<2$.\footnote{Which of course is an abbreviation for $\exists x\; ((0<x)\land (x<2))$, but I guess it's time to start being a bit less pedantic.}
\end{eg}


How does one check that a substructure is elementary? See the Tarski--Vaught test below, \Cref{thm:tvt}.

\subsection{Diagrams}
Recall the natural expansions by constants defined in \Cref{defin:expbyparam}.
\begin{defin}
  Let $\mathcal M$ be an $L$-structure.
  \begin{enumerate}
  \item Its \emph{elementary diagram} $\ed(\mathcal M)$ is the complete $L(M)$-theory of $\mathcal M_M$.
  \item Its \emph{diagram}\footnote{Also known as \emph{atomic diagram}.} $\diag(\mathcal M)$ is the subset of $\ed(\mathcal M)$ given by atomic formulas and negations of atomic formulas.
  \end{enumerate}
\end{defin}

Note that $\ed(\mathcal M)$ is, by definition, always a complete $L(M)$-theory. On the other hand, $\diag(\mathcal M)$ need not be (\Cref{exr:diagnc}).

\begin{exr}
  If $\phi$ is a quantifier-free $L(M)$-sentence and $\mathcal M_M\models \phi$, then $\diag(\mathcal M)\proves \phi$.
\end{exr}

The point of these definitions is that models of the (elementary) diagram of $\mathcal M$ correspond to (elementary) extensions of $\mathcal M$:
\begin{pr}\label{pr:diagrams}
  Let $\mathcal M$ be an $L$-structure, and $\mathcal N$ be an $L(M)$-structure. Let $\iota\from M\to N$ be the map $m\mapsto c_m^\mathcal N$. Then:
  \begin{enumerate}
  \item $\iota$ is an embedding if and only if $\mathcal N\models \diag(\mathcal M)$.
  \item $\iota$ is an elementary embedding if and only if $\mathcal N\models \ed(\mathcal M)$.
  \end{enumerate}
\end{pr}
\begin{proof}
  Exercise (easy).
\end{proof}
This is useful, because it allows us to build elementary extensions of $\mathcal M$ with certain properties by writing down suitable theories containing\footnote{In languages larger than $L(M)$, since $\ed(\mathcal M)$ is already complete.} $\ed(\mathcal M)$.
\begin{exr}\label{exr:diagnc}
  Find an $\mathcal M$ such that $\diag(\mathcal M)$ is not complete.
\end{exr}


\begin{thm}[Tarski--Vaught test]\label{thm:tvt}
Let $\mathcal N$ be an $L$-structure, and suppose that  $M\subseteq N$. The following are equivalent.
\begin{enumerate}
\item \label{point:tvprec} $M$ is the domain of an elementary substructure $\mathcal M\preceq \mathcal N$.
\item \label{point:tvt} For all $\phi(x, \bla y0,n)$ and all $\bla b0,n\in M$, if there is $a\in N$ such that $\mathcal N\models \phi(a, \bla b0,n)$, then there is $a'\in M$ such that $\mathcal N\models \phi(a', \bla b0,n)$.
\end{enumerate}
\end{thm}
The statement of the Tarski--Vaught test (or criterion) looks very similar to the definition of $\preceq$. The difference is that, in order to check the condition in the criterion, we only need to look at which formulas are satisfied in $\mathcal N$: there is no ``$\mathcal M\models$'' in the statement; in fact, in the assumptions $M$ is just a subset of $N$, and has not been given an $L$-structure (yet). This is subtle but important, as it allows arguments like the proof of \Cref{thm:dls} to go through.\footnote{By the way, that proof only uses things which we have already introduced, so you can read it right now if you wish. Just make sure to read \Cref{notation:strdomtup} first.}
\begin{proof}
  $\eqref{point:tvprec}\allora\eqref{point:tvt}$  follows easily from the definition of $\preceq$.

  Towards proving $\eqref{point:tvt}\allora \eqref{point:tvprec}$, observe that, if $f(\bla y0,m)$ is an $m$-ary function symbol of $L$ and $\bla b0,m\in M$, by using~\eqref{point:tvt} with the formula $\phi(x,\bla y0,m)\coloneqq x=f(\bla y0,m)$, we find that $M$ is closed under the function symbols of $L$.  A similar argument shows that $M$ contains the interpretation of every constant, therefore $M$ is the domain of a substructure $\mathcal M$ of $\mathcal N$.

  To show elementarity, we now need to show that, whenever $\phi\in L(M)$ is a sentence, then 
  \begin{equation}\label{eq:tvt}
\mathcal  M\models \phi\iff \mathcal  N\models \phi
  \end{equation}
  We argue by induction on formulas. If~\eqref{eq:tvt} holds for $\phi$ and $\psi$, then it is immediate to observe that it also holds for $\neg \phi$ and for $\phi\land \psi$. Let us consider the case $\exists x\; \phi(x)$. If $\mathcal M\models\exists x\; \phi(x)$, then there is $a\in M$ such that $\mathcal M\models \phi(a)$. But $\phi(a)$ has lower complexity, so by induction $\mathcal N\models \phi(a)$, and in particular $\mathcal N \models \exists x\; \phi(x)$, proving $\then$. For the converse, suppose $\mathcal N\models\exists x\; \phi(x)$; then there is $a\in N$ such that $\mathcal N\models \phi(a)$. By assumption, there is $a'\in M$ such that $\mathcal N\models \phi(a')$, and again by inductive hypothesis $\mathcal M\models \phi(a')$, hence $\mathcal M\models \exists x\; \phi(x)$.
\end{proof}


\section{Multi-sorted structures}\label{sec:multisort}
As you may have expected from the ``single-sorted'' in \Cref{defin:ssfol}, there are things called ``multi-sorted'' (or ``many-sorted'') languages. This is one of those things where an example may be clearer than a definition:
\begin{eg}\label{eg:vspmultisort}
  The \emph{language of vector spaces} has two sorts, denoted by $K$ and $V$, together with:
  \begin{enumerate}
  \item a constant symbol $0_K$ of arity $K$,
  \item a function symbol $+_K$ of arity $K^2\to K$,
  \item a function symbol $-_K$ of arity $K\to K$,
  \item a constant symbol $1$ of arity $K$,
  \item a function symbol $\cdot_K$ of arity $K^2\to K$,
  \item a constant symbol $0_V$ of arity $V$,
  \item a function symbol $+_V$ of arity $V^2\to V$,
  \item a function symbol $-_V$ of arity $V\to V$, and
  \item a function symbol $\cdot$ of arity $K\times V\to V$.
  \end{enumerate}
\end{eg}  
Instead of having a single set as a domain,  a structure $\mathcal M$ for this language will have set $K(\mathcal M)$ interpreting the sort $K$, and a set $V(\mathcal M)$ interpreting the sort $V$. The constant symbol $0_K$ will be interpreted as an element of $K(\mathcal M)$, the function symbol $\cdot$ as a function $K(\mathcal M)\times V(\mathcal M)\to V(\mathcal M)$, etc.

  An example of formula in this language is $\phi(x,v)\coloneqq  x\cdot v=0$, where $x$ is a variable \emph{of sort $K$} and $v$ is a variable \emph{of sort $V$}. It defines a subset of $K(\mathcal M)\times V(\mathcal M)$.


Below is a quick list of what changes from single-sorted languages to multi-sorted ones. See~\cite[Section~4.3]{enderton} for a formal definition.
\begin{enumerate}
\item Each sort has its own variables; in other words, each variable has a sort and ranges over that sort.
\item Each constant symbol has an arity, which is a sort,
\item Each function symbol has an arity, which is of the form $A\to B$, where $A$ is a cartesian product of sorts and $B$ is a sort; when building terms, we are only allowed to plug variables/constants/parameters in a function symbol if they come from the correct sorts.
\item Each relation symbol has an arity, which is a cartesian product of sorts; inside (atomic) formulas, variables/constants/parameters are only allowed to be plugged in a relation symbol if they come from the correct sort.
\item Inside (atomic) formulas, equality is only allowed between variables, constants, and parameters coming from the same sort.
\end{enumerate}
Especially if you are already familiar with first-order logic (or if you looked into~\cite[Section~4.3]{enderton}), you may have observed that it is possible to ``code'' a multi-sorted structure inside a single-sorted one by using $1$-ary relation symbols instead of sorts and writing down a suitable theory to avoid pathologies (for instance, to guarantee that the predicates are interpreted as disjoint sets).

This yields something very similar to multi-sorted logic, but with one important difference. Assume we perform such a  ``translation'' on a language with infinitely many sorts, say $(S_i)_{i\in I}$, say ``translated'' as predicates $(P_i)_{i\in I}$. In some models of the translation there may be points which are not in any $P_i$, while in the multi-sorted version every point of a model must belong to a (unique) sort. The problem is that, if $I$ is infinite, and $T$ is a theory saying that the $P_i$ are pairwise disjoint, then there will always be models of $T$ containing points which are not in any $P_i$. This  can be proven easily by using \emph{compactness} (which, by the way, is about time to introduce), see \Cref{exr:msbiss}.

Many-sorted languages are useful, but stating results for them tends to complicate notation and terminology. For this reason, we will mostly state results in the single-sorted case. The generalisation to the multi-sorted case is usually done with essentially the same proofs.
\begin{ass}
Unless otherwise stated, everything below will be single-sorted.
\end{ass}


\section{Building models: basic techniques}
\subsection{Using magic}
\begin{thm}[Compactness Theorem]
  Let $\Phi$ be a set of sentences. Then $\Phi$ is consistent if and only if every finite $\Phi_0\subseteq \Phi$ is consistent.
\end{thm}
In model theory, this theorem is used all over the place. Its name comes from the fact that, after some rephrasing, it is equivalent to saying that certain topological spaces we will encounter later are compact.


We will not see the proof \emph{of} compactness here (see the literature, or a course in logic), but here is a typical proof \emph{by} compactness.
\begin{eg}\label{eg:oagin}
  There exists an elementary extension $\mathcal M\succeq \mathcal R$ containing an element $m$ with $m> \mathbb R$.
\end{eg}
\begin{proof}
  Let $L=L_\mathrm{oag}(\mathbb R)\cup \set c$, where $c$ is a new constant symbol. Consider the set of $L$-sentences
  \[
    \Phi\coloneqq \ed(\mathcal R)\cup \set{c>r\mid r\in \mathbb R}
  \]
  If $\Phi_0\subseteq \Phi$ is finite, then it contains only finitely formulas of the form $c>r$. Let $r_0\in \mathbb R$ be larger than all these finitely many $r$. Expand $\mathcal R_{\mathbb R}$ to an $L$-structure $\mathcal S$ by interpreting $c^\mathcal S\coloneqq r_0$. Then, by construction, $\mathcal S\models \Phi_0$, so, by definition, $\Phi_0$ is consistent.

\emph{By compactness}, $\Phi$ is consistent, hence there exists $\mathcal M'\models \Phi$. Let $\mathcal M\coloneqq \mathcal M'\restr L_\mathrm{oag}(\mathbb R)$. By construction, $\mathcal M'\models \ed(\mathcal R)$, so by \Cref{pr:diagrams} there is an elementary embedding $\mathcal R\to \mathcal M$, which we may assume, for notational convenience, to be the inclusion. Now let $m\coloneqq c^{\mathcal M'}$. By construction, for all $r\in \mathbb R$ we have $\Phi\models c>r$, hence $\mathcal M'\models c>r$, that is, $\mathcal M'\models m>r$, hence $\mathcal M\models m>r$, and we are done.
\end{proof}
In this proof, I have freely confused $r\in \mathbb R$ with the corresponding constant symbol in $L_\mathrm{oag}(\mathbb R)$ standing for it, but besides that I have been quite pedantic, and spelled out explicitly all the naming new constants and taking reducts. These steps of compactness proofs are usually very easy, and we will from now on omit them. 


As is typical with compactness arguments, the proof above tells us very little about the structure we have proven to exist, but at least it allows us to conjure one basically out of thin air (hence the title of this subsection). Here is another standard compactness argument which allows us to conjure quite large things.
\begin{co}[Upward L\"owenheim--Skolem Theorem]
  Let $T$ be a theory such that, for every $n\in \mathbb N$, there is $\mathcal M\models T$ of cardinality at least $n$. Then, for every cardinal $\kappa$, there is $\mathcal M\models T$ of cardinality at least $\kappa$.

Furthermore,  if $T$ has an infinite model $\mathcal M_0$, we may also require that $\mathcal M\succeq \mathcal M_0$.
\end{co}
By the way, the cardinality of $\mathcal M$ is, by definition, the cardinality of $M$.\footnote{In the multi-sorted case, it's the sum of the cardinalities of the domains of each sort.}
\begin{proof}
  Expand the language $L$ of $T$ to $L'$ by adding new constant symbols $\set{c_\alpha\mid \alpha<\kappa}$, and let $\Phi$ be the set of $L'$-sentences
  \[
\Phi\coloneqq    T\cup \set{c_\alpha\ne c_\beta\mid \alpha<\beta<\kappa}
  \]
  Every finite subset of $\Phi$ can only mention finitely many $c_\alpha$, hence \emph{by compactness} and our assumptions on $T$, the set $\Phi$ has a model. Its reduct to $L$ is the required $\mathcal M$. 

For the ``furthermore'' part, argue as above, but replacing $T$ with $\ed(\mathcal M_0)$.
\end{proof}
Here is another standard fact which can be proven by using compactness.
\begin{exr}\label{exr:eeap}
Let $T$ be an $L$-theory. Prove that the class of models of $T$, together with elementary embeddings, has the \emph{amalgamation property}: whenever $A, B_0, B_1$ are models of $T$, and $f_i\from A\to B_i$ are elementary embeddings, there are $C\models T$ and elementary embeddings $g_i\from B_i\to C$ such that $g_0\circ f_0=g_1\circ f_1$.
\begin{center}
\begin{tikzpicture}[scale=2]
  \node(a) at (0,0){$A$};
  \node(b) at (1,0.5){$B_0$};
  \node(c) at (1,-0.5){$B_1$};
  \node(d) at (2,0){$C$};

\path[->, thick,  font=\scriptsize,>= angle 90]
(a) edge node [above]  {$f_0$} (b)
(a) edge node [below]  {$f_1$} (c)
(b) edge [dashed] node [above]  {$g_0$} (d)
(c) edge [dashed] node [below]  {$g_1$} (d)
;
\end{tikzpicture}
\end{center}
\end{exr}

\begin{exr}\label{exr:msbiss}
Suppose that $L$ contains infinitely many unary relation symbols $(P_i)_{i\in I}$, and that $T$ is an $L$-theory where the $P_i$ are nonempty and disjoint, that is, such that,
\begin{enumerate}
\item for every $i\in I$, we have $T\proves \exists x\; P_i(x)$, and
\item for every $i\ne j\in I$, we have $T\proves \neg \exists x\; (P_i(x)\land P_j(x))$.
\end{enumerate}
Prove that there are some $\mathcal M\models T$ and $m\in M$ such that, for all $i\in I$, we have $\mathcal M\models \neg P_i(m)$.
\end{exr}
Here is a small list of some more (fairly standard) things you can prove with compactness and some thinking. If this is your first encounter with the Compactness Theorem, it is a good idea to try doing these exercises, and maybe to look for more in the literature.


\begin{exr}
 Let $L_\mathrm{grp}=\set{\cdot, e, {}\inverse}$. There is no $L_\mathrm{grp}=\set{\cdot, e, {}\inverse}$-theory whose models are precisely the groups where every element is torsion (i.e.\ has finite order).
\end{exr}


\begin{exr}
 There is no $L_\mathrm{graph}$-theory whose models are precisely the graphs of finite diameter.
\end{exr}


\begin{exr}
 There is an elementary extension of $(\mathbb Z, <)$ in which we may embed $(\mathbb R,<)$. Can such an embedding be elementary?
\end{exr}

\begin{exr}
 Fix a theory $T$, a formula $\phi(x)$, and suppose that, for every $M\models T$, the set $\phi(\mathcal M)$ is finite. Then there is $n\in \omega$ such that, for every $M\models T$, the set $\phi(\mathcal M)$ has size at most $n$.
\end{exr}


\begin{exr}
 Let $G$ be a graph and  $n\in \omega$. Then $G$ is colourable with $n$ colours if and only if each of its finite induced subgraphs is.
\end{exr}


\begin{exr}
 Every partial order extends to a linear order.
\end{exr}


\subsection{Using bookkeeping}

The ``magic'' from the previous subsection (that is, compactness) is very useful when we want to build ``large enough'' objects. Sometimes, we want things not to be \emph{too} large, and in that case different tools are needed. One of these, is the \emph{Downward L\"owenheim--Skolem Theorem}.  The technique used below to prove it is one of those ideas that will come handy again from time to time.

\begin{defin}
  The \emph{cardinality} $\abs L$ of a language $L$ is the cardinality of the set of $L$-formulas. The \emph{cardinality} $\abs{T}$ of an $L$-theory $T$ is the same as $\abs L$.
\end{defin}
So, for example, the cardinality of $L_\mathrm{oag}=\set{+,0,-,<}$ equals $\aleph_0$, and so does the cardinality of the empty language (where the only atomic formulas are equalities between variables). If $T$ is the empty theory in the empty language, we still have $\abs T=\aleph_0$.

Sometimes we will want to consider languages which have finitely many symbols. In that case, we will simply say that ``$L$ is finite''.


 By the way, I hope that by now the difference between an $L$-structure $\mathcal M$ and its domain $M$ is clear enough to introduce some abuse of notation.
\begin{notation}\label{notation:strdomtup}
From now on, we will freely use the same symbol (typically ``$M$'') to denote both a structure and its domain.\footnote{If you are particularly allergic to abuses of notation, you may have noticed that, with this convention, if now we write, for example, $A\subseteq M$, it's not clear anymore if we mean that $A$ is contained in the domain of $M$, or that $A$ is a substructure of $M$. Fortunately, this is very unlikely to create problems, cf.~\Cref{eg:substrgen}.}  We will also start writing tuples as single letters, as in $y=(\bla y0,{\abs{y}-1})$, where $\abs y$ is the length of $y$.
\end{notation}

\begin{thm}[Downward L\"owenheim--Skolem]\label{thm:dls}
  Let $M$ be an  $L$-structure and $A\subseteq M$. There is an elementary substructure $M_0\preceq M$ with $A\subseteq M_0$ and $\abs {M_0}\le \abs A+\abs L$.
\end{thm}
\begin{proof}
  We do an inductive construction, starting with $B_0\coloneqq A$. For every $L$-formula $\phi(x,y)$ with $\abs x=1$ and tuple $b\in B_n^{\abs y}$, if there is $m\in M$ such that $M\models \phi(m,b)$, put one such $m$ in $B_{n+1}$. Note that $\abs{B_{n+1}}\le \abs{L(B_n)}=\abs{B_n}+\abs L$, hence inductively $\abs{B_{n+1}}\le \abs A+\abs L$. Therefore, $M_0\coloneqq \bigcup_{n\in \omega} B_n$ has the required cardinality.

By the Tarski--Vaught test (\Cref{thm:tvt}) we need to check that, whenever $b$ is a tuple from $M_0$ and $M\models \exists x\; \phi(x, b)$, then there is $a\in M_0$ such that $M\models \phi(a,b)$. Since $b$ is a finite tuple from $M_0=\bigcup_{n\in\omega}B_n$, it must be contained in some $B_n$, and by construction we can find the required $a$ inside $B_{n+1}$.
\end{proof}


The following exercises can be solved with a combination of magic and bookkeeping.
\begin{exr}
Let $M$ be an infinite $L$-structure. If $A\subseteq M$ and $\kappa$ is a cardinal with $\abs A+\abs L\le \kappa \le \abs M$, then there is $M_0\preceq M$ with $A\subseteq M_0$ and $\abs{M_0}=\kappa$.
\end{exr}
\begin{exr}
  Let $M$ be an infinite $L$-structure. If $\kappa$ is a cardinal with $\kappa \ge \abs M+\abs L$, then there is $N\succeq M$ with $\abs{N}=\kappa$.
\end{exr}
\begin{exr}[Vaught's test]\label{exr:vaught}
  Let $T$ be an $L$-theory with no finite models. If there is a cardinal $\kappa\ge \abs L$ such that  $T$ has a unique model of cardinality $\kappa$ up to isomorphism, then $T$ is complete.
\end{exr}
\begin{exr}
Prove that the theory of infinite sets (defined in \Cref{eg:infsets}) is complete.
\end{exr}
\chapter[Five things]{Five things everyone should see at least once in a model theory course (\Cref{co:shock} will SHOCK you!!!)}

\section{Normal forms}
Here are some standard (and quite useful) logic facts. 

\begin{fact}
  Every formula can be put in \emph{prenex normal form}. That is, every $L$-formula $\phi(\bla x0,n)$ is equivalent to one of the form
  \[
    Q_0 y_{0}\; Q_1 y_{1}\ldots Q_m y_{m}\; \theta(\bla x0,n,\bla y0,m,)
  \]
where the $Q_i$ are either $\exists$ or $\forall$ and $\theta$ is quantifier-free.
\end{fact}
\begin{notation}
  If $\phi$ is a formula, denote $\phi^0\coloneqq\neg \phi$ and $\phi^1\coloneqq \phi$ 
\end{notation}
\begin{fact}
Every boolean combination of the formulas $\bla \phi0,n$ is equivalent to one in \emph{disjunctive normal form}, that is, of the form $\bigvee_{i<m} \bigwedge_{j<k_i} \phi_{\alpha_{i,j}}^{\beta_{i,j}}$, and to one in \emph{conjunctive normal form}, that is, of the form $\bigwedge_{i<\ell} \bigvee_{j<h_i} \phi_{\alpha_{i,j}}^{\beta_{i,j}}$.
\end{fact}


  \begin{defin}
    A formula is \emph{basic} iff it is atomic or the negation of an atomic formula.   A formula is \emph{negation normal} iff it is in the closure of basic formulas under $\exists, \forall, \land, \lor$.
\end{defin}
In other words, the negation normal formulas are those where the only occurrences of $\neg$ are immediately before atomic formulas. The normal forms above in particular imply:
\begin{co}
  Every formula is equivalent to a negation normal one.
\end{co}


\section{Automorphisms}
We still cannot prove \Cref{rem:ZndR}, but we can already prove something weaker.
\begin{notation}
If $\mathcal M$ is an $L$-structure and $A\subseteq M$, we denote by $\aut(\mathcal M/A)$ the pointwise stabiliser of $A$, that is, the group of automorphisms $f$ of $\mathcal M$ such that, for every $a\in A$, we have $f(a)=a$.
\end{notation}
\begin{exr}
Let $X\subseteq M^n$ be $A$-definable in $\mathcal M$. Then every automorphism fixing $A$ pointwise fixes $X$ setwise. That is, if $f\in \aut(\mathcal M/A)$, then $f(X)=X$.\footnote{Of course here the notation is being abused yet again: we should replace $f$ with the map $(f,f,\ldots,f)\from M^n\to M^n$.}
\end{exr}
\begin{co}
  The set $\mathbb Z$ is not $\emptyset$-definable in $\mathcal R$.
\end{co}
\begin{proof}
For any positive $\lambda\in \mathbb R$, the map $x\mapsto \lambda\cdot x$ is an automorphism of $\mathcal R$. If $\lambda\ne 1$, this automorphism does not fix $\mathbb Z$ setwise.
\end{proof}

\section{Some consequences of L\"owenheim--Skolem}
\begin{co}
There is $M\preceq \mathcal R$ which is not complete.
\end{co}
\begin{proof}
  By L\"owenheim--Skolem, there is a countable $M\preceq \mathcal R$ with $\mathbb Q\subseteq M$. Since $M$ is an ordered abelian group embedded in the reals, it must be Archimedean, and it follows easily by considering the group generated by any $m\in M\setminus \set 0$ that $M$ is unbounded in $\mathbb R$. Therefore, 
if $r\in \mathbb R\setminus M$, the set $\set{m\in M\mid m<r}$ is bounded in $M$.  But, since $M$ includes $\mathbb Q$, it is dense in $\mathbb R$, hence $\set{m\in M\mid m<r}$ has no supremum in $M$.
\end{proof}
You may be wondering why we didn't take $M=\mathbb Q$ directly, instead of invoking L\"owenheim--Skolem. The answer is that, at the moment, we do not known whether $\mathbb Q\preceq \mathcal R$. \label{mcR} This is in fact true, and we will soon develop tools to prove it.


As usual with clickbaits, the fact below is probably something you have already heard.

\begin{co}[Skolem paradox]\label{co:shock}
  If $\mathsf{ZFC}$ has a model, then it has a countable one.
\end{co}
The reason this is called a paradox, is that $\mathsf{ZFC}$ proves the existence of uncountable sets. The catch here is that, if $M\models \mathsf{ZFC}$ is countable, and $a\in M$ is such that $M\models \text{``$a$ is uncountable''}$, the only thing we can conclude is that $M$ has no bijection between $a$ and its set of natural numbers. But, of course, this does not prevent a bijection between $\omega$ and $\set{b\in M\mid M\models b\in a}$ to exist outside of $M$.

By the way, using compactness and L\"owenheim--Skolem, we can make the example above even more pathological, and find a countable $M\models \mathsf{ZFC}$ which contains nonstandard natural numbers, that is, elements $a$ such that $M\models \text{``$a$ is a natural number''}$ but for every $n\in \omega$ we have $M\models a>n$. And even containing an infinite descending membership chain $a_0\owns a_1 \owns a_2\owns\ldots$; the reason this does not contradict the fact that $M$ satisfies the Axiom of Foundation is that there will be no $b\in M$ such that $\set{a_i\mid i<\omega}=\set{a\mid M\models a\in b}$.




\section{Taking unions}
\begin{defin}
 A poset $(I,<)$ is \emph{upward directed} iff for every $i,j\in I$ there is $k\in I$ such that $k\ge i$ and $k\ge j$. 
\end{defin}
\begin{eg}
All linear orders are upward directed.
\end{eg}


\begin{pr}\label{pr:directlimits}
Let $(I,<)$ be an upward directed poset, and  $(M_i\mid i\in I)$  an $I$-sequence of  $L$-structures such that, if $i<j$, then $M_i\subseteq M_j$. The union of the domains of the $M_i$ can be uniquely made into an $L$-structure $M\coloneqq \bigcup_{i\in I} M_i$ such that every $M_i$ is a substructure of $M$.
\end{pr}
\begin{proof}
If $R$ is a relation symbol and $\bla a0,n\in M$, then each $a_j$ belongs to some $M_{i_j}$. Since $I$ is upward directed, an easy induction shows that there is $i\in I$ such that $\bla i0,n\le i$. By assumption, $\bla a0,n\in M_i$. We set $M\models R(\bla a0,n)$ iff $M_i\models R(\bla a0,n)$. Of course we need to check that this does not depend on $i$, but this follows again by our assumptions: if $j$ satisfies the same assumptions as $i$ above, then there is $k\ge i,j$. Both $M_i$, $M_j$ are substructures of $M_k$, hence $M_i\models R(\bla a0,n)\iff M_k\models R(\bla a0,n)\iff M_j\models R(\bla a0,n)$. 

One may use an analogous argument to define the interpretations of function symbols and constant symbols in $M$. Or, we can use the following standard trick.

We reduce to the previous case by assuming that the language is relational. This is done by changing the language, from $L$ to $L'$, say, by replacing every $n$-ary function symbol $f$ of $L$ with an $n+1$-ary relation symbol of $L'$, to be interpreted as the graph of $f$, and every constant symbol of $L$ by a $1$-ary predicate, to be interpreted as a singleton. You may object that this involves checking that all the notions we are interested in (substructure, elementary substructure\ldots) are preserved by this translation, and that the conclusion may be translated back. It is a good idea to convince yourself that this is indeed true, since this kind of trick is used fairly often.\footnote{Careful though, since some notions \emph{do} change after this translation. An example is the notion substructure, hence that of ``substructure generated''. Furthermore, while the translation \emph{preserves} substructures, it does not necessarily \emph{reflect} them: a substructure in the original language is automatically a substructure in the translated one, but the converse need not hold.}

Finally, the condition that $M_i$ is a substructure of $M$ easily implies uniqueness.
\end{proof}


If we sprinkle a modicum of Tarski--Vaught test in the proof of the previous proposition, we obtain the analogous statement for elementary embeddings. Spelling out the details of the proof is left as an exercise.

\begin{exr}\label{exr:elchains}
Let $(I,<)$ be an upward directed poset, and let $(M_i\mid i\in I)$ be an $I$-sequence of $L$-structures such that, if $i<j$, then $M_i\preceq M_j$. Let $M\coloneqq\bigcup_{i\in I} M_i$. Then, for every $i\in I$, we have $M_i\preceq M$.
\end{exr}




\section{Finite structures}
A lot of things in this course are stated for theories with infinite models, e.g.\ \Cref{exr:vaught}. The reason is that on finite structures, by the proposition below, a lot of the questions we will consider have trivial answers.


\begin{pr}
If $M$, $N$ are $L$-structures and $M$ is finite, then $M\equiv N\iff M\cong N$.
\end{pr}
\begin{proof}
  The implication $\se$ is easy, and does not need finiteness.   Suppose that $\abs M=n$.  We first prove $\allora$ in a special case, but in a stronger form.
  \begin{claim}
Assume that $L$ has only finitely many symbols. Then there is an  $L$-sentence $\phi_M$ such that, if $N\models \phi_M$, then $N\cong M$.
  \end{claim}
  \begin{claimproof}
Common sense dictates that this is the kind of ``obvious but boring'' thing that is usually left to the reader, since it is usually easier (and possibly instructive) to convince oneself that such a formula can be written, than to write it explicitly.  Anyway, today I happened to leave common sense at home.



If $n=0$, then the required sentence is $\forall x\; x\ne x$. Otherwise, the idea is to exploit finiteness of $L$ to write a sentence saying ``there are exactly $n$ elements and they satisfy the diagram of $M$''. Define the formula
\[
   \psi_{n}(\bla x0,{n-1})\coloneqq \left(\bigwedge_{i<j<n} x_i\ne x_j\right)\land \left(\forall y\; \bigvee_{i<n} y=x_i\right)
\]
 Enumerate the elements of $M$ in a tuple $a=(\bla a0,{n-1})$.\footnote{Enumerations are assumed to be without repetitions unless otherwise stated.} Note that $M\models \psi_n(a)$ and, conversely, if $N\models \psi_n(b)$, then $b=(\bla b0,{n-1})$ is an enumeration of all elements of $N$.

Observe that whenever $N$ satisfies the sentence\footnote{Recall that lower case letters are allowed to be tuples. I will not recall this further.} $\exists x\; \psi_n(x)$ then we must have $\abs N=n$. Of course this is not enough to guarantee the existence of an isomorphism $M\to N$, so we need a longer formula.

Let $\phi_M$ be $\exists \bla x0,{n-1}\; \psi_M(\bla x0,{n-1})$, where $\psi_M$ is defined below.\footnote{For ease of notation, we use the identification $m=\set{0,\ldots, m-1}$.}
  \begin{align*}
    \psi_M\coloneqq & \psi_n(\bla x0,{n-1})\\
    \land & \bigwedge_{\substack{i<n\\c\in L_\mathrm{c}\\ M\models c=a_i}} c=x_i\\
            \land & \bigwedge_{f\in L_\mathrm{f}}\left( \bigwedge_{\substack{i<n\\
      h\from \operatorname{ar}_L(f)\to n
   \\
   M\models f(a_{h(0)},\ldots, a_{h(\operatorname{ar}_L(R)-1)})=a_i
   }}
    f(x_{h(0)},\ldots, x_{h(\operatorname{ar}_L(R)-1)})=x_i\right)\\
       \land& \bigwedge_{R\in L_\mathrm{r}}\left(\bigwedge_{\substack{
      h\from \operatorname{ar}_L(R)\to n
   \\
   M\models R(a_{h(0)},\ldots, a_{h(\operatorname{ar}_L(R)-1)})
   }}
    R(x_{h(0)},\ldots, x_{h(\operatorname{ar}_L(R)-1)})\right.\\
        \land&\left. \bigwedge_{\substack{h\from \operatorname{ar}_L(R)\to n\\M\models \neg R(a_{h(0)},\ldots, a_{h(\operatorname{ar}_L(R)-1)})}}\neg R(x_{h(0)},\ldots, x_{h(\operatorname{ar}_L(R)-1)})\right)
 \end{align*}
If $N\models \phi_M$, there are $\bla b0,{n-1}$ such that $N\models \psi_M(\bla b0,{n-1})$, and by construction the map $a_i\mapsto b_i$ is an isomorphism.
\end{claimproof}
In order to reduce the general case to that where $L$ is finite,  we use (of course) compactness. Consider the language $L(N)\cup \set{\bla c0,{n-1}}$, where the $c_i$ are  new constant symbols. In this language, consider the theory
\[
  \ed(N)\cup \bigcup_{\substack{L_0\subseteq L\\ L_0\text{ finite}}} \psi_{M\restr L_0}(\bla c0,{n-1})
\]
By the Claim and compactness, this theory is consistent, hence has a model $\tilde N$. The restriction $N'\coloneqq \tilde N\restr L$ is an elementary extension of $N$, but since $N$ satisfies $\exists x\; \psi_n(x)$, so does $N'$. Since $N$ is a substructure of $N'$ and both have the same finite cardinality, we must have $N=N'$. It follows that the map sending $a_i\mapsto c_i^{\tilde N}$ is the required isomorphism.
\end{proof}


Finite structures will still play an auxiliary role every now and then, but usually we will not look at their complete theories. This does not mean that model theory has nothing to say about finite structures: \emph{finite model theory} is related to questions in computer science, especially in the area of computational complexity. See for example~\cite{ebbinghausflum}.

\chapter[Quantifier elimination]{First-order quantifiers and where to eliminate them}
\section{The first back-and-forth proof}
What we do in this section may \emph{prima facie} look completely unrelated to the title of this chapter, or to model theory in general, for that matter. Except it is very much not, as we will see later.
For now, observe that we are proving that a certain theory (defined below) has only one countable model. The main focus is not on the theorem itself, but on its proof.
\begin{defin}
  Let $L=\set{<}$, where $<$ is a binary relation symbol. The theory $\mathsf{DLO}$ of \emph{dense linear orders without endpoints} has the following axioms:
  \begin{enumerate}
  \item $<$ is a \emph{strict order}: an irreflexive, transitive relation;\footnote{I leave it as an (easy) exercise to write these as first-order $L$-sentences. Also, note that the conjunction of irreflexivity and transitivity implies asymmetry.}
  \item $<$ is \emph{linear}: $\forall x,y\; ((x<y)\lor (x=y)\lor (x>y))$;\footnote{Of course $\lor$ is associative, so we may use fewer parenthesis. But I guess at some point above I promised not to stress such pedantries anymore.} 
  \item $<$ has no \emph{endpoints}: it has no maximum and no minimum;
  \item $<$ is \emph{dense}: $\forall x,y\; \paren[\big]{(x<y)\implica (\exists z\; (x<z<y))}$.
  \end{enumerate}
\end{defin}
Ok, the above definition has an hidden statement: I said ``the \emph{theory} $\mathsf{DLO}$'', so we should check it has a model. But, clearly, $(\mathbb Q, <)\models \mathsf{DLO}$.

Legend has it that the first back-and-forth proof was by Cantor, who invented the method to prove the theorem below. Except this is false, and Cantor managed to prove it by only going ``forth''. Also, I have no idea whether the proof below is the first proof by back-and-forth ever written, but nowadays it is usually the first one people see. Anyway, here is the proof.



\begin{thm}[Cantor]\label{thm:dlobaf}
  All countable dense linear orders with no endpoints are isomorphic (to $(\mathbb Q, <)$).
\end{thm}
\begin{proof}
  Let $(M,<)$ and $(N,<)$ be countable dense linear orders with no endpoints, viewed as $L$-structures with $L=\set{<}$. Since they are dense (or, if you prefer, since they have no endpoints), $M$ and $N$ must both be infinite. Fix enumerations $(a_i)_{i<\omega}$ of $M$ and $(b_j)_{j<\omega}$ of $N$. We build an isomorphism $f\from M\to N$ inductively, by extending \emph{partial isomorphisms}.

  Start with $f_0$ being the empty function. If you prefer, $f_0$ is an isomorphism between the empty substructure of $M$ and the empty substructure of $N$. We inductively define $f_n$ in such a way that, for every $n\in \omega\setminus\set 0$,
  \begin{enumerate}
  \item $f_n\from A_n\to B_n$, where $A_n$ is a finite substructure of $M$ and $B_n$ is a finite substructure of $N$;
  \item $A_n\subseteq A_{n+1}$, $B_n\subseteq B_{n+1}$, and $f_n\subseteq f_{n+1}$;
  \item\label{point:fniso} $f_n$ is an isomorphism of $L$-structures;
  \item\label{point:dom} if $n=2m$, then $a_m\in A_n$;
  \item\label{point:cod} if $n=2m+1$, then $b_m\in B_n$.
  \end{enumerate}
  Suppose we manage to do this for every $n\in \omega$. If you think about it for $\approx 30$ seconds, you will realise that this is enough to conclude. But, to be more formal:

 Because $A_n\subseteq A_{n+1}$, the union $\bigcup_{n\in \omega}\operatorname{graph}(f_n)$  is the graph of a function, call it $f$, with domain a subset of $M$ and codomain $N$. In fact, by \Cref{point:dom} its domain is the whole $M$, and its  image is the whole of $N$ by \Cref{point:cod}. If $m<m'<\omega$, then $a_m, a_{m'}\in A_{2m'}$ and by \Cref{point:fniso} we have
  \begin{multline*}
    M\models a_m< a_{m'}\iff A_{2m'}\models a_m< a_{m'}\iff B_{2m'}\models f_{2m'}(a_m)< f_{2m'}(a_{m'})\\\iff  N\models f_{2m'}(a_m)< f_{2m'}(a_{m'})\iff N\models f(a_m)< f(a_{m'})
  \end{multline*}
 Therefore, $f\from M\to N$ is an isomorphism of $L$-structures.

Let us do this inductive construction then.  Suppose we have build an isomorphism  $f_{n-1}\from A_{n-1}\to B_{n-1}$ as above. 
 Write $A_{n-1}=\set{a_{i_0}<a_{i_1}<\ldots<a_{i_k}}$ and $B_{n-1}=\set{b_{j_0}<b_{j_1}<\ldots<b_{j_k}}$, and recall that for all $i\le k$ we have $a_i\in M$ and $b_i\in N$. If $n$ is even, say $n=2m>0$, we take care of the ``forth'' part, that is, we extend $f_{n-1}$ to $A_n\coloneqq A_{n-1}\cup{a_{m}}$.  We have four cases:
 \begin{enumerate}[label=\alph*)]
  \item If we already have $a_m\in A_{n-1}$, do nothing.  Or, more formally, set $A_{n}\coloneqq A_{n-1}$, $B_n\coloneqq B_{n-1}$, and $f_n\coloneqq f_{n-1}$.
 \item $a_m<a_{i_0}$. In this case, since $N$ has no endpoints, in particular it has no minimum, hence there must be some $b\in N$ with $N\models b< b_{i_0}$. Send $a_m$ to $b$. Or, more formally, put $A_n\coloneqq A_{n-1}\cup \set{a_{m}}$, $B_n\coloneqq B_{n-1}\cup \set{b}$, and $f_n\coloneqq f_{n-1}\cup \set{(a_m, b)}$.
 \item $a_m> a_{i_k}$. Similarly, $N$ has no maximum, so it contains some $b> b_{i_k}$ where to send $a_m$. Or, more formally,\ldots{} well, ok, you know what needs to be written here.
 \item There is $\ell <k$ with $M\models a_{i_{\ell}}< a_m< a_{i_{\ell+1}}$. Because $N$ is dense, there is $b\in N$ with $N\models b_{i_{\ell}}< b< b_{i_{\ell+1}}$. Send $a_m$ to $b$.
 \end{enumerate}
 This takes care of the ``forth'' part. The ``back'' part, that is, the odd stages of the construction, are handled in the same way, with the roles of $M$ and $N$ reversed;\footnote{It is usual, in back-and-forth proofs, to have symmetrical hypothesis, hence to only do the ``forth'' part and say that the ``back'' part is analogous. So, why is this not called ``forth-and-back''? I guess that's because ``back-and-forth'' is an existing English sentence but, if you want, the first step where we actually send elements somewhere is step 1, which is a ``back''.} the only subtlety is that, for $n=1$, there are no $i_0, j_0$. In that case, we start by simply choosing the preimage of $b_0$ arbitrarily, e.g.\ we can take $f_1(a_0)=b_0$.
\end{proof}

Here is a consequence of Cantor's theorem.
\begin{co}
  $\mathsf{DLO}$ is complete.
\end{co}
\begin{proof}
  By combining \Cref{thm:dlobaf} with \Cref{exr:vaught}.
\end{proof}
In fact, we can squeeze more than just completeness from the \emph{proof} of \Cref{thm:dlobaf}, and not just for dense linear orders. The rest of the chapter performs this squeezing.
\begin{exr}
  Prove that every countable linear order embeds into $(\mathbb Q, <)$.
\end{exr}

\section{Quantifier-free types}\label{sec:qftp}

Let us look at the proof of \Cref{thm:dlobaf}. The crucial step was replicating the ``position'' of $a_m$ with respect to $A_{n-1}$. The word ``position'', makes perfect sense in linear orders, but in general we will need something more adequate.
\begin{defin}\label{defin:qftpa}
  Let $M$ be an $L$-structure, $A\subseteq M$, and  $a=(\bla a0,n)$ a tuple in $M$. Fix variables $\bla x0,n$. The \emph{quantifier-free type of $a$ over $A$ in $M$} is the set of formulas
  \[
    \qftp^M(a/A)\coloneqq\set{\phi(\bla x0,n)\in L(A)\mid \phi \text{ quantifier-free, } M\models \phi(\bla a0,n)}
  \]
\end{defin}
In other words, $\qftp^M(a/A)$ is obtained by taking all quantifier-free formulas   $\phi(\bla a0,n)$ true in $M$, and replacing each $a_i$ with a free variable $x_i$. The formula $\phi(\bla x0,n)$ is allowed to contain parameters from $A$.

\begin{rem}\label{rem:fixingvariables}
Of course there is nothing special in the variables $\bla x0,n$, and we may have used $\bla y0,n$ instead; for many purposes, the quantifier-free types obtained in these two ways are identified.\footnote{But sometimes being careless with identifications may result in trouble; more about this at the end of \Cref{sec:types}.}  You can also think of $\qftp^M(a/A)$ as the collection of $A$-definable subsets of $M$ containing $a$. This has the advantage of not needing to fix variables, but it makes it more difficult to compare quantifier-free types over different structures.  Both points of view are useful.
\end{rem}



At any rate, the key property we exploited in the proof was the following.
\begin{exr}\label{exr:qftpstrgen}
Let $a$, $b$ be tuples of the same length from $M$, $N$ respectively.
\begin{enumerate}
\item Assume that $\qftp^M(a/\emptyset)=\qftp^N(b/\emptyset)$. Check that 
  $a_i\mapsto b_i$ induces an isomorphism between the substructure of
  $M$ generated by\footnote{By the way, have I already said that there
    is another abuse of notation going on, where a tuple is sometimes
    treated as a set, as in ``the substructure generated by $a$''?
    Formally, we should say ``generated by $\set{a_i\mid i<\abs
      a}$''. Anyway, the important thing to keep in mind is that
    tuples \emph{are} allowed repetitions (while sets are not).} $a$
  and the substructure of $N$ generated by $b$, defined in the obvious
  manner: e.g.\ if $f$ is a function symbol and $c$ a constant symbol
  then $f(a_0, a_1,c)$ is sent to $f(b_0, b_1,c)$. 
\item Check that, conversely, if this
  map is well-defined\footnote{Think of what happens if $a$ satisfies
    $f(x)=g(x)$ but $b$ does not.} and an isomorphism, then
  $\qftp^M(a/\emptyset)=\qftp^N(b/\emptyset)$.
\item Check that, if in addition $A$ is a substructure of both $M$ and $N$, then $\qftp^M(a/A)=\qftp^N(b/A)$ if and only if the map sending $a_i\mapsto b_i$ induces (in the way as above) a well-defined isomorphism between the substructure of $M$ generated by\footnote{That's right, another abuse of notation: $AB$ stands for $A\cup B$. Composed with the previous abuse of notation, $Aa$ means $A\cup \set{a_i\mid i<\abs a}$.} $Aa$ and the substructure of $N$ generated by $Ab$.
\end{enumerate}

\end{exr}



In other words, in the proof  we did the following. Use $f_{n-1}$ to identify $A_{n-1}$ with $B_{n-1}$. Take the next point $a_m$ to be considered, and look at $p(x)\coloneqq\qftp^M(a_m/A)$. Find, inside $N$, a \emph{realisation} of $p(x)$.
\begin{defin}
Let $N$ be an $L$-structure, $A$ a subset of $N$, and  $p(x)$ a quantifier-free type over $A$. A tuple $b$ in $N$ with $\abs b=\abs x$ is said to \emph{realise} $p(x)$, written, $b\models p(x)$, iff $N\models p(b)$. That is, for every $\phi(x)\in p$, we have $N\models \phi(b)$.
\end{defin}
\begin{eg}
  Let $M=(\mathbb Q,<)$ and  $A=\set{-1/n\mid n\in \omega\setminus \set 0}$. Let $p(x)\coloneqq\qftp^M(2/A)$. Then $3\models p(x)$. In fact, all positive rationals have the same quantifier-free type over $A$. More generally,  $b,c\in M$ have the same quantifier-free type over $A$ if and only if for every $a\in A$ we have $M\models b\ge a\iff  M\models c\ge a$.
In other words, $\qftp^M(a/A)=\qftp^M(b/A)$ if and only if $a,b$ fill the same cut of $A$ (in the degenerate case where $a\in A$ by the cut of $a$ in $A$ we mean just $\set{a}$).
\end{eg}


\section{The Ra(n)do(m) graph}

Before developing the theory further, here is a good exercise to get familiar with back-and-forth. Work in $L_\mathrm{graph}=\set{E}$.
\begin{defin}\label{defin:randomgraph}
  Let $T_\mathrm{rg}$ be the set of $L_\mathrm{graph}$-formulas:
  \begin{enumerate}
  \item $E$ is a graph (i.e.\ irreflexive and symmetric).
  \item For every $(n,m)\in \omega^2\setminus\set{(0,0)}$, the formula
  \end{enumerate}
  \begin{multline*}
      \forall \bla x0,{n-1}, \bla y0,{m-1}\\
\left(\bigwedge_{\substack{i<n\\j<m}}x_i\ne y_j\right)\implica\left(\exists z\; \Bigl(\bigwedge_{i<n} E(x_i,z)\Bigr)\land  \Bigl(\bigwedge_{j<m} \neg E(y_j,z)\Bigr)\right)
\end{multline*}
  \end{defin}
In words, $T_\mathrm{rg}$ says that its models are graphs where, for every finite sets $U,V$, if $U\cap V=\emptyset$ then there is a point with an edge to all elements of $U$ and no edge to any element of $V$.
  \begin{exr}\label{exr:rg}\*
    \begin{enumerate}
    \item  Prove that $T_\mathrm{rg}$ is consistent.\footnote{Hint: do an inductive construction, or, if you like probability, see below.}
    \item  Prove that $T_\mathrm{rg}$ has a unique countable model (up to isomorphism).
    \end{enumerate}
    The unique countable model of $T_\mathrm{rg}$ is known as the \emph{Random Graph}, or \emph{Rado Graph}.
    \begin{enumerate}[resume]
    \item Prove that every countable graph embeds into the Random Graph as an induced subgraph.
    \end{enumerate}
  \end{exr}
The name ``Random Graph'' is due to the following fact:  fix a countable set, and put an edge between any two distinct points with fixed probability $0<p<1$, independently. Then, with probability $1$, the resulting graph is (isomorphic to) the Random Graph.


\section{Syntax: eliminating quantifiers by hand}
Recall that, for technical convenience, we added to our logic a symbol $\bot$, which is a (quantifier-free) atomic sentence in every language, and it is always false. We also write $\top$ for $\neg \bot$.

\begin{defin}
  The $L$-theory $T$ has \emph{quantifier elimination} iff, for every $n\in \omega$, and every  $L$-formula $\phi(x)$ with $\abs x=n$, there is an $L$-formula $\psi(x)$ without quantifiers such that $T\proves \forall x\; \phi(x)\coimplica \psi(x)$. An $L$-structure $M$ has \emph{quantifier elimination} iff $\Th(M)$ does.
\end{defin}
\begin{rem}\*
  \begin{itemize}
  \item Note that $\psi$ is required to have the ``same'' (cf.~\Cref{rem:varincflas}) free variables as $\phi$.
  \item The semantical counterpart to this (syntactical) definition is: $T$ has quantifier elimination if and only if every $\emptyset$-definable set is a boolean combination of sets defined by atomic formulas. See also \Cref{rem:qeproj} for a more geometric interpretation.
  \item The reason we added $\top,\bot$ to the logic is that, otherwise, if $L$ has no constant symbols, there are no quantifier-free sentences. This happens for example in the language of orders, or the language of graphs.
  \end{itemize}
\end{rem}

Below, we will see some methods to prove that a theory has quantifier elimination. But first, some examples.
\begin{eg}
  Let $L=\set{+,0,-,\cdot, 1,<}$ and $T=\Th(\mathbb R)$. Consider the formula
  \[
    \phi(x_0, x_1, x_2)\coloneqq \exists y\; (x_2\cdot y^2+x_1\cdot y+x_0=0)
  \]
  where $y^2$ is an abbreviation for $y\cdot y$.
  Then $\phi(x)$ is equivalent modulo $T$ to the quantifier-free formula
  \begin{align*}
    &\phantom {\lor}(x_2=x_1=x_0=0)\\
    &\lor (x_2=0 \land x_1\ne 0)\\
    &\lor (x_2\ne 0\land x_1^2-(1+1+1+1)\cdot x_2\cdot x_0>0)
  \end{align*}
\end{eg}
\begin{eg}
Let  $L=\set{+,0,-,\cdot, 1}$ and $T$ be the $L$-theory of fields. It is easy (but it takes a while) to write an existential formula  $\phi(\bla x0,{n^2-1})$ saying that the $x_i$ are (in that order) the entries of an invertible $n\times n$ matrix. This $\phi$ is equivalent modulo $T$ to a quantifier-free formula, saying that this matrix has nonzero determinant.
\end{eg}




One way to eliminate quantifiers is to take them out one at a time by induction on formulas. Some steps are always the same: for example, if $\phi(x)$ and $\psi(x)$  are quantifier-free, clearly so is $\phi(x)\land \psi(x)$. The next lemma packages together all the easy steps, and tells us where we the actual work needs to go.
\begin{defin}
  A formula $\psi(x)$ is \emph{primitive} iff it is of the form $\exists y\; \bigwedge_{i<k} \phi_i(x,y)$, where every $\phi_i$ is basic.
\end{defin}


\begin{lemma}\label{lemma:downtoprimitive}
  Suppose that every primitive formula  $\exists y\; \bigwedge_{i<k} \phi_i(x,y)$ with $\abs y=1$ (and the $\phi_i(x,y)$ basic) is equivalent modulo $T$ to a quantifier-free formula. Then $T$ has quantifier elimination.
\end{lemma}
\begin{proof}
  By induction on formulas. If $\psi(x)$ is atomic, there is nothing to do. If $\psi$ is of the form $\neg \phi_0$, by induction there is a quantifier-free $\theta$ such that $T\proves \forall x\; \phi_0(x)\coimplica \theta(x)$. Clearly, $\psi$ is equivalent modulo $T$ to $\neg \theta$, which is quantifier-free. The case where $\psi$ is of the form $\phi_0\land \phi_1$ is dealt with similarly.

We are left to deal with the case $\exists y\; \phi(x,y)$, with $\abs y=1$. Inductively, $\phi(x,y)$ is equivalent to a quantifier-free formula $\theta(x,y)$. Using disjunctive normal form,  $\theta(x,y)$ is equivalent to a formula $\bigvee_i\bigwedge_j \phi_{i,j}(x,y)$, with the $\phi_{i,j}$ basic. Since $\exists y\; (\alpha(x,y)\lor \beta(x,y))$ is equivalent to $(\exists y\; \alpha(x,y))\lor (\exists y\;\beta(x,y))$, we reduce to the case where $\theta(x,y)$ is a conjunction of basic formulas. But then $\exists y\; \theta(x,y)$ is primitive with $\abs y=1$, hence it is equivalent to a quantifier-free formula by assumption.
\end{proof}
\begin{rem}\label{rem:qeproj}
 Geometrically, the quantifier $\exists$ corresponds to a projection. By the previous lemma,  quantifier elimination is equivalent to the following: if $X\subseteq M^{n+1}$ is an intersection of subsets of $M^{n+1}$ sets defined by basic formulas, and we consider the projection $\pi \from M^{n+1}\to M^n$ on the first $n$ coordinates (say), then $\pi(X)$ can be written as a boolean combination of subsets of $M^n$ defined by atomic formulas.
\end{rem}


Let us look at one easy example of quantifier elimination ``by hand''.

\begin{eg}\label{eg:infsetqe}
  The theory of infinite sets has quantifier elimination.
\end{eg}
\begin{proof}
  By  \Cref{lemma:downtoprimitive} and the fact that the only atomic formulas are of the form $x_i=x_j$, we just need to eliminate the quantifier from formulas $\phi(\bla x0,{n-1})$ of the form
  \[
    \exists y\; \Bigl(\bigwedge_{i\in I} y=x_i\land \bigwedge_{j\in J} y\ne x_j\land \bigwedge_{(k_0, k_1)\in K} x_{k_0}= x_{k_1}\land \bigwedge_{(h_0, h_1)\in H} x_{h_0}\ne x_{h_1}\Bigr)
  \]
  for some $I, J\subseteq n$ and $K, H\subseteq n\times n$.
If $I\ne \emptyset$, say because $i_0\in I$, we may discard $\exists y$, replace every occurrence of $y$ by $x_{i_0}$, and obtain an equivalent formula of the same form as above, but where $I=\emptyset$. So we may assume $I=\emptyset$. Set $\psi(x)\coloneqq\bigwedge_{(k_0, k_1)\in K} x_{k_0}= x_{k_1}\land \bigwedge_{(h_0, h_1)\in H} x_{h_0}\ne x_{h_1}$. Because $y$ does not appear in $\psi(x)$, we have that $\phi(x)$ is equivalent to $\left(\exists y\;\bigwedge_{j\in J} y\ne x_j\right)\land \psi(x)$. Since $T\proves \forall x\;\exists y\;\bigwedge_{j\in J} y\ne x_j$, we have that   $\phi(x)$ is equivalent to $\psi(x)$.
\end{proof}
Some proofs of quantifier elimination ``by hand'' are in \cite[Section 3.3]{tent-ziegler}.

This way of proving quantifier elimination can be very efficient, but in some cases using this technique may involve dealing with complicated formulas, several distinctions by cases, preliminary lemmas, etc.\footnote{As a baby example, try to prove that the theory of the  Random Graph eliminates quantifiers with an argument similar to that of \Cref{eg:infsetqe}. You will probably end up having to prove that in the Random Graph, if $U, V$ are finite and $U\cap V= \emptyset$, then there are infinitely many $x$ connected to all points of $U$ and no point of $V$ (the axioms only state the existence of \emph{one} such $x$).} So we better have more tools at our disposal.

\section{Types: packaging formulas together}\label{sec:types}
Perhaps counterintuitively, it turns out that sometimes it is easier to manage complete theories than single formulas. Complete theories are sets of sentences, while formulas $\phi(x)$ are allowed free variables. If we are interested in formulas with free variables, and want to pass through complete theories, the standard trick is to  introduce new constants $c$ and replace $\phi(x)$ with $\phi(c)$. 

In this order of ideas, quantifier elimination becomes: quantifier-free types are enough to determine a \emph{complete type}.
\begin{defin}\label{defin:typeincT}Let $T$ be an $L$-theory and $n\in \omega$. Let $\bla c0,{n-1}$ be new
    constant symbols.
  \begin{enumerate}
  \item  A \emph{partial $n$-type} is an
    $L\cup \set{\bla c0,{n-1}}$-theory containing $T$.
  \item  A \emph{complete $n$-type} is a complete
    $L\cup \set{\bla c0,{n-1}}$-theory containing $T$.
  \end{enumerate}
\end{defin}
\begin{rem}\*
  \begin{enumerate}
  \item In the literature, the word ``type'' is used sometimes as a synonymous of ``partial type'' and sometimes as a synonymous of ``complete type''. We will go with the \emph{second} convention.
  \item Also, some authors allow partial types to be inconsistent (i.e., not a theory).
  \item Soon we will concentrate on complete $T$, but the definition above allows to talk of types of incomplete theories, which we will need.  For complete $T$, it also makes sense to talk of types over parameters. We will see this later.
  \item A $0$-type  is the same as a completion of $T$.
  \end{enumerate}
\end{rem}

\begin{lemma}\label{lemma:constvartp}
Let $\bla c0,{n-1}$ be constant symbols not in $L$. Let $T$ be an $L$-theory, and $T'$ be the deductive closure of $T$ in $L\cup \set{\bla c0,{n-1}}$. For all $L$-formulas $\phi(x)$  with $\abs x=n$,  the following are equivalent:
\begin{enumerate}
\item\label{point:tx} $T\proves \forall x\; \phi(x)$
\item\label{point:tpc} $T'\proves \phi(c)$.
\end{enumerate}
\end{lemma}
\begin{proof}
  Since $T\subseteq T'$ we immediately have $\eqref{point:tx}\allora \eqref{point:tpc}$. We prove $\neg\eqref{point:tx}\allora \neg\eqref{point:tpc}$. Suppose that $T\centernot \proves \forall x\; \phi(x)$. This means that $T\cup \set{\exists x \;\neg\phi(x)}$ is consistent, so it has a model $M$. This $M$ is a model of $T$, and there is $a\in M^{\abs x}$ such that  $M\models \neg\phi(a)$. Expand $M$ to an $L'$-structure by interpreting $c_i^{M'}\coloneqq a_i$. By definition, $T\proves T'$, hence $M'\models T'\cup \set{\neg\phi(c)}$, and we have $\neg \eqref{point:tpc}$.
\end{proof}
\begin{co}\label{co:constvartp}
  Let $\bla c0,{n-1}$ be constant symbols not in $L$. Let $T$ be an $L$-theory, and $T'$ be the deductive closure of $T$ in $L\cup \set{\bla c0,{n-1}}$. Let $\Phi(x)$ be a set of formulas $\phi(x)$ with $\abs x=n$. The following are equivalent.
\begin{enumerate}
\item $\Phi(c)$ is a partial type.
\item For every $\phi_0(x),\ldots, \phi_m(x)\in \Phi(x)$, the set $T\cup \set*{\exists x\; \bigwedge_{i\le m} \phi_i(x)}$ is consistent.
\end{enumerate}
\end{co}
\begin{proof}
  By the previous lemma, compactness, and a pinch of logic.
\end{proof}

\begin{defin}
Let $M\models T$ and  $a\in M^n$. The \emph{type of $a$ in $M$}, denoted by $\tp^M(a)$, is $\set{\phi(\bla x0,{n-1})\in L\mid  M\models \phi(\bla a0,{n-1})}$.
\end{defin}
In other words, $\tp^M(a)$ is the collection of all $L$-formulas defining a set to which $a$ belongs (in a fixed tuple of variables\footnote{Or maybe not. See \Cref{rem:fixingvariables} and the last part of this section.}). 

Using \Cref{co:constvartp}, you can check that, by replacing every $x_i$ in  $\tp^M(a)$ with $c_i$, we obtain a type in the sense of \Cref{defin:typeincT}.  A standard abuse of notation, to which we will immediately start conforming, is to confuse $x_i$ with $c_i$, and write types with variables instead of extra constants. So, for example, we may say that $p(x)=\tp^M(a)$ is a type of $T$. The converse holds as well: all (complete!) types are types of tuples in some model:
 \begin{pr}\label{pr:etirs}
For every $n$-type $p(x)$ there are $M\models T$ and $a\in M^n$ such that $p(x)=\tp^M(a)$.
 \end{pr}
 \begin{proof}
   This is so trivial it almost hurts: by assumption a type is a complete $L\cup \set{\bla c0,{n-1}}$-theory containing $T$. Take a model $M$ of this theory, set $a_i\coloneqq c_i^M$, and (obviously) take $a=(\bla a0,{n-1})$.
 \end{proof}
 This does \emph{not} mean that every type is realised in every model. We will come back to this at length later on in the course.

 Let us now look at an easy but important fact.
\begin{exr}\label{exr:preceqtp}
 If $M\preceq N$ and $a\in M^n$, then $\tp^M(a)=\tp^N(a)$. 
\end{exr}
 Note that, if $\abs a=n$, and $m<n$, then  $\tp^M(a)$ decides in particular all the $m$-types of its subtuples of length $m$; for $m=0$, this means that $\tp^M(a)$ implies $\Th(M)$, that is, it decides a completion of $T$.

At last, the theorem promised at the beginning of this section.

\begin{thm}\label{thm:qeqfpt}
  The following are equivalent.
  \begin{enumerate}
  \item\label{point:thasqe} $T$ has quantifier elimination.
  \item\label{point:qftpthentp} For all models $M, N$ of $T$, and all $n\in \omega$, whenever $a\in M^n$ and $b\in N^n$ are such that $\qftp^M(a/\emptyset)=\qftp^N(b/\emptyset)$, then $\tp^M(a)=\tp^N(b)$.
  \end{enumerate}
 \end{thm}
 \begin{proof}
$\eqref{point:thasqe}\allora \eqref{point:qftpthentp}$ is an immediate consequence of the definitions, so let us focus on $\eqref{point:qftpthentp}\allora \eqref{point:thasqe}$.

   Fix $T$ and an $L$-formula $\psi(x)$, say with $\abs x=n$, from which we want to eliminate quantifiers. If $T\proves \neg \exists x\; \psi(x)$, then $\psi(x)$ it is equivalent to the quantifier-free formula  $\bot$ and we are done.  Otherwise, consider the set of quantifier-free consequences of $\psi(x)$
   \[
     \Psi(x)\coloneqq \set{\theta(x)\text{ quantifier-free}\mid T\models \forall x\; \psi(x)\implica \theta(x)}
   \]
By definition, $\psi(x)\proves \Psi(x)$, where this notation means that, for suitable constants $c$, we have $T\cup \set{\psi(c)}\proves \Psi(c)$. The heart of the proof lies in the following claim.
\begin{claim}
  $\Psi(x)\proves \psi(x)$.
\end{claim}
\begin{claimproof}
  If not, there is a model $(M,a)$ of $T\cup \Psi(c)\cup \set{\neg \psi(c)}$, where $a$ denotes the interpretation of $c$. Let us look at $\pi(x)\coloneqq\qftp^M(a/\emptyset)$. By our hypothesis, $T\cup \pi(c)$ should imply a complete type. We will reach a contradiction by showing that this is not the case. 
  \begin{subclaim}
    $T\cup \pi(x)\cup \set{\psi(x)}$ is consistent.
  \end{subclaim}
  \begin{subclaimproof}
 Otherwise, by compactness,  there is a finite conjunction $\bigwedge_{j<\ell} \phi_j(x)$ of formulas in $\pi(x)$ such that $T\proves  \forall x\; ( \bigwedge_{j<\ell}\phi_j(x)\implica \neg \psi(x))$. Taking the contrapositive, $T\proves  \forall x\; (\psi(x)\implica \bigvee_{j<\ell}\neg\phi_j(x))$. Since $\bigvee_{j<\ell}\neg\phi_j(x)$ is quantifier-free, by definition it belongs to $\Psi(x)$.  But now, on one hand, by choice of $M$ and $a$, we have  $M\models \Psi(a)$, and in particular $M\models \bigvee_{j<\ell}\neg\phi_j(a)$. On the other hand, every $\phi_j(x)$ belongs to $\pi(x)=\qftp^M(a/\emptyset)$, hence $M\models \bigwedge_{j<\ell}\phi_j(a)$, a contradiction.
\end{subclaimproof}
Therefore, there is $(N,b)\models T\cup \pi(x)\cup \set{\psi(x)}$. As promised, this is a contradiction: $N\models \pi(b)$, that is, $b$ satisfies the same quantifier-free formulas as $a$; by our hypothesis, this guarantees the same formulas, even with quantifiers, are satisfied by $a$ (in $M$) and by $b$ (in $N$); but $M\models \neg \psi(a)$ and $N\models \psi(b)$.
\end{claimproof}
By the Claim and compactness, there is a finite conjunction $\bigwedge_{i<k}\psi_i(x)$ of formulas in $\Psi(x)$ such that $T\proves \forall x \left(\bigwedge_{i<k}\psi_i(x)\implica \psi(x)\right)$.  By definition of $\Psi$,  all the $\psi_i$ are quantifier-free and $T\proves \forall x \left(\psi(x)\implica \bigwedge_{i<k}\psi_i(x)\right)$. We conclude that $\psi(x)$  is equivalent modulo $T$ to the quantifier-free formula $\bigwedge_{i<k}\psi_i(x)$.
 \end{proof}
Types are one of the most used tools in model theory, and we will deal with them at great length later on in the course. Before we go back to quantifier elimination, we finish this section with some final remarks about types.
 
Another way to think about types is: a partial $n$-type in $M$ is a filter on the boolean algebra of formulas $\phi(x)$, with $\abs x=n$, modulo being equivalent modulo $T$. In this identification, complete $n$-types correspond to ultrafilters on this algebra. We will not go into details, but if you want to read about it, this algebra is called the \emph{Lindenbaum algebra}, or \emph{Lindenbaum--Tarski algebra}.\footnote{If you are curious about Stone duality, now could be a good moment to read about it. Or you may wait until we talk about type \emph{spaces}.} For complete $T$, one may equivalently fix some $M\models T$ and look at the boolean algebra of definable subsets of $M^n$.

Finally, let me clarify an abuse of notation which may seem (and usually is) harmless, but may give you some headaches down the road.  When we defined types, we might as well have used different constants, say $d_i$ instead of $c_i$, and when replacing constants with variables we may have used $y_i$ instead of $x_i$, and we would have ended up with essentially the same notions, (see also \Cref{rem:fixingvariables}). Therefore, if we strive for complete, pedantic precision, it would have probably been more correct to define types in some other, constant-free and variable-free way; for example, as equivalence classes of the relation ``satisfying the same formulas'' (coded via some suitable set-theoretic trick---those equivalence classes are proper class-sized).


Still, formulas and variables are very convenient to handle, but, in some situations, care is needed. For example: are $p(x_0, x_1)$ and $p(y_0, y_1)$ the same type or not? Usually these two types are identified, unless they are used jointly, e.g.\ to define  a  type $q(x_0,x_1,y_0,y_1)$ as $p(x_0,x_1)\cup p(y_0,y_1)\cup \set{(x_0=y_0)\land (x_1=y_1)}$. So one may say that types are really to be considered up to change of variables/constants, but we should be careful not to take quotients too early. This phenomenon is already present at the level of formulas: is $\phi(x_0, x_1)$ the same as $\phi(x_1, x_0)$? If, for instance, we want to write $T\proves \forall x\; \phi(x_0,x_1)\coimplica \phi(x_1, x_0)$ to say that the set defined by $\phi$ is symmetric with respect to the diagonal, we better not identify $\phi(x_0, x_1)$ with $\phi(x_1, x_0)$ too early.  One may use ``variable-free'' presentations of types like the one in the previous paragraph (and even of formulas and partial types), but at a price: for example, defining the partial type $q$ above becomes more cumbersome.



\section{Semantics: eliminating quantifiers by back-and-forth}

 Sometimes, dealing with substructures is easier than dealing with formulas; for example, because we are doing model theory of some algebraic structures, and we want to exploit facts that the algebraists have already proven about them. In those cases, the main theorem of this section allows us to prove quantifier elimination by using the back-and-forth method.
\begin{defin}Let $M, N$ be $L$-structures.
  \begin{enumerate}
  \item A \emph{partial isomorphism} between $M$
    and $N$ is an isomorphism between a substructure $A\subseteq M$
    and a substructure $B\subseteq N$. 
  \item A family $F$ of partial isomorphisms between $M$ and $N$ has the \emph{back-and-forth property} iff for every $f\in F$
    \begin{enumerate}
    \item[(forth)]  for every $a\in M$ there is $g\in F$ with $a\in \dom g$ and $g\supseteq f$, and
    \item[(back)]  for every $b\in N$ there is $g\in F$ with $b\in \operatorname{im} g$ and $g\supseteq f$.
    \end{enumerate}
\end{enumerate}
\end{defin}
\begin{thm}\label{thm:bafqe}
  Let $T$ be an $L$-theory. Suppose that, for every $M_0\models T$ and $N_0\models T$, there are $M\succeq M_0$ and $N\succeq N_0$ such that the family of all partial isomorphisms between finitely generated substructures of $M$ and $N$ has the back-and-forth property.
Then $T$ eliminates quantifiers.
\end{thm}
\begin{proof}
Towards a contradiction, assume this is not the case.
By \Cref{thm:qeqfpt}, there are finite tuples\footnote{From now, I will start writing e.g.\ $a\in M_0$ instead of $a\in M_0^{\abs a}$ whenever convenient.} $a\in M_0$ and $b\in N_0$ with
\begin{equation}\label{eq:absameqftp}
\qftp^{M_0}(a/\emptyset)=\qftp^{N_0}(b/\emptyset)
\end{equation}
but
\begin{equation}\label{eq:absametp}
\tp^{M_0}(a)\ne\tp^{N_0}(b)
\end{equation}
The last inequality must be witnessed by some $L$-formula; by  \Cref{lemma:downtoprimitive} the offending formula may be taken of the form $\exists y\; \phi(x,y)$, with $\phi(x,y)$ quantifier-free and $\abs y=1$. We use the ``forth'' in ``back and forth'' to deal with the case when
\begin{equation}\label{eq:m0nequivn0}
M_0\models \exists y\; \phi(a,y) \qquad N_0\models \neg \exists y\; \phi(b,y)
\end{equation}
The case where $M_0\models \neg \exists y\; \phi(a,y)$ but $N_0\models \exists y\; \phi(b,y)$ is dealt with in the same way, by using the ``back'' instead.

Since $M\succeq M_0$ and $N\succeq N_0$, by definition of $\preceq$ (and \Cref{exr:preceqtp}, if you want)  \eqref{eq:absameqftp},  \eqref{eq:absametp}, and \eqref{eq:m0nequivn0} still hold after replacing  $M_0$ by $M$ and $N_0$ by $N$.

Because $\qftp^M(a/\emptyset)=\qftp^N(b/\emptyset)$, by \Cref{exr:qftpstrgen} the map sending $a_i\mapsto b_i$ extends to an isomorphism $f\from A\to B$, where $A\subseteq M$ and $B\subseteq N$ are (finitely) generated by $a$, $b$ respectively. Since $M\models \exists y\; \phi(a,y)$, there is $d\in M$ such that $M\models \phi(a,d)$. Let $\hat A$ be the substructure of $M$ generated by $ad$. Because $\phi(x,y)$ is quantifier-free, by \Cref{exr:qfabs} $\hat A\models \phi(a,d)$. Clearly, $\hat A$ is finitely generated and contains $A$. By the ``forth'' property there is an isomorphism $g\supseteq f$ with domain $\hat A$. Let  $\hat B\coloneqq\operatorname{im}(g)$; note that it is a substructure of $N$ containing $B$. Since $g$ is an isomorphism and $g(a)=b$, we have $\hat B\models \phi(b, g(d))$. Again by \Cref{exr:qfabs}, this yields $N\models \phi(b, g(d))$, and in particular $N\models \exists y\;\phi(b, y)$. This contradicts the fact that, by~\eqref{eq:m0nequivn0} and elementarity, $N\models \neg\exists y\;\phi(b, y)$.
\end{proof}
\begin{rem}\label{rem:comspoil}
Some comments and a spoiler:
  \begin{enumerate}
  \item\label{point:nopariso}  It may (and will) happen that for some $M_0$ and $N_0$,  for all $M\succeq M_0$ and $N\succeq N_0$, the family of partial isomorphisms between finitely generated substructures of $M$ and $N$ is empty. Vacuously, the empty family does have the back-and-forth property. Note that \Cref{thm:bafqe} does not need such families to be nonempty (if you don't believe me, check the proof).
  \item It may (and will) happen that, even if $T$ has quantifier elimination, the family of partial isomorphisms between finitely generated substructures of some $M_0$ and $N_0$ does not have the back-and-forth property. In other words, passing to an elementary extension is in general necessary.
  \item If $L$ is relational, one may avoid passing to an elementary extension by weakening the back-and-forth property; I won't elaborate here, but if you are interested search for \emph{Ehrenfeucht--Fra\"iss\'e games}.
  \item The converse of the previous theorem is also true; to prove it, one takes $M$, $N$ to be \emph{$\omega$-saturated}, a notion we will introduce later.
  \end{enumerate}
\end{rem}


\section{Consequences: eliminating quantifiers for a purpose}
In the next chapter, we will see some applications of quantifier elimination in concrete structures. Here we look at some more general consequences.

\begin{thm}\label{thm:qeplusemb}
Suppose that $T$ is an $L$-theory such that
\begin{enumerate}
\item $T$ eliminates quantifiers, and
\item for all models $M,N$ of $T$, there is an $L$-structure $A$ which embeds in both $M$ and $N$.
\end{enumerate}
Then $T$ is complete.
\end{thm}
\begin{proof}
We need to show that, for all models $M$, $N$ of $T$, we have $M\equiv N$, so we fix an $L$-sentence $\phi$, we assume that $M\models \phi$, and we aim to show that $N\models \phi$. By assumption, there is a quantifier-free sentence $\psi$ such that $T\proves \phi\coimplica \psi$. In particular, $M\models \psi$. Take $A$ as in the assumptions of the theorem, and assume for notational convenience that the embeddings of $A$ in $M$ and $N$ are inclusions. Because $\psi$ is quantifier-free, $M\models \psi$ implies $A\models \psi$, which in turn implies $N\models \psi$. But $N$ is a model of $T$, hence $N\models\phi\coimplica \psi$, so $N\models \phi$.
\end{proof}
\begin{rem}\*\label{rem:qecompl}
  \begin{enumerate}
  \item In the proof above, we may have $A\models \neg \phi$. This is due to the fact that $A$ is not required to be a model of $T$, hence, in $A$ the sentence $\phi\coimplica \psi$ need not hold.
  \item We will encounter examples of incomplete theories with quantifier elimination; by the previous theorem, this can only happen if some pair of models of $T$  share no common substructure, even up to embeddings (compare also with point~\ref{point:nopariso} of \Cref{rem:comspoil}).
  \item\label{point:qecomplempty} If $L$ has no constant symbol\footnote{Those who have already read \Cref{sec:morleyisation} may also want to assume that $L$ has no $0$-ary relation symbol.}, the empty structure is an $L$-structure, and a perfectly good $A$ to use in this theorem.
  \end{enumerate}
\end{rem}

If for some reason you only need to prove completeness of a theory, and don't care about quantifier elimination, the following exercise may come out handy.
\begin{exr}\label{exr:elemap}
  \begin{enumerate}
  \item Suppose that  $F$ is
    some\footnote{Not necessarily that of all partial isomorphisms
      between finitely generated substructures.} family of partial
    isomorphisms between $M$ and $N$ with the back and forth property. Prove that every $f\in F$ is an \emph{elementary map}, that is, for every $L$-formula $\phi(x)$ and $a\in (\dom f)^{\abs x}$, we have $M\models \phi(a)\iff N\models \phi(f(a))$.\footnote{This does not mean that $f$ is an elementary embedding: we may have $\dom f\ne M$.}
  \item Deduce that, if for all models $M$, $N$ of $T$ there is some \emph{nonempty} $F$ as above, then $T$ is complete.
\end{enumerate}
\end{exr}
\begin{rem}
  If $T$ eliminates quantifiers, then it is \emph{model complete}: namely, all embeddings between models of $T$ are elementary.
\end{rem}
We finish the section with a characterisation.
\begin{defin}
A theory $T$ is \emph{substructure complete} iff for every $M\models T$ and every substructure $A\subseteq M$, the theory $T\cup \diag(A)$ is complete.
\end{defin}
\begin{thm}
  The following are equivalent for an $L$-theory $T$.
  \begin{enumerate}
  \item\label{point:tsbstrcmpl} $T$ is substructure complete.
  \item\label{point:tsbstrcmplfg} For every $M\models T$ and every finitely generated substructure $A\subseteq M$, the theory $T\cup \diag(A)$ is complete.
  \item\label{point:mdcmplton} If $A$ is  a substructure of two models $M$, $N$ of $T$, and $a$ is a finite tuple from $A$, then $\tp^M(a)=\tp^N(a)$.
  \item\label{point:sbstrcmplqe} $T$ has quantifier elimination.
  \end{enumerate}
\end{thm}
\begin{proof}This theorem has been, in a sense, already proven. In fact,  
  $\eqref{point:tsbstrcmpl} \allora\eqref{point:tsbstrcmplfg}$ is trivial, $\eqref{point:tsbstrcmplfg}\allora\eqref{point:mdcmplton}$ is an easy consequence of the definitions,   and $\eqref{point:mdcmplton}\allora\eqref{point:sbstrcmplqe}$ follows from \Cref{thm:qeqfpt} up to replacing embeddings with inclusions. As for $\eqref{point:sbstrcmplqe}\allora\eqref{point:tsbstrcmpl}$ observe that, if $T$ has quantifier elimination, it follows easily from \Cref{lemma:constvartp} that so does $T\cup \diag(A)$;\footnote{More generally, if $T$ has quantifier elimination and $T'\supseteq T$ is a theory in a language $L'\supseteq L$ where the only new symbols are constant symbols, it is easy to show that $T'$ still eliminates quantifiers.} the embedding provided by \Cref{pr:diagrams} then allows us to invoke \Cref{thm:qeplusemb}.
\end{proof}

\section{Cheating: eliminating quantifiers by definitional expansions}\label{sec:morleyisation}
There is a reason if the title of this chapter has a ``where'' in it: namely, whether quantifier elimination holds or not, heavily depends on the language $L$ in which we are working.

In order for everything below to go through smoothly, we need to allow $0$-ary relation symbols. If $R$ is $0$-ary, then $R$ is an atomic formula. In a fixed structure $M$, it can be interpreted as $\top$ or as $\bot$.
\begin{defin}
  Let $T$ be an $L$-theory. A \emph{definitional expansion} of $T$ is a theory $T_\Phi$ obtained as follows.
  \begin{enumerate}
  \item Fix a set of $L$-formulas $\Phi$.
  \item Let $L_\Phi$ be obtained by adding to $L$, for every $\phi(x)\in \Phi$, an $\abs x$-ary relation symbol $R_{\phi(x)}$.
  \item Let $T_\Phi\coloneqq T\cup \set{\forall x\; (\phi(x)\coimplica R_{\phi(x)}(x))\mid \phi(x)\in \Phi}$.
  \end{enumerate}
  The \emph{Morleyisation} of $T$ is the definitional expansion obtained by setting $\Phi$ to be the set of all $L$-formulas.
\end{defin}
In other words, the definitional expansion given by $\Phi$ makes all formulas in $\Phi$ equivalent to an atomic formula. 
\begin{rem}\*
  \begin{enumerate}
  \item $\Phi$ is allowed to contain formulas with different free variables, e.g.\ a sentence $\phi$ and some $\psi(x)$ with $\abs x=6$.
  \item One may similarly define a definitional expansion $M_\Phi$ of $M$,
    and, for fixed $\Phi$, if $M\models T$ then $M_\Phi\models T_\Phi$.
  \item  The reason we allowed $0$-ary relation symbols is to cover the case where $\phi\in \Phi$ is a sentence; this wouldn't have been necessary if we only considered complete $T$, since in that case every sentence is, modulo $T$, equivalent to  $\top$ or equivalent to $\bot$. Note that, in a language $L$ without constant symbols, but with $0$-ary relation symbols, there is more than one way to make $\emptyset$ into an $L$-structure: we need to decide which $0$-ary relation symbols are true and which ones are false. Compare with point~\ref{point:qecomplempty} of \Cref{rem:qecompl}, and think about what happens when you start with the empty theory in the empty language (it is not complete!), and then Morleyise.
\end{enumerate}
\end{rem}
The next remark is as trivial as it is important.
\begin{rem}
  Let $T_\Phi$ be the Morleyisation of $T$.
  \begin{enumerate}
  \item $T_\Phi$ has quantifier elimination. In particular, all embeddings between models of $T_\Phi$ are elementary.
  \item Every model of $T$ expands uniquely to a model of $T_\Phi$.
  \end{enumerate}
\end{rem}
Hence, the models of $T$ and those of its Morleyised, even if they are structures in different languages, are essentially the same structure, in the sense that they have the same definable sets; what changes is the embeddings between them.

Morleyisation is very useful when proving abstract model-theoretic facts, since it allows us to assume  quantifier elimination for arbitrary structures, let me stress this again, \emph{without changing the definable sets}.\footnote{As opposed to, for those in the know, adding Skolem functions, for example.}

But then you may ask: why going through all the proofs in this chapter if we could just establish quantifier elimination by brute force? Because Morleyisation is just as useful in the abstract as it is useless in the concrete. Or, in other words, having quantifier elimination in a simple language allows us to understand the definable sets, while forcing quantifier elimination tells us nothing in this regard.

For instance, you may prove as an exercise that $\mathsf{DLO}$ eliminates quantifiers in $L=\set{<}$ (ok, this is a lousy exercise: basically, read the proof of \Cref{thm:dlobaf} again, then invoke \Cref{thm:bafqe}). By inspecting the quantifier-free formulas in $L=\set{<}$,  we find that all subsets of $\mathbb Q^1$ are finite unions of intervals (possibly unbounded) and points (if you don't see it yet, use disjunctive normal form). By contrast, take $(\mathbb N,+,\cdot)$. Surely, if we Morleyise this structure, every definable set becomes quantifier-free definable. But understanding what is $R_{\phi(x)}(\mathbb N)$ is just as difficult as understanding what is $\phi(\mathbb N)$.



Even if Morleyising does not help us understanding the definable sets of a given structure, other definitional expansion may do. For example, an $L$-theory may not have quantifier elimination in $L$, but maybe we can eliminate quantifiers in a ``reasonable'' definitional expansion. E.g., if in $T$ every formula is equivalent to a boolean combination of existential ones (that is, of the form $\exists x\; \phi(x)$ with $x$ quantifier-free), then we can take $\Phi$ to be the set of existential formulas and prove quantifier elimination ``down to $\Phi$'', that is, for the definitional expansion induced by $\Phi$.

\chapter[Examples and applications]{Some examples and a few applications}

\section{Algebraically closed fields}
\begin{defin}\label{defin:acf}
Let $L_\mathrm{ring}\coloneqq\set{+,0,-,\cdot, 1}$. The theory of \emph{algebraically closed fields}   $\mathsf{ACF}$ has axioms
\begin{enumerate}
\item axioms of fields
\item for every $n>0$, the axiom
  \[
    \forall y\; \exists x\; (x^n+y_{n-1}x^{n-1}+\ldots+y_1x+y_0=0)
  \]
  If $p$ is a prime number, we define
  \[
    \mathsf{ACF}_p\coloneqq \mathsf{ACF}\cup\set{\underbrace{1+1+\ldots+1}_{p\text{ times}}=0}
  \]
  Finally, we define
  \[
    \mathsf{ACF}_0\coloneqq \mathsf{ACF}\cup\set{\underbrace{1+1+\ldots+1}_{n\text{ times}}\ne 0\mid n>0}
  \]
\end{enumerate}
\end{defin}
As usual, one should check that these have a model. But, as you know from algebra,
\begin{fact}
  Every field $K$ has an \emph{algebraic closure} $K^\mathrm{alg}$: an algebraic extension which is algebraically closed.
\end{fact}
By the way, you can prove this in a very model-theoretic fashion: first show (using algebra\footnote{No free lunches. I mean, at some point we should use that these are fields, no?}) that there is an algebraic extension $K_1$ of $K_0\coloneqq K$ where every polynomial over $K_0$ of positive degree has a root. Then iterate this and take the union of the chain you built.\footnote{In fact, one step suffices. See \cite{gilmer}.}


Clearly, $\mathsf{ACF}$ is not complete, since it does not decide whether $1+1=0$. If you know a little bit of field theory, you will recall that an algebraically closed field is determined up to isomorphism by its characteristic and its transcendence degree over its prime field.\footnote{The subfield generated by $1$, that is, either $\mathbb Q$ or $\mathbb F_p$. Up to isomorphism, of course. But maybe it's time to stop saying ``up to isomorphism'' every time.}
If we take this for granted, we see immediately that $\mathsf{ACF}_0$ and each $\mathsf{ACF}_p$ are complete: for every uncountable $\kappa$, they have a unique model of size $\kappa$, and we may apply Vaught's test (\Cref{exr:vaught}).


But even without taking this fact for granted, we can prove something stronger, namely quantifier elimination, even for the incomplete theory $\mathsf{ACF}$. The characterisation of its completions will then follow easily. 

If you want to do this by using as little algebra as possible, you can: you will need \Cref{lemma:downtoprimitive} and some elbow grease. But since we know a lot of things about the algebra of fields, we may as well exploit it to do a neat back-and-forth proof. 
\begin{thm}
  $\mathsf{ACF}$ eliminates quantifiers.
\end{thm}
\begin{proof}
  We use \Cref{thm:bafqe}. Given $M_0, N_0\models \mathsf{ACF}$, by L\"owenheim--Skolem there are uncountable $M\succeq M_0$ and $N\succeq N_0$. Since our assumptions are symmetrical, up to reversing the roles of $M$ and $N$ we only need to take care of the ``forth'' part.

Let $A\subseteq M$ and $B\subseteq N$ be finitely generated substructures, which in this language means finitely generated subrings, and $f_0\from A\to B$ an isomorphism.\footnote{If $M, N$ have different characteristic, then there is no partial isomorphism between them, since every finitely generated substructure needs to contain the interpretation of the constant $1$, which is preserved by isomorphisms. So in this case there is no such $f_0$ and we are already done.} If $K, L$ are the fields they generate in $M, N$, we can easily (and uniquely) extend $f_0$ to an isomorphism $f\from K\to L$. 

If $a\in M\setminus K$ is transcendental over $K$, denote by $K[a]$ the ring generated by $Ka$ and by $K[X]$ the ring of polynomials over $K$ in one variable $X$. Since $a$ is transcendental,  $\id_K\cup \set{a\mapsto X}$ extends to an isomorphism $g_0\from K[a]\to K[X]$. Clearly, $f$ extends to an isomorphism $g_1\from K[X]\to L[X]$ mapping $X$ to $X$. Since $L$ is finitely generated, its algebraic closure is countable, hence by choice of $N$ there is $b\in N$ transcendental over $L$.  By transcendence, the map $g_2\from L[X]\to L[b]$ sending a polynomial to its value in $b$ is an isomorphism, hence $g_2\circ g_1\circ g_0$ is the required extension of $f$.

If $a\in M\setminus K$ is algebraic over $K$, let $g(X)$ be its minimal polynomial. Let $h(X)$ be its image under $f$. Since $N$ is algebraically closed, $h(X)$ has a root $b$ in $N$, and we conclude similarly as above, by using $K[X]/(g(X))$ instead of $K[X]$.
\end{proof}
This is an example where it was necessary to pass to elementary extensions: if $M_0$ contains an element $a$ transcendental over the prime field $F$, and $N_0$ is $F^\mathrm{alg}$, there is no partial isomorphism $M_0\to N_0$ with $a$ in its domain.

\begin{co}
The completions of $\mathsf{ACF}$ are $\mathsf{ACF}_0$ and, for each $p$ prime, $\mathsf{ACF}_p$.
\end{co}
\begin{proof}
  If $T\supseteq \mathsf{ACF}$ is complete, for each $n>0$ it needs to decide whether
  \[
    \underbrace{1+1+\ldots+1}_{n\text{ times}}=0
    \]
    holds or not. Field theory tells us that this can hold for at most one $n$, and that such an $n$ must be prime. This shows that each completion contains some $\mathsf{ACF}_p$ or $\mathsf{ACF}_0$, so we only need to show that these are complete. But this follows from \Cref{thm:qeplusemb}, since $\mathbb Z$ embeds in every field characteristic $0$ and $\mathbb F_p$ in every field of characteristic $p$.
\end{proof}

\begin{co}[Chevalley--Tarski]
If $K\models \mathsf{ACF}$ and $X\subseteq K^{n+1}$ is \emph{constructible}, that is, a Boolean combination of Zariski-closed sets, then its projection on the first $n$ coordinates is still constructible.
\end{co}
\begin{proof}
  This is essentially a restatement of quantifier elimination, after observing that ``constructible'' is the same as ``quantifier-free definable''.
\end{proof}
\begin{co}[Lefschetz principle]\label{co:lefschetz}
Let $\phi$ be a sentence in $L_\mathrm{ring}$. The following are equivalent:
\begin{enumerate}
  \item\label{point:lefCphi} $\mathbb C\models \phi$.
  \item\label{point:lef0phi} $\mathsf{ACF}_0\proves \phi$.
     \item\label{point:lefpphicof} For cofinitely many primes $p$ we have $\mathsf{ACF}_p\proves \phi$.
\item\label{point:lefpphi} For infinitely many primes $p$ we have $\mathsf{ACF}_p\proves \phi$.
\end{enumerate}
\end{co}
\begin{proof}
$\eqref{point:lefCphi}\sse\eqref{point:lef0phi}$ holds because $\mathsf{ACF}_0$ is complete. If  $\mathsf{ACF}_0\proves \phi$, then by compactness a finite subset of $\mathsf{ACF}_0$ suffices to entail $\phi$. This finite subset can only say that the characteristic is different from finitely many primes, so we get  $\eqref{point:lef0phi}\allora\eqref{point:lefpphicof}$. Since $\eqref{point:lefpphicof}\allora \eqref{point:lefpphi}$ is trivial, we conclude by proving $\neg\eqref{point:lef0phi}\allora\neg\eqref{point:lefpphi}$. Again because $\mathsf{ACF}_0$ is complete, if $\mathsf{ACF}_0\centernot\proves \phi$ then $\mathsf{ACF}_0\proves \neg\phi$. By the previous implications, for cofinitely many primes $p$ we have $\mathsf{ACF}_p\proves \neg \phi$, and by consistency $\mathsf{ACF}_p\centernot\proves \phi$.
\end{proof}
Combining this with a standard algebraic fact yields a proof of (one of the several forms of) the Nullstellensatz.
\begin{co}
  Let $K\models \mathsf{ACF}$. If $\mathfrak m\subseteq K[\bla X0,{n-1}]$ is a maximal ideal, then there is $a\in K^n$ where all $f\in \mathfrak m$ are $0$.
\end{co}
\begin{proof}
Clearly, all $f\in \mathfrak m$ have a zero in an extension of $K$, namely in the field $K[\bla X0,{n-1}]/\mathfrak m$, and a fortiori in $L\coloneqq(K[X]/\mathfrak m)^\mathrm{alg}$. 
  By Hilbert's Basis Theorem, $\mathfrak m$ is finitely generated, say $\mathfrak m=(\bla f0,k)$, hence $a$ annihilates all $f\in \mathfrak m$ if and only if $a$ annihilates  all $f_i$. By construction,  $L\models \exists \bla x0,{n-1}\; \bigwedge_{j\le k} f(x)=0$. By quantifier elimination, the embedding $K\into L$ is elementary, hence $K\models \exists \bla x0,{n-1}\; \bigwedge_{j\le k} f(x)=0$.
\end{proof}

We conclude this section with a beautiful model-theoretic proof (in fact, the first one to be found) of an algebraic fact. First, an easy observation.
\begin{exr}\label{exr:AEchains}
  Let $(I,<)$ be upward directed, $(M_i\mid i\in I)$ be a family of $L$-structures such that $i<j\then M_i\subseteq M_j$, and $M\coloneqq \bigcup_{i\in I} M_i$. Let $\phi$ be a $\forall\exists$-sentence, that is, one of the form $\forall x\; \exists y\;\psi(x,y)$, with $\psi(x,y)$ quantifier-free. If, for every $i\in I$, we have $M_i\models \phi$, then $M\models \phi$.\footnote{We will not prove it here, but you should be aware that this has a converse: if the class of models of $T$ models is closed under unions of chains (we don't even need to check arbitrary directed sets), then $T$ is $\forall\exists$-axiomatisable. See~\cite[Exercise~2.5.15]{marker} for a proof sketch.}
\end{exr}
\begin{thm}[Ax]
Let $f\from \mathbb C^n\to \mathbb C^n$ be  a polynomial function, that is, a function $(\bla f0,{n-1})$ where every $f_i$ is a polynomial in (the same) $n$ variables. If $f$ is injective, then it is surjective.
\end{thm}
\begin{proof}
    By quantifying over coefficients as in \Cref{defin:acf}, it is easy to see that, for fixed $n$ and $d\coloneqq\max_{i<n} \deg f_i$, the conclusion may be expressed by an $L_\mathrm{ring}$-sentence.  If you actually  write down this sentence and put in prenex normal form, you will in all likelihood end up with a $\forall\exists$ sentence,\footnote{If you don't, and you tried writing it in good faith, please let me know what you wrote. My email address is at \cpageref{email}.} call it $\phi_{n,d}$.

 A moment's thought reveals that $\phi_{n,d}$ holds over every finite field. Since $\mathbb F_p^\mathrm{alg}$ can be written as a directed union of finite fields, by \Cref{exr:AEchains} $\mathbb F_p^\mathrm{alg}\models \phi_{n,d}$. Since $\mathsf{ACF}_p$ is complete, it follows that $\mathsf{ACF}_p\models \phi_{n,d}$. This is true for every $p$, so we conclude by \Cref{co:lefschetz}. 
\end{proof}

\begin{exr}\label{exr:rlring}
Consider $\mathbb R$ with its natural $L_\mathrm{ring}$-structure. Prove that $\exists y\; x=y^2$ is not equivalent to a quantifier-free formula.
\end{exr}

\begin{exr}
Fix a field $K$. The \emph{language of $K$-vector spaces} is $L_{K\mathsf{-VS}}\coloneqq\set{+,0,-}\cup\set{\lambda\cdot-\mid \lambda\in K}$. Each $K$-vector space is made into an $L_{K\mathsf{-VS}}$-structure by interpreting $+,0,-$ as the functions giving its underlying abelian group and $\lambda\cdot-$ as the $1$-ary function ``scalar multiplication by $\lambda$''. Denote by $K\mathsf{-VS}$ the common theory of all \emph{infinite} $K$-vector spaces.  Prove that $K\mathsf{-VS}$ eliminates quantifiers and is complete.
\end{exr}
If instead of a field $K$ we take a ring $R$, and look at $R$-modules in a similar fashion, then quantifier elimination \emph{tout court} can fail, but there is still quantifier elimination down to \emph{positive primitive} formulas. There are many sources for this, e.g.\ \cite[Theorem~6.26]{poizat}, \cite[Theorem~3.3.5]{tent-ziegler}, or the extensive monograph \cite{prest}.

\begin{rem}\label{rem:vectsptwolang}
  If $K$ is a field and $V$ a vector space, and we are interested in studying the model theory of $V$, we have two natural choices: viewing $V$ as an $L_{K\mathsf{-VS}}$-structure, or throwing $K$ inside the structure and looking at $(K,V)$, see \Cref{eg:vspmultisort}. The two resulting structures  behave \emph{very} differently, unless $K$ is finite: if $K$ is infinite, there are elementary extension of $(K,V)$ where the field sort grows!
\end{rem}


\section{Some combinatorial structures}
It is often useful to have at the ready an array of understandable structures and theories to test conjectures, understand new definitions, etc. Usually we like these structures to have quantifier elimination in a reasonable language, so that we understand, at least to some extent, their definable sets.  This section contains some theories you can use for this purpose, and to get some practice with proofs of quantifier elimination (and of consistency!).




\begin{defin}\label{defin:treepred}
Recall that, by definition, $2^{<\omega}\coloneqq\set{f\from n\to \2\mid n\in \omega}$. 
  Let $L=\set{P_\sigma\mid \sigma \in 2^{<\omega}}$, where each $P_\sigma$ is a unary predicate. Let $T_{2^{<\omega}}$ be the theory with axioms\footnote{I am not aware of any standard name/notation for $T_{2^{<\omega}}$, I just put down the first that came to mind; suggestions are welcome.}
  \begin{enumerate}
  \item $\forall x\; P_\emptyset (x)$, where we think of $\emptyset$ as the unique function $0\to \set{0,1}$;
  \item each $P_\sigma$ is infinite;
  \item whenever $\sigma_0\subseteq \sigma_1$,\footnote{That is, $\sigma_1$ extends $\sigma_0$.} the axiom $\forall x\; P_{\sigma_1}(x)\implica P_{\sigma_0(x)}$;
  \item for all $\sigma\in 2^{<\omega}$, the axiom\footnote{If $\dom \sigma=n=\set{0,\ldots, n-1}$, we denote by $\sigma\cat i$ the function with domain $n+1$ which restricts to $\sigma$ and maps $n\mapsto i$.} \[
      (\neg \exists x\; P_{\sigma\cat 0}(x)\land P_{\sigma\cat 1}(x))\land \forall x\;(P_{\sigma}(x)\implica(P_{\sigma\cat 0}(x)\lor P_{\sigma\cat 1}(x)))
\]
  \end{enumerate}
\end{defin}

\begin{defin}\label{defin:geneqrel}
  Let $\kappa$ be a nonzero cardinal (possibly finite) and let $L\coloneqq\set{E_i\mid i<\kappa}$, where each $E_i$ is a binary relation symbol. The theory of \emph{$\kappa$ generic equivalence relations}  is axiomatised by
  \begin{enumerate}
  \item every $E_i$ is an equivalence relation with infinitely many classes;
  \item for every finite nonempty $I\subseteq \kappa$, an axiom saying that, whenever $X_i$ is an equivalence class of $E_i$, the intersection $\bigcap_{i\in I} X_i$ is infinite.
  \end{enumerate}
\end{defin}

\begin{defin}
In $L=\set{0,1,\cap,\cup, \subseteq, (\cdot)^\complement}$, the theory of \emph{atomless boolean algebras} is the theory of the Boolean algebras $B$ such that $B\setminus \set 0$ has no $\subseteq$-minimal elements.
\end{defin}
We already said that $\mathsf{DLO}$ is complete and eliminates quantifiers. If you have already done \Cref{exr:rg}, you will have probably realised that $T_\mathrm{rg}$ does too. And of course, so does the theory of infinite sets. Here are some useful variants:
\begin{enumerate}
\item The theory of a $\mathsf{DLO}$ together with a dense and codense unary predicate $P$.
\item For a fixed cardinal $\kappa$, the theory of $\kappa$-many $\mathsf{DLO}$'s $<_i$ on the same underlying set, where the intersection of finitely many intervals, each relative to a different $<_i$, is nonempty.
\item The theory of the \emph{densely ordered random graph}: in the language $L=\set{E,<}$, take  $\mathsf{DLO}$ together with a strengthened version of the axioms in \Cref{defin:randomgraph}, stating not only the existence of one $z$ with the required edges, but of a dense set of such $z$.
\end{enumerate}

\begin{exr}
Choose a (preferably nonempty) subset of the set of theories introduced in this section. Prove that the theories in this subset
  \begin{enumerate}
  \item are indeed theories, that is, they have a model,
  \item eliminate quantifiers, and
  \item are complete.
  \end{enumerate}
\end{exr}

\begin{exr}
  Consider $T\coloneqq\Th(\mathbb Z, <)$.
  \begin{enumerate}
  \item Prove that $T$ does not eliminate quantifiers.
  \item Find an expansion of $(\mathbb Z, <)$ by one symbol only which has the same definable sets and quantifier elimination.
  \end{enumerate}
\end{exr}
\chapter{Realising many types}
\section{Types over parameters}
\begin{notation}
  Unless otherwise stated, $T$ denotes a complete $L$-theory with infinite models, and $M$, $N$, $M_0$, etc.\ models of $T$.
\end{notation}
We may still repeat that $T$ is complete for emphasis.

We already saw what a type is in \Cref{defin:typeincT}. A type over a set of parameters is just what you expect:
\begin{defin}
  Let $M\models T$ and $A\subseteq M$. A  partial (respectively, complete) \emph{$n$-type over $A$} is a partial (respectively, complete) $n$-type in $\Th(M_A)$. 
\end{defin}
Some easy but important observations:
\begin{rem}\label{rem:complfip}\*
  \begin{enumerate}
  \item Let $\Phi(x)$ be a set of $L(M)$-formulas. Then $\Phi(x)$ is a
    partial type over $M$ if and only if $\set{\phi(M)\mid \phi(x)\in \Phi(x)}$
    has the \emph{finite intersection property}, that is, every
    intersection of finitely many of its elements is nonempty.
  \item Every partial type over $A$ can be extended to a complete type over $A$, since every theory extends to a complete theory.
\end{enumerate}

\end{rem}
If you solved \Cref{exr:eeap}, you already know how to solve this:
\begin{exr}\label{exr:eejep}
  The class of models of a complete $T$ with elementary embeddings has the \emph{joint embedding property}: given any two models $M_0$, $M_1$ of $T$ there are $N\models T$ and elementary embeddings $M_0\to N$ and $M_1\to N$.
\end{exr}
  If $N\succeq M$, then $\Th(N_A)=\Th(M_A)$. Therefore, the types over $A\subseteq M$ do not change when passing to an elementary extension of $M$. For this reason, we may drop the $M$ in ``$\tp^M$'':
\begin{defin}
  Let $A\subseteq M\models T$ and $b\in M^{n}$. The \emph{type of $b$ over $A$} is
  \[
\tp(b/A)\coloneqq    \set{\phi(\bla x0,{n-1})\in L(A)\mid  M\models \phi(\bla b0,{n-1})}
\]
If $p(x)$ is a type over $A$, we say that $b$ \emph{realises} $p(x)$ iff $p(x)=\tp(b/A)$; in this case, we write $b\models p$.
\end{defin}
\section{Type spaces}
\begin{defin}
  Let $A\subseteq M\models T$, and fix a tuple of variables $x$.  The space $S_x(A)$ is the set of $\abs x$-types $p(x)$ over $A$, equipped with the topology generated by the basis of open sets $\set{[\phi(x)]\mid \phi(x)\in L(A)}$, where
  \[
    [\phi(x)]\coloneqq\set{p(x)\in S_x(A)\mid p(x)\proves \phi(x)}
  \]
\end{defin}
\begin{rem}\label{rem:propSn}\*
  \begin{enumerate}
      \item This is indeed a basis for a topology, as opposed to just a prebasis. In fact, it is even closed under finite intersections, since $[\phi(x)]\cap [\psi(x)]=[\phi(x)\land \psi(x)]$. Similarly, it is closed under finite unions, since $[\phi(x)]\cup[\psi(x)]=[\phi(x)\lor \psi(x)]$.  By definition of basis,  open sets are those of the form $\bigvee_{i\in I} [\phi_i(x)]$.
  \item $S_x(A)$ is Hausdorff, since if $p(x)\ne q(x)$ there must be $\phi(x)\in p(x)$ such that $\phi(x)\notin q(x)$. Because $q(x)$ is complete, then $\neg \phi(x)\in q(x)$. Therefore $p(x)\in[\phi(x)]$, $q(x)\in[\neg\phi(x)]$, and since types are consistent, we clearly have $[\phi(x)]\cap [\neg \phi(x)]=\emptyset$.
  \item Each $[\phi(x)]$ is clopen, since it has complement $[\neg \phi(x)]$.
  \item It follows from the previous points that the $[\phi(x)]$ also form a basis for the closed sets.
  \item Nonempty closed sets correspond to partial types. More precisely, every nonempty closed set is of the form $F=\bigcap_{\phi(x)\in \Phi(x)} [\phi(x)]$, for $\Phi(x)$ a partial type over $A$. In other words, $p(x)\in F$ if and only if $p(x)$ is a completion of $\Phi(x)$. We denote $F$ by $[\Phi(x)]$.
  \item $S_x(A)$ is compact, because of\ldots{} compactness. To see this, recall that an equivalent definition of (topological) compactness is ``every family of closed sets with the finite intersection property has nonempty intersection''.  Spelling this out, if we think of types as complete $L\cup \set{c}$-theories, this means precisely that if every finite subset of $\Phi(c)$ is consistent, then $\Phi(c)$ is consistent.
  \item Restricting a type $p(x,y)$ to the formulas which do not involve $y$ yields a continuous, surjective map $S_{xy}(A)\to S_x(A)$. Similarly, if $A\subseteq B\subseteq M$, then the restriction map $p\mapsto p\restr A\from S_x(B)\to S_x(A)$ is surjective and continuous.
  \item $S_{xy}(A)$ is \emph{not} the product $S_x(A)\times S_y(A)$. In other words, even if $p(x)$ and $q(y)$ are complete, $p(x)\cup q(y)$ need not be.
This depends on the fact that not every formula $\phi(x,y)$ can be written as a boolean combination of formulas of the form $\psi(x)$ or $\theta(y)$. An easy example is the formula $x=y$. If for example $A=M$ is a model, and $p(x)$ is a \emph{nonrealised} type, that is, a type extending $\set{x\ne a\mid a\in M^{\abs x}}$, then $p(x)\cup p(y)$ has one completion containing\footnote{If $\abs x>1$ this is an abbreviation for $\bigwedge_{i<\abs x} x_i=y_i$.} $x=y$ and (at least) one completion containing $x\ne y$. If you are familiar with the Zariski topology, this is a akin to the fact that the Zariski topology on $\mathbb A^2$ is not the product of the Zariski topology on $\mathbb A^1$ with itself.
\item \label{point:modreal}If $A=M$ is a model, then the set of \emph{realised} types, that is, those containing a formula $x=a$ for some $a\in M$, is dense. In fact, let $[\phi(x)]$ be a basic open set. If $[\phi(x)]$ is nonempty, it contains some $p(x)$. This $p(x)$ is realised in some $N\succeq M$, say by $b$. In particular, $N\models \phi(b)$, so $N\models \exists x\; \phi(x)$, hence $M\models \exists x\; \phi(x)$. If $a\in M$ is such that $M\models \phi(a)$, then  $\set{x=a}$ implies a complete type, which is clearly realised, and clearly contained in $[\phi(x)]$.
  \end{enumerate}
\end{rem}
Clearly, up to homeomorphism, $S_x(A)$ only depends on $\abs x$, and not on the specific tuple of variable used. Therefore, if we do not care about the particular variables used, or if they are clear from context, we also use the following notation.
\begin{notation}
We write $S_n(A)$ to denote the topological space $S_x(A)$ for some $x$ with $\abs x=n$. We denote by $S_{<\omega}(A)$, or simply by $S(A)$, the disjoint union of the $S_n(A)$ for $n\in \omega$.
\end{notation}
\begin{exr}\label{exr:clopen}
  All clopen subsets of $S_x(A)$ are of the form $[\phi(x)]$, for some $\phi(x)\in L(A)$.
\end{exr}
A crucial idea behind modern model theory (if not \emph{the} idea which kickstarted modern model theory) is that certain topological properties of the spaces $S_x(A)$ are intimately connected to the behaviour of $T$ and of its models. We will see some of this later. As a warm up, try to answer the following question.
\begin{question}\label{question:isolated}
  What does it mean for $\set{p(x)}$ to be an isolated point of $S_x(A)$
  \begin{enumerate}
  \item for an arbitrary $A$?
  \item in the special case where $A=M$ is a model?
  \end{enumerate}
\end{question}
\section{Examples}\label{sec:tpeg}
Before we develop the theory further, it is time to familiarise ourselves with type spaces by looking at a bunch of examples.
\subsection{Infinite sets}
Let $T$ be the theory of infinite sets, for which by now you should be able to prove quantifier elimination in at least two different ways. Fix $A\subseteq M\models T$, and let us look at $S_1(A)$.

First, let us look at the case $A=\emptyset$. A direct inspection of the possible quantifier-free formulas with no parameters and with only one free variable should convince you that $S_1(\emptyset)$ has only one element, implied by the formula $x=x$. But there is a more elegant way of proving this, which has the advantage of working just as quickly also in some cases where the language is a bit more complicated.
\begin{exr}\label{exr:auttp}
  \begin{enumerate}
  \item   If there is $f\in \aut(M/A)$ such that $f(a)=b$, then $\tp(a/A)=\tp(b/A)$.
  \item\label{point:autN}   More generally, if there are $N\succeq M$ and  $f\in \aut(N/A)$ such that $f(a)=b$, then $\tp(a/A)=\tp(b/A)$.
  \item Find $T,M,A$ with $A\subseteq M\models T$, some $f\in \aut(M)$, and $a,b\in M$ such that
    \begin{enumerate}
    \item $f$ fixes $A$ \emph{setwise},
    \item $b=f(a)$, and
    \item $\tp(a/A)\ne \tp(b/A)$.
    \end{enumerate}
  \end{enumerate}
\end{exr}
Take now your favourite $M\models T$, that is, your favourite infinite set. An $f\in \aut(M)$ is nothing more than a permutation of $M$, that is, a bijection $M\to M$, and it follows from the previous exercise that there is only one type over $\emptyset$ realised in $M$. Since $M$ was arbitrary, by \Cref{exr:eejep} and point~\ref{point:autN} of  \Cref{exr:auttp} there is only one type over $\emptyset$, full stop.

What about $S_1(A)$ for nonempty $A$? Again by inspection, or again by using automorphisms, we see that
\begin{enumerate}
\item for every $a\in A$, there is a $1$-type $p_a(x)$ implied by the formula $x=a$. In particular, each $\set{p_a}$ is open, that is, isolated, in $S_1(A)$; 
\item there is one, and only one, element not of the form above, the \emph{generic type} $p_\mathrm{g}(x)$, axiomatised by $\set{x\ne a\mid a\in A}$; if $A$ is infinite, it is a (well, the only) nonisolated point. 
\end{enumerate}

You may have thought that these very disconnected compact spaces are either trivial (e.g.\ $S_1(\emptyset)$ above, which has just one point), or very difficult to visualise. This is not true. For example, if $\abs A=\aleph_0$, the description above may be very quickly turned into an homeomorphism between $S_1(A)$ and $\set{0}\cup \set{1/n\mid n\in \omega\setminus \set 0}$ (with the usual subspace topology inherited from $\mathbb R$), sending $p_\mathrm{g}$ to $0$.

While we are here, observe the following.
\begin{rem}
In \emph{every} theory, if $S_1(A)$ is infinite, then it \emph{must} have at least one nonisolated point: otherwise it would be an infinite discrete space, so it wouldn't be compact. 
\end{rem}
This kind of considerations will play a crucial role in the next chapter. But now, let's go back to examples.

What about $S_n(A)$, for $n\ge 2$? Clearly, an $n$-type $p(x)$ will, to begin with, determine $n$ $1$-types $p\restr x_i$, obtained by considering only the formulas with no free variable other than $x_i$. If all the $p\restr x_i$ are realised in $A$, then this already determines $p(x)$. But if, for example, $p\restr x_0=p_\mathrm{g}(x_0)$ and $p\restr x_1=p_\mathrm{g}(x_1)$, then there are at least two completions of $(p\restr x_0)\cup (p\restr x_1)$, since we need to decide whether $x_0=x_1$ or $x_0\ne x_1$ will be in our completion.

Long story short, an element $p(x)\in S_n(A)$ is determined by:
\begin{enumerate}
\item which $x_i$ are equal to some point $a\in A$ (and, for these,  which $a\in A$ they equal), and
\item for the other $x_i$, for which pairs $(i,j)$ we have $p(x)\proves x_i=x_j$, and for which instead $p(x)\proves x_i\ne x_j$.
\end{enumerate}
Clearly, every type needs to specify the information above. But why is that enough to entail a complete type? You can prove this in two ways:
\begin{enumerate}
\item use quantifier elimination and show that every $L(A)$ formula $\phi(x)$ is decided by fixing the information above; or
\item show that if $a, b\in M^{\abs x}$ agree on the conditions mentioned above, then there are $N\succeq M$ and $f\in \aut(N/A)$ such that $f(a)=b$ (where $f(a)=(f(a_0),\ldots, f(a_{\abs a-1})$).
\end{enumerate}
Do we really need to pass to an elementary extension in order to use these automorphism arguments? Well, in general yes: for example if $A=M$ then $p_\mathrm{g}$ is not realised in $M$. ``Ok ---you may say--- but you took the whole of $M$, what if $A$ is \emph{small}? For example, what if all types over $A$ are realised in $M$?'' Keep reading.
\subsection{DLO}
Let $T=\mathsf{DLO}$. Let us look at spaces of $1$-types $S_1(A)$. By quantifier elimination, we may equivalently look at quantifier-free types. If $p(x)\in S_1(A)$, since $p(x)$ is complete, if $\phi(x)\in \psi(x)\in L(A)$ and $p(x)\proves \phi(x)\lor \psi(x)$ then we must have $p(x)\proves \phi(x)$ or $p(x)\proves \psi(x)$. By disjunctive normal form and the axioms of $\mathsf{DLO}$, it follows that $p(x)$ is determined by which formulas of the form $x>a$, $a>x$, $x=a$, $x\ne a$ it contains.

The types containing $x=a$ are, by definition, the realised ones. Every other type determines (and is uniquely determined by) a cut in $A$, that is, a pair $(L,R)$ with $A=L\sqcup R$ with $L<R$, including the degenerate cases where $L$ or $R$ are empty. In detail, each such cut $C=(L,R)$ determines a nonrealised $1$-type by setting $p_C(x)\coloneqq\set{x>a\mid a\in L}\cup\set{x<a\mid a\in R}$. Conversely, each nonrealised type $p(x)$ determines a cut $C_p=(L_p, R_p)$, where $L_p=\set{a\in A\mid p(x)\proves x>a}$ and $R_p=\set{a\in A\mid p(x)\proves x<a}$. These maps are clearly inverses of each other.

Let us look at three very concrete cases.

\begin{eg}
 $A=\emptyset$. There is a unique $1$-type $p(x)$, implied by the formula $x=x$.
\end{eg}

\begin{eg}
 $A=\mathbb Q$. We have different kinds of types:
 \begin{enumerate}
 \item For each $a\in \mathbb Q$, a realised type $p_a(x)$, implied by $x=a$.
 \item The type $p_{+\infty}(x)\coloneqq\set{x>a\mid a\in \mathbb Q}$, corresponding to the cut with $R=\emptyset$, and the type $p_{-\infty}(x)$, corresponding to $L=\emptyset$.
 \item For each $a\in \mathbb Q$, a type $p_{a^+}(x)\coloneqq \set{x>a}\cup \set{x<b\mid b> a}$, corresponding to the cut with $R=(a,+\infty)$, and a type $p_{a^-}(x)$, corresponding to the cut with $R=[a,+\infty)$.
 \item Types corresponding to \emph{irrational cuts}, that is, cuts $(L,R)$ where $L$ has no maximum, $R$ has no minimum, and both are nonempty. If you prefer, these are precisely the cuts of the form $\set{x>q\mid q<r}\cup \set{x<q\mid q>r}$, for $r\in \mathbb R\setminus \mathbb Q$.
 \end{enumerate}
\end{eg}
\begin{eg}
If $A=\mathbb R$, and $C=(L,R)$ is a cut with $L$ and $R$ both nonempty, then completeness of $\mathbb R$ tells us that $L$ must have a supremum $r$, which will either be in $L$ or in $R$. It follows that over $\mathbb R$ there are no irrational cuts. All other kinds of $1$-types described above are clearly still possible, and there are no other kinds of $1$-types.
\end{eg}
What about the topological structure? You may imagine $S_1(A)$ as some sort of very disconnected completion of $A$: open sets are generated by those of the form $[x=a]$, $[x>a]$, and $[x<a]$.\footnote{Careful, $a$ here is an element of $A$, not a type!}


And what about $n$-types for $n>1$? Again by quantifier elimination and inspection of the quantifier-free $L$-formulas, we see that an $n$-type $p(x)$ is determined by its $1$-subtypes $p\restr x_i$, together with its restriction $p(x)\restr \emptyset$. In other words an $n$-type $p(x)$ over $A$ is determined by
\begin{enumerate}
\item in which cut of $A$ it places each $x_i$ (including the degenerate case where $p(x)\proves x_i=a$ for some $a\in A$), and
\item in which order it puts its variables, including the case where some of them are identified; in other words, which formulas of the form $x_i<x_j$ or $x_i=x_j$ it implies.
\end{enumerate}

\subsection{A digression: binarity}
Careful: the trick we used for infinite sets and $\mathsf{DLO}$, namely, reducing an $n$-type over $A$ to $n$ $1$-types over $A$ and one $n$-type over $\emptyset$ does not always work. But what is it that we used exactly?
\begin{exr}\label{exr:binary}
For a complete $T$, the following are equivalent.
\begin{enumerate}
\item Every formula $\phi(x)$ is equivalent to a boolean combination of formulas with at most two free variables.\footnote{Not necessarily always the same two variables, e.g.\ $\phi(x_0, x_1)\land \phi(x_1, x_2)$ is fine.}
\item For all tuples $a,b$ and all sets $A$, we have $\tp(a/A)\cup \tp(b/A)\cup \tp(ab/\emptyset)\proves \tp(ab/A)$.
  \item For all tuples $a^0,a^1,\ldots, a^k$ and all sets $A$, we have $\tp(a^0/A)\cup\tp(a^1/A) \cup\ldots\cup\tp(a^k/A)\cup \tp(a^0,\ldots, a^k/\emptyset)\proves \tp(a^0,\ldots, a^k/A)$.
\end{enumerate}
\end{exr}
\begin{exr}
  $\mathsf{DLO}$ is binary. More generally, any complete theory which eliminates quantifiers in a language $L$ where
  \begin{enumerate}
  \item there are no function symbols, and 
  \item every relation symbol has arity at most $2$
\end{enumerate}
is binary.
\end{exr}

For the sake of simplicity, most (but not all!) examples in this section will be binary.


\subsection{The random graph}
Since the random graph eliminates quantifiers in a  binary relational language, it is binary.\footnote{If you prefer, you can use quantifier elimination directly.} By quantifier elimination, $n$-types over $\emptyset$ are easily described: a type $p(x)$ over $\emptyset$  needs to say which $x_i$ coincide and, for the pairs with $p(x)\proves x_i \ne x_j$, whether $p(x)\proves E(x_i, x_j)$ or $p(x)\proves \neg E(x_i, x_j)$.

So we are left to describe $S_1(A)$ for arbitrary $A$. Clearly, a $1$-type $p(x)$ will need to decide
\begin{enumerate}
\item whether $x=a$ for some $a\in A$, and
\item if this is not the case, for which $a\in A$ we have $E(x,a)$, and for which $a\in A$ we have $\neg E(x,a)$.
\end{enumerate}
It follows from quantifier elimination that providing this information determines a complete $1$-type. But does \emph{every} choice give a $1$-type, or are there some inconsistent ones? The Random Graph axioms and compactness tell us that any choice will do:
\begin{exr}
For every $B\subseteq A$ there is $p\in S_1(A)$ such that
\begin{enumerate}
\item $p(x)\proves \set{x\ne a\mid a\in A}$, 
\item $p(x)\proves \set{E(x,a)\mid a\in B}$, and
\item $p(x)\proves \set{\neg E(x,a)\mid a\in A\setminus B}$.
\end{enumerate}
\end{exr}
\begin{exr}
Consider the subspace $X\subseteq S_1(A)$ of nonrealised types, that is, the closed subspace given by the partial type $\set{x\ne a\mid a\in A}$. Prove that $X$ is homeomorphic to $2^{\abs{A}}$, that is, the product of $\abs{A}$-many copies of the discrete space $\set{0,1}$, with the product topology.
\end{exr}
If $\abs A=\aleph_0$, you may have recognised that the space $X$ above is nothing more that Cantor space, that is, the Cantor set with the subspace topology inherited from $\mathbb R$. If you want a full type space homeomorphic to the Cantor space, without needing to pass to subspaces, here is an example.
\begin{exr}
Prove that, if $T_{2^{<\omega}}$ is as in \Cref{defin:treepred}, then $S_1(\emptyset)$ is homeomorphic to Cantor space.
\end{exr}

\subsection{Generic equivalence relation}\label{subsec:geneqrel}
Let $T$ be the theory of a generic equivalence relation $E$. This is the case $\kappa=1$ of \Cref{defin:geneqrel}, except that here we just write write $E$ instead of $E_0$.

Elements of $S_1(A)$ can be of three kinds:
\begin{enumerate}
\item Realised. You know the drill. Isolated, etc etc.
\item For each $a\in A$ there is a ``generic type of the class of $a$'', axiomatised by $\set{x\ne a\mid a\in A}\cup \set{E(x,a)}$, that is, the type of a new point in the class of $A$. If $\set{b\in A\mid E(b,a)}$ is infinite, then this point is not isolated.
\item A single ``generic'' type, axiomatised by $\set{\neg E(x,a)\mid a\in A}$, that is, the type of a point in a new equivalence class. Similarly, if $A/E$ is infinite, then  this point is not isolated.
\end{enumerate}
\begin{spoiler}\label{spoiler:mr}
You may object: ``ok, but $\set{x\ne a\mid a\in A}\cup \set{E(x,a)}$ is only nonisolated because of $\set{x\ne a\mid a\in A}$; that is, in the subspace of nonrealised types, this type is isolated by $[E(x,a)]$.'' Congratulations, you are halfway through the road to the definition of Morley rank. Keep reading.\footnote{Or just go straight away to \Cref{defin:rmor}.}
\end{spoiler}
While we are on the subject of spoilers: soon we will be interested in cardinalities of type spaces. The following exercise is recommended.
\begin{exr}\*
  \begin{enumerate}
  \item Assuming that $A$ is infinite, compute the cardinality of $S_1(A)$.
  \item Do the same for the theory of $\kappa$ generic equivalence relations, for every nonzero cardinal $\kappa$.
  \end{enumerate}
\end{exr}
Note that the number of equivalence relations here is fixed by the language. But, as in the case of vector spaces (cf.\ \Cref{rem:vectsptwolang}), we can also make a different choice: what if we allow the equivalence relations to be part of the model?
\begin{defin}
  Let $L=\set{P, R, E}$, where $P$, $R$ are unary predicates  (``Points'' and ``Relations'') and $E$ is a ternary relation symbol. The theory $T_\mathrm{feq}^*$ has the following axioms.
  \begin{enumerate}
 \item $\forall x,y,z\; \paren[\big]{E(x,y,z)\implica (P(x)\land P(y)\land R(z))}$.\footnote{If you want to use multi-sorted structures, this is a good place to view $P$, $R$ as sorts instead of predicates, and $E$ as a relation of arity $P^2\times R$.}
 \item The predicate $R$ is infinite.
 \item Every $E(-,-,z)$ (for fixed $z$) is an equivalence relation on $P$ with infinitely many classes.
 \item For every $n\in \omega$, an axiom saying that pairwise distinct equivalence relations $R(-,-,z_0),\ldots, R(-,-,z_n)$ interact generically (as in \Cref{defin:geneqrel}).
  \end{enumerate}
\end{defin}


\begin{exr}
  \begin{enumerate}
  \item Prove that $T_\mathrm{feq}^*$ is indeed a theory.
  \item Prove that $T_\mathrm{feq}^*$ is complete and has quantifier elimination.
  \item Prove that $T_\mathrm{feq}^*$ is not binary.
  \item Count how many $1$-types there are over a model $M$.\footnote{Hint: you can do this even without obtaining a complete description of all types.}
  \end{enumerate}
\end{exr}


\subsection{Algebraically closed fields}
Let $p$ be either a prime or $0$, and let $T=\mathsf{ACF}_p$.  Fix $M\models T$, and let us look at $S_1(M)$. By quantifier elimination, a type $p(x)$ is determined by which polynomials with coefficients in $M$ are $0$ in $x$, and which are not. Since we are working over a model $M$, this means that we have two possibilities:
\begin{enumerate}
\item For some $f(X)\in M[X]$ of positive degree, we have $p(x)\proves f(x)=0$. Since $M$ is algebraically closed, there are $\bla a0,{\deg f-1}\in M$ such that $p(x)\proves \bigvee_{i<\deg f} x=a_i$. Since $p(x)$ is complete, it needs to choose one of these disjuncts, hence for some $i<\deg f$ we have $p(x)\proves x=a_i$. 
\item The only remaining option is the generic type $p(x)=\set{f(x)\ne 0\mid f(X)\in M[X], \deg f>0}$. Again, by compactness this type cannot be isolated.
\end{enumerate}
Note anything strange? $S_1(M)$ is essentially the same as the space of $1$-types over an infinite set $M$ with no structure. What about $S_1(A)$, for $A$ not a model? In this case, it is not true that every isolated type is realised in $A$. For example, if $p=0$ and  $A=\mathbb Q$, then $x\cdot x=2$ implies a complete type, but of course no $a\in \mathbb Q$ realises it. More generally, if $f(X)\in \mathbb Q[X]$ is irreducible, then $f(X)=0$ will imply a complete type. 

What is $S_n(A)$ in general? $\mathsf{ACF}_p$ is \emph{not} binary,\footnote{Here is a hint to prove it: let $A=(\mathbb Q(c))^{\mathrm{alg}}$, with $c$ transcendental over $\mathbb Q$. Take $a,b\in \mathbb C$ algebraically independent over $\mathbb Q^\mathrm{alg}$, but such that $a-b=c$. Use one of the equivalent forms of binarity from \Cref{exr:binary}.} so we cannot resort to the same trick we used over and over in this section, and we need a bit of algebra. It is easy to see that $S_n(A)$ is essentially the same as $S_n(\seq{A})$, where $\seq{A}$ is the structure generated by $A$, which in this language means the ring generated by $A$. By quantifier elimination we only need to deal with formulas of the form $f(X)=0$, and by clearing denominators we see that we may pass to the fraction field of $\seq{A}$. Long story short, we only need to look at $S_n(K)$ for $K$ a field, not necessarily algebraically closed.

So we need a convenient way to describe a consistent, complete choice of formulas of the form $f(X)=0$ and $f(X)\ne 0$, where $f\in K[X]$ and $X=(\bla X0,{n-1})$. Of course, we already know the answer from algebra: the types  $p(x)\in S_n(K)$ are in bijection with the prime ideals of $K[X]$. The ``prime'' here depends on completeness of $p(x)$: by completeness, there is some $N\succ M$ and some $a\in N^n$ such that $p(x)=\tp(a/K)$. If $f(a)\cdot g(a)=0$; then clearly $f(a)=0$ or $g(a)=0$. I will leave the details as an exercise.
\begin{exr}
  The map $p(x)\mapsto \set{f(X)\in K[X]\mid p(x)\proves f(x)=0}$ is a bijection between $S_n(K)$ and the prime ideals of $K[X]$, where $X=(\bla X0,{n-1})$.
\end{exr}
So $S_n(K)$, as a set, is essentially the same as $\operatorname{Spec}(K[\bla X0,{n-1}])$. 
If you have never seen this notation before, you may safely skip to the next section.

On the other hand, if you are a bit familiar with algebraic geometry, you may ask yourself whether, if  $\operatorname{Spec}(K[\bla  X0,{n-1}])$ is equipped with the Zariski topology, then this bijection is a homeomorphism. The answer is no: the topology induced by the bijection above coincides with the \emph{constructible} one: each $[f(X)=0]$ is clopen. In fact, it \emph{is} possible to view $\operatorname{Spec}(K[\bla X0,{n-1}])$ with the Zariski topology as a type space, but this requires the notion of ``type space'' to be generalised: in particular, we need to allows for non-Hausdorff spaces. See~\cite[Section~14]{spectralspaces}. In fact, by changing the logic, one may view every spectral space as a type space. See for example~\cite{haykazyan, kamsma}.




\section{Saturation}
\Cref{pr:etirs} tells us that all types over $A$ are realised by some element in some model of $\Th(M_A)$. By \Cref{exr:eejep} (or, if you prefer by proving this fact directly), we find that
\begin{rem}
   Every type over $A\subseteq M$ is realised in some elementary extension of $M$.
\end{rem}
In general, passing to an elementary extension is necessary:
\begin{eg}\label{eg:nonrealisedtype}
  The partial type\footnote{Recall that we are assuming that $T$ has infinite models; since it is also complete, it has no finite models, so $\pi(x)$ is consistent.} $\pi(x)\coloneqq\set{x\ne m\mid m\in M}$ is not realised in $M$.
\end{eg}
Therefore, we cannot hope for all partial types over $M$ to be realised in $M$. In fact, the example above shows that this is never true, unless $M$ is finite. 
\begin{defin}
Let $\kappa$ be an infinite cardinal. We say that $M$ is \emph{$\kappa$-saturated} iff, whenever $A\subseteq M$ is such that $\abs A<\kappa$, and $n\in \omega$, then every $n$-type over $A$ is realised in $M$.
\end{defin}
\begin{notation}
Even if $\kappa$-saturation depends only on the cardinality of $\kappa$, and not on its order type,   it is common to say $\omega$-saturated instead of $\aleph_0$-saturated. Things like ``$\omega_1$-saturated'' instead of ``$\aleph_1$-saturated'' also appear in the literature.
\end{notation}
Saturation can be checked on $1$-types:
\begin{pr}\label{pr:1tpsenough}
  Suppose that, whenever $A\subseteq M$ is such that $\abs A<\kappa$, then every $1$-type over $A$ is realised in $M$. Then $M$ is $\kappa$-saturated.
\end{pr}
\begin{proof}
Let $p(x)\in S_{n+1}(A)$, where $A\subseteq M$ and $\abs A<\kappa$.  Let  $q(\bla x0,{n-1})\coloneqq \set{\phi(\bla x0,{n-1})\mid p(x)\proves \phi(\bla x0,{n-1})}$ be its restriction to the first $n$ coordinates. Inductively, there is $a\in M^n$ such that $a\models q$. By substituting $a_i$ for $x_i$ inside $p(x)$, we find a $1$-type $r(x_n)$ over $Aa$,\footnote{You may want to check as an exercise that $r(x_n)$ is indeed a (complete) type over $Aa$.} and by assumption there is $a_n\in M$ realising $r(x_n)$. Clearly, $(\bla a0,n)\models p(x)$.
\end{proof}
\begin{exr}\*
 \begin{enumerate}
 \item Prove that $(\mathbb R, <)$ is $\omega$-saturated, but not $\aleph_1$-saturated.
 \item Characterise the $\omega$-saturated $M\models \mathsf{ACF}$.
 \item Which of these theories have a countable $\omega$-saturated model? For which of these theories \emph{all} countable models are $\omega$-saturated?
   \begin{enumerate}
   \item The theory of infinite sets.
   \item $\mathsf{DLO}$.
   \item The theory of the Random Graph.
   \item $K\mathsf{-VS}$, for $K$ a field.\footnote{Semi-hint: the answer may depend on $K$.}.
   \item The theory $T_{2^{<\omega}}$ from \Cref{defin:treepred}.
   \item The theory of $1$ generic equivalence relation.
   \item $T_\mathrm{feq}^*$.
   \end{enumerate}
 \end{enumerate}
\end{exr}
Another addition to the list of trivial but important things: 
\begin{rem}
Since types over $A$ are in particular sets of $L(A)$-formulas, for every $n\in \omega$ there are at most $2^{\abs L+\abs A}$-many $n$-types over $A$.
\end{rem}
\begin{lemma}\label{lemma:realtpovM}
    Let $\kappa\ge \abs L$ and $\abs M\le 2^\kappa$. Then there is $N\succeq M$ with $\abs N\le 2^\kappa$ and  such that, for every $A\subseteq M$ with $\abs A\le \kappa$, the model $N$ contains realisations of all types over $A$.
\end{lemma}
\begin{proof}
  For every $n\in \omega$ and every $n$-type $p(x)$ over some $A\subseteq M$ of size $\abs A\le \kappa$, add to $L(M)$  a tuple of constants $c_p=(c_{p,0},\ldots, c_{p, \abs x-1})$; call the resulting language $L'$. Since $2^\kappa$ has cofinality larger than $\kappa$, there are at most $2^\kappa$ subsets of $M$ of size $\kappa$. Together with the previous remark, this yields $\abs{L'}\le 2^\kappa$, and by compactness there is $N'\models \ed(M)\cup \set{p(c_p)\mid A\subseteq M, \abs A\le \kappa, p(x)\in S(A)}$.\footnote{As usual, check that this is consistent as an exercise.} Let $C$ be the set of interpretations in $N'$ of all the new constants introduced above. Then $\abs{C\cup M}\le 2^{\kappa}$, and by applying downward L\"owenheim--Skolem and taking the reduct to $L$ we obtain the desired $N$.
\end{proof}
In the last step of last proof, we can justify that $N\succeq M$ in two ways: one is observing, before taking the reduct to $L$, that the $L'$-structure we built satisfies $\ed(M)$. Alternatively, we can use the following:
\begin{exr}\label{exr:2outof3}Suppose $M_0\subseteq M_1\subseteq M_2$.
  \begin{enumerate}
  \item Suppose that $M_1\preceq M_2$. Then $M_0\preceq M_2$ if and only if  $M_0\preceq M_1$.
  \item Find an example where $M_0\preceq M_2$, $M_0\preceq M_1$, but $M_1\centernot\preceq M_2$.
  \end{enumerate}
\end{exr}
The $N$ we built in the previous lemma need not be $\kappa$-saturated, for the simple reason that we introduced new parameters. We fix this by repeating the construction transfinitely many times.
\begin{thm}\label{thm:extsatmod}
  Let $\kappa\ge \abs L$ and $\abs M\le 2^\kappa$. Then there is a $\kappa^+$-saturated $N\succeq M$ of size at most $2^\kappa$.
\end{thm}
\begin{proof}
  We do an inductive construction of length $\kappa^+$. We start with $M_0\coloneqq M$. At successor stages, we use \Cref{lemma:realtpovM} to take as $M_{\alpha+1}$ some elementary extension of $M_{\alpha}$ of size at most $2^\kappa$ and realising all types over subsets of $M_\alpha$ of size at most $\kappa$. At limit stages $\lambda$, we take $M_\lambda\coloneqq \bigcup_{\alpha<\lambda} M_\alpha$, and observe that this is an elementary extension of each previous $M_\alpha$ by \Cref{exr:elchains}. Since $\lambda$ is an ordinal of cardinality at most $\kappa$, we have $\abs{M_\lambda}\le \kappa\cdot 2^\kappa=2^\kappa$, so we may continue the construction. Keep doing this for every ordinal below $\kappa^+$, and at the end set $N\coloneqq\bigcup_{\alpha<\kappa^+}M_\alpha$; observe immediately that $\abs N\le \kappa^+\cdot 2^\kappa=2^\kappa$.

In order to check that $N$ is $\kappa^+$-saturated, take $A\subseteq N$ of size $\abs A<\kappa^+$, and let $p(x)\in S(A)$.   Since $\kappa^+$ is regular, there must be $\alpha<\kappa^+$ such that $A\subseteq M_\alpha$. By construction, $M_{\alpha+1}$ contains the required $b$.
\end{proof}
Even if it does not really simplify the proof, note that we could have just worked with $1$-types and obtained the same result by \Cref{pr:1tpsenough}.
\begin{exr}\label{exr:cntsat}
  Suppose that $\abs L=\aleph_0$ and, for every $n$, there are at most $\aleph_0$ types over $\emptyset$. Then $T$ has a countable $\omega$-saturated model.\footnote{Hint: prove first that, over any finite $A$, there are at most $\aleph_0$ types.}
\end{exr}
 The converse is trivial: a countable model can only realise countably many types over $\emptyset$, and if it is $\omega$-saturated then it realises all types over $\emptyset$.

Here is the promised converse to \Cref{thm:bafqe}. Alas, you will have to supply the proof yourself.\footnote{Hint: back-and-forth is about realising quantifier-free types, no?}
\begin{exr}
  Let $T$ be a possibly incomplete theory with quantifier elimination. If $M, N$ are $\omega$-saturated models of $T$, then the family of all partial isomorphisms between finitely generated substructures of $M$ and $N$ has the back-and-forth property.
\end{exr}

\section{Properties of saturated models}
In this section we look at consequences of saturation.

In the proof of \Cref{thm:satun} below, we will deal with types of infinite tuples or, if you prefer, types in infinitely many variables. While essentially everything translates, keep in mind that the definition of saturation only talks of finitary types.\footnote{Although of course one can enumerate an infinite tuple on its cardinality to show that $\kappa$-saturated models realise all types in $\kappa$ variables over a set of size $<\kappa$.}
Recall the notion of \emph{elementary map} from \Cref{exr:elemap}.
\begin{rem}
  Elementary maps preserve types: if $f\from M\to N$ is elementary, then $\tp(a)=\tp(f(a))$.
\end{rem}
\begin{thm}\label{thm:satun}
Every $\kappa$-saturated $N$ is \emph{$\kappa$-universal}: for every $M$ with\footnote{This is not a typo: while for $\kappa$-saturation we require a condition for sets of size $<\kappa$, for universality the inequality is not strict.} $\abs M\le \kappa$ there is an elementary embedding $M\to N$.
\end{thm}
\begin{proof}
  We do a ``only forth'' proof, not just in the usual sense that we say ``the `back' is analogous'', but in the sense that we only need (and only have enough hypothesis to prove) the ``forth''. Fix an enumeration $(a_i)_{i<\kappa}$ of $M$ of order type $\kappa$. Inductively, we define a partial elementary map $f_\alpha\from a_{<\alpha}\to N$; notationally, write $a_i\mapsto b_i$. Because $T$ is complete, the (unique) partial map with domain $\emptyset$ is elementary. At limit stages, we take unions; since $f_{\alpha}$ is elementary if and only if each of its restrictions to a finite domain is, elementarity is preserved in unions of chains. At the end, we take $f\coloneqq\bigcup_{\alpha<\kappa} f_\alpha$, which will be an elementary map with domain the whole of $M$, that is, an elementary embedding.

  So we are left to deal with the inductive definition of $f_{\alpha+1}$. By inductive hypothesis, $a_{< \alpha}$ and $b_{< \alpha}$ have the same type. Consider $p(x)\coloneqq\tp(a_{\alpha}/a_{< \alpha})$, and let $q(x)$ be obtained by $p(x)$ by replacing, for $i<\alpha$, each $a_i$ with $b_i$. If $q(x)$ is consistent, by saturation of $N$ and the fact that $q(x)$ is over fewer than $\kappa$ parameters we can find $b_{\alpha}\models q(x)$ in $N$, and we are done. So suppose that $q(x)$ is inconsistent. Hence, for some $\phi(x,w)\in L$ such that\footnote{Clearly, only finitely many $a_i$ will appear in $\phi$.} $p(x)\proves \phi(x, a_{< \alpha})$, we have 
 $\Th(N_{b_{< \alpha}})\proves \neg \exists x\; \phi(x, b_{< \alpha})$.\footnote{If we were checking the consistency of an arbitrary set of formulas, we should have replaced $\phi$ with a finite conjunction $\bigwedge_i \phi_i$. But $p(x)$ is closed under conjunctions, hence so is $q(x)$.} Since $p(x)$ is a type, on the other hand $\Th(M_{a_{< \alpha}})\proves\exists x\; \phi(x, a_{< \alpha})$. This contradicts that $f_{<\alpha}$ is elementary (or, if you prefer, that $a_{< \alpha}$ and $b_{< \alpha}$ have the same type).
\end{proof}
Note that in order for this to go through, we really need to work with types, as opposed to quantifier free types. Otherwise, there is no guarantee that $q(x)$ will be consistent. Of course, if $T$ has quantifier elimination (which, at this level of generality, we may assume by Morleyising), then the difference is immaterial.

How saturated can a model be? By \Cref{eg:nonrealisedtype}, we cannot hope to find an $\abs{M}^+$-saturated $M$. What about the next best thing?
\begin{defin}
  A model $M$ is \emph{saturated} iff it is $\abs{M}$-saturated.
\end{defin}
We will say something about the existence of such models in the next section. For now, let us look at their properties.
\begin{thm}\label{thm:satunique}
  Suppose that $M$ and $N$ are saturated models of the same cardinality. Then $M\cong N$. In fact, every partial elementary map $M\to N$ with domain of size $<\abs M$ extends to an isomorphism $M\to N$.
\end{thm}
\begin{proof}
  Suppose $M$, $N$ have cardinality $\kappa$.  Fix enumerations $(a_{\alpha})_{\alpha<\kappa}$ of $M$ and  $(b_{\alpha})_{\alpha<\kappa}$ of $N$. Take the proof of \Cref{thm:dlobaf} and the proof of  \Cref{thm:satun}. Add ice, shake well, strain into a chilled martini glass. Garnish with a lemon twist (optional).

  For the second statement, suppose $A\subseteq M$ has cardinality $\mu<\kappa$, and $f$ is a partial elementary map with domain $A$. Make sure that the enumeration $(a_{\alpha})_{\alpha<\kappa}$ starts by enumerating $A$, that is, $A=a_{<\mu}$,\footnote{Usual abuses of notation about treating tuples as sets apply.} and that $(b_{\alpha})_{\alpha<\kappa}$ starts by enumerating $f(A)$ accordingly, that is, that for every $\alpha<\mu$ we have $b_\alpha=f(a_\alpha)$. Now argue as above, but starting the back-and-forth at stage $\mu$.
\end{proof}
The second part of the previous theorem is particularly interesting in the special case where $M=N$.
\begin{co}
Every saturated $M$ of cardinality $\kappa$ is \emph{strongly $\kappa$-homogeneous}: every partial elementary map from $M$ into itself with domain of cardinality $<\kappa$ extends to an element of $\aut(M)$. In particular, if $\abs A< \kappa$ then
$\tp(a/A)=\tp(b/A)$ if and only if $a$ and $b$ are in the same $\aut(M/A)$-orbit.
\end{co}
\begin{proof}
  Everything is immediate, except perhaps the ``in particular'' bit, so let's spell that out.  One direction is \Cref{exr:auttp}, and does not even need strong homogeneity. In the other direction, note that ``the map $\id_A\cup \set{a\mapsto b}$ is elementary'' is just a fancy way of saying ``$\tp(a/A)=\tp(b/A)$'', and that any extension of this map to an automorphism will, by definition, belong to $\aut(M/A)$.
\end{proof}
If you are wondering why there is a ``strongly'' before ``homogeneous'' above, you may want to know that there is also a weaker notion of $\kappa$-homogeneity, requiring only that partial elementary maps with domain smaller than $\kappa$ may be extended to one extra point. An argument in the same spirit as the other ones in this section shows that $\kappa$-saturated models, of whatever cardinality, are $\kappa$-homogeneous. This notion is involved in some characterisations of saturation, see e.g.\ \cite[Chapter~9]{poizat}.


Saturation is sometimes phrased as a matter of being ``large''. This is inaccurate, or at least a bit odd, since if $M$ is ``large'' and $N\succeq M$, we would expect $N$ to be ``large'' as well. For saturation, this is false:
\begin{exr}
  Find a cardinal $\kappa$, a $\kappa$-saturated $M$, and an $N\succeq M$ which is not $\kappa$-saturated.
\end{exr}
 Saturation is closer to being compact, since it tells us that the intersection of certain families with the finite intersection property (cf.~\Cref{rem:complfip}) is nonempty.
 \section{Monster models}
 In some contexts, we need to realise a lot of types, and deal with several models at once. A common convention is to choose a $\kappa$-saturated model $\monster$, for $\kappa$ ``larger than everything we want to consider'', and embed everything in there (elementarily), which we may do by \Cref{thm:satun}. That way, instead of saying, for example, ``let $N\succeq M$ contain a realisation $a\models p(x)$'', we may just convene at the start that everything we mention lives inside $\monster$, and simply say ``let $a\models p(x)$''. Under this convention, that is, only considering elementary substructures $M\preceq\monster$, applying \Cref{exr:2outof3} with $M_2=\monster$ tells us that all inclusions between these $M$ are elementary.


 Now, the ``larger than everything we want to consider'' is justified by \Cref{thm:extsatmod}: if we need to consider larger sets (for example, because we want to realise a type over $\monster$), we may pass to an elementary extension of $\monster$ with a higher degree of saturation. So far, so good. But, while it may not be immediately clear why, we would like $\monster$ to also be strongly $\kappa$-homogeneous, since a lot of proofs may be simplified by using so-called ``automorphism arguments'' (we will see one of these soon). Essentially, the point is that ``over small sets, types are the same as orbits'' is a nice property for $\monster$ to have, if we want to work inside it.

 By the results in the previous section, if we were able to find, for arbitrarily large $\kappa$, a saturated $\monster$ of cardinality $\kappa$ (as opposed to, merely, a $\kappa$-saturated $\monster$), then we would be happy: our $\monster$ would be $\abs \monster$-strongly homogeneous, and even uniquely determined by its cardinality.

 If we assume additional set theoretic assumptions, then this can be done: if $\kappa\ge \abs L$ and $\kappa^+= 2^{\kappa}$, then  by \Cref{thm:extsatmod} there is a saturated model of size $\kappa^+$, hence if $\mathsf{GCH}$ holds, or at least if it holds at arbitrarily large cardinals, then we can find arbitrarily large saturated models.

But what if we want the ``small subsets'' of $\monster$ to be closed under some construction which, for example, sends $A$ to something of size $2^{2^{\abs A}}$? Clearly, taking $\monster$ to be saturated of size $\kappa^+$ and declaring ``small'' to mean ``of size $\le\kappa$'' is not a good idea. Things would be better if we had a saturated model of size $\kappa$ for $\kappa$ a strong limit, that is, such that $\lambda<\kappa\then 2^\lambda<\kappa$. But in the proof of \Cref{thm:extsatmod} we used regularity of $\kappa^+$, so we would like some $\kappa$ which is regular, a strong limit, and larger than $\abs L$, so at the very least uncountable. In other words, we want arbitrarily large \emph{strongly inaccessible} cardinals to exist.
If we go, consistency-wise, a bit beyond $\mathsf{ZFC}$, and assume a proper class of strongly inaccessible cardinals, then we are once again done. The reason is that the proof of \Cref{thm:extsatmod} may be adapted to show the following:\footnote{This will also follow from what we will do in this subsection, but if you try to solve the exercise now then you will probably stumble on the idea underlying the constructions below.}
\begin{exr}
  If $\kappa\ge \abs L$ is strongly inaccessible, there is a saturated model of cardinality $\kappa$.
\end{exr}
If we want to stay within the reach of $\mathsf{ZFC}$ though, we cannot assume instances of $\mathsf{GCH}$, let alone a proper class of inaccessibles. So we proceed as follows.\footnote{Another possible approach is to work in $\mathsf{NBG}$ instead of $\mathsf{ZFC}$, and build a class-sized, set-saturated monster model. Yet another approach (for those who know a bit more set theory) is this: several theorems have an arithmetic conclusion (code formulas in a countable language inside $\mathbb N$). Use absoluteness results to assume $\mathsf{GCH}$ without loss of generality.}
We   show that, for every $M$ and every $\kappa\ge \abs L$, there is $\monster\succeq M$ which is $\kappa$-saturated and $\kappa$-strongly homogeneous. We may then choose a ``large enough'' strong limit $\kappa$, declare ``small'' to mean ``of size $<\kappa$'', and work in $\monster$. If we need to deal with larger things, we enlarge $\kappa$ to $\kappa'$ and pass to a $\kappa'$-monster $\monster_1\succ \monster$.

\begin{notation}
  If $\kappa$ is a cardinal, we denote by $C_\kappa$ the set of cardinals strictly small than $\kappa$.
\end{notation}
\begin{defin}
  Suppose that $\abs M=\kappa$. We call $M$ \emph{special} iff it has a \emph{specialising chain}, that is, iff it is the union of an elementary chain
  \[
    M=\bigcup_{\mu\in C_\kappa} M_\mu
  \]
  such that each $M_\mu$ is $\mu^+$-saturated.
\end{defin}
The idea is to fix a strong limit $\kappa$, and prove that if $\monster$ is special and of carefully chosen cardinality (spoiler: it will not be $\kappa$), then $\monster$ is $\kappa$-saturated  and $\kappa$-strongly homogeneous. Since there are always arbitrarily large strong limit (not necessarily regular) cardinals, this will suffice. You may object that we need to build not just arbitrarily large $\monster$ but, for arbitrarily large $M$, some special $\monster\succeq M$, but we  will get this for free from saturation because of \Cref{thm:satun}.
\begin{rem}
If $M$ is saturated, we may take as a specialising chain the one constantly $M$. So saturated models are special.
\end{rem}
\begin{thm}
  Let $\kappa>\abs L$ be a strong limit. Then there is a special $\monster\models T$ of size $\kappa$.
\end{thm}
\begin{proof}
The strategy of proof is as follows:  we build a suitable elementary chain, then take as $\monster$ its union. We then trim the chain we built to obtain a specialising chain for $\monster$.

Since $\kappa$ is a strong limit, we can find an increasing $\cof(\kappa)$-sequence of cardinals $(\kappa_i\mid i<\cof(\kappa))$ such that\footnote{Here $i$ ranges on \emph{ordinals} less than $\cof(\kappa)$.}
  \[
    \kappa=\sum_{i<\cof(\kappa)}\kappa_i=\sum_{i<\cof(\kappa)}2^{\kappa_i}
  \]
  where without loss of generality $\kappa_0>\abs L$. Start with $M_0$ any model of size $\kappa_0$.\footnote{If you want to prove directly the existence of special $\monster\succeq M$, you may start with $M_0=M$ (of course this requires taking $\kappa$ large enough).} At successor stages, use \Cref{thm:extsatmod} to obtain an $\abs{M_i}^+$-saturated $M_{i+1}\succeq M_i$ of size at most $2^{\abs {M_i}}$. If $i$ is a limit ordinal, set $M_i\coloneqq\bigcup_{j<i} M_j$, invoke \Cref{exr:elchains} to get elementarity, and observe that
  \[
    \abs{M_i}=\abs[\Big]{\bigcup_{j<i} M_j}\le\sup_{j<i} 2^{\kappa_j}\le 2^{\kappa_i}
  \]
 Set $\monster\coloneqq\bigcup_{i<\cof(\kappa)} M_i$, then trim $(M_i\mid i<\cof(\kappa))$ by choosing any weakly increasing  function $\iota\from C_\kappa\to \cof(\kappa)$  with the property that $\kappa_{\iota(\mu)}\ge \mu$. The required specialising chain is $(M_{\kappa_{\iota(\mu)}}\mid \mu\in C_\kappa)$. It is easy to check that $\abs \monster\le \kappa$; if the inequality was strict, we would easily get a contradiction by using \Cref{thm:satun} to obtain an embedding of $\monster$ inside one of the pieces of the specialising chain above, say $M_{\kappa_{\iota(\mu)}}$, and observing that $M_{\kappa_{\iota(\mu^+)}}$ has larger cardinality.
\end{proof}
\begin{thm}\label{thm:specialunique}
  If $\monster_0$, $\monster_1$ are special models of $T$ of the same cardinality, then they are isomorphic.
  \end{thm}
  \begin{proof}
   We prove this by back and forth along carefully built enumerations. Let $\kappa\coloneqq\abs{\monster_0}=\abs{\monster_1}$, and write our special models as unions of fixed specialising chains  $\monster_0=\bigcup_{\mu\in C_\kappa} M^0_\mu$ and $\monster_1=\bigcup_{\mu\in C_\kappa} M^1_\mu$.
    \begin{claim}
For $\ell<2$, there  are enumerations $(a_i^\ell)_{i<\kappa}$ of $\monster_\ell$, possibly with repetitions, such that, if $\mu\in C_\kappa$, then $(a_i^\ell\mid i<\mu^+)\subseteq M^\ell_\mu$.
    \end{claim}
    \begin{claimproof}
      Clearly the assumptions are the same for $\monster_0$ and $\monster_1$, so in the proof of this claim we drop $\ell$ from the notation. Fix an enumeration without repetitions $(b_j\mid j<\kappa)$ of $\monster$. Inductively, define $a_i$ as the first $b_j$ in $M_{\abs i}$ not yet enumerated as one of the  $a_-$ if one exists, and as $a_0$ otherwise. This clearly gives as the desired property, but we need to check that we have indeed enumerated all points of $\monster$. Towards a contradiction, let $j_0$ be minimal such that  $b_{j_0}$ does not equal any of the $a_i$. Let $\mu$ be minimum such that $b_{j_0}\in M_\mu$, and look at $(a_i\mid \mu\le i<\kappa)$. This can contain only elements $b_j$ with $j<j_0$, and never repeating any of those twice, which is impossible because $\abs{\kappa\setminus \mu}=\kappa>\abs{j_0}$.
    \end{claimproof}
    We can now proceed by back-and-forth, by inductively building a partial elementary map $f_i$ such that  $a_i^0\in \dom f_i$ and $\dom f_i\subseteq M^0_{\abs i}$, while  $a_i^1\in \im f_i$  and $\im f_i\subseteq M^1_{\abs i}$.\footnote{Note: we are not necessarily mapping $a_i^0\mapsto a_i^1$.} It is possible to ensure this because we are using the enumerations given by the Claim: first of all, $a^0_i\in M^0_{\abs i}$. To define $f_i$ on $a^0_i$,  we need to realise a type over a subset of $M_{\abs i}^1$ of size $\abs i$; by definition of specialising chain, this can be done inside $M_{\abs i}^1$, so our inductive assumption is preserved. With a symmetric argument, we then ensure $a_i^1\in \im f_i$, then move to  $i+1$.
  \end{proof}
  While proving that certain objects are unique is always very satisfying, perhaps counterintuitively uniqueness of special models will not be especially useful \emph{per se}, but rather because it implies strong homogeneity. This is proven via the following trick.
  \begin{exr}
    Let $\monster$ be special of cardinality $\kappa$, and let $A\subseteq \monster$ have size $\abs A<\cof(\kappa)$. Then $\monster_A$ is special.
  \end{exr}
\begin{co}\label{co:specialsathom}
  Every special $\monster$ of size $\kappa$ is $\cof(\kappa)$-saturated and $\cof(\kappa)$-strongly homogeneous.  
\end{co}
\begin{proof}
  The $\cof(\kappa)$-saturation of $\monster$ is an easy consequence of the definition of ``special'', while $\cof(\kappa)$-strong homogeneity is a consequence of \Cref{thm:specialunique} and the previous exercise: if $a\mapsto b$ is a partial elementary map $M\to M$ with $\abs a<\cof(\kappa)$, just expand $L$ with constants $c_i$ to be interpreted as $a_i$ in the first copy of $M$ and $b_i$ in the second one. 
\end{proof}
If you are kidnapped by an evil wizard who is about to make you magically forget everything contained in the present subsection except for one sentence of your choice, I strongly recommend you save the following corollary.
\begin{co}
  For every $M$ and every infinite cardinal $\kappa$, there is $\monster\succeq M$ which is $\kappa$-saturated and $\kappa$-strongly homogeneous.
\end{co}
\begin{proof}
  By \Cref{thm:satun} and \Cref{co:specialsathom}\footnote{\ldots,  and the fact that saturation in a cardinal implies saturation in all the smaller ones, and similarly for strong homogeneity,\ldots} we only need to show that there are arbitrarily large strong limit cardinals of arbitrarily large cofinality. Recall that $\beth_0\coloneqq \aleph_0$, $\beth_{\alpha+1}\coloneqq 2^{\beth_\alpha}$, and $\beth_\lambda\coloneqq\sup_{\mu<\lambda}\beth_\mu$ for limit $\lambda$. Since $\beth$ is increasing and continuous, it has arbitrarily large fixed points, that is, cardinals $\mu$ with $\beth_\mu=\mu$. Note that fixed points of $\beth$ are strong limit cardinals. Enumerate increasingly and continuously the fixed points of $\beth$ on the ordinals, say with a class-function $f$. If $\alpha$ is a limit \emph{ordinal}, then $f(\alpha)=\sup_{\beta<\alpha} f(\beta)$, hence $\cof(f(\alpha))=\cof(\alpha)$. Therefore, if $\mu$ is a regular cardinal, then $\cof(f(\mu))=\mu$, and we conclude by choosing any regular $\mu>\kappa$.
\end{proof}
While saturation is clearly preserved under reducts, for $\kappa$-strong homogeneity this is \emph{not} the case, in general. A good reason to work in special models, instead of just any $\kappa$-saturated, $\kappa$-strongly homogeneous one, is the following.
\begin{rem}
  It follows easily from the definitions that if $L'\subseteq L$ and $\monster$ is special, then so is $\monster\restr L'$. In particular, $\monster\restr L'$ is $\cof(\abs{\monster})$-strongly homogeneous
\end{rem}
\begin{exr}
Find a cardinal $\kappa$ and a structure $M$ such that $M$ is $\kappa$-strongly homogeneous, but some reduct of $M$ is not.\footnote{Hint: take as $\Th(M)$ the expansion of $\mathsf{DLO}$ by a predicate interpreted as an initial segment with no supremum.}
\end{exr}
\section{Working in a monster model}
\begin{notation}
  From now on the following conventions and notations apply.
  \begin{enumerate}
  \item We fix a strong limit cardinal $\kappa$ ``larger than everything we want to consider'', we  work inside a special model $\monster$ with $\cof(\abs\monster)>\kappa$, and if we say that something is \emph{small} we mean it has size $<\kappa$. We call $\monster$ the \emph{monster model}.
  \item  We write $\models \phi(a)$ for $\monster\models \phi(a)$, etc.
  \item We write $\models \phi(x)$ for $\models \forall x\; \phi(x)$.
  \item  We write $A\smallsubset \monster$ to mean that $A$ is a small subset of $\monster$, and $M\smallprec \monster$ to mean that $M$ is a small elementary substructure of $\monster$. We use $A,B,\ldots$ to denote small sets.
  \item We write $a\equiv_A b$ to mean that $\tp(a/A)=\tp(b/A)$.
  \item All tuples, small sets, etc.\ are assumed to be inside $\monster$, and when we say ``model'' we mean ``small elementary substructure of $\monster$'', unless the ``model'' is $\monster$ is self, or unless we specify otherwise.\footnote{Well, or unless I forget to specify. Sorry.}
  \item \emph{Definable} means ``$\monster$-definable'', and \emph{formula} means ``$L(\monster)$-formula''. If parameters are not allowed, we write ``$L$-formula'', or ``$L(\emptyset)$-formula''. More generally, we say ``$L(A)$-definable'' or ``$A$-definable'' if we only allow parameters from $A$.
  \item If we say that two formulas are ``equivalent'', we mean modulo $\ed(\monster)$.
  \end{enumerate}
\end{notation}
If you went through the previous section too quickly,\footnote{\ldots, or if you recently  encountered an evil wizard,\ldots} recall that $A\smallsubset \monster$ implies that
\begin{enumerate}
\item every $p(x)\in S_{<\omega}(A)$ is realised in $\monster$, and
\item if $a\equiv_A b$, then there is $f\in \aut(\monster/A)$ such that $f(a)=b$.
\end{enumerate}
\begin{rem}
  By compactness and saturation, every infinite definable subset of $\monster^n$ is not small.
\end{rem}
Let us look at topological proof of a statement not involving topology.\footnote{The proposition above may also be proven with an argument similar to that we used for \Cref{thm:qeqfpt}. Compare the lengths of the two proofs.}
\begin{pr}\label{pr:flasoverAtypes}
  Let $\phi(x)$ be an $L(\monster)$-formula. Then $\phi(x)$ is equivalent to some $L(A)$-formula if and only if whenever $a,b\in \monster^{\abs x}$ and  $a\equiv_A b$ then $\models \phi(a)\coimplica \phi(b)$.
\end{pr}
\begin{proof}
Left to right is obvious, so let us prove right to left.
  
 Let $\pi\from S_x(\monster)\to S_x(A)$ be the restriction function.  Consider the clopen subsets $[\phi(x)]$ and $[\neg\phi(x)]$ of $S_x(\monster)$. Since their union is $S_x(\monster)$, and since $\pi$ is surjective, $\pi([\phi(x)])\cup \pi([\neg\phi(x)])=S_x(A)$. Now, $\pi$ is a continuous function between compact Hausdorff spaces, hence it is closed. But our assumptions and $\abs A^+$-saturation of $\monster$ imply that $\pi([\phi(x)])\cap \pi([\neg\phi(x)])=\emptyset$, hence $\pi([\phi(x)])$ and $\pi([\neg\phi(x)])$ are closed sets which are the complement of each other, and are therefore clopen. We conclude by \Cref{exr:clopen}.
\end{proof}
 

Strong homogeneity tells us that types over $A$ are the same as orbits over $A$. But what about formulas?
\begin{pr}\label{pr:adfleafixed}
  Let $X\subseteq \monster^n$ be a definable subset of $\monster$. Then $X$ is fixed setwise by every element of $\aut(\monster/A)$ if and only if  $X$ is $A$-definable.
\end{pr}
\begin{proof}
  Right to left is obvious.
For left to right  we need to show that, if $\phi(x)$ is a formula defining $X$, then $\phi(x)$ is equivalent to some $L(A)$-formula.  If not, by \Cref{pr:flasoverAtypes} there are $a\equiv_A b$ with $a\models \phi(x)$ and $b\models \neg \phi(x)$. Let $f\in \aut(\monster/A)$ be such that $f(a)=b$. Then $f$ does not fix $X$ setwise, against our assumptions.
\end{proof}
 In \Cref{sec:tpeg}  we used that two elements were conjugated under $\aut(M/A)$ to show that they had the same type over $A$. Now that we work in a monster $\monster$, by strong homogeneity we also have the converse, and we may freely confuse types over small sets $A$ with orbits of $\aut(\monster/A)$. Let us a look at this in action by using an ``automorphism argument'' to prove some statement which does not involve automorphisms.
\begin{defin}\*
We say that   $a\in \monster^{\abs a}$ is
\begin{enumerate}
\item \emph{definable over $A$} iff $\set{a}$ is $A$-definable; in
  other words, iff there is an $L(A)$-formula $\phi(x)$ such that
  $\models \phi(a)$ and $\phi(x)$ has only one solution;
\item \emph{algebraic over $A$} iff $a$ belongs to a finite  $A$-definable set;  in other words, iff there is an $L(A)$-formula $\phi(x)$ such that $\models \phi(a)$ and $\phi(x)$ has only finitely many solutions. 
\end{enumerate}
We denote by $\dcl(A)$ (respectively, $\acl(A)$) the set of points of $\monster^1$ definable (respectively, algebraic) over $A$.
\end{defin}
So $\dcl(A)$ is the union of all $A$-definable singletons (in $\monster^1$) and $\acl(A)$ the union of all finite $A$-definable sets (again, subsets of $\monster^1$).
\begin{rem}\label{rem:algtknows}
If $\phi(x)$ has exactly $m$ solutions, then there is a sentence in  $\ed(\monster)$ saying this. So if $b\in \acl(A)$ and $b\equiv_A c$, then $c\in\acl(A)$. In particular:
\begin{enumerate}
\item if $b\in \acl(A)$, then $\tp(b/A)$ has only finitely many realisations in $\monster$ (if $b\in \dcl(A)$, then ``finitely many'' is actually ``only one''), and they need to be contained in every $M$ with $A\subseteq M\preceq \monster$;
\item $\acl(A)$ is fixed by $\aut(\monster/A)$ setwise (and, trivially, $\dcl(A)$ is fixed by $\aut(\monster/A)$ pointwise).
\end{enumerate}
\end{rem}

\begin{rem}\label{rem:dclaclorbits}
By strong homogeneity,  $a\in \dcl(A)$ if and only if $a$ is fixed by $\aut(\monster/A)$, and $a\in \acl(A)$ if and only if the orbit of $a$ under $\aut(\monster/A)$ is finite. 
\end{rem}
Here is the promised automorphism argument.
\begin{pr}
The set $\acl(A)$ is the intersection of all models containing $A$. More precisely,  $\acl(A)$ equals the intersection of all $M\smallprec \monster$ with $M\supseteq A$.
\end{pr}
\begin{proof}
  The inclusion $\subseteq$ follows from \Cref{rem:algtknows}. Suppose $b\notin \acl(A)$. Then $\tp(b/A)$ has infinitely many realisations in $\monster$, and by compactness and saturation they cannot all be contained in a fixed small model, so there is $M'\smallprec \monster$ which does not contain some $b'\equiv_A b$. Let $f\in \aut(\monster/A)$ be such that $f(b)=b'$. Then $M\coloneqq f\inverse(M')$ does not contain $b$.% Since $f$ fixes $\acl(A)$ setwise by \Cref{rem:algtknows}, we have the conclusion.
\end{proof}

While we are here, let us also observe this.

\begin{pr}
  The operators $\dcl$ and $\acl$ are closure operators.
\end{pr}
\begin{proof}
  We prove this for $\acl$, the proof for $\dcl$ is similar (and easier). Clearly, $\acl$ is \emph{extensive}, that is, $A\subseteq \acl(A)$, and \emph{monotone}, that is, if $A\subseteq B$ then $\acl(A)\subseteq \acl(B)$. We need to prove that $\acl$ is \emph{idempotent}, that is, $\acl(\acl(A))=\acl(A)$. The inclusion $\supseteq$ follows from extensivity and monotonicity. For the other inclusion, we use \Cref{rem:dclaclorbits}. Let $a\in \acl(\acl(A))$, as witnessed by an $L(A)$-formula $\phi(x,w)$ and parameters $b\in \acl(A)$. The fact that $\phi(x,b)$ has finitely many solutions is a property of $\tp(b/A)$, so if $c\equiv_A b$ then $\phi(x,c)$ still has finitely many solutions. Since $b\in \acl(A)$, there are only finitely many $c\equiv_A b$, and it follows that the $\aut(\monster/A)$-orbit of $a$ is contained in the finite definable set $\bigvee_{c\equiv_A b} \phi(x,c)$.
\end{proof}
Warning: if $\phi(x)$ is an  $L(A)$-formula with finitely many solutions satisfied by $b$, then it is not in general true that all solutions of $\phi(x)$ will realise $\tp(b/A)$.  In the proof above, we only needed one inclusion. Anyway, for a careful choice of $\phi(x)$, this is true: you can  prove it as a warm up for the next chapter.
\begin{exr}
  Suppose $b\in \acl(A)$. Show that there is an $L(A)$-formula $\phi(x)$ isolating $\tp(b/A)$, that is, such that in $S_x(A)$ we have $[\phi(x)]=\set{\tp(b/A)}$.
\end{exr}
\chapter{Realising few types}
\section{Isolated types}
In the previous chapter, we built models realising many types. But what if we want to build a model where a certain type, maybe even a partial one, is not realised? Certain types must always be realised: think of the partial type $\set{x=x}$, or of the complete\footnote{As usual, up to deductive closure.} type $\set{x=0}$ in $\mathsf{ACF}_p$. On the other hand, in $\mathsf{ACF}_0$, say, the generic type over $\mathbb Q$ is not realised in $\mathbb Q^\mathrm{alg}$. Why can this type be \emph{omitted}?
\begin{defin}
  A model $M$ \emph{omits} a partial type $\pi(x)$ iff there is no $a\in M$ such that $M\models \pi(a)$.
\end{defin}
Let us begin to clarify the matter by answering \Cref{question:isolated}. If $p(x)\in S_x(A)$ is isolated, it means that there is $\phi(x)\in L(A)$ such that  $\set{p(x)}=[\phi(x)]$. In other words, any realisation of $\phi(x)$ automatically realises the whole of $p(x)$. This has the following consequence.
\begin{pr}\label{pr:isnonom}
If $p(x)\in S_x(A)$ is isolated, then every model containing $A$ realises $p$.
\end{pr}
\begin{proof}   If $\phi(x)$ isolates $p(x)$, then in particular $\phi(x)$ is consistent, which means that $\models \exists x\; \phi(x)$. Every model containing $A$ also contains the parameters appearing in $\phi(x)$, so it must contain a witness $a$ to that existential quantifier, hence $a\models p(x)$.
\end{proof}
So there is no hope to omit isolated types. What about the rest?  We will deal with this shortly, but first let us finish answering  \Cref{question:isolated}.

\begin{co}
If $p(x)\in S_x(M)$ is isolated, then there is $m\in M$ with $p(x)=\set{x=m}$.
\end{co}
\begin{proof}
   $M$ is clearly a model containing $M$, and the conclusion follows easily from the previous proposition.
 \end{proof}
We already said that realised types are always isolated, and over a model isolated types are realised. You may wonder if this characterises models. The answer is negative.
\begin{exr}
  Find an example where all isolated types in $S_x(A)$ are realised, but $A$ is not a model.
\end{exr}
 Nevertheless, we \emph{can} characterise models in a slightly different fashion.
\begin{pr}\label{pr:charmodels}
For $A\subseteq\monster$,  the following are equivalent.
\begin{enumerate}
\item The set of realised types is dense in $S_1(A)$.
\item $A\preceq \monster$.
\end{enumerate}
\end{pr}
\begin{proof}
We already saw  in point~\ref{point:modreal} of \Cref{rem:propSn} that one direction holds, even for $n$-types, with $n$  arbitrary. For the converse, we apply the Tarski--Vaught test: saying that $\monster\models \exists x\; \phi(x)$ means that $[\phi(x)]$ is nonempty; by assumption, in $S_x(A)$, the set $[\phi(x)]$ contains a realised type, that is,  there is $a\in A$ such that $\monster\models \phi(a)$.
\end{proof}
\section{Omitting types}
If $p(x)\in S_x(A)$ is not isolated, can we omit it? In general, the answer is no. If you insist on $T$ being complete, there is a slightly involved counterexample which we will see later, \Cref{eg:fuhrken}. If you are happy to see a partial type $\pi(x)$ over $\emptyset$ in an \emph{incomplete} theory $T$ that cannot be omitted, even though there is no $\phi(x)\in L(\emptyset)$ with $\phi(x)\proves \pi(x)$, here is the standard example.
\begin{eg}
  Let $L=\set{c_i\mid i<\aleph_1}\cup \set{d_j\mid j<\omega}$, and let $T$ say that the  $c_i$ are pairwise distinct. Then $\pi(x)=\set{x\ne d_j\mid j<\omega}$ is realised in every model, but it is not implied by any $\phi(x)$.
\end{eg}
\begin{proof}
  The first part is clear. For the second part, suppose $\phi(x)\proves \pi(x)$. Since $\phi(x)$ can only mention finitely many $d_j$, there is some $d_{j_0}$ it does not mention. It is then easy to construct  $M\models T$ with $M\models \phi(d_{j_0})$, and we are done.
\end{proof}
Nevertheless, if we are working over a \emph{countable} language, then nonisolated types over $\emptyset$ can be omitted. This follows from the Omitting Types Theorem, proven below. What about countable $L$, but over uncountably many parameters? Again, \Cref{eg:fuhrken} below shows that even $\aleph_1$ parameters may be too much.

Long story short, we need to assume that both $L$ and $A$ are countable. So we may as well throw $A$ into $L$, that is, pass to $L(A)$, and just work over $\emptyset$. Since we are already over the empty set, we may work in a bit more generality and talk of omitting partial types in incomplete theories. Type spaces over $\emptyset$ still make sense, but now $S_0(\emptyset)$ may have more than one point, and we are not allowed to use $\monster$ (its theory determines a completion!).\footnote{Yes, I know, we just started using it. It will come back soon, I promise.} 

Let us give a name to ``there is a consistent $\phi(x)$ such that $\phi(x)\proves \pi(x)$''. If $\pi(x)$ is complete, this already has a name: $\pi(x)$ is isolated. In fact, even for partial $\pi(x)$, this already has a name:
\begin{rem}
There is some consistent $\phi(x)$ such that $\phi(x)\proves \pi(x)$ if and only if the associated closed set $[\pi(x)]$ of $S_x(\emptyset)$ has nonempty interior.
\end{rem}
\begin{thm}[Omitting Types Theorem]
Let $T$ be a possibly incomplete theory in a countable $L$, and $\set{\Phi_n(x^n)\mid n<\omega}$ a family of partial types over $\emptyset$, where each $\abs{x^n}$ is finite. If every $[\Phi_n(x^n)]$ has empty interior, then there is a countable $M\models T$ omitting every $\Phi_n(x^n)$.
\end{thm}
The proof of this will be slightly intricate, and will need bookkeeping rather than magic: omitting types is  more difficult than realising them and, as we saw, sometimes it is so difficult it cannot even be done. According to ``a not well-known model theorist'' quoted in~\cite{sacks}, \emph{``Any fool can realise a type, but it takes a model theorist to omit one.''}
\begin{proof}
  Let $C$ be a countable set of fresh constants.  Fix the following.
\begin{enumerate}
\item An enumeration $(\sigma_i\mid i<\omega)$ of all $L(C)$-sentences.
\item An enumeration with repetitions $(c^i\mid i<\omega)$ of the set $C^{<\omega}$ of all finite tuples of constants from $C$, with the property that every element of $C^{<\omega}$ is listed infinitely many times (build it by using your favourite bijection $\omega\to \omega^2$).
\end{enumerate}
We start with $T_0=T$, and inductively build and increasing chain of theories $(T_i\mid i<\omega)$ with the following properties.
\begin{enumerate}[label=(\alph*)]
\item Each $T_i\setminus T$ is finite; that is, at each stage we add only finitely many sentences.\footnote{Recall that the construction  only has $\omega$ steps. Also, of course, here we do \emph{not} take deductive closures of our theories.} This  will be needed to keep the construction going.
\item $T'\coloneqq\bigcup_{i<\omega} T_i$ is complete. 
\item $T'$ is a \emph{Henkin theory}: for every $L(C)$-formula $\phi(y)$ with $\abs y=1$ there is $c\in C^1$ such that  $T'\proves (\exists y\; \phi(y))\implica \phi(c)$.
\item\label{point:omits} For all $n<\omega$ and all $c\in C^{\abs{x^n}}$ there is $\phi(x^{n})\in \Phi_n(x^{n})$ such that $T'\proves \neg \phi(c)$.
\end{enumerate}
It is (lengthy but) easy to prove that a complete Henkin $L(C)$-theory $T'$ has a model $M$ where every $m\in M$ is the interpretation of a constant symbol in $C$: you take as $M$ the quotient of $C$ by the equivalence relation ``$T'\proves c=c'$'', use completeness to decide the interpretations of the symbols of $L$, and then check that everything is well-defined and works.\footnote{If you have never seen this construction, you may want to do this as an exercise. Otherwise, you can see the details being spelled out in~\cite[Lemma~2.2.3]{tent-ziegler}, for instance.} Therefore, if we manage to carry out the construction, we are done: by point~\ref{point:omits}, (the reduct to $L$ of ) such an $M$ (which is clearly countable) will omit every $\Phi_n(x^n)$.

Before the construction, for each $c\in C^{<\omega}$, write down a list $\ell(c)$ of all $\Phi_n(x^n)$ with $\abs{x^n}=\abs c$, of order type a natural number or $\omega$. During the construction, we will cross them out one by one.\footnote{We will keep referring to $\ell(c)$ as $\ell(c)$ even after crossing out some elements, computer science-style. If you prefer an extra index to a slight abuse of notation, add an index $\ell_k(c)$, say that this ``list'' is an function with domain a subset of $\omega$, and instead of saying that ``$d$ is crossed out from the list'' say that $\ell_{k+1}(c)\coloneqq \ell_k(c)\restr (\dom(\ell_k)\setminus(\ell_k(c))\inverse(\set{d}))$. But I think this proof already has enough indices, so I have relegated $k$ to this footnote.
}
The $i+1$-th stage of the construction goes as follows. 
\begin{enumerate}[label=(\roman*)]
\item Look at $\sigma_i$, from the fixed enumeration of all $L(C)$-sentences. Since inductively $T_i$ is consistent, the union of $T_i$ with at least one between $\sigma_i$ or $\neg\sigma_i$ is still consistent; choose one between the two which is consistent with $T_i$, and call it $\sigma$. This will be added to $T_{i+1}$ to ensure that $T'$ is complete.
\item If $\sigma$ is of the form $\exists y\; \phi(y)$, since by inductive assumption we only added finitely many formulas to $T$, there is $c\in C$ which we have  not used so far. Let $T_i'\coloneqq T_i\cup \set{\sigma}\cup \set{(\exists y\; \phi(y))\implica \phi(c)}$. If $\sigma$ is not of that form, just set $T_i'\coloneqq T_i\cup \set{\sigma}$. This will ensure that $T'$ is Henkin. Since $c$ had not been mentioned yet, $T_i'$ is easily seen to be consistent.
\item  Look at $c^i$ from our enumeration with repetitions of $C^{<\omega}$. Look at the list $\ell(c^i)$, and let $\Phi_n(x^n)$ be the first one which we have not crossed out yet. Again, inductively we only added finitely many formulas to $T$. Let $\psi(c')$ be their conjunction, where $c'$ is the tuple of all constants in $C$ we mentioned so far, (including the constants in $c^i$) so $T_i'=T\cup \set{\psi(c')}$. Write $c'\coloneqq (c^i,\tilde c)$. Because $[\Phi_n(x^n)]$ has empty interior, we have $T\cup \set{\exists z\; \psi(c^i,z)}\centernot \proves \Phi_n(c^i)$, and by \Cref{lemma:constvartp}  $T\cup {\psi(c')}\centernot \proves \Phi_n(c^i)$. Therefore, there must be $\phi(x^n)\in \Phi_n(x^n)$ such that $T\cup \set{\psi(c')}\cup \set{\neg \phi(c^i)}$ is consistent. Set $T_{i+1}\coloneqq T_i'\cup \set{\neg \phi(c^i)}$, and cross $\Phi_n(x^n)$ out of $\ell(c^i)$. Note that $T_{i+1}\setminus T_i$ has size at most $3$,  so inductively  $T_{i+1}\setminus T$ is finite. 
\end{enumerate}
Fix  $c\in C^{<\omega}$. Since $c$ appears as $c^i$ for infinitely many $i$, and the list $\ell(c)$ is of order type a natural number or $\omega$, every $\Phi_n(x^n)$ with $\abs{x^n}=\abs c$ will eventually get crossed out of  $\ell(c)$,   hence point~\ref{point:omits} is taken care of.  Congratulations, you are now a model theorist!
\end{proof}
By the way, the ``countable'' in the statement may have been added a posteriori, without knowing anything about the proof, using  L\"owenheim--Skolem, because of the following easy observation:
\begin{rem}\label{rem:shrink}
If $N$ omits $p$ and $M\preceq N$, then $M$ omits $p$.
\end{rem}

\begin{rem}
What about the converse of the Omitting Types Theorem?  If $T$ is complete, it holds: we have already shown in \Cref{pr:isnonom} that isolated types cannot be omitted, and a similar proof shows that neither can partial types with nonempty interior.  On the other hand, if $T$ is not complete,   $\exists x\; \phi(x)$ may be true in some $M\models T$ and false in some $N\models T$; even if $\phi(x)$  isolates a type, it will be omitted in $N$.
\end{rem}
But what about omitting an \emph{arbitrary} family of, say,  nonisolated complete types in a complete theory? This is too much to hope for:
\begin{exr}
Find a complete theory $T$ with infinite models such that no element of $S_1(\emptyset)$ is isolated.\footnote{If you want to do this exercise, do it now, since a solution is buried in the next few pages. Hint: a solution is also buried in the previous ones.}
\end{exr}
 If $a\in M\models T$, with $T$ as above,  then $\tp(a/\emptyset)$ is clearly not omitted. But ok, the set of types we tried to omit here was clearly too fat, namely, it was the whole type space. \emph{Meagre} sets can instead be omitted.
\begin{co}[Omitting Types Theorem on steroids]
Let $T$ be a possibly incomplete theory  in a countable $L$. For every $m\in \omega$, let $X_m$ be a meagre subset of $S_m(\emptyset)$. Then there is a countable  $M\models T$ omitting every element of every $X_m$.
\end{co}
Recall that $X$ is \emph{meagre} iff it is contained in a countable union of closed sets, each with empty interior. Recall also that compact Hausdorff spaces are in particular locally compact, and that the Baire Category Theorem holds for locally compact Hausdorff spaces: meagre subsets of $S_n(\emptyset)$ have empty interior, and no nonsense is happening here.
\begin{proof}
 By assumption, for each $n$ there are partial types $\Phi_{m,n}(x^{m,n})$ with empty interior such that $X_m\subseteq \bigcup_{n<\omega}[\Phi_{m,n}(x^{m,n})]$. If a model $M$ omits all $\Phi_{m,n}(x^{m,n})$, then \emph{a fortiori} $M$ also omits all the elements of each $X_m$. Now choose your favourite bijection $\omega^2\to \omega$ and apply the Omitting Types Theorem.
\end{proof}
For a more topological proof, see~\cite[Section~10.1]{poizat}. But now it is time for counterexamples.
\begin{eg}
The converse of the Omitting Types Theorem on steroids is false, even for complete theories. Namely, there are non-meagre sets that can be omitted. In fact, even comeagre ones (that is, with meagre complement). For example, consider $T_{2^{<\omega}}$, and let $Y\subseteq S_1(\emptyset)$ be the set of types corresponding to eventually constant elements of $2^{\omega}$. This is clearly countable, and no point of this space is isolated, so $Y$ is meagre. Its complement $X\coloneqq Y^\complement$ is by definition  comeagre. Since $Y$ intersects every clopen set in infinitely many points (there are infinitely many eventually constant functions with a given finite restriction!), it is easy to see from the axioms of $T_{2^{<\omega}}$ that $Y$ can be made into a model of $T_{2^{<\omega}}$ omitting all types in $X$.
\end{eg}

\begin{eg}
  We cannot omit partial types in infinitely many variables, not even countably many.
In $\mathsf{DLO}$, let $x=(x_i\mid i<\omega)$ and let $\Phi(x)\coloneqq\set{x_{i+1}<x_i\mid i<\omega}$. Clearly, $\Phi(x)$ is not implied by any single formula, for example because a single formula can only mention finitely many variables. Basically by definition, $M$ omits $\Phi(x)$ if and only if it is well-ordered. But of course no $\mathsf{DLO}$ is well-ordered.
\end{eg}

The counterexample below, from~\cite{fuhrken}, is slightly involved, so I was about to just cite it, but I am not aware of any source describing it in English.
\begin{eg}\label{eg:fuhrken}
  There is a complete $T$, in a language $L$ with $\abs L=\aleph_1$, containing a partial type over $\emptyset$ with empty interior that cannot be omitted.
\end{eg}
\begin{proof}
Start with a language $L_0$ with three sorts\footnote{If you have skipped \Cref{sec:multisort}, this could be a good point to read it. Everything can be done with one sort and predicates, but then you need to say every time that certain predicates partition the universe, that relations are trivial outside of their intended domain, etc.} $X,Y,F$ and a relation symbol  $R$ of arity $X\times Y\times F$. Write an $L_0$-theory saying the following.
\begin{enumerate}[label=(\roman*)]
\item Each of $X, Y, F$ is infinite.
\item For each $f\in F$, the formula  $R(x,y,f)$ defines the graph of a bijection between $X$ and $Y$.
\item\label{point:findiff} For every $f\in F$, and every bijection $\gamma\from\from X\to Y$ which differs from $R(x,y,f)$ only in finitely many points, there is $g\in F$ such that $R(x,y,g)$ is the graph of $\gamma$ (of course you will need one axiom for every $n$, where $n$ is the size of the set where these functions differ).
\end{enumerate}
Now do the following:
\begin{enumerate}
\item Fix a countable model $M_0$ of the theory above.
\item Enlarge $L_0$ to $L_1$ by adding constants $\set{a_i\mid i<\omega}$ naming all elements of $X(M_0)$. Interpret these in the obvious way, that is, consider $(M_0)_{X(M_0)}$. Call it $M_0'$.
\item Take an elementary extension $M_1\succeq (M_0)_{X(M_0)}$ such that $\abs{Y(M_1)}=\aleph_1$.
\item Enlarge $L_1$ to $L$ by adding constants $\set{b_j\mid j<\aleph_1}$ naming every element of $Y(M_1)$.
\item Let $M$ be the natural expansion of $M_1$ to an $L$-structure (that is, $M=(M_1)_{Y(M_1)}$), and take as $T$  the complete $L$-theory of $M$.
\end{enumerate}
Working in $M$,  consider $\pi(x)\coloneqq\set{x\ne a_i\mid i<\omega}$, where $x$ is a variable of sort $X$. This is a partial type over $\emptyset$ only using $L_1$-formulas.  Clearly, $\pi(x)$ cannot be omitted in any $N\equiv M$, since $F$ contains witnesses that $X$ and $Y$ are in bijection and $Y$ is uncountable. To conclude, we need to show that there is no consistent $L$-formula implying it. Suppose there is.  Recall that $L$ is just $L_1(B)$, where $B=\set{b_j\mid j<\aleph_1}$,  and write such a formula as $\phi(x, b')$, where $b'$ is a suitable finite tuple of the $b_j$ with no repetitions and $\phi(x,y)$ is an $L_1$-formula. Since $\phi(x, b')$ is consistent, it  has a solution, and since $\phi(x,b')\proves \pi(x)$, every solution is different from each $a_i$. 
Let $c\in B^{\abs{b'}}$ be arbitrary. By staring long enough at axiom~\ref{point:findiff}, you can convince yourself that the map sending $b'_\ell\mapsto c_\ell$ extends to an automorphism of $M_1$ which fixes $X(M_1)$ pointwise.\footnote{The automorphism is of $M_1$, not of $M$! In $M$, the $b_j$ are named, so automorphisms must fix them.} This implies that $M\models\forall x\;\phi(x,b')\coimplica \phi(x,c)$. Since  $(b_j\mid j<\aleph_1)$ is a list of \emph{all} elements of $Y(M)$, it is easily shown that $M\models\forall x\; \phi(x,b')\coimplica \psi(x)$, where $\psi(x)\coloneqq\exists y\; (\phi(x,y)\land \theta(y))$, for $\theta(y)$ the formula saying that the $y_i$ are pairwise distinct (as we chose the $b_i'$ to be). Now, $\psi(x)$ is an $L_1(\emptyset)$-formula, satisfied by some point of $X$ but by no $a_i$, and implying the $L_1(\emptyset)$-partial type $\pi(x)$. All this information never mentions the $b_j$, so it is written in $\Th(M_1)$, and by elementarity also in $\Th((M_0)_{X(M_0)})$. This is clearly nonsense, since in $M_0$ every point of $X$ is one of the $a_i$.
\end{proof}


All these counterexamples may make you think that in uncountable setting you should really give up thinking about omitting types. You shouldn't. There \emph{is} a version of the Omitting Types Theorem for uncountable $L$: a partial type which cannot be implied by less than $\abs L$ formulas can be omitted, see~\cite[Theorem~2.2.19]{changkeisler}. You can show it an exercise by adapting the proof of the ``vanilla'' Omitting Types Theorem.
\section{Prime models}
We go back to the usual setting of complete $T$ with infinite models. We fix a monster model $\monster$ and work inside it.
\begin{defin}
If $M\models T$ and $A\subseteq M$, we call $M$  \emph{prime over $A$} iff it embeds elementarily over $A$ in every model containing $A$, that is, in every model of the $L(A)$-theory $\Th(M_A)$. We call $M$ \emph{prime} iff $M$ is prime over $\emptyset$.
\end{defin}
What can we say about prime models?
\begin{rem}\label{rem:primels}
By L\"owenheim--Skolem, if $M$ is prime over $A$, then  $\abs M\le\abs L+\abs A$.
\end{rem}
In general, the bound may be strict.
\begin{eg}
Let $X$ be your favourite infinite set.  Equip $X$ its full structure, that is, add a predicate symbol for every subset of every $X^n$, and make $X$ into a structure in this language in the obvious way. Clearly, $X$ is a prime model of its theory, but the language has cardinality $2^{\abs X}$.
\end{eg}
The Omitting Types Theorem allows us to say something else very quickly.
\begin{defin}
  We call $M$ \emph{atomic over $A$} iff the only $p(x)\in S_x(A)$ which are realised in $M$ are isolated. We say just \emph{atomic} instead of \emph{atomic over $\emptyset$}.
\end{defin}
\begin{pr}
  If $M$ is prime over $A$, and both $L$, $A$ are countable, then $M$ is atomic over $A$.
\end{pr}
\begin{proof}
Suppose that $a\in M^n$ is such that $\tp(a/A)$ is nonisolated. Since everything is countable, by the Omitting Types Theorem there is a countable $N$ omitting $\tp(a/A)$. Good luck embedding $M$ (elementarily) into $N$.
\end{proof}
Of course, we may have given the definitions of primality and atomicity the other way around, by defining first ``prime'' and ``atomic'', and then introducing parameters by adding them to the language. In particular, if $A$ is countable, we may pretend to be working over $\emptyset$. Nevertheless, keeping track of parameters is important, since it allows us to state things like the following.
\begin{pr}[Monotonicity and transitivity of isolation]\label{pr:montransisol}
The type  $\tp(ab/A)$ is isolated if and only if $\tp(b/A)$ and $\tp(a/Ab)$ are isolated.
\end{pr}
\begin{proof}
  Left to right, suppose $\phi(x,y)$ isolates $\tp(ab/A)$. This means that whenever $\psi(x,y)$ is in the latter, then  $\models \forall x,y\; (\phi(x,y)\implica \psi(x,y))$. This implies two things. Firstly, that  $\models \forall x\;\phi(x,b)\implica \psi(x,b)$, and since $\psi(x,y)\in \tp(ab/A)$ is arbitrary, this implies that $\phi(x,b)$ isolates $\tp(a/Ab)$.  Secondly, in the special case where $\psi(x,y)$ is of the form $\theta(y)$, that is, it does not mention $x$, it implies that $\models\forall y\;(\exists x\; \phi(x,y))\implica \theta(y)$. Therefore $\exists x\; \phi(x,y)$ isolates $\tp(b/A)$.

  Right to left, observe that if $\phi(x,y)\in L(A)$ is such that  $\phi(x,b)$ isolates $\tp(a/Ab)$, then this  is written in $\tp(b/A)$, in the form of formulas the likes of $    \forall x\; (\phi(x,y)\implica \chi(x,y))$.
If additionally, as we are assuming,  $\psi(y)$ isolates $\tp(b/A)$, then it follows easly that $\psi(y)\land \phi(x,y)$ isolates $\tp(ab/A)$.
\end{proof}
\begin{co}\label{co:nfmtph}
  Suppose that $M$ is atomic over $A$. Then, for every finite tuple $b\in M$, we also have that $M$ is atomic over $Ab$.
\end{co}
\begin{proof}
Fix  $a\in M^n$. By assumption, $\tp(ab/A)$ is isolated, and we conclude by \Cref{pr:montransisol}.
\end{proof}
\begin{thm}\label{thm:primat}
Let $L$ be countable.
\begin{enumerate}
\item Up to isomorphism there is at most one atomic countable model of $T$.
\item Countable atomic models are $\omega$-strongly homogeneous.
\item A countable model is atomic if and only if it is prime.
\item A model is prime if and only if it is atomic and countable.
\end{enumerate}
\end{thm}
\begin{proof}\*
  Let $M$, $N$ be countable atomic models. The empty function $M\to N$ is elementary because $T$ is complete, so we may fix enumerations of $M$, $N$ of order type $\omega$ and start to build an isomorphism by back-and-forth. Use the notation $f_n\from A_n\to B_n$ for the partial elementary function built at stage $n-1$ (surjective on $B_n$).  In the ``forth'' part (and as usual, the ``back'' is symmetrical), at stage $n$, say we are presented with $a\in M$.  Look at $\tp(a/A_n)$. Since $a$ comes from the atomic model $M$, this type is isolated, say by $\phi(x,A_n)$, with $\phi(x,y)\in L(\emptyset)$. Now remember that $A_n$ is a finite tuple, and observe that, as observed in the previous proof, the fact that  $\phi(x,A_n)$ isolates a complete type over $A_n$ is written in $q(y)\coloneqq\tp(A_n/\emptyset)$.
  Inductively $A_n\equiv B_n$, hence the type obtained from $\tp(a/A_n)$ by replacing each element of $A_n$ with the corresponding element of $B_n$ via $f_n$ is isolated. It must be therefore realised in $N$, and the back-and-forth can continue, proving the first part.

For second part, suppose $a_i\mapsto b_i$ is partial elementary map $M\to M$ with finite domain. Add constants $c_i$ to the language, and expand $M$ to $M_0$ by interpreting $c_i$ as $a_i$, and to $M_1$ by interpreting $c_i$ as $b_i$. By \Cref{co:nfmtph} $M_0$ and $M_1$ are still atomic, and we conclude by applying first part.

  For the third part, we already know one implication; the converse is proven observing that arguing as above but only going ``forth'' allows to embed a countable atomic model in an arbitrary one.

  Finally, the fourth part is immediate from the third one and \Cref{rem:primels}.
\end{proof}
Hence, in the countable case, prime models are unique, but we still haven't said anything about their existence. As you probably expect, we will end this section by proving a big theorem showing that every complete countable theory has a prime model. Just kidding, this is blatantly false, and you already know a counterexample:
\begin{rem}
Since there are countable theories with no isolated types over $\emptyset$, atomic models, and a fortiori prime ones, need not always exist.
\end{rem}
Which theories have prime models then, and over which sets? When are they unique? We have already seen some partial answers, and will see more below, but you should know that we are taking a peek at a rabbit hole that is deeper than you probably expect. When everything is countable, anyway, we already have the tools to prove a very satisfying topological characterisation. Again, if we have countably many parameters we may (and will) throw them in the language and work over $\emptyset$.
\begin{thm}\label{thm:exprimemodels}
  Let $L$ be countable. The following are equivalent.
  \begin{enumerate}
  \item $T$ has a prime model.
  \item $T$ has an atomic model.
  \item For every $n$, the set of isolated $n$-types is dense in $S_n(\emptyset)$
  \end{enumerate}
\end{thm}
\begin{proof}
  The first two statements are equivalent by \Cref{thm:primat}, L\"owenheim--Skolem, and \Cref{rem:shrink}. Suppose now that $M$ is atomic, and let $\phi(x)\in L(\emptyset)$ be consistent. Since $M$ is a model, there is $a\in M^{\abs x}$ with $\models \phi(a)$. But then $\tp(a/\emptyset)$ is isolated and belongs to $[\phi(x)]$.

  Conversely, suppose that isolated types are dense. For $n\in \omega$, consider the set of $L(\emptyset)$-formulas
  \[
    \Phi_n(x_{<n})\coloneqq\set{\neg \phi(x_{<n})\in L(\emptyset) \mid \phi(x_{<n})\text{ isolates a complete $n$-type}}
  \]
  If we can find a model $M$ omitting all $\Phi_n(x_{<n})$, then we are done: a tuple $a\in M^n$ cannot satisfy $\Phi_n(x_{<n})$, hence by definition we must have $\models \phi(a)$ for some $\phi(x_{<n})$ isolating a complete type. Now, some of the $\Phi_n$ will be inconsistent, so will be automatically omitted. If we show that all the other ones have empty interior, then we can invoke the Omitting Types Theorem and conclude. So suppose that for some $n$ the closed set  $[\Phi_n]\subseteq S_n(\emptyset)$ has nonempty interior, that is, there is $\psi(x_{<n})\proves \Phi_n(x_{<n})$. By hypothesis, $[\psi(x_{<n})]$ contains an isolated type, say isolated by $\phi(x_{<n})$, so in particular $\phi(x_{<n})\proves \psi(x_{<n})$. By definition of $\Phi_n(x_{<n})\proves \neg \phi(x_{<n})$ and by combining all of the above we get to $\phi(x_{<n})\proves \neg \phi(x_{<n})$, so $[\phi(x_{<n})]$ is empty and cannot contain a type, let alone isolate it.
\end{proof}
Even in the absence of countability (in particular, we cannot use the Omitting Types Theorem) density of isolated types over \emph{every} set is an assumption strong enough to grant prime models.
\begin{thm}\label{thm:itaadipmae}
  Suppose that, for every $A$, in $S_1(A)$, the isolated points are dense. Then, for every $A$, there is a prime model over $A$.
\end{thm}
\begin{proof}
Let $\mu\coloneqq\abs A+\abs L$. By counting isolating formulas, we see that $S_1(A)$ contains at most $\mu$ isolated types; list them as $(p_i\mid i<\mu)$, by possibly repeating some of them if necessary. Inductively, define a chain $(A_i\mid i<\mu)$ as follows.
\begin{enumerate}
\item Start with $A_0\coloneqq A$.
\item If $A_i$ realises $p_i$, let $A_{i+1}\coloneqq A_i$. Otherwise, consider the projection map $\pi\from S_1(A_i)\to S_1(A)$. Since $p_i$ is isolated, $\pi\inverse(\set{p_i})$ is open. By assumption, it contains an isolated point, call it $q_i$. Note that $q_i$ extends $p_i$. Let $a_i\models q_i$, and set $A_{i+1}\coloneqq A_ia_i$.
\item At limit stages, take unions.
\end{enumerate}
Set $B_0\coloneqq \bigcup_{i<\mu}A_i$.
\begin{claim}
  If $N\supseteq A$, then there is $B_0'\subseteq N$ with $B_0'\equiv_A B_0$.\footnote{Yes, we are looking at a type in infinitely many variables.}
\end{claim}
\begin{claimproof}
This is another ``only forth'' argument: we build an elementary map $B_0\to N$ by induction on $i$, the same $i$ we used to build $B_0$. The only nontrivial case is when $A_{i+1}$ was obtained by adding $a_i$ to $A_i$. Inductively, we may assume to have already embedded $A_i$ into $N$, say as $A_i'$. Translate $q_i$ into $q_i'\in S_1(A_i')$ according to this embedding, note that it is still isolated, and take $a_i'\in N$ realising it to continue the embedding.
\end{claimproof}
Note that $\abs{B_0}\le \mu$ and iterate the construction, obtaining, for every $j\in \omega$, some $B_{j+1}$ realising all isolated types in $S_1(B_j)$ and such that whenever $B_j\subseteq N$, then $B_{j+1}$ can be embedded in $N$ over $B_j$, in the same sense as above.  Therefore,  $M\coloneqq\bigcup_{j<\omega} B_j$ can be embedded over $A$ in any $N\supseteq A$, and we only need to show that $M$ is a model. By \Cref{pr:charmodels}, it is enough to show that the realised points are dense in $S_1(M)$. So take $\phi(x)\in L(M)$. Since formulas may only mention finitely many parameters, there is $j\in \omega$ such that $\phi(x)\in L(B_j)$. By assumption, $[\phi(x)]\subseteq S_1(B_j)$ contains an isolated type, which is realised in $B_{j+1}$, say by $b$. Then $\set{x=b}\in [\phi(x)]\subseteq S_1(M)$, and we are done.
\end{proof}

So we better have criteria to know when the isolated types are dense. Sometimes, it is just a matter of counting.
\begin{pr}\label{pr:isoldense}
Let $L$ be countable.   If $S_n(\emptyset)$ is countable (possibly finite), then the isolated $n$-types are dense.
\end{pr}
  This does not just have one topological proof, but two!
\begin{proof}[First proof]
  The union of countably many nonisolated points is meagre. By the Baire Category Theorem for (locally) compact Hausdorff spaces,  its complement is dense. 
\end{proof}
\begin{proof}[Second proof]
If the isolated $n$-types are not dense, there is a nonempty $[\phi(x)]$ containing none. Inductively, partition $[\phi(x)]$ in two nonempty clopen sets, which of course will still contain no isolated points. By iterating this, we build a complete binary tree of height $\omega$ of clopen sets, ordered by (reverse?\footnote{It depends on whether you like your trees to grow upwards or downwards.}) inclusion. This tree has $2^{\aleph_0}$ branches, and the intersection of each branch is nonempty by compactness, hence $S_n(\emptyset)$ is uncountable.
\end{proof}
\begin{exr}\label{exr:ctblunccont}
Prove that if $L$ is countable, and $S_n(\emptyset)$ is  uncountable, then it must have size at least continuum.\footnote{Hint: adapt the second proof, by showing that if $[\phi(x)]$ is uncountable then it can be partitioned in two uncountable clopen sets.}
\end{exr}


Of course, density of isolated types does not imply countability of type spaces. For example, take your favourite countable $T$ with an uncountable type space, e.g.\ $T_{2^{<\omega}}$, and fix a countable model $M$. Then $\ed(M)$ is a countable theory $T'$, and types over $\emptyset$ in $T'$ are, by definition, the same as types over $M$ in $T$; since  $S_1(\emptyset)$ was uncountable in $T$, it is a fortiori uncountable in $T'$ (if you prefer, look at the surjective restriction map $S_1(M)\to S_1(\emptyset)$). But since we named all elements of a model, in $T'$ the isolated types are dense by \Cref{pr:charmodels}.
\section{The number of countable models}
Let us begin with an easy lemma.
\begin{lemma}\label{lemma:rtoeiacm}
If $L$ is countable, then every type over $\emptyset$ can be realised in some countable model.
\end{lemma}
\begin{proof}
Given $p(x)\in S_n(\emptyset)$, let $a\models p(x)$. Use L\"owenheim--Skolem to take a countable $M$ containing $a$.
\end{proof}

A remarkable consequence of the results in the previous section is that we can prove that a countable theory has a prime model \emph{by just counting types} (isn't that wonderful?). As you may expect, when for every $n$ we can only find \emph{finitely} many $n$-types over $\emptyset$, instead of merely countably many, something special happens. This was realised in 1959 by several\footnote{Three, not four: ``Ryll-Nardzewski'' is a single surname.} people independently.
\begin{thm}[Ryll-Nardzewski--Svenonius--Engeler]\label{thm:rnse}
  Let $L$ be countable. The following are equivalent.
  \begin{enumerate}
  \item \label{rz:finite}For every $n$, the space $S_n(\emptyset)$ is finite.
  \item \label{rz:discrete}For every $n$, the space $S_n(\emptyset)$ is discrete.
  \item \label{rz:isolated}For every $n$, every $p\in S_n(\emptyset)$ is isolated.
   \item \label{rz:flas}For every $n$, if $\abs x=n$, there are only finitely many $L(\emptyset)$-formulas $\phi(x)$ up to equivalence modulo $T$.
  \item \label{rz:defsets}For every $n$ and every $M\models T$, there are only finitely many $\emptyset$-definable subsets of $M^n$.
  \item \label{rz:at}Every $M\models T$ is atomic.
  \item \label{rz:atcnt}Every countable $M\models T$ is atomic.
  \item \label{rz:atsat}There is $M\models T$ which is countable, saturated, and atomic.
  \item \label{rz:primesat}$T$ has a prime model, and it is saturated.
  \item \label{rz:omegacat}$T$ has only one countable model up to isomorphism.
  \item \label{rz:Mfewtypes} There is $M\models T$ which, for every $n$, realises only finitely many $n$-types.
  \item \label{rz:Eolig}There is a countable $M\models T$ such that $\aut(M)$ is \emph{oligomorphic}, that is, for every $n$ the diagonal action $\aut(M)\actson M^n$ has finitely many orbits.
  \item\label{rz:Aolig} For every countable $M\models T$, the permutation group $\aut(M)$ is oligomorphic.
  \end{enumerate}
\end{thm}
\begin{proof}
Finite Hausdorff spaces are discrete, every point is isolated if and only if the space is discrete, and a compact discrete space is finite, which proves $\ref{rz:finite}\allora\ref{rz:discrete}\sse\ref{rz:isolated}\allora\ref{rz:finite}$.  Formulas over $\emptyset$ up to equivalence are the same as $\emptyset$-definable sets, and if there are only finitely many, then a finite boolean combination of them is enough to imply a complete type over $\emptyset$, showing $\ref{rz:defsets}\sse\ref{rz:flas}\allora \ref{rz:finite}$. Now, $\emptyset$-definable sets are the same as clopen subsets of $S_n(\emptyset)$, so $\ref{rz:finite}\allora \ref{rz:defsets}$, since a finite set has only finitely many subsets. If all types are isolated, all models have no choice but to only realise isolated types, and if all models do so, in particular so do the countable ones, so $\ref{rz:isolated}\allora\ref{rz:at}\allora\ref{rz:atcnt}$. By \Cref{lemma:rtoeiacm} every type over $\emptyset$ can be realised in a countable model, so $\ref{rz:atcnt}\allora\ref{rz:isolated}$. 

Below, we use that we have already proven the equivalences above. If for every $n$ there are finitely many $n$-types, \Cref{exr:cntsat},  tells us that there is a countable saturated model, so $\ref{rz:atcnt}\allora \ref{rz:atsat}$. Such a model realises all types over $\emptyset$, so $\ref{rz:atsat}\allora\ref{rz:isolated}$. If we throw in \Cref{thm:primat}, we also discover immediately that  $\ref{rz:atsat}\sse \ref{rz:primesat}$ and that $\ref{rz:atcnt}\allora\ref{rz:omegacat}$.
If $T$ has only one countable model $M$, then it must have at most countably many types, so by \Cref{pr:isoldense} the isolated types are dense, and by \Cref{thm:exprimemodels} $T$ has a prime model, which by \ref{rem:primels} must be $M$. Again by the fact that $T$ has countably many models, and again by \Cref{exr:cntsat}, $T$ has a countable saturated model, which must again be $M$, so $\ref{rz:omegacat}\allora\ref{rz:primesat}$.

Again, using the previously proven equivalences, if $T$ has only one countable model, then it must be saturated, hence $\omega$-strongly homogeneous, so types over $\emptyset$ are the same as orbits over $\aut(M)$. Since there are finitely many types, this gives $\ref{rz:omegacat}\allora \ref{rz:Aolig}$. Trivially, $\ref{rz:Aolig}\allora \ref{rz:Eolig}$, and being in the same orbit implies having the same type, so in an arbitrary model there are at most as many types as orbits, hence $\ref{rz:Eolig}\allora \ref{rz:Mfewtypes}$. Finally, assume that $M$ realises only finitely many $n$-types, say $p_0(x),\ldots, p_k(x)$. Since $S_n(\emptyset)$ is Hausdorff, we can find $\phi_0(x),\ldots, \phi_k(x)$ such that $[\phi_i(x)]$ contains $p_i(x)$ but no $p_j(x)$ for $j\ne i$. Clearly, $\phi_i(M)=p_i(M)$.
Now, take an arbitrary $\psi(x)\in L(\emptyset)$. In any model, the set of its realisations is a (possibly infinite) union of sets of realisations of complete types over $\emptyset$. In $M$ the only $n$-types are the $p_i$, so
\[
  \psi(M)=\bigcup_{\substack{i\le k\\p_i(x)\proves \psi(x)}}p_i(M)=\bigcup_{\substack{i\le k\\p_i(x)\proves \psi(x)}}\phi_i(M)
\]
Since $M$ is a model, this implies that $\psi(x)$ is equivalent to $\bigvee_{\substack{i\le k\\p_i(x)\proves \psi(x)}}\phi_i(x)$. There are at most $2^{k+1}$ formulas of this form, and $\psi(x)$ was arbitrary, and $k$ does not depend on $\psi$, so $\ref{rz:Mfewtypes}\allora\ref{rz:flas}$, and I leave to you the pleasant task of checking that the directed graph on $13$ vertices we built above is connected.
\end{proof}
\begin{rem}
  If you want a more succinct statement to remember, a common choice is $\ref{rz:finite}\sse\ref{rz:omegacat}$. The choice requiring the least number of definitions in order to be stated is probably $\ref{rz:flas}\sse\ref{rz:omegacat}$.
\end{rem}
Take a moment to appreciate the different nature of the statements which we have just proven to be equivalent: some of them are topological, some are dynamical, and some, of course, model-theoretic. Some conditions can be checked on an arbitrary model, and some of them are just a matter of counting. On the other hand, some  tell us about the existence  of special structures, and one is a uniqueness statement.
Something enjoying such a diverse array of characterisations clearly deserves a name. We take the opportunity to also give a name to other things you have already seen (and will keep seeing later on).
\begin{defin}
Let $\kappa$ be an infinite cardinal.  A theory $T$ is \emph{$\kappa$-categorical} iff it has at most one model of cardinality $\kappa$. We also say \emph{$\omega$-categorical} to mean $\aleph_0$-categorical.
\end{defin}
Here we are assuming $T$ complete, but recall that, by \Cref{exr:vaught}, if $\kappa\ge \abs L$ and $T$ has no finite models, then $\kappa$-categoricity implies completeness. Usually, when people talk of $\omega$-categorical theories, they implicitly also mean that $L$ is countable. This is important, since the Ryll-Nardzewski theorem does not generalise to uncountable languages.
\begin{eg}
Let $M$ be $\omega$ viewed as a structure in the language $L$ with a symbol $<$ for the usual order and a unary predicate $P_X$ for every $X\subseteq \omega$,\footnote{If you prefer, just take all subsets of all $\omega^n$.} and let $T$ be its complete $L$-theory. Note that $\abs{L}=2^{\aleph_0}$ but, by construction, $T$ has a countable model, namely $M$. We prove below that every other model has size at least $2^{\aleph_0}$. This tells us two things:
\begin{enumerate}
\item The assumption of countability of $L$ is necessary in the Ryll-Nardzewski theorem: in this theory, $S_1(\emptyset)$ is essentially the same as the space $\beta \omega$ of ultrafilters over $\omega$ (if you prefer, the Stone--\v Cech compactification of $\omega$ with the discrete topology), which notoriously has size $2^{2^{\aleph_0}}$.
\item L\"owenheim--Skolem does not generalise to arbitrary cardinalities: if you assume $\neg \mathsf{CH}$, this example also shows that below $\abs L$ there can be gaps in the possible cardinalities of models.
\end{enumerate}
\end{eg}
\begin{proof}
  Let $\set{A_i\mid i<2^{\aleph_0}}$ be an \emph{almost disjoint} family of infinite subsets of $\omega$, that is, a family such that for all $i\ne j$ the intersection $A_i\cap A_j$ is finite.\footnote{For example, you can build such a family by putting $\omega$ in bijection with $2^{<\omega}$ and taking the family $2^\omega$ of branches of this tree.} Observe that
  \begin{enumerate}
  \item If $i\ne j$, because $A_i\cap A_j$ is finite, it must have a maximum, call it $a_{ij}$.
  \item Since every $A_i$ is infinite, for every $x$ there is $y>x$ such that $y\in A_i$.
  \end{enumerate}
  Note that these properties are written in $T$. Moreover, since we named every subset of $\omega$, in particular we named singletons, hence $T$ says that there can be no point between $n$ and $n+1$. Therefore, every $N\ne M$ must contain some $c>\omega$. By what we said above, for every $i$ there must be $d\in N$ with $d>c$ and $N\models P_{A_i}(d)$. If $j\ne i$, since $d>c>\omega$, in particular $d> a_{ij}$, hence $N\models \neg P_{A_j}(d)$. So $\abs N\ge 2^{\aleph_0}$.
\end{proof}
\begin{rem}
  Naming finitely many parameters preserves $\omega$-categoricity. On the other hand, naming even $\aleph_0$ many does not. You can convince yourself of both statements very quickly by counting types.
\end{rem}
\begin{rem}
  There is a powerful method to build $\omega$-categorical theories (and more), known as taking a \emph{Fra\"iss\'e limit}. By now you have seen more than enough to understand this construction, but for time reasons I (sadly) have to redirect you to the literature, see for example \cite[Chapter 7]{hodges}. Several theories we have seen in this course are the theory of some  Fra\"iss\'e limit: $\mathsf{DLO}, T_\mathrm{rg}$, the theory of infinite sets, the theory of $\kappa$ generic equivalence relations for $\kappa\le \aleph_0$, and $T_\mathrm{feq}^*$ are all examples.
\end{rem}


As we saw above, countable (complete) theories with only one countable model enjoy quite striking properties. Countable  (complete)  theories with only \emph{two} countable models enjoy an even more striking property: they do not exist.
\begin{thm}[Vaught's never two]
  There is no complete countable first-order theory with exactly two countable models up to isomorphism.
\end{thm}
\begin{proof}
  Suppose $T$ is a counterexample. Inside two  countable models, for every $n$, there is only space to realise $\aleph_0$ many $n$-types over $\emptyset$. By \Cref{lemma:rtoeiacm} every type over $\emptyset$ is realised in a countable model, so for every $n$ we have $\abs{S_n(\emptyset)}\le \aleph_0$. By \Cref{exr:cntsat}, there is a countable saturated $M_2\models T$. Moreover, by \Cref{thm:exprimemodels} and \Cref{pr:isoldense}, $T$ has a prime model $M_0$.  We now build a third model $M_1$. Since $T$ has more than one countable model, by \Cref{thm:rnse}, for some $n$ there is a nonisolated $p(x)\in S_n(\emptyset)$. If $a$ is a realisation, because $a$ is a finite tuple, every $S_m(a)$ is still countable\footnote{Uncountably many $m$-types over $a$ would yield uncountably many $\abs a+m$ types over $\emptyset$.}, so there is $M_1$ which is prime over $a$, that is, $(M_1 a)$ is a prime model of $T_a\coloneqq\Th(\monster_a)$.  In particular, $M_1$ is countable. Since $M_1$ realises $p$ and $M_0$ does not, we clearly have $M_1\centernot \cong M_0$, so we need to show $M_2\centernot\cong M_1$. But if $M_1\cong M_2$, then $M_1$ would be saturated. But $\omega$-saturated models stay saturated after naming finitely many constants, so $(M_1, a)$, is a saturated model of $T_a$. Because it is also a prime model of $T_a$, by \Cref{thm:rnse} $T_a$ has finitely many $n$-types over $\emptyset$, that is, $S_n(a)$ is finite. Now take two different $n$-types $q_0, q_1$ over $\emptyset$ in $T$. These can be seen as a partial types over $\emptyset$ in $T_a$, hence be completed to distinct $\hat q_0, \hat q_1\in S_n(a)$. Since in $T$ the space $S_n(\emptyset)$ is infinite, this is a contradiction.
\end{proof}
\begin{exr}
  Find an incomplete $T$ in a countable $L$ with exactly two nonisomorphic countable models.
\end{exr}
Funnily enough, this characterises $2$ among the positive natural numbers.
\begin{exr}
  Let $L=\set{<}\cup \set{c_i\mid i<\omega}$, and let $T$ be $\mathsf{DLO}\cup\set{c_i<c_{i+1}\mid i<\omega}$.
  \begin{enumerate}
  \item Prove that $T$ is complete and has quantifier elimination.
  \item Prove that, up to isomorphism, the countable models of $T$ are the expansions of $(\mathbb Q, <)$ obtained as follows.
    \begin{enumerate}
    \item For every $i<\omega$, the constant $c_i$ is interpreted as $i$.
    \item For every $i<\omega$, the constant $c_i$ is interpreted as  $-1/(i+1)$.
    \item The sequence $(c_i)_{i<\omega}$ is interpreted as an increasing sequence converging (in $\mathbb R$) to an irrational number.
    \end{enumerate}
    \item Which of these is prime? Which is saturated?
    \item For $n\ge 4$, let $L_n\coloneqq L\cup\set{P_0,\ldots, P_{n-3}}$, where every $P_j$ is a $1$-ary predicate. Let $T_n$ be the union of $T$ with the axioms saying that every $P_j$ is dense, that the $P_j$ partition the domain, and that every $c_i$ is in $P_0$. Prove that $T_n$ has exactly $n$ countable  models up to isomorphism.
  \end{enumerate}
\end{exr}
Therefore, the number of countable models of a complete theory in a countable language can be any positive natural number except two. What about infinite cardinals?
\begin{exr}
Let $T$ be a complete $L$-theory, with $L$ countable. Prove that
\begin{enumerate}
\item Every such $T$ has at most $2^{\aleph_0}$ countable models up to isomorphism.
\item There is such a $T$ with $2^{\aleph_0}$ pairwise nonisomorphic countable models.
\item There is such a $T$ with exactly $\aleph_0$ pairwise nonisomorphic countable models.
\end{enumerate}
\end{exr}
What about cardinals between $\aleph_0$ and $2^{\aleph_0}$, of course when they exist, that is, when $\mathsf{CH}$ fails? This has been open for more than half a century.
\begin{conjecture}[Vaught's conjecture]
If a complete theory in a countable language has uncountably many countable models, then it has continuum many.
\end{conjecture}
By a theorem of Morley (\emph{not} the one we will see later on in the course), the only case to exclude is that of a countable complete theory with exactly $\aleph_1$ countable models (again, obviously, assuming $\neg \mathsf{CH}$).   As far as I know, the conjecture is open,\footnote{In fact, counterexamples have been announced, but their status is unclear.} but it has been proven to hold in for special classes of theories. There is also a more general version of the conjecture, known as the \emph{topological Vaught conjecture}, stated in terms of Polish groups acting on Polish spaces.


\section{Ehrenfeucht--Mostowski models}
We saw in \Cref{thm:itaadipmae} that, if over \emph{every} $A$ the isolated types are dense, then there is a prime model over every $A$, regardless of the size of $L$. This theorem is very powerful: for example the theory $\mathsf{DCF}_0$ of differentially closed fields of characteristic $0$ satisfies its assumptions, and as a consequence every differential field of characteristic $0$ has a \emph{differential closure}. We will not deal with differential fields in this course, so I refer the interested reader to the literature, see e.g.~\cite[Section~6.2]{poizat}.

Nevertheless, the assumptions of \Cref{thm:itaadipmae} are quite strong, and at any rate, it does not gives \emph{arbitrarily large} models realising few types. The main theorem of this section will do exactly that, with no restriction on $\abs L$. The idea is to start with a suitable sequence $(a^i)_{i\in I}$ of points which ``look all the same'', and then to take some kind of model $M$ ``enveloping'' this sequence. Intuitively, if the tuples from $(a^i)_{i\in I}$ all look the same, then $M$ will realise few types. On the way to the main theorem, we will also encounter a property implying that over every $A$ the isolated types are dense.
But let us begin with precise statements.
\begin{notation}
If $(I,<)$ is a linear order, we denote an $I$-sequence of tuples of the same length by $a^I\coloneqq (a^i)_{i\in I}$. If $I$ is not specified, or clear from context, we also just say ``sequence'' instead of ``$I$-sequence''. If for example $I=\omega$, we also write $a^{<\omega}$, to make it clear that we are not referring to the $\omega$-th element of some $a^I$ indexed on, say, $I=\kappa$.
\end{notation}


We put the index as a superscript (as in: $a^i$) because each $a^i$ is a tuple, not necessarily of length $1$. So, for example, $a^i_1$ denotes the second element of the $i$-th tuple in $a^I$. In the literature it is also common to write $a_i$ for $a^i$ since, as you will see, we will rarely have to look at the coordinates of $a^i$.
\begin{defin}
 Let $A$ be a set of parameters. We say that $a^I$ is \emph{$A$-indiscernible}, or \emph{indiscernible over $A$}, iff, for every $n\in \omega$, if $\bla i0<n$ and  $\bla j0<n$, then
  \[
    \tp(a^{i_0}, a^{i_1},\ldots, a^{i_n}/A)=\tp(a^{j_0}, a^{j_1},\ldots, a^{j_n}/A)
  \]
  We also say just \emph{indiscernible} instead of ``$\emptyset$-indiscernible''. 
\end{defin}
\begin{rem}
Almost by definition, an $I$-sequence is indiscernible over $A$ if and only if the type over $A$ of $\blaup a{i_0},{i_n}$ only depends on the order type of $\bla i0,n$ inside $I$, that is, on $\qftp^I(\bla i0,n/\emptyset)$.\footnote{``Why are we taking as $I$ a linear order? What happens if we take a different structure? And give a similar definition?'' If $I$ is a set with no structure, the answer to this will appear in due course in this course. People have also equipped at $I$ with different structures, see \cite{scow}.}
\end{rem}


In the definition above, if $I$ is finite then of course we only need to look at the $n<\abs I$. Or only at the $n<\abs I-1$, if you want. At any rate, indiscernible sequences are typically interesting when $I$ is infinite, usually with no maximum. Some of the things below also make sense for finite $I$. Anyway, if you want, assume that $I$ is always an infinite linear order.

\begin{eg}
  In $\mathsf{ACF}_p$, let $a^I$ be a sequence of $A$-transcendental elements which are algebraically independent over $A$. Then $a^I$ is $I$-indiscernible.
\end{eg}
\begin{noneg}\label{noneg:acf0i}
    In $\mathsf{ACF}_0$, let $a^\omega$ be a sequence of elements with $a^0\notin \set{0,1}$ and $a^1=a^0\cdot a^0$. Then $a^\omega$ is not $\emptyset$-indiscernible (hence, for all $A$ it is not $A$-indiscernible). 
\end{noneg}
\begin{proof}
  If it was, by indiscernibility we would have\footnote{Superscripts denote indices in the sequence, and \emph{not} multiplicative powers.} $a^2=a^0\cdot a^0$ and $a^0\cdot a^0=a^2=a^1\cdot a^1=a^0\cdot a^0\cdot a^0\cdot a^0$. Since $a^0\ne 0$, we must have $a^0\cdot a^0=1$. Since $a^0\ne 1$, we must have $a^0=-1$. Again by indiscernibility,  $a^\omega$ is  constantly $-1$.  From $a^1=a^0\cdot a^0$ we get $-1=(-1)\cdot(-1)$, a contradiction.
\end{proof}

\begin{eg}
  In $\mathsf{DLO}$, a sequence $(a^i)_{i<\omega}$, with $\abs{a^i}=1$ is $A$-indiscernible if and only if
  \begin{enumerate}
  \item all $a_i$ have the same cut in $A$ (possibly degenerate, that is possibly they are all equal to a fixed $a\in A$), and
  \item the sequence is either
    \begin{enumerate}
    \item constant, 
    \item increasing, or
    \item decreasing.
    \end{enumerate}
  \end{enumerate}
\end{eg}
Of course, the collection of types of finite pieces of an indiscernible sequence deserves a name. We define this for arbitrary sequences; in general, it will not be a complete type.
\begin{defin}
  Let $a^I$ be an $I$-sequence\footnote{Not necessarily indiscernible.} of tuples of the same length. The \emph{Ehrenfeucht--Mostowski type} $\emtp(a^I/A)$ of $a^I$ over $A$ is the set of formulas
\[
    \emtp(a^I/A)\coloneqq\set{\phi(\blaup x0,n)\in L(A)\mid n<\omega, \forall \bla i0<n\in I,  \models \phi(\blaup a{i_0},{i_n})}
\]
\end{defin}
So  $\emtp(a^I/A)$ is the set of those formulas over $A$ which are true in all finite pieces of $a^I$ \emph{provided they are enumerated increasingly}.
\begin{rem}\*
  \begin{enumerate}
  \item If  $a^I$ is arbitrary, then $\emtp(a^I/A)$ may as well be empty (up to deductive closure\footnote{That is, it may consist only of those $\phi(x)$ with $\models \forall x\; \phi(x)$.}). Example: take $T$  the theory of infinite sets, let $A$ be infinite, $I=\abs A$, and let $a^I$ be some enumeration of $A$ where every point appears infinitely often.
  \item On the other hand, if $a^I$ is $A$-indiscernible and $I$ is infinite, then $\emtp(a^I/A)$ is complete type in $\omega$ (tuples of) variables, namely, it coincides with $\tp(a^{<\omega}/A)$. Note that this is a type in $\omega$ variables regardless of whether $I$ is $\omega$ or another infinite linear order. This is not a bug, but a feature: it allows us to compare indiscernible sequences indexed over different linear orders.
  \item Not \emph{all} elements of $S_\omega(A)$ are the Ehrenfeucht--Mostowski types of some $A$-indiscernible sequence (of tuples), see for instance \Cref{noneg:acf0i} above.
  \end{enumerate}
\end{rem}
Sometimes, we have some infinite $a^I$ such that, for a fixed $L(A)$-formula $\phi(\blaup x0,n)$ and all $\bla i0<n\in I$, we have  $\models\phi(\blaup a{i_0}, {i_n})$, and we want to produce an $A$-indiscernible $J$-sequence, with $J$ an arbitrary infinite linear order, with the analogous property. Note that $\phi(\blaup x0,n)\in \emtp(a^I/A)$. So we want an $A$-indiscernible $b^J$ with $\emtp(b^J/A)\supseteq \emtp(a^I/A)$. The fact that these always exist is the content of what \cite{tent-ziegler} calls the \emph{Standard Lemma}, also known in the literature as ``Ramsey and compactness'', ominously telling us how it will be proven.
\begin{fact}[Ramsey's theorem]
  Let $k,r\in \omega\setminus \set 0$. Denote by $X^{[k]}$ the set of subsets of $X$ of size $k$. If $X$ is infinite, then
for any function $c\from X^{[k]}\to r$, there is an infinite $H\subseteq X$ such that $c\restr H^{[k]}$ is constant.
\end{fact}
Usually (and suggestively), $c$ is called a \emph{colouring}, and $H$ a \emph{monochromatic} set (\emph{homogeneous} is also used). Ramsey's theorem can be proven in a number of ways, for example by induction or by using the tensor product of ultrafilters, but we will not see the proof here. If you have never seen this theorem before, here is a typical easy application: every sequence of reals has a subsequence which is either strictly decreasing, constant, or strictly increasing. To prove it, you colour $\set{m,n}$ with three colours, one for each sign of $a_m-a_n$, say where $m<n$. Then you restrict your sequence to a monochromatic set. 
\begin{lemma}[Standard Lemma]
  Let $I$, $J$ be infinite linear orders, with $J$ small, and $A\smallsubset \monster$. For any $a^I$, there is an $A$-indiscernible $b^J$ with $\emtp(b^J/A)\supseteq \emtp(a^I/A)$.
\end{lemma}
\begin{proof}
Let $\pi(x^{<\omega})\coloneqq\emtp(a^I/A)$. Denote by $\pi(x^J)$ the following set of formulas: for every $n$, choose $j^n_0<\ldots<j^n_n\in J$, let $\pi(x^{\le n})$ be the restriction of $\pi(x^{<\omega})$ to the first $n$ tuples of variables, and substitute $y^{j^n_i}$ for $x^{i}$  inside it; take the union of all these as $n\in \omega$ varies.\footnote{If $J$ was for example an infinite ordinal, we could have just said  ``take $\pi(y^{<\omega})$''. But note that $J$ may not contain any copy of $\omega$ in general: for example, take as $J$ the negative integers.}
  By saturation of $\monster$, it is enough to show consistency of $\Phi(y^J)\coloneqq\pi(y^J)\cup \Psi(y^J)$, where $\Psi(y^J)$ says that $y^J$ is $A$-indiscernible. Namely:
  \begin{multline*}
\Psi(y^J)\coloneqq\{\phi(\blaup y{i_0},{i_n})\coimplica \phi(\blaup y{j_0},{j_n})\\\mid n<\omega, \phi\in L(A), \bla i0<n\in J, \bla j0<n\in J\}
\end{multline*}
By compactness, it is enough to show that every finite subset $\Phi_0$ of $\Phi(y^J)$ is consistent. Such a finite subset will only be able to mention a finite subsequence $y$  of $y^J$,  a finite subset $\Theta(y)$ of $\pi(y^J)$, and, up to enlarging $\Phi_0$, there will be a finite set of formulas  $\Delta$ such that $\Phi_0(y)$ says that the increasing tuples from $y$ cannot be distinguished by formulas $\phi(\blaup z{j_0},{j_n})\in\Delta$ (they are \emph{$\Delta$-indiscernible}). Let $k$ be  maximum such that there is some $\phi(\blaup z{j_0},{j_{k-1}})\in\Delta$. Let  $r\coloneqq 2^{\abs\Delta}$, and colour the $k$-element subsets of the original sequence $a^I$ as follows:
list each $k$-element set increasingly, that is, as $\blaup a{i_0},{i_{k-1}}$ with $\bla i0<{k-1}$; colour it with the set of those $\phi\in \Delta$ such that $\models \phi(\blaup a{i_0},{i_{k-1}})$. By Ramsey's Theorem, there is an infinite  $I_0\subseteq I$ such that $c\restr a^{I_0}$ is monochromatic, that is, $a^{I_0}$ is $\Delta$-indiscernible. Since $a^{I_0}$ is a subsequence of $a^I$, clearly it also satisfies $\Theta(y)$ which, remember, was obtained from a finite piece of $\emtp(a^I/A)$ by a change of variables. Therefore, any subsequence of $a^{I_0}$ of the correct length will witness that  that $\Phi_0(y)$ is consistent, and we are done.
\end{proof}
\begin{rem}
  The assumption that $J$ is infinite is not important: if you want a finite one, you can first build an infinite one and then trim it. On the other hand, the assumption that $I$ is infinite is crucial: otherwise, by starting with $I=(2,4)$, we would violate \Cref{noneg:acf0i}.\footnote{This is more important than it may seem: the fact that certain formulas $\phi(x,y)$ display  certain patterns on some \emph{infinite} set of tuples is a way to say that $T$ is in a sense ``wild''. Finite restrictions of these patterns are usually easy to find even when $T$ is the theory of infinite sets.}
\end{rem}
Going back to the programme sketched at the start of our section, indiscernible sequences  are the promised sequences of ``points that look all the same''. Now we deal with the second ingredient, that is, the ``enveloping'' part.
\begin{defin}
  A function $f\from M^n\to M$ is \emph{definable} iff its graph is a definable set. We say \emph{$A$-definable} iff we only allow parameters from $A$ in a formula defining the graph of $f$. 
\end{defin}
If $f(x)$ is a definable function, say its graph is defined by $\phi(x,y)$, it is common to write $y=f(x)$ in place of $\phi(x,y)$. More generally, one usually abuses the notation and pretends that $f$ is an actual function symbol of $L$, by writing e.g.\ $\psi(f(x), z)$, which of course is, formally, an abbreviation for $\forall y\; \phi(x,y)\implica \psi(y,z)$. Of course, for several purposes we may as well just add functions symbols to the language.
\begin{rem}
  If we expand the language to $L'$ by naming every $\emptyset$-definable function by an actual function symbol, then $\dcl(A)$ in the sense of $L$ is the same as (the domain of) the structure generated by $A$ in the sense of $L'$.
\end{rem}
 One may also consider functions $f\from M^n\to M^k$; trivially, their graph will be definable if and only if each of the $k$ components of $f$ is definable. So they may be identified with tuples of definable functions.

\begin{defin}
  We say that that $T$ has \emph{definable Skolem functions} iff for every formula $\phi(x,y)$ over $\emptyset$ with $\abs x=1$ there is an $\emptyset$-definable function $f$ such that
  \begin{equation}
    T\proves \forall y\; ((\exists x\;\phi(x,y))\implica \phi(f(y), y))\label{eq:skfn}    
  \end{equation}
\end{defin}
The fact that $\abs x =1$ is not a real restriction: if $T$ has definable Skolem functions, then you can easily prove by induction that~\eqref{eq:skfn}  also holds when $x$ is a tuple, with $f$ now a tuple of definable functions. 

Having definable Skolem functions is clearly preserved by Morleyising, and it is also easily shown that it is preserved by naming parameters. Before even looking at examples, let us make an addition to our list of easy but important facts. Note the similarity between the definition above and Henkin constructions: after all, what is a function symbol, if not a ``constant symbol which depends on a tuple of arguments''? Since Henkin theories have models where all elements are the interpretation of a constant, the following is not surprising.
\begin{rem}\label{rem:skdcl}If $T$ has definable Skolem functions, then the isolated types are dense in every $S_n(A)$, hence $T$ has prime models over every set. Even better, for every $A$ we have $\dcl(A)\preceq \monster$, as follows easily from the Tarski--Vaught test.
\end{rem}
\begin{noneg}
In  $\mathsf{ACF}_0$, it is not very difficult to show that $\dcl(\emptyset)$ is isomorphic to $\mathbb Q$, which is notoriously not algebraically closed. Therefore, $\mathsf{ACF}_0$ does not have definable Skolem functions.
\end{noneg}
\begin{noneg}
  $\mathsf{DLO}$ does not have definable Skolem functions, nor does any of its expansions by constants.
\end{noneg}
\begin{proof}
Assume towards a contradiction that expanding by naming parameters from $A$ grants definable Skolem functions. Look at the formula $\exists x\; x>y$.  Pick any $c>A$, and let  $d\coloneqq f(c)$. Let $d'>d$ be arbitrary. Clearly, $\tp(d'/Ac)=\tp(d/Ac)$, a contradiction, since $d'\centernot \models x=f(c)$.
\end{proof}
\begin{eg}
  We left our dear old friend $\mathcal R$ all alone in a corner since \cpageref{mcR}. By now it's time to tell you that $\Th(\mathcal R)$ is called $\mathsf{DOAG}$, is the theory of nontrivial divisible ordered abelian groups, and eliminates quantifiers in $L_\mathrm{oag}$, see \cite[Corollary~1.7.8]{ttaos}. If we add a constant for any nonzero point, say positive,  call it $1$, then the resulting theory has definable Skolem functions\footnote{And even something stronger called \emph{definable choice}, which, if you have seen the $T^\eq$ construction, is essentially definable Skolem functions for $T^\eq$.}. The idea is to argue by induction on the dimension, starting by taking things like midpoints of intervals, or adding $1$ to $a$ to find a point in $(a,+\infty)$,  see~\cite[Proposition~6.1.2]{ttaos}.
\end{eg}
We can use \Cref{rem:skdcl} to build a model $M$ ``around'' an indiscernible $I$-sequence in such a way that $M$ has at least as many automorphism as $(I,<)$.
\begin{defin}
Suppose that $T$ has definable Skolem functions and $a^I$ is an indiscernible with $\abs{a^i}=1$.  We call $M\coloneqq\dcl(a^I)$ the \emph{Ehrenfeucht--Mostowski model} with \emph{spine} $a^I$, or the \emph{Skolem hull} of $a^I$.
\end{defin}
\begin{pr}\label{pr:emaut}
  If $T$ has definable Skolem functions and $M$ is a Ehrenfeucht--Mostowski model with spine $a^I$, then  for every  $f\in \aut((I,<))$ there is $\tilde f\in \aut(M)$ with $\tilde f(a^i)=a^{f(i)}$.
\end{pr}
\begin{proof}
  By definition, every $b\in M$ is of the form $g(\blaup a{i_0},{i_n})$, for some $\emptyset$-definable function $g$.  Set $\tilde f(b)\coloneqq g(\blaup a{f(i_0)},{f(i_n)})$. We need to check that $\tilde f$ is well-defined, because in general $b$ may also be represented as $h(\blaup a{j_0},{j_m})$, for a different $\emptyset$-definable $h$. Because $a^I$ is indiscernible, this is not really a problem: since $f\in \aut(I,<)$, we have
  \[
    \qftp^I(\bla i0,n,\bla j0,m)=\qftp^I(f(i_0),\ldots, f(i_n), f(j_0),\ldots, f(j_m))
  \]
  and by indiscernibility $\models g(\blaup a{i_0},{i_n})=h(\blaup a{j_0},{j_m})$  if and only if 
  \[
    \models g(\blaup a{f(i_0)},{f(i_n)})=h(\blaup a{f(j_0)},{f(j_m)})
  \]
  The argument above shows that $\tilde f$ preserves and reflects the formula $g(x)=h(y)$, where $x$ and $y$ suitable tuples of variables.  A similar argument, replacing $g(x)=h(y)$  with formulas such as $R(g_0(x^0),\ldots, g_\ell(x^\ell))$, shows that $\tilde f$ is indeed an automorphism.
\end{proof}
It turns out that we \emph{can} expand a theory to one having definable Skolem functions, but some care is needed. As having Skolem functions is preserved by Morleyising, if $T$ does not have definable Skolem functions and we want to add them, then we \emph{must} change the definable sets. In the case of $\mathsf{DOAG}$, we got away with just changing the $\emptyset$-definable ones. In the case of $\mathsf{DLO}$, we proved above that naming constants is not enough, which means that we also need to change the class of $\monster$-definable ones.\footnote{Note that if some expansion by constants gives us definable Skolem functions, then $\abs L$ constants will suffice: we only need finitely many constants for every formula over $\emptyset$.}
\begin{pr}\label{pr:skexp}
  For every, possibly incomplete, $L$-theory $T$,  there are $L'\supseteq L$ with $\abs{L'}=\abs L$ and a possibly incomplete $L'$-theory $T'\supseteq T$ with definable Skolem functions such that every $M\models T$ can be expanded to $M'\models T'$.
\end{pr}
The construction above\footnote{Or below, in the proof, if you prefer. Well, I wrote this in a footnote, which I guess makes it ``above'' again (or ``in the next page'', depending on the version of these notes).} is called \emph{skolemisation}. 
\begin{proof}
Let $L_0\coloneqq L$, and  inductively, for every $L_i(\emptyset)$-formula $\phi(x,y)$ with $\abs x=1$, add an $\abs y$-ary function symbol $f_\phi$ to $L_i$,  call the resulting language $L_{i+1}$, and let $T_{i+1}$ be the union of $T_i$ together with all axioms $\forall y\;((\exists x\; \phi(x,y))\implica \phi(f_\phi(y), y))$, for $\phi(x,y)$ as above. Let $T'\coloneqq\bigcup_{i<\omega} T_i$. Given $M\models T$, we inductively expand $M_i$ to an $L_{i+1}$-structure $M_{i+1}$ by setting $f_\phi(b)$ to be an arbitrary witness to $\exists x\;\phi(x,b)$ if one exists, and as an arbitrary element otherwise. By repeating $\omega$ times we obtain the required expansion $M'$ of $M$, and prove that $T'$ (is consistent and) has the required properties.
\end{proof}
This construction allows us to build models of arbitrary theories with certain properties by first passing to a skolemisation. For example, skolemising may be used to deduce from \Cref{pr:emaut} the following.
\begin{co}
  For every theory $T$ and every linear order $(I,<)$ there is $M\models T$ containing an indiscernible $a^I$ such that, for every  $f\in \aut((I,<))$, there is $\tilde f\in \aut(M)$ with $\tilde f(a^i)=a^{f(i)}$.
\end{co}
\begin{proof}
Apply  \Cref{pr:skexp} to $T$, obtaining $L'\supseteq L$ and $T'\supseteq T$ with definable Skolem functions. In a monster model of a completion of $T'$, let $a^I$ be $L'$-indiscernible, let $M'$ be its Skolem hull, and let $M\coloneqq M'\restr L$. The conclusion follows from \Cref{pr:emaut}, by observing that
\begin{enumerate}
\item every $L'$-indiscernible sequence is $L$-indiscernible, and
\item every $L'$-automorphism is an $L$-automorphism.\qedhere
\end{enumerate}
\end{proof}
Let me stress this again: taking a skolemisation is not a ``mostly harmless'' expansion, like Morleyising\footnote{\ldots, which anyway may change the notion of substructure,\ldots} or naming constants\footnote{\ldots, which anyway may break things like $\omega$-categoricity,\ldots}, so we \emph{really} need to take the reduct to $L$: the properties of $\Th(M')$ and $\Th(M)$ can be \emph{very} different. If you prefer, skolemising $M$ is a highly non-canonical construction; it depends on several choices, and $M'$ is not even determined up to elementary equivalence: for example, if $\models  \forall x,y\;\phi(x,y)\implica \psi(x,y)$, we may have one $M'$ where $\forall y\; f_\phi(y)=f_\psi(y)$ holds and one where it fails. So be aware that, if you skolemise something, you are playing with fire.

Now,  playing with fire may be dangerous, but the world is full of barbecues and fire jugglers. We probably will not have the time to learn to use flaming bolas (but see~\cite[Section~VIII.2]{shelah}), but let us at least grill something. 
\begin{thm}\label{thm:mrftoas}
For every $\kappa \ge \abs L$, there is $M\models T$ with $\abs M=\kappa$ and such that, for every $A\subseteq M$, the model $M$ realises at most $\abs A+\abs L$ types over $A$.
\end{thm}
Note that since $\abs L$ is infinite by convention, by usual type-counting tricks\footnote{Cf.\  the proof of \Cref{pr:1tpsenough}.} it does not matter whether with ``types'' we mean ``$1$-types'' or ``$n$-types for every $n$''.
\begin{proof}
Use \Cref{pr:skexp} to skolemise $T$ to $T'$ and work in a monster model of a completion of $T'$. Let $a^\kappa$ be an $L'$-indiscernible $\kappa$-sequence, and let $M'$ be the Skolem hull of $a^\kappa$. Since $\abs L=\abs{L'}$, if we show that the conclusion holds for the $L'$-structure $M'$, then it will \emph{a fortiori} hold for  $M\coloneqq M'\restr L$, because every type in $L(A)$ can be completed to a type in $L'(A)$, hence there are at least as many $L'(A)$-types as there are $L(A)$-types.
  
Therefore, we may assume that  $T$ has definable  Skolem functions. Take as $M$  an Ehrenfeucht--Mostowski model with spine $a^\kappa$ indexed on $\kappa$.
Let $A\subseteq M=\dcl(a^\kappa)$. Because if $b\in \dcl(B)$ then there is a finite $B_0\subseteq B$ with $b\in \dcl(B_0)$, there is $A'\subseteq a^\kappa$ with $A\subseteq \dcl(A')$ and $\abs{A'}\le\abs A$. Up to deductive closure, types over $B$ are the same as types over $\dcl(B)$, so it enough to prove the conclusion when $A$ is included in the spine. Assume this is the case.
\begin{claim}
For every $n\in \omega$,  there are at most $\abs A+\aleph_0$ many $n$-types over $A$ which are realised in the spine.
\end{claim}
\begin{claimproof}
  Since $A$ is included in the spine, for some  $J\subseteq \kappa$ we may write $A=\set{a^j\mid j\in J}$.
For fixed $n$, we need to count the possibilities for $\tp(\blaup a{i_0},{i_{n-1}}/A)$, where $\bla i0,{n-1}\in \kappa$.  By indiscernibility, this is determined by which inequalities hold between the different $i_k$ (finitely many choices), and by the (possibly degenerate) cuts of the $i_k$ in $J$. Since $\kappa$ is well-ordered, so is $J$. But the right part of a cut in a well-ordered set must either be empty or have a minimum, hence there are at most $\abs J\cdot 2+1$ possibly degenerate cuts in $J$. It follows that there are at most $\abs A+\aleph_0$ possibilities for $\tp(\blaup a{i_0},{i_{n-1}}/A)$.
\end{claimproof}
By construction, every element of $M$ is of the form $f(\blaup a{i_0},{i_{n-1}})$, for a suitable $\emptyset$-definable function $f$ and $\blaup a{i_0},{i_{n-1}}$ a finite tuple from the spine. By indiscernibility, $\tp(f(\blaup a{i_0},{i_{n-1}})/A)$ only depends on $f$, for which there are at most $\abs L$ choices, and on $\tp(\blaup a{i_0},{i_{n-1}}/A)$, which by the Claim can only be chosen in $\abs A+\aleph_0$ ways, and the conclusion follows.  
\end{proof}
While we are on the theme of indiscernible sequences, let us also talk about \emph{totally indiscernible} sequences.
\begin{defin}
We call  $a^I$  \emph{totally indiscernible} over $A$, or an \emph{indiscernible set} over $A$ iff every permutation of $a^I$ is indiscernible over $A$.
\end{defin}
Equivalently, an $I$-sequence is indiscernible over $A$ if and only if the type over $A$ of $\blaup a{i_0},{i_n}$ only depends on the quantifier-free type $\qftp^{(I\restr \set{=})}(\bla i0,n/\emptyset)$, where $I$ is seen as a set with no extra structure (i.e.\ we forget the order on $I$).

Sometimes, the only totally indiscernible sequences are the constant ones. This happens for example in $\mathsf{DLO}$.
\begin{defin}\*
  A \emph{partitioned formula} $\phi(x;y)$ is formula  $\phi(x,y)$  together
    with an ordered partition of its free variables into two parts. We call the variables in the first part  $x$ \emph{object} variables, those in the second part $y$ \emph{parameter} variables.
\end{defin}
 The notation is usually abused and we just say that $\phi(x;y)$ is a formula. Observe that a partitioned formula can be though of as a family of subsets of $\monster^{\abs x}$ parameterised (possibly with repetitions) by $\monster^{\abs y}$. In other words, $\phi(x;y)$ induces a \emph{definable family} of definable sets $\set{\phi(x;b)\mid b\in \monster^{\abs y}}$.
 \begin{defin}\label{defin:op}
   A partitioned formula $\phi(x;y)$ has the \emph{order property} ($\mathsf{OP}$) if and only if there are sequences $(a^i)_{i<\omega}$ in $\monster^{\abs x}$ and $(b^j)_{j<\omega}$ in $\monster^{\abs y}$ such that $\models \phi(a^i; b^j)\iff i<j$. A theory has $\mathsf{OP}$ (or \emph{is} $\mathsf{OP}$) iff some partitioned formula has $\mathsf{OP}$. If $T$ does not have $\mathsf{OP}$, we say that $T$ is (or \emph{has}) $\mathsf{NOP}$.
 \end{defin}
 Note that such $(a^i)_{i<\omega}$ and $(b^j)_{j<\omega}$ are not guaranteed to exist in \emph{every model}. Nevertheless, if $k<\omega$, then the existence of $(a^i)_{i<k}$ and $(b^j)_{j<k}$ with similar properties is expressible by a sentence. Hence, whether $\phi(x;y)$ has $\mathsf{OP}$ or not may be checked on an arbitrary model, provided that we check for every $k<\omega$, and not for $\omega$ directly. If you want to check for $\omega$ directly, you need to do so on an $\omega$-saturated model.
 \begin{rem}\label{rem:opover0}
   If there is a partitioned formula with $\mathsf{OP}$, then there is one over $\emptyset$:  enlarge $x$ or  $y$, then append the needed parameters to each $a_i$ and $b_j$.
 \end{rem}
 \begin{pr}\label{pr:noptotindisc}
   The following are equivalent.
   \begin{enumerate}
   \item\label{point:tnop}  $T$ is $\mathsf{NOP}$.
   \item\label{point:tnopc} There are no $\phi(x;y)$ with $\abs x=\abs y$ and $(c^k)_{k<\omega}$ in $\monster^{\abs x}$ such that $\models\phi(c^k; c^{k'})\iff k<k'$.
   \item \label{point:totindisc} For every $n\in \omega$, every indiscernible sequence of $n$-tuples is totally indiscernible.
   \end{enumerate}
 \end{pr}
 \begin{proof}
The implication    $\ref{point:tnop}\allora\ref{point:tnopc}$ is trivial, and for $\ref{point:tnopc}\allora\ref{point:tnop}$, if $\psi(t;w)$ and $(a^i)_{i<\omega}$, $(b^j)_{j<\omega}$ witness $\mathsf{OP}$,  it is sufficient to take $x=t^0w^0$, $y=t^1w^1$, then set $\phi(x;y)=\phi(t^0w^0;t^1w^1)\coloneqq \psi(t^0;w^1)$ and $c^k\coloneqq a^kb^k$.

To prove $\ref{point:totindisc}\allora\ref{point:tnopc}$, suppose there are such $\phi(x;y)$ and $(c^k)_{k<\omega}$. By the Standard Lemma, there is an indiscernible $(d^\ell)_{\ell<\omega}$ such that $\emtp(c^{<\omega}/\emptyset)\subseteq \emtp(d^{<\omega}/\emptyset)$. By construction, $\models \phi(d^0;d^1)\land \neg \phi(d^1; d^0)$, hence $d^{<\omega}$ is indiscernible but not totally indiscernible.

Let us finish by proving $\ref{point:tnopc}\allora \ref{point:totindisc}$. Let $c^I$ be indiscernible but not totally indiscernible. By the Standard Lemma, we may assume $I=\omega$. This means that, for some bijection $f\from \omega\to \omega$ and some formula $\psi(\blaup x0,n)$ over $\emptyset$ we have
\[
  \models \psi(\blaup c0,n)\land \neg \psi(\blaup c{f(0)},{f(n)})
\]
Since $c^{<\omega}$ is indiscernible, by shifting $\blaup c{f(0)},{f(n)}$ backwards, we find $\sigma\in S_{n+1}$, that is,  a permutation  of $\set{0,\ldots,n}$, such that
\[
  \models \psi(\blaup c0,n)\land \neg \psi(\blaup c{\sigma(0)},{\sigma(n)})
\]
\begin{claim}
  By changing $\psi(\blaup x0,n)$, we may assume that $\sigma$ is a transposition of two consecutive elements.
\end{claim}
\begin{claimproof}
Every element of $S_{n+1}$ can be written as a product of transpositions permuting two consecutive elements.\footnote{Start by moving $\sigma(n)$ to the end, one place at a time, by permuting consecutive elements. Then apply induction.}  Write $\sigma$ in this fashion, say as $\sigma=\bla \delta\ell\cdot0$, and for $i\le \ell$ let $\sigma_i\coloneqq \bla \delta i\cdot0$.  By assumption, there exists  $i$  such that 
\[
  \models \psi(\blaup c0,n)\land \neg \psi(\blaup c{\sigma_i(0)},{\sigma_i(n)})
\]
Let $i$ be minimal with the property above. If $i=0$, we are done. Otherwise, just permute the variables of $\psi$ according to $\sigma_{i-1}$.
\end{claimproof}
By the claim, we may assume that there is $r<n$ such that  
\[
    \models \psi(\blaup c0,n)\land \neg \psi(\blaup c0,{r-1}, c^{r+1}, c^r, \blaup c{r+2},n)
  \]
  We prove that $\phi(x;y)\coloneqq \psi(\blaup c0,{r-1}, x, y, \blaup c{r+2},n)$ has $\mathsf{OP}$, which is enough  by \Cref{rem:opover0}. By the Standard Lemma, there is an indiscernible $\mathbb Q$-sequence $d^\mathbb Q$ with the same Ehrenfeucht--Mostowski type as $c^{<\omega}$ and, up to an automorphism of $\monster$, we may assume that for $i\in \omega$ we have $d^i=c^i$. To conclude, just choose your favourite increasing sequence $(j_m)_{m<\omega}$ in  $(r-1, r+2)\cap \mathbb Q$, and observe that, by construction, $\phi(d^{j_{m_0}}, d^{j_{m_1}})\iff m_0<m_1$.
 \end{proof}
 \begin{exr}
Prove the following.
   \begin{enumerate}
   \item The theory of infinite sets is $\mathsf{NOP}$.
   \item $\mathsf{DLO}$ has $\mathsf{OP}$.
   \item $T_\mathrm{rg}$ has $\mathsf{OP}$.
   \end{enumerate}
 \end{exr}
You may want to go through the theories introduced so far and try get a feeling for which have $\mathsf{OP}$ and which do not. Don't worry if you don't see a quick way to prove that a certain theory is $\mathsf{NOP}$: will see soon that this property has several characterisations.

\chapter{Having few types}\label{ch:stability}
\section{Counting types}
We saw that, for countable theories, having few types over $\emptyset$ has very special consequences. In this chapter we will see that, if we count types over arbitrary sets, then there are ``few'' types ---namely, the bare minimum--- if and only if there is a reason for this, if and only if there are \emph{several} reasons for this.
In order to make type-counting easier,  we introduce \emph{local} type spaces.
\begin{defin}
  Let $\phi(x;y)$ be a partitioned formula.
  \begin{enumerate}
 \item $\phi^*(y;x)$ is obtained from $\phi(x;y)$ by reversing
    the order of the partition:  the formula is the same, but $y$ is the tuple of object variables.
  \item  An \emph{instance} of $\phi(x;y)$ is a formula of the form $\phi(x;b)$.
  \item $S_\phi(A)$ is the space of \emph{$\phi$-types over $A$}: maximal consistent sets of instances of $\phi$ and $\neg \phi$ with parameters from $A$.
\item  If $\kappa\ge\abs L$, we define
  \begin{gather*}
    f_{T,\phi}(\kappa)\coloneqq \sup \set{\abs{S_{\phi}(M)}\mid M\models T, \abs M= \kappa}\\
    f_T(\kappa)\coloneqq \sup \set{\abs{S_1(M)}\mid M\models T, \abs M= \kappa}
  \end{gather*}
  \end{enumerate}
\end{defin}
\begin{rem}\label{rem:few1tpsfewntps}
   By usual counting tricks, in the definition of $f_T$, instead
    of just $S_1$, we may equivalently take all the $S_n$ at once.
   On the other hand,  the supremum \emph{must} be taken over all models of size $\kappa$. Some of them may simply have not enough of the ``right'' parameters to make the size of type space grow.
\end{rem}
As you probably expect, if $\phi(x;y)$ is a partitioned formula, then natural restriction map $S_x(A)\to S_\phi(A)$ is continuous. It is also possible to consider finite sets $\Delta$ of partitioned formulas, all with the same partition,\footnote{Note that, if needed, one may always add extra parameter variables which are not necessarily used in every formula of $\Delta$.} and to talk of $\Delta$-types.\footnote{Although if you have at least $2$ parameters, or $2$ $\emptyset$-definable elements, you can code  boolean combinations of  instances of formulas from finite set with boolean combinations of instances of a single formula. The trick is adding parameters to do case distinctions, e.g.\ ``$\theta(x;yt)\coloneqq(t=0\land \phi(x;y))\lor (t=1\land \psi(x;y))$''.} 
In fact, $S_x(A)$ may be written as the inverse limit of all the $S_\Delta(A)$ for $\Delta$ as above along these maps. But let's actually start counting.
  \begin{lemma}
    Let $\kappa \ge \abs L$. Then  $\kappa\le f_T(\kappa)\le 2^\kappa$.
  \end{lemma}
\begin{proof}
  For the first inequality look at realised types. For the second one, note that each type over $A$ yields, injectively, a function $L(A)\to \set{0,1}$.
\end{proof}
Quite remarkably, it will turn out that if there are many types over arbitrarily large set, then the culprit \emph{must} be some $\phi(x;y)$ with the order property:  in one direction, we will get a lower bound on the size of $S_x(A)$ by looking at $S_\phi(A)$, which is the reason we introduced it.  Intuitively, the reason is that linear orders may have many cuts, and each will give us a different type. To make this precise, we introduce the following function on infinite cardinals.
\begin{defin} If $\kappa$ is an infinite cardinal, we define
  \[
    \ded \kappa\coloneqq\sup\set{\lambda \mid  \text{there is a linear order of size $\kappa$ with
        $\lambda$ cuts}}
    \]
\end{defin}
\begin{rem}\*
  \begin{enumerate}
  \item Every cut $L\sqcup R$ is determined by $L$, so there are no
    more cuts than subsets, hence $\ded\kappa\le 2^\kappa$.
  \item Notoriously, $\mathbb Q$ is dense in $\mathbb R$, hence $\ded \aleph_{0}=2^{\aleph_0}$. 
  \item Since we may always append a copy of $\mathbb Q$ to an infinite linear order without changing its cardinality, $\ded\kappa$ is always at least $2^{\aleph_0}$.
  \item   We may equivalently define $\ded \kappa$ by just looking at $\mathsf{DLO}$'s, instead of all linear orders. To see this, if $(I,<)$ is a linear order of size $\kappa$, for every pair $a,b\in I\cup \set{\pm \infty}$  such that $(a,b)=\emptyset$, insert a copy of $\mathbb Q$ between $a$ and $b$, obtaining a $\mathsf{DLO}$ $J\supseteq I$. We are inserting at most $\kappa\cdot \aleph_0$ new points, so $\abs J=\kappa$. As for the number of cuts in $J$, note that we are at most introducing $2^{\aleph_0}$ new cuts in $\kappa$ places, hence $I$ and $J$ have the same number of cuts.
  \item   We may equivalently define $\ded \kappa$ as
    \[
\sup\set{\lambda\mid  \text{there is a linear order of size $\lambda$  with a dense subset of size }\kappa  }
    \]
    In fact, if $I$ has size $\kappa$ and $\lambda$ cuts, we may first replace each point of $I$ with a  copy of $\mathbb Q$, obtaining  $I'\models\mathsf{DLO}$ of the same size and the same number of cuts, and then filling each cut with one element returns a linear order of size $\lambda$ in which $I'$ is dense. Conversely, if $J$ has size $\lambda$ and $I\subseteq J$ is dense (of size $\kappa$), then different points of $J$ have different cut in $I$.
  \end{enumerate}
\end{rem}
\begin{lemma}\label{lemma:dedle}
  $\kappa <\ded \kappa$.
\end{lemma}
\begin{proof}
 Let $\mu$ be  minimum with $2^\mu>\kappa$. Look at the tree $2^{<\mu}$ with the lexicographic ordering, induced by the convention that $0< \text{undefined} <1$. By assumption  $\abs{2^{<\mu}}\le \kappa$. But every branch in $2^{<\mu}$ yields a different cut, and there are $2^\mu$ branches.
\end{proof}
Here are some facts on $\ded \kappa$ that we will neither prove nor need, but you may find interesting. By~\cite{mitchell}, if $\kappa$ has uncountable cofinality, in a cardinal preserving forcing extension $\ded \kappa<2^\kappa$, and by \cite{cks_spectra} it is consistent to have $\ded\kappa<(\ded\kappa)^{\aleph_0}$ for certain $\kappa$. Moreover, by~\cite{deddeddedded},   for any $\kappa$, we have $2^\kappa\le \ded(\ded(\ded(\ded(\kappa))))$.\footnote{According to~\cite{chertweet}, ``[Shelah's] other superpower is the ability to discover number 4 where it has absolutely no reason to be.''}

Another thing we will not prove is that, by~\cite{keisler_six},  if $\abs L=\aleph_0$, then $f_T(\kappa)$ can only be one of these:
    \[
      \kappa\qquad \kappa+2^{\aleph_0}\qquad \kappa^{\aleph_0}\qquad \ded \kappa\qquad (\ded \kappa)^{\aleph_0}\qquad 2^\kappa
    \]
  If you haven't done this already, it is a good idea to go back through these notes, e.g.\ to \Cref{sec:tpeg}, and to compute cardinalities of $S_1(M)$ in different theories. After which, I recommend you try to solve the following exercise.
\begin{exr}
For each of the six functions above, find some $T$ in a countable $L$ having that function as $f_T$.
\end{exr}
\section{The order property}
The order property $\mathsf{OP}$, introduced in \Cref{defin:op}, will play a crucial role in the whole chapter.  We defined it using $\omega$, but it is easy to see that we may produce similar patterns with other linear orders.
\begin{rem}\label{rem:IOP}
By compactness and saturation of $\monster$,   if $\phi(x;y)$ has $\mathsf{OP}$ and $I$ is any small linear order then, for $i\in I$, there are $a_i\in \monster^{\abs x}$ and $b_i\in \monster^{\abs y}$ such that $\models \phi(a_i;b_j)\iff i<j$.
\end{rem}
 $\mathsf{NOP}$ (partitioned) formulas are closed under several constructions.
\begin{lemma}\label{lemma:nopflas}
  Let $\phi(x;y)$ and $\psi(x;z)$ be $\mathsf{NOP}$, where $y$ and $z$ are allowed to share variables. Then:
  \begin{enumerate}
  \item If $y=uv$ and $c\in \monster^{\abs v}$ then $\phi(x;uc)$ is $\mathsf{NOP}$.
  \item $\phi^*(y;x)$ is $\mathsf{NOP}$.
  \item Boolean combinations of $\phi, \psi$, partitioned as $\theta(x;yz)$, are $\mathsf{NOP}$.
  \end{enumerate}
\end{lemma}
\begin{proof}
 The first part follows very easily from the definitions, and  the second one from applying \Cref{rem:IOP} to $\phi(x;y)$ with $I$ the (negative) integers.
 The fact that being $\mathsf{NOP}$ is preserved under taking negations is similarly proven, so it is enough to show that $\theta(x;yz)\coloneqq\phi(x;y)\lor \psi(x;z)$ is $\mathsf{NOP}$.  Suppose $\theta$ has $\mathsf{OP}$, witnessed by $(a_i)_{i<\omega}$  and $(b_ic_i)_{i<\omega}$ such that $\models\phi(a_i;b_j)\lor\psi(a_i;c_j)\iff i<j$. Colour $\set{i,j}\in [\omega]^2$, with $i<j$, white if $\models\phi(a_i;b_j)$ and black if $\models\psi(a_i;c_j)$. By Ramsey's Theorem there is an infinite $I\subseteq \omega$ such that, for all $i<j$ both in $I$, the colour of $\set{i,j}$ is always white or always black. In the first case $\phi$ has $\mathsf{OP}$, in the second case $\psi$ does.
\end{proof}
\begin{pr}\label{pr:opthenunstable}
  If $\phi(x;y)$ has $\mathsf{OP}$ and $\kappa\ge \abs L$, then $f_{\phi,T}(\kappa)\ge \ded \kappa$. In particular, if $T$ has $\mathsf{OP}$ then $f_{T}(\kappa)\ge \ded \kappa$.
\end{pr}
\begin{proof}
  Choose  $I\models \mathsf{DLO}$ of size $\kappa$,  take $(a_i)_{i\in I}$, $(b_i)_{i\in I}$,  given by \Cref{rem:IOP},  contained in some  $M\models T$  of size $\kappa$. For each cut $C=L\sqcup R$ in $I$, define
  \[
    \Phi_C(x)=\set{\neg\phi(x;b_j)\mid j\in L}\cup\set{\phi(x;b_j)\mid j\in R}
  \]
  Since $I\models \mathsf{DLO}$, every finite subset of $\Phi_C$ is realised by some $a_i$. Therefore, $\Phi_C$ is consistent, hence can be completed to  $p_C\in S_\phi(M)$. But  $C\mapsto p_C$ is injective: if $j\in L_{C}\setminus L_{C'}$ then $p_C$ and $p_{C'}$ disagree on $\phi(x, b_j)$. The ``in particular'' part follows by completing to elements of $S_x(M)$ and invoking \Cref{rem:few1tpsfewntps}.
\end{proof}
Hence, as promised, if $\phi$ has the order property, then there are many $\phi$-types. In fact, the converse is true, where ``many'' just means ``more than the bare minimum''. We will prove this by using the following combinatorial result.
\begin{thm}[Erd\H os--Makkai]
Suppose $B$ is infinite, and let $\mathcal F\subseteq \mathscr P(B)$ be a family of subsets of $B$ of size $\abs{\mathcal F}> \abs B$. For $i\in \omega$, there are $b_i\in B$ and $S_i\in \mathcal F$ such that, either
  \begin{enumerate}
  \item\label{point:em1} for all $i,j\in \omega$ we have $b_i\in S_j\iff j<i$, or
  \item\label{point:em2} for all $i,j\in \omega$ we have $b_i\in S_j\iff i<j$.
  \end{enumerate}
\end{thm}
\begin{proof}
  Since there are at most $\abs B$ pairs of finite subsets of $B$, we can build $\mathcal F'\subseteq \mathcal F$ with $\abs{\mathcal F'}=\abs B$ satisfying:
  \begin{center}
    for all finite $B_0, B_1\subseteq B$, if there is $S\in \mathcal F$ with $B_0\subseteq S$ and $B_1\subseteq S^\complement$, then there is such an $S$ in $\mathcal F'$.
  \end{center}
  Since there are at most $\abs B$ Boolean combinations of elements of $\mathcal F'$, there is $S_*\in \mathcal F$ which is not such a Boolean combination.

  Build by induction $(b_i')_{i<\omega}$ in $S_*$, $(b_i'')_{i<\omega}$ in $S_*^\complement$, and $(S_i)_{i<\omega}$ in $\mathcal F'$ such that, for all $n\in\omega$,
  \begin{enumerate}[label=(\alph*)]
  \item\label{point:ema} $\set{b_0',\ldots, b_n'}\subseteq S_n$, 
  \item\label{point:emb} $\set{b_0'',\ldots, b_n''}\subseteq S_n^\complement$, and
  \item\label{point:emc} for all $i<n$ we have  $b_n'\in S_i\iff b_n''\in S_i$.
  \end{enumerate}
The base step is trivial. For the induction step:
\begin{claim}
  There are $b_n'\in S_*$ and $b_n''\in S_*^\complement$ such that for all $i<n$ we have $b_n'\in S_i\iff b_n''\in S_i$.
\end{claim}
\begin{claimproof}
  Suppose not, and fix $b\in S_*$. For every $i<n$, define $S_i^{b}$ to be $S_i$ if $b\in S_i$ and $S_i^\complement$ otherwise. Let $S^b\coloneqq \bigcap_{i<n} S_i^b$.  If there is $c\in S^b\cap S_*^\complement$ we can take $b_n'\coloneqq b$ and $b_n''\coloneqq c$; since we are assuming these things do not exist, we have $S^b\subseteq S_*$. Hence $S_*=\bigcup_{b\in S_*} S^b$. But this union is finite, since there are only $2^n$ possibilities for $S^b$. So $S_*$ is a Boolean combination of the $S_i$, against choice of $S_*$.
\end{claimproof}
This gives us $b_n', b_n''$ satisfying~\ref{point:emc}. By choice of $\mathcal F'$ there is $S_n\in \mathcal F'$ satisfying~\ref{point:ema} and~\ref{point:emb}.  By Ramsey's Theorem, up to passing to an infinite $I\subseteq \omega$, either:
\begin{enumerate}
\item for all $j<i$ we have $b_i'\in S_j$, or
\item for all $j<i$ we have $b_i'\notin S_j$.
\end{enumerate}
  In the first case, set $b_i\coloneqq b_i''$ and obtain~\ref{point:em1} from the conclusion. In the second case obtain~\ref{point:em2} by setting $b_i\coloneqq b_{i+1}'$.
\end{proof}
\begin{co}\label{co:unstthenop}
  If $\abs{S_\phi(B)}>\abs B$ for some infinite $B$, then $\phi(x;y)$ has $\mathsf{OP}$.
\end{co}
\begin{proof}
  By Erd\H os--Makkai applied to the family of subsets of $B$
  \[
\mathcal F\coloneqq    \set{\set{b\in B\mid \phi(a,b)}\mid a\in \monster^{\abs x}}
  \]
  which has the same size as $S_\phi(B)$ because whether $\models \phi(a,b)$ only depends on $\tp_\phi(a/B)$. Depending on cases 1 or 2 in the conclusion of Erd\H os--Makkai, we get $\mathsf{OP}$ for either $\phi$ or $\phi^*$, and conclude by \Cref{lemma:nopflas}.
\end{proof}
\begin{defin}
Let $\kappa$ be an infinite cardinal.  A theory is \emph{$\kappa$-stable} iff, for all $A$ with $\abs A=\kappa$, we have $\abs{S_1(A)}=\kappa$. A theory is \emph{stable} iff it is $\kappa$-stable for some $\kappa\ge \abs L$.
\end{defin}
\begin{co}\label{co:stabiffnop}
  A theory is stable if and only if it is $\mathsf{NOP}$. 
\end{co}
\begin{proof}
Left to right is  \Cref{pr:opthenunstable}. As for right to left, by \Cref{co:unstthenop}, if $T$ is $\mathsf{NOP}$ we have $f_{\phi,T}(\kappa)=\kappa$. But every $p(x)\in S_x(A)$ is determined by the collection, of its restrictions to instances of the various $\phi(x;y)\in L(\emptyset)$, that is, by the function mapping $\phi(x;y)\mapsto p\restr \phi$. Therefore, in a $\mathsf{NOP}$ theory we have $f_T(\kappa)\le \kappa^{\abs L}$. To conclude, choose your favourite $\kappa\ge \abs L$ with the property that $\kappa^{\abs L}=\kappa$, for example $2^{\abs L}$.
\end{proof}
For this reason, iff $\phi(x;y)$ is $\mathsf{NOP}$, we will say that $\phi(x;y)$ is \emph{stable}, and we call $\phi(x;y)$ \emph{unstable} iff it has $\mathsf{OP}$.
\section{Local ranks}
As promised, we have shown that there are many types if and only if there is a good reason for it. In fact, there are at least two more equivalently good reasons to have many types, to which the rest of the chapter is devoted.

In this section, we look at a rank which will give us a ``quantitative'' version of stability. The idea is the following. In the proof of \Cref{pr:opthenunstable}, we obtained many types by following the branches of a tree. For example, in $\mathsf{DLO}$, we can use instances of the formula $\phi(x;y)\coloneqq x<y$, which clearly has $\mathsf{OP}$, to build the tree in \Cref{figure:binarytreedlo}. The children of each node partition their parent into two classes,\footnote{By taking conjunctions. Of course $x\ge 1/4$ does not imply $x<1/2$.} and we are able to complete branches to pairwise inconsistent partial $\phi$-types. The idea behind the rank we are about to introduce is to measure the height of the tallest tree we can build this way.
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          edge from parent node [right] {}
        }
        child{
          node (gdd) {$x< \frac 78$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [left] {}
        }
        edge from parent node [right] {}
      }
      child {
        node (gd) {$x<\frac 34$}
        child{
          node (dgd) {$x\ge \frac 58$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (ggd) {$x<\frac 58$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
                  edge from parent node [left] {}
        }
        edge from parent node [left] {}
      }
      edge from parent node [below] {}
    }
    child [sibling distance=50mm] {
      node (g) {$x<\frac 12$}
      child {
        node (dg) {$x\ge \frac 14$}
        child{
          node (ddg) {$x\ge \frac38$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (gdg) {$x<\frac 38$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [left] {}
        }
        edge from parent node [right] {}
      }
      child {
        node (gg) {$x<\frac 14$}
        child{
          node (dgg) {$x\ge \frac 18$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (ggg) {$x<\frac 18$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
                  edge from parent node [left] {}
        }
        edge from parent node [left] {}
      }
      edge from parent node [below] {}
    }
    ;
  \end{tikzpicture}\caption{A binary tree of instances of $\phi(x;y)\coloneqq x<y$ and of its negation.}\label{figure:binarytreedlo}
\end{figure}
\begin{defin}[Shelah's local 2-rank]
  Fix a partitioned formula $\phi(x;y)$. We inductively define the rank of a small partial type\footnote{As usual, parameters are allowed.} $\theta(x)$ as follows.
  \begin{itemize}
  \item $R_\phi(\theta(x))\ge 0$ iff $\theta(x)$ is consistent, and $R_\phi(\theta(x))=-\infty$ otherwise.
  \item $R_\phi(\theta(x))\ge n+1$ iff there is $b\in \monster^{\abs y}$ with  
\[
      R_\phi(\theta(x)\land \phi(x,b))\ge n \text{ and }R_\phi(\theta(x)\land \neg\phi(x,b))\ge n
      \]
  \item $R_\phi(\theta(x))=n$ iff  $R_\phi(\theta(x))\ge n$ and $R_\phi(\theta(x))\centernot \ge n+1$. Iff for all $n\in \omega$ we have   $R_\phi(\theta(x))\ge n$, we write $R_\phi(\theta(x))=\infty$.
  \end{itemize}
\end{defin}
The following exercise, besides being a good way to get familiar with the rank $R_\phi$, is at the heart of the next section.
\begin{exr}\label{exr:sltrid}
If $\theta(x;y)$ is a formula,   for all $n\in \omega$, the set $\set{y\mid R_\phi(\theta(x,y))\ge n}$ is definable.\footnote{Hint: you just need to use induction and say that certain formulas are consistent.}
\end{exr}The fact that  ``$R_\phi$ gives us a quantitative version of stability'' is made precise in the statement below.
\begin{pr}
  $\phi(x;y)$ is stable if and only if $R_\phi(x=x)$ is finite.
\end{pr}
\begin{proof}
  If $\phi$ is unstable, use \Cref{rem:IOP} with $I=[0,1]$. So both $\phi(x, b_{1/2})$ and $\neg\phi(x, b_{1/2})$ contain densely many $a_i$. Keep splitting on the diadic rationals.

  If $R_\phi(x=x)=\infty$, then by compactness there is a tree of parameters $B=(b_\eta\mid \eta\in 2^{<\omega})$ such that for every $\eta\in 2^\omega$ this set is consistent:
  \[
    \set{\phi(x;b_{\eta\restr i})\mid \eta(i)=0}\cup     \set{\neg\phi(x;b_{\eta\restr i})\mid \eta(i)=1}
  \]
  \begin{figure}\centering
    \begin{tikzpicture}[level/.style={sibling distance=75mm/(#1^(13/8)), level distance=8mm*(#1^(3/5))},  grow=up, scale=1.25, font=\scriptsize]
    \node  (x){$x=x$}
    child [sibling distance=50mm]    {
      node (d) {$\neg \phi(x, b_{\seq{}})$} 
      child {
        node (dd) {$\neg \phi(x, b_{1})$}        
        child{
          node (ddd) {$\neg \phi(x, b_{11})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted]{edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (gdd) {$\phi(x, b_{11})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [left] {}
        }
        edge from parent node [right] {}
      }
      child {
        node (gd) {$\phi(x, b_{1})$}
        child{
          node (dgd) {$\neg \phi(x, b_{10})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (ggd) {$\phi(x, b_{10})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
                  edge from parent node [left] {}
        }
        edge from parent node [left] {}
      }
      edge from parent node [below] {}
    }
    child [sibling distance=50mm] {
      node (g) {$\phi(x, b_{\seq{}})$}
      child {
        node (dg) {$\neg \phi(x, b_0)$}
        child{
          node (ddg) {$\neg \phi(x,b_{01})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (gdg) {$\phi(x, b_{01})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [left] {}
        }
        edge from parent node [right] {}
      }
      child {
        node (gg) {$\phi(x, b_0)$}
        child{
          node (dgg) {$\neg\phi(x, b_{00})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
          edge from parent node [right] {}
        }
        child{
          node (ggg) {$\phi(x, b_{00})$}
          child [draw, dotted] {edge from parent node [right] {}}
          child [draw, dotted] {edge from parent node [left] {}}
                  edge from parent node [left] {}
        }
        edge from parent node [left] {}
      }
      edge from parent node [below] {}
    }
    ;
  \end{tikzpicture}\caption{The same tree as in \Cref{figure:binarytreedlo}, but with more general labels.}\label{figure:binarytree}
\end{figure}
 Complete each to an element of $S_\phi(B)$, which therefore has size $>\abs B$, then invoke \Cref{co:unstthenop}.
\end{proof}
\section{Definable types}

\begin{defin}Let $\phi(x;y)$ be a partitioned formula.
  \begin{enumerate}
  \item We say that $p(x)\in S_\phi(B)$ is \emph{$A$-definable} iff there is $\psi(y)\in L(A)$ such that, for all $b\in B$,
    \[
      \phi(x;b)\in p\iff \models \psi(b)
    \]
  \item We say that  $p(x)\in S_x(B)$ is \emph{$A$-definable} iff every $p\restr \phi$ is. We say that it is \emph{definable} iff it is $B$-definable.
  \item We say that \emph{$\phi$-types are uniformly definable} iff there is $\psi(y;z)$ such that: for every $B$ with $\abs B\ge 2$, for every $p\in S_\phi(B)$, there is $c\in B$ such that $p$ is defined by $\psi(y;c)$.
  \end{enumerate}
\end{defin}
\begin{eg}
  In $\mathsf{DLO}$, examples of definable types are $\tp(+\infty/\mathbb Q)$ and $\tp(0^+/\mathbb Q)$, while $\tp(\sqrt 2/\mathbb Q)$ is not definable.
\end{eg}
\begin{pr}
  If $\phi(x;y)$ is stable, then $\phi$-types are uniformly definable.
\end{pr}
\begin{proof}
  Let $p\in S_\phi(B)$.  Define $p_0=\emptyset$ and, inductively, if there is $p_{i+1}\subseteq p$ \emph{obtained by adding only one formula to $p_i$} such that $R_\phi(p_{i+1})<R_\phi(p_{i})$, choose it. After at most $R_\phi(x=x)$ steps, we have to stop, say at $p_m$. Because $R_\phi(x=x)$ does not depend on $p$, modulo tricks (repeating parameters, case-distinctions done with parameters,\footnote{This uses $\abs B\ge 2$; the trick is enlarging the tuple of parameter variables in order to write things like $(t=0\land(\ldots))\lor(t=1\land(\ldots))$.} etc), such $p_m$ may be written  as instances of the same formula, uniformly across $p$. Use \Cref{exr:sltrid} to define
  \[
    \psi(y)\coloneqq \text{``}R_\phi(p_m(x)\land \phi(x,y))=R_\phi(p_m)\text{''}
  \]
Again,  this $\psi(y)$ has parameters which depend on $p$, but besides that it is uniform in $p$. We show that $\psi(y)$ defines $p$.
  \begin{itemize}
  \item If $\phi(x,b)\in p$, then $R_\phi(p_m(x)\land\phi(x,b))=R_\phi(p_m)$ by definition of $p_m$.
  \item If $\neg\phi(x,b)\in p$, then $R_\phi(p_m(x)\land\neg\phi(x,b))=R_\phi(p_m(x))$ again by definition of $p_m$. But by definition of $R_\phi$, then $p_m(x)\land\phi(x,b)$ must have smaller rank, otherwise $R_\phi(p_m)$ would go up.\qedhere
  \end{itemize}
\end{proof}
Let us put everything we know about stable formulas together.
\begin{thm}
The following are equivalent for $\phi(x;y)$.
  \begin{enumerate}[label=(\alph*)]
  \item\label{point:phinop} $\phi$ is $\mathsf{NOP}$.
  \item\label{point:phinopr} $R_\phi(x=x)<\infty$.
  \item\label{point:phinopud} All $\phi$-types are uniformly definable.
  \item\label{point:phinopd} All $\phi$-types over models are definable.
  \item\label{point:phinopltss} If $M\models T$ has size $\kappa\ge \abs L$, then $\abs{S_\phi(M)}\le \kappa$.
  \item\label{point:phinopded} There is $\kappa\ge \abs L$ such that $f_{\phi,T}(\kappa)<\ded \kappa$.
  \end{enumerate}
\end{thm}
\begin{proof}
  We already saw $\mathrm{\ref{point:phinop}}\sse \mathrm{\ref{point:phinopr}}$ and $\mathrm{\ref{point:phinopded}}\allora
\mathrm{\ref{point:phinop}}\allora\mathrm{\ref{point:phinopud}}$. But $\mathrm{\ref{point:phinopud}}\allora \mathrm{\ref{point:phinopd}}$  is obvious and $\mathrm{\ref{point:phinopltss}}\allora \mathrm{\ref{point:phinopded}}$ holds because $\kappa<\ded \kappa$, so we are left with $\mathrm{\ref{point:phinopd}}\allora \mathrm{\ref{point:phinopltss}}$. Just count defining formulas: there are at most $\kappa+\abs L$ of them.
\end{proof}
Before making a list of properties equivalent to stability of $T$, let us add another one to the list. It says that ``all   \emph{externally definable} subsets  are  definable''.
\begin{defin}
  A set $A$ is \emph{stably embedded} iff,  for all $n\ge1$ and all $\monster$-definable sets $X\subseteq \monster^n$, there is an $A$-definable $Y$ such that $X\cap A^n=Y\cap A^n$.
\end{defin}
\begin{rem}\label{rem:stabiffstabemb}
  Let $X=\phi(\monster, c)\subseteq \monster^n$. By spelling out definitions, we see that there is an $A$-definable $Y$ such that  $X\cap A^n=Y\cap A^n$  if and only if $\tp_\phi(c/A)$ is definable.    In particular, a theory is stable if and only if every set is stably embedded.
\end{rem}


\begin{thm}
  Let $T$ be a complete theory. The following are equivalent.
  \begin{enumerate}
  \item \label{point:tnop2}$T$ is $\mathsf{NOP}$.
  \item\label{point:tnopc2} There are no  $(c_i\mid i<\omega)$ and  $\phi$ with $\phi(c_i, c_j)\iff i<j$.
  \item\label{point:totindisc2} Every indiscernible sequence is totally indiscernible.
  \item\label{point:tpMdef} All types over models are definable.
    \item\label{point:stabiffstabemb} Every $A\subseteq \monster$ is stably embedded.
  \item\label{point:onevar} All formulas $\phi(x;y)$ with $x$ a single variable are stable.
  \item\label{point:ftlekabsl} $f_T(\kappa)\le\kappa^{\abs L}$.
  \item\label{point:kstab} $\exists \kappa\ge \abs L\; f_T(\kappa)=\kappa$, that is, $T$ is stable.
  \item\label{point:fltded} $\exists \kappa\ge\abs L\; f_T(\kappa)<\ded \kappa$.
  \end{enumerate}
\end{thm}
\begin{proof}
We have already seen    $\ref{point:tnop2}\sse \ref{point:tnopc2}\sse \ref{point:totindisc2}$ in \Cref{pr:noptotindisc}, while $\ref{point:tnop2}\sse \ref{point:tpMdef}$ follows from $\mathrm{\ref{point:phinop}}\sse \mathrm{\ref{point:phinopd}}$ in the previous theorem, and $\ref{point:tnop2}\sse \ref{point:stabiffstabemb}$ is \Cref{rem:stabiffstabemb}.
 Moreover, $\ref{point:tnop2}\allora \ref{point:onevar}$ is trivial, and $\ref{point:onevar}\allora \ref{point:ftlekabsl}$ is due to the fact that by \Cref{rem:few1tpsfewntps} it does not matter if we count types in one or several variables.
 For $\ref{point:ftlekabsl}\allora \ref{point:kstab}$ we take $\kappa=2^{\abs L}$.
 Finally, $\ref{point:kstab}\allora \ref{point:fltded}$ because $\kappa<\ded \kappa$, and $\ref{point:fltded}\allora \ref{point:tnop2}$ by $\mathrm{\ref{point:phinop}}\sse \mathrm{\ref{point:phinopded}}$ in the previous theorem.
\end{proof}



It is \emph{not} enough to check definability of types on one model to get stability. For example, all types over the ordered field $\mathbb R$ are uniformly definable~\cite{markersteinhorn}, but its theory is clearly unstable. Another instance of this phenomenon can be found~\cite{delon} in the field $\mathbb Q_p$. Anyway, this is also true for the reduct $(\mathbb R, <)$,  which  you may prove as an exercise.
\begin{exr}
  In $\mathsf{DLO}$, all $\phi$-types over $\mathbb R$ are uniformly definable.
\end{exr}




\chapter{Having very few models}
\section{Morley rank}
Part of the idea behind Morley rank was hinted in \Cref{spoiler:mr}: the ``simplest'' types we can find are the isolated ones, to which we want to assign rank $0$. Next, there are those types which are isolated amongst the nonisolated one, which will have rank $1$. Inductively, the types of rank $n+1$ are the isolated ones amongst those of rank larger than $n$. In other words, we are looking at the \emph{Cantor rank} of the points of type space.

Anyway, Morley rank is not exactly this.\footnote{Otherwise, we would have just called it ``Cantor rank'', no?} The idea is that in $S_x(A)$ there may be types which are isolated ``by mistake'', that is, because $A$ does not have ``enough'' parameters. For example, in $\omega$-categorical countable theories, if $A$ is finite then every element of $S_x(A)$ is isolated, yet we may have reasons to regard some types over $A$ as being, in a sense, ``less'' isolated than other types: for instance, those realised in $A$ will have a unique extension to any $B\supseteq A$, which will still be isolated, while other types will have at least one extension in $S_x(B)$ which is not isolated  (see \Cref{eg:rmgeqr}). To fix this, the original approach of Morley in \cite{morley} was to look at preimages under all the restriction maps $S_x(B)\to S_x(A)$, and only consider a point to be ``really'' isolated if \emph{all} of its extensions to $B$ are isolated. Instead of doing this, we take advantage of the fact that we are working in a monster model. In fact, we will first define Morley rank for formulas, and obtain from it a definition for types.\footnote{There are other possible ranks that one may put on type spaces, but not all of them make sense on formulas.}
\begin{defin}\label{defin:rmor}
  Let $\phi(x)\in L(\monster)$. Its \emph{Morley rank} is either an ordinal, $\infty$, or $-\infty$, and is defined as follows.\footnote{For some reason, Morley rank tends to be denoted by \textsc{rm} instead of \textsc{mr}. I suspect that this is due to the abundance of literature on Morley rank written in French. If anyone has more precise information, my email address is at \cpageref{email}.}
    \begin{itemize}
  \item $\rmor(\phi(x))\ge 0$ iff $\phi(x)$ is consistent, and $\rmor(\phi(x))=-\infty$ otherwise.
  \item $\rmor(\phi(x))\ge \alpha+1$ iff there is a family $\set{\psi_i(x)\mid i<\omega}$ of pairwise inconsistent $L(\monster)$-formulas, each of which implies $\phi(x)$ and has $\rmor(\psi_i(x))\ge \alpha$.
  \item If $\lambda$ is a limit ordinal, then $\rmor(\phi(x))\ge \lambda$ iff for all $\alpha< \lambda$ we have  $\rmor(\phi(x))\ge \alpha$.
  \item $\rmor(\phi(x))=\alpha$ iff  $\rmor(\phi(x))\ge \alpha$ and $\rmor(\phi(x))\centernot \ge \alpha+1$. 
  \item Iff for all ordinals $\alpha$ we have   $\rmor(\phi(x))\ge \alpha$, we write $\rmor(\phi(x))=\infty$.\footnote{Some authors prefer to say that, in this case, $\rmor(\phi(x))$ does not exist.}
\item Suppose that for some ordinal $\alpha$ we have  $\rmor(\phi(x))=\alpha$. We define the \emph{Morley degree} $\mdeg(\phi(x))$ as the maximum $n\in \omega$ such that there is a family $\set{\psi_i(x)\mid i<n}$ of pairwise inconsistent $L(\monster)$-formulas, each of which has Morley rank $\alpha$ and implies $\phi(x)$.
\item If $p(x)\in S_x(A)$, its \emph{Morley rank} is defined as
  \[    \rmor(p(x))\coloneqq\min\set{\rmor(\phi(x))\mid \phi(x)\in L(A), p(x)\proves \phi(x)}
  \]
\item Suppose that for some ordinal $\alpha$ we have  $\rmor(p(x))=\alpha$. The \emph{Morley degree} of $p(x)$ is defined as
  \[
    \mdeg(p(x))\coloneqq\min\set{\mdeg(\phi(x))\mid \phi(x)\in L(A), p(x)\proves \phi(x), \rmor(\phi(x))=\alpha}
  \]
\end{itemize}
\end{defin}
Note that, if $p(x)\in S_x(A)$, in order to compute its Morley rank, we need to look at formulas with parameters outside of $A$. All that is needed about $\monster$ in order for this to work is $\omega$-saturation: that is, if $M\supseteq A$ is $\omega$-saturated, then we may compute $\rmor(p(x))$ by replacing $\monster$ by $M$ in \Cref{defin:rmor}.\footnote{It follows from this fact that, if $M$ is $\omega$-saturated, then the Morley rank of every $p\in S_x(M)$ equals its Cantor rank, and that having no type of rank $\infty$ over any $A$ is the same as every $S_x(A)$ not containing a perfect set.} This follows from the following exercises.
\begin{exr}
Prove that, in the definition of $\rmor(\phi(x))\ge \alpha+1$, instead of requiring the existence of an infinite family of $\psi_i$, we may require the existence of arbitrarily large finite families with the same properties.
\end{exr}
\begin{exr}\label{exr:mrdoottotp}
  Let $\phi(x;y)\in L(\emptyset)$. Prove that, if $a,b\in \monster^{\abs y}$ and $\tp(a/\emptyset)=\tp(b/\emptyset)$, then $\rmor(\phi(x;a))=\rmor(\phi(x;b))$ and $\mdeg(\phi(x;a))=\mdeg(\phi(x;b))$. In particular, if we change the parameters in a formula or type along an elementary map, Morley rank and degree do not change.
\end{exr}
The definition of Morley rank we gave above may seem a bit removed from the introductory explanation in terms of isolated points. It is not. This is due to the following exercise, together with the fact that finite subspaces of Hausdorff spaces are discrete.
\begin{exr}\label{exr:rmordisj}
 If $\rmor(\phi(x)\lor \psi(x))\ge \alpha$, then $\rmor(\phi(x))\ge \alpha$ or $\rmor(\psi(x))\ge \alpha$.
\end{exr}

\begin{eg}\label{eg:rmgeqr}
Let $T$ be the theory of a generic equivalence relation; we looked at its types in \Cref{subsec:geneqrel}. For every $A$,  the realised types in $S_1(A)$ have Morley rank $0$, generic types of equivalence classes represented in $A$ have Morley rank $1$, and the generic type over $A$ has Morley rank $2$. In this theory, we can also see that Morley rank may be different from Cantor rank. It is easy to see that $T$ is $\omega$-categorical, hence, if $A$ is finite, then every point of $S_1(A)$ is isolated, hence has Cantor rank $0$. 
\end{eg}
\begin{eg}
  Let $T$ be the theory of an equivalence relation with exactly $n$ equivalence classes, all infinite. Then the formula $x=x$, with $\abs x=1$ (hence the unique element of $S_1(\emptyset)$), has Morley rank $1$ and Morley degree $n$.
\end{eg}
\begin{exr}
Let $\abs x=1$.  For which cardinals $\kappa$, in the theory of $\kappa$ generic equivalence relations,  $\rmor(x=x)$ is an ordinal?
\end{exr}
\begin{exr}
Let $\abs x=1$.  Compute $\rmor(x=x)$ in $T_{2^\omega}$.
\end{exr}
\begin{exr}
Show that,  in $\mathsf{DLO}$, we have $\rmor(x=x)=\infty$.
\end{exr}
\begin{pr}\*\label{pr:nfpr}
  \begin{enumerate}
  \item If $q(x)\supseteq p(x)$, then $\rmor(q(x))\le \rmor(p(x))$, and if equality holds and $\rmor(p(x))$ is an ordinal then $\mdeg(q(x))\le \mdeg(p(x))$.
  \item Let $p(x)\in S_x(A)$ and $\alpha$ an ordinal. If
    $\rmor(p)=\alpha$, then there is a finite $A_0\subseteq A$ such
    that $\rmor(p\restr A_0)=\alpha$.
      \item If $p(x)\in S_x(A)$ has ordinal Morley rank and $B\supseteq A$, then there is $q(x)\in S_x(B)$ with $q(x)\supseteq p(x)$ and $\rmor(p(x))=\rmor(q(x))$.
\end{enumerate}
\end{pr}
\begin{proof}The first point is immediate from the definition of Morley rank. For the second one, if $\rmor(p(x))=\alpha$, then this is witnessed by a formula $\phi(x)\in L(A)$. If $A_0$ is the set of parameters appearing in $\phi(x)$, clearly $\rmor(p\restr A_0)\le \alpha$. But $(p\restr A_0)\subseteq p$, so we conclude by the previous point. The last point will be proven once we show that this set of formulas is consistent
  \[
    p(x)\cup \set{\neg \phi(x)\mid \phi(x)\in L(B), \rmor(\phi(x))<\rmor(p(x))}
  \]
  If not, then by compactness there are $\psi(x)\in p(x)$ and $\phi_i(x)\in L(B)$ with $\rmor(\phi_i(x))<\rmor(p(x))$ such that $\psi(x)\proves \bigvee_{i<n} \phi_i(x)$. But $\rmor(\psi(x))\ge \rmor(p(x))$ by definition, hence by \Cref{exr:rmordisj} there is $i<n$ such that $\rmor \phi_i(x)\ge \rmor p(x)$, a contradiction.
\end{proof}
Observe that, contrary to what happens in the first point of the proposition above, if $p(x)\in S_x(A)$, $q(x,y)\in S_{xy}(A)$, and $p(x)\subseteq q(x,y)$, then $\rmor(q)\ge \rmor(p)$. The point is that when we regard the formulas of $p$ as formulas in $(x,y)$, we are working in a larger space, c.f.~\Cref{rem:varincflas}. 
\begin{exr}\label{exr:rmorisol}
Let $\alpha$ be an ordinal. Then $\rmor(\phi(x))=\alpha$ if and only if the set below is finite and nonempty.
\[
    \set{p(x)\in [\phi(x)]\subseteq S_x(\monster)\mid \rmor(p(x))\ge \alpha}
  \]
Moreover,   if this is the case, then the cardinality of the set above equals $\mdeg(p)$.
\end{exr}
\begin{lemma}\label{lemma:boundonrmor}
If the Morley rank of a formula, or type, is at least $(\abs{L}+\abs{S_{<\omega}(\emptyset)})^+$, then it is automatically $\infty$.
\end{lemma}
\begin{proof}
By \Cref{exr:mrdoottotp}, the number of possible ranks is at most $\abs{L}+\abs{S_{<\omega}(\emptyset)}$. But the definition of Morley rank, together with a tiny bit of transfinite induction, shows that if $\alpha<\beta$ are ordinals and there is a formula of Morley rank $\beta$, then there is one of Morley rank $\alpha$. Therefore, there is no gap in the possible ordinal Morley ranks,  the conclusion for formulas follows, and so does that for types.
\end{proof}
Here is a standard application of Morley rank; we will see some of its consequences in \Cref{ch:groups}.
\begin{rem}\label{rem:dcc}
Suppose that $G$ is a definable group, that is, a definable set together with  definable functions $\cdot\from G^2\to G$ and ${}\inverse\from G\to G$ making it into a group. If $\rmor(G)$ is an ordinal, then $G$ has the descending chain condition on definable subgroups. In fact, if $H<G$ has infinite index, by looking at the cosets of $H$ we realise that $H$ must have lower Morley rank than $G$. Similarly, if $H$ has finite index, it must have lower Morley degree. An infinite descending chain of proper subgroups would therefore yield an infinite descending sequence of pairs $(\alpha,n)$, with $\alpha$ an ordinal and $n\in \omega$, ordered lexicographically, which is utter nonsense.
\end{rem}

\section{Totally transcendental theories and prime models}
We will see in this section that theories where all types have ordinal Morley rank are \emph{very} stable, and have prime models over every set. So they clearly have a right to a special name.
\begin{defin}
  We call $T$ \emph{totally transcendental} iff there is no  $\phi(x)$ with $\rmor(\phi(x))=\infty$.
\end{defin}
Equivalently, $T$ is totally transcendental if and only if every type has ordinal Morley rank.
\begin{thm}\label{thm:tttan}
Let $T$ be totally transcendental.  The following hold.
\begin{enumerate}
\item $T$ is $\kappa$-stable for every $\kappa\ge \abs L$.
\item  If $p(x)\in [\phi(x)]$ is of minimal Morley rank amongst the points of $[\phi(x)]$, then $p(x)$ is isolated.
 In particular, over every $A$ the isolated types are dense, hence $T$ has prime models over every set.
\end{enumerate}
\end{thm}
\begin{proof}
  Fix $p(x)\in S_x(A)$.  By assumption, there are $\phi(x)\in p(x)$ and an ordinal $\alpha$ such that $\rmor(p(x))=\rmor(\phi(x))=\alpha$. By \Cref{exr:rmorisol}, there are only finitely many types in $S_x(\monster)$ of rank $\alpha$ containing $\phi(x)$, hence, by taking restrictions, there are only finitely many types in $S_x(A)$ of rank $\alpha$ containing $\phi(x)$, say $p(x)=p_0(x),\ldots, p_m(x)$. Finite subspaces of Hausdorff spaces are discrete, so we can find $\psi_p(x)$ which implies $\phi(x)$ and such that $p(x)$ is the only element of $[\psi_p(x)]$ of rank $\alpha$. By definition of $\rmor(p)$, we must have $\rmor(\psi_p(x))=\alpha$. By construction, using the fact that the types in $[\psi_p]$ have rank at most $\alpha$, the map $p(x)\mapsto \psi_p(x)$ is injective, but $\psi_p(x)$ is an $L(A)$-formula,  which can only be chosen in $\abs L+\abs A$ ways, proving the first part of the conclusion.

For the second one, let $p(x)\in[\phi(x)]$ have minimal Morley rank amongst the points of $[\phi(x)]\subseteq S_x(A)$. Since $T$ is totally transcendental, the Morley rank of $\phi(x)$, hence also that of $p(x)$, is an ordinal, so we may consider the formula $\psi_p(x)$ constructed above. Therefore, $p(x)$ is the only element of $[\psi_p(x)]$ of rank $\alpha$. Because $\alpha$ was the minimal rank of points of $[\phi(x)]$, and $[\psi_p(x)]\subseteq [\phi(x)]$, it follows that $[\psi_p(x)]$ isolates $p(x)$, and we conclude by \Cref{thm:itaadipmae}.
\end{proof}
\begin{co}\label{co:ttchar}
  $T$ is totally transcendental if and only if, whenever $L_0\subseteq L$ is countable, the restriction of $T$ to $L_0$ is $\omega$-stable. In particular, if $\abs L=\aleph_0$, the following are equivalent.
  \begin{enumerate}
  \item $T$ is totally transcendental.
  \item $T$ is $\kappa$-stable for all $\kappa$.
  \item $T$ is $\omega$-stable.
  \end{enumerate}
\end{co}
\begin{proof}The only thing we still need to prove is right to left: since 
the Morley rank of a formula can only go down if we pass to a reduct, \Cref{thm:tttan} will then supply us with left to right, and with the ``in particular'' statement.

 By \Cref{lemma:boundonrmor} there is an ordinal $\alpha$ such that
  \begin{equation}
    \rmor(\phi(x))\ge \alpha\then \rmor(\phi(x))\ge \alpha+1\label{eq:alphatrick}
  \end{equation}  
  If $T$ is not totally transcendental, then there is some $\phi(x)$ with $\rmor(\phi(x))=\infty$, and~\eqref{eq:alphatrick} allows us to carry out the following construction. Because $\rmor(\phi(x))\ge \alpha+1$, we can find $\phi_0(x)$ and $\phi_1(x)$, both of Morley rank $\ge \alpha$, both implying $\phi(x)$, and with $\phi(x)_0\land \phi_1(x)$ inconsistent. But by~\eqref{eq:alphatrick}, we can iterate this construction, building a binary tree akin to that of \Cref{figure:binarytree}, except it will be labelled with formulas which are not necessarily all instances of the same partitioned formula. The set $A$ of parameters appearing in these formulas is clearly countable, and so is the sublanguage $L_0\subseteq L$ consisting of the symbols appearing in the tree. As all complete binary trees of infinite height worth their salt, our tree has  $2^{\aleph_0}$ branches, which we may complete to pairwise distinct elements of $S_x^{L_0}(A)$, proving that $T\restr L_0$ is not $\omega$-stable.
\end{proof}



\begin{defin}
  Let $\beta$ be an ordinal, and $(A_i)_{i<\beta}$ be a chain of subsets indexed on $\beta$, that is, if $i<j<\beta$ then $A_i\subseteq A_j$. We call the chain \emph{continuous} iff, whenever $\lambda<\beta$ is limit, we have $A_\lambda\coloneqq\bigcup_{i<\lambda} A_i$.
\end{defin}
\begin{lemma}\label{lemma:isolatedchain}
Let $T$ be totally transcendental and $(A_i)_{i<\beta}$ be a chain.
\begin{enumerate}
\item Suppose that $p_i\in S_x(A_i)$, and that if $i<j$ then $p_i\subseteq p_{j}$. Then, the Morley rank and degree of $p_i$ are eventually constant. Moreover, $\bigcup_{i<\beta} p_i(x)\in S_x(\bigcup_{i<\beta}A_i)$ has Morley rank and degree equal to eventual rank and degree of the $p_i$.
\item If $p_0(x)\in S_x(A_0)$ is isolated, then there are isolated $p_i\in S_x(A_i)$ such that if $i<j$ then $p_i\subseteq p_{j}$.
\end{enumerate}
\end{lemma}
\begin{proof}
The first part is immediate from \Cref{pr:nfpr}. For the second part, we inductively build the sequence of the $p_i$, ensuring that $p_i$ has minimal Morley rank amongst the types that, for every $j<i$, restrict to $p_j$, and show that such a sequence works.
If $\pi\from S_x(A_{i+1})\to S_x(A_i)$ is the natural projection, since $p_i$ is isolated $\pi\inverse(\set{p_i})$ is open nonempty; we take as $p_{i+1}$ a type of minimal Morley rank in  $\pi\inverse(\set{p_i})$, which is isolated by  \Cref{thm:tttan}. For the limit step, up to adding some extra $A_i$, we may assume our chain to be continuous. Moreover, by the first part, up to trimming the sequence we may assume that the Morley rank of the $p_i$ built so far is constantly $\alpha$. Let $p_\lambda\coloneqq\bigcup_{i<\lambda} p_i$, and let $\pi\from S_x(A_\lambda)\to S_x(A_i)$ be the natural projection. Again, each $\pi\inverse(\set{p_i})$ is open, and it contains $p_\lambda$ by definition, so by \Cref{thm:tttan} it is enough to show that $p_\lambda$  is of minimal Morley rank in $\pi\inverse(\set{p_i})$. If not, then there is some nonempty $[\psi(x)]\subseteq \pi\inverse(\set{p_i})$ with $\rmor(\psi(x))<\alpha$. Let $j$ be such that  $i<j<\lambda$ and $\psi(x)\in L(A_j)$. If $\pi_j\from S_x(A_j)\to S_x(A_i)$ is the natural projection, then, regarding now $[\psi(x)]$ as a subset of $S_x(A_j)$, we have $[\psi(x)]\subseteq\pi_j\inverse(\set{p_i})$. This contradicts minimality of the Morley rank of $p_j$.
\end{proof}
\begin{pr}\label{pr:ccpm}
Let $T$ be totally transcendental, and $(A_i)_{i<\beta}$ be a continuous chain. Then there is a continuous chain $(M_i)_{i<\beta}$ of models of $T$ such that each $M_i$ is prime over $A_i$.
\end{pr}
\begin{proof}
  We build  $M_i\supseteq A_i$ by induction on $i$, ensuring the following property: for every $i<j$, and every model $N$, every elementary map $A_jM_i\to N$ can be extended to an elementary map $A_jM_{i+1}\to N$. Using a  ``only forth'' argument, together with continuity of the chain $(M_i)_{i<\beta}$, this ensures that each $M_j$ is indeed prime over $A_j$.

  Start with a model $M_0$ prime over $A_0$, which exists by \Cref{thm:tttan}.  If we want continuity, we have no choice but to take unions at limit stages,  so we only need to  take care  successor steps.

  List the isolated points of $S_1(A_{i+1}M_i)$ as $\paren{p_k\mid k<\mu}$, for a suitable cardinal $\mu$, and use \Cref{lemma:isolatedchain} to find a chain $\paren{p_{0,\ell}\mid i<\ell<\beta}$ starting with $p_{0,i+1}=p_0$ and made of isolated types $p_{0,\ell}\in S_1(A_{\ell}M_i)$. We set $q_0\coloneqq\bigcup_{\ell<\beta} p_{0,\ell}$, choose $a_0\models q_0$, %, taking it in $M_i\bigcup_{\ell<\beta} A_\ell$ if one exists, % the Morley paper does this, but I don't think it is needed
  and inductively build $(a_k\mid k<\mu)$ such that
  \begin{equation}\label{eq:iechain}
  \text{for every $j$ with $i<j<\beta$ the type $\tp(a_k/A_jM_ia_{<k})$ is isolated}
\end{equation}
In order to do this, inductively, extend $p_k$ to an isolated $p_k'\in S_1(A_{i+1}M_ia_{<k})$, similarly as in the proof of \Cref{thm:itaadipmae}, then find $q_k$  obtained from $p_k'$ via \Cref{lemma:isolatedchain} similarly as $q_0$ was obtained from $p_0$, that is, as a union of a chain of isolated types $p_{k,\ell}'\in S_1(A_\ell M_i a_{<k})$.  Finally,  choose $a_k\models q_k$. 
Again as in the proof of \Cref{thm:itaadipmae}, we iterate this $\omega$ times, building $(a_k\mid k<\mu\cdot \omega)$ which still satisfies~\eqref{eq:iechain}, and such that $M_{i+1}\coloneqq M_i\set{a_k\mid k<\mu\cdot \omega}$ is the required model.
\end{proof}
\section{Countable $\omega$-stable theories}
The results in this section are the last technical steps towards proving Morley's Theorem. Hence, from now on we will work in a countable $L$. By~\Cref{co:ttchar}, we may then say ``$\omega$-stable'' instead of ``totally transcendental''.
\begin{thm}\label{thm:ttmanyindisc}
Let $L$ be countable and $T$ be $\omega$-stable. Suppose that $A\subseteq C$,  that $\kappa\coloneqq \abs C$ is a regular uncountable cardinal,  and that $\abs A<\kappa$. Then $C$ contains a totally $A$-indiscernible nonconstant sequence of length $\kappa$.
\end{thm}
\begin{proof}
  Let $\mathcal F$ be the family of all pairs $(B,p)$ such that 
  \begin{enumerate}
  \item  $A\subseteq B\subseteq C$,
  \item  $\abs B<\kappa$,
  \item $p\in S_1(B)$, and
  \item  $p$ has $\kappa$ realisations in $C$.
  \end{enumerate}
By \Cref{co:ttchar} $\abs B<\kappa$ implies $\abs{S_1(B)}<\kappa$, and since $\kappa>\abs B$ is regular there must be $\kappa$ elements of $C$ with the same type over $B$, proving that $\mathcal F$ is nonempty. Let $(B_0, p_0)$ be an element of $\mathcal F$ such that the pair $(\rmor(p_0), \mdeg(p_0))$ is minimal in the lexicographical order.
\begin{claim}
  For every $B$ with $\abs{B}<\kappa$ and $B_0\subseteq B\subseteq C$, there is a unique $p_B\in S_1(B)$ such that
  \begin{itemize}
\item $p_B\supseteq p_0$, and 
\item $(\rmor(p_B), \mdeg(p_B))=(\rmor(p_0), \mdeg(p_0))$.
\end{itemize}
Moreover this $p_B$ satisfies  $(B,p_B)\in \mathcal F$.
\end{claim}
\begin{claimproof}
Let $(r,n)\coloneqq(\rmor(p_0), \mdeg(p_0))$. Consider the closed subset $[p_0]\subseteq S_1(B)$.  Again by \Cref{co:ttchar}, it has size $<\kappa$, hence by regularity of $\kappa$ it must contain some $p_B$ which is realised $\kappa$ times in $C$, so $(B, p_B)\in \mathcal F$.  By definition, we have $p_B\supseteq p_0$, and we are left to show that $p_B$ is the unique $p\in [p_0]$ with $(\rmor(p), \mdeg(p))=(r,n)$.  Note that $\le$ holds for every $p\in [p_0]$ by \Cref{pr:nfpr}, and in particular for $p_B$. But $(B, p_B)\in \mathcal F$, hence by minimality of $(\rmor(p_0), \mdeg(p_0))$ we must have equality. Fix $\phi(x)\in p_0(x)$ of rank and degree $(r,n)$, and suppose there is another  $p\ne p_B$ in  $[p_0]$ with rank and degree $(r,n)$.  Since $p\ne p_B$, there are  $L(B)$-formulas separating them, which, up to taking conjunctions, we may assume to imply $\phi(x)$ and to have rank and degree $(r,n)$. This implies that $\mdeg(\phi(x))\ge 2n$, a contradiction.
\end{claimproof}
Now build a $\kappa$-sequence $a_\kappa$ as follows. Start by choosing $a_0\in C$ such that $a_0\models p_0$. Inductively, define $B_i\coloneqq B_0\cup \set{a_j\mid j<i}$, and set $p_i$ to be the type $p_{B_i}$ given by the claim. Since $(B_i, p_i)\in \mathcal F$, there are $\kappa$ realisations of $p_i$ in $C$; set $a_i$ to be any such realisation not in $B_0a_{<i}$. 

If we prove that $a_\kappa$ is $B_0$-indiscernible, we are done: it will in particular be $A$-indiscernible, and totally so by stability and \Cref{pr:noptotindisc}. Hence we prove by induction on $n$ that if $\bla i0<n$ and $\bla j0<n$ are ordinals in $\kappa$, then $\bla a{i_0},{i_n}\equiv_{B_0}\bla a{j_0},{j_n}$.
All elements of $a_\kappa$ have the same $1$-type, namely $p_0$, giving us the case $n=0$ of the induction. Moreover, 
if $i<j$, since $p_j\supseteq (p_j\restr B_i)\supseteq p_0$, we have that $(p_j\restr B_i)$ still has rank and degree equal to $(r,n)$, by the ``uniqueness'' part in the claim it must equal $p_i$; in other words, $p_j\supseteq p_i$.  Set $B\coloneqq B_0\bla a{i_0},{i_n}$ and $B'\coloneqq B_0\bla a{j_0},{j_n}$. By construction,  $a_{i_{n+1}}$ (respectively, $a_{j_{n+1}}$) realises the unique $p_B$ (respectively, $p_{B'}$) given by the claim.
By inductive hypothesis, the map $f\from B\to B'$ fixing $B_0$ pointwise and sending $a_{i_\ell}$ to $a_{j_\ell}$ is elementary.
If we change the parameters in $p_B$ according to $f$,  by \Cref{exr:mrdoottotp} we obtain a type over $B'$ of the same Morley rank and degree, which still extends $p_0$ because $f\restr B_0=\id_{B_0}$; by the Claim, this type must be $p_{B'}$, and we are done.
\end{proof}

\begin{co}\label{co:possiblysingularcase}
If we are in the assumptions of \Cref{thm:ttmanyindisc}, except $\kappa$ is possibly not regular, then for every $\mu<\kappa$ the set $C$ contains a totally $A$-indiscernible nonconstant sequence of length $\mu$.
\end{co}
\begin{proof}
  Successor infinite cardinals are regular and cofinal in every singular cardinal.
\end{proof}

\begin{co}\label{co:mor53}
Let $L$ be countable and $T$ be $\omega$-stable. Suppose there is $N\models T$ with $\abs N>\aleph_0$ which is not saturated. Then there are $M\preceq N$ with $\abs M=\aleph_0$ and $A\subseteq M$ such that
\begin{enumerate}
\item $M\setminus A$ contains a (totally) $A$-indiscernible nonconstant sequence $a^\omega$, and
\item some $q(x)\in S_1(A)$ is omitted in $M$.
\end{enumerate}
\end{co}
\begin{proof}
  If $N$ is not saturated, there must be $B\subseteq N$ with $\abs B<\abs N$ and some $p(x)\in S_1(B)$ omitted in $N$. Use Corollary~\ref{co:possiblysingularcase} to get a $B$-indiscernible nonconstant sequence $a^\omega$, indexed on $\omega$, in $N\setminus B$.
By L\"owenheim--Skolem there is a countable $M_0$ with $a^\omega\subseteq M_0\preceq N$. Clearly, $M_0$ still omits $p(x)$, hence for every $m\in M_0$ there is $\phi_m(x)\in p(x)$ such that $m\models \neg \phi_m(x)$. If we collect all the parameters of the $\phi_m(x)$ in a (countable) subset $A_1$ of $B$, then by construction no $m\in M_0$ realises $p\restr A_1$. Take a countable $M_1\preceq N$ with $M_1\supseteq M_0A_1$. Repeat this construction $\omega$ times, obtaining chains $(M_i)_{i<\omega}$ of models and $(A_i)_{i<\omega}$ of sets such that $A_i\subseteq M_i\cap B$ and $M_i$ omits $p\restr A_{i+1}$. Take $M\coloneqq\bigcup_{i<\omega} M_i$ and $A\coloneqq\bigcup_{i<\omega} A_i$.  By construction  $q(x)\coloneqq p(x)\restr A$ is omitted in $M$.  Moreover, $a^\omega\subseteq M_0\subseteq M$; since $A\subseteq B$, and $a^\omega$ is $B$-indiscernible, it is in particular $A$-indiscernible, and by construction $a^\omega\cap A\subseteq a^\omega\cap B=\emptyset$.
\end{proof}
\begin{pr}\label{pr:eoos}
If $\abs L=\aleph_0$ and $T$ is $\omega$-stable, then for every $\kappa>\aleph_0$ there is an $\aleph_1$-saturated model of size $\kappa$.
\end{pr}
\begin{proof}
By \Cref{co:ttchar} $T$ is $\kappa$-stable. Hence we can  start with any $M_0$ of size $\kappa$, and build a continuous elementary chain $(M_i\mid i<\omega_1)$ such that each $M_{i+1}$ has size $\kappa$ and realises all types over $M_i$. Then we just take the union of this chain, and use regularity of $\omega_1$ to prove $\aleph_1$-saturation.
\end{proof}

\section{Morley's Theorem}
We put the pieces together and prove that if $\abs L=\aleph_0$, then a theory is $\kappa$-categorical for every uncountable $\kappa$ if and only if it is $\kappa$-categorical for some uncountable $\kappa$. Of course, the fact that we introduced Morley rank in this chapter is not a coincidence.
\begin{pr}\label{pr:kcattt}
If $\abs L=\aleph_0<\kappa$ and  $T$ is $\kappa$-categorical, then $T$ is $\omega$-stable.
\end{pr}
\begin{proof}
Otherwise there is a countable $A$ such that $S_1(A)$ is uncountable, hence we may find $B\supseteq A$ of size $\aleph_1$ whose elements have pairwise distinct types over $A$. By L\"owenheim--Skolem, there is $N\supseteq B$ of size $\kappa$. On the other hand, applying  \Cref{thm:mrftoas} to $T_A$ gives us an $M\supseteq A$ of size $\kappa$ which realises at most $\aleph_0$ types over $A$, and which cannot therefore be isomorphic to $N$.
\end{proof}


\begin{thm}\label{thm:ttnonsat}
Suppose that $\abs L=\aleph_0$ and $T$ is $\omega$-stable. If there is an uncountable model which is not saturated, then for every $\kappa>\aleph_0$     there is a model of size $\kappa$ which is not $\aleph_1$-saturated.
\end{thm}
\begin{proof}
  Let $M$, $A$, $a^\omega$ and $q(x)\in S_1(A)$ be given by  \Cref{co:mor53}. Using the Standard Lemma and an automorphism in $\aut(\monster/A)$, we may extend $a^\omega$ to a (totally) $A$-indiscernible sequence $a^\kappa$. For each $i<\kappa$, set $A_i\coloneqq Aa_{<i}$. Clearly, the $A_i$ form a continuous chain, hence by \Cref{pr:ccpm} there is a continuous chain $(M_i)_{i<\kappa}$ of models of $T$ such that each $M_i$ is prime over $A_i$. Since $M_\kappa\coloneqq\bigcup_{i<\kappa} M_i$ has size $\kappa$, if we prove that $M_\kappa$  omits $q(x)$, which is over the countable set $A$, then it cannot be $\aleph_1$-saturated.

  Of course, it is enough to prove by induction on $i$ that every $M_i$ omits $q(x)$. Recall that  $M_i$ is prime over $A_i= A a_{<i}$. For $i<\omega$, since $M\supseteq A a_{<i}$ omits $q$, so does $M_i$, by primality. At limit stages the conclusion is obvious from the inductive hypothesis, so we only need to show that if $i\ge \omega$ and $M_i$ omits $q$ then so does $M_{i+1}$. Since $a^\kappa$ is \emph{totally} $A$-indiscernible, and $i\ge\omega$, we may extend $\id_A$ to an elementary map sending $a_{\le i}$ to $a_{<i}$. This induces an embedding of $M_{i+1}$ into $M_i$, hence,  if $M_{i+1}$ realises $q(x)$, then so does $M_i$.
\end{proof}
\begin{thm}
Let $L$ be countable and $\kappa >\aleph_0$. If $T$ is $\kappa$-categorical, then every uncountable model of $T$ is saturated. In particular, $T$ is  $\kappa$-categorical for some uncountable $\kappa$ if and only if $T$ is  $\kappa$-categorical for every uncountable $\kappa$.
\end{thm}
\begin{proof}
By \Cref{pr:kcattt} $T$ is $\omega$-stable, hence if the conclusion fails,  by   \Cref{thm:ttnonsat} there is model of size $\kappa$ which is not $\aleph_1$-saturated. By \Cref{pr:eoos} $T$ has an $\aleph_1$-saturated model of size $\kappa$, contradicting $\kappa$-categoricity. The ``in particular'' part is then immediate from \Cref{thm:satunique}.
\end{proof}
\chapter{A taste of definable groups}\label{ch:groups}
Fix, as usual, a complete $T$ and a monster $\monster\models T$.
As we saw in \Cref{rem:dcc}, a definable group is nothing but a definable set $G$, together with definable functions $\cdot \from G^2\to G$ and ${}\inverse\from G\to G$ making it into a group. For example, if $T$ is the complete theory of a field $K$, then usual matrix groups such as $\GL_n$, $\SL_n$, etc are definable groups.

In this chapter, we will develop some basics of the theory of definable groups in $\omega$-stable theories, and use these techniques to prove Macintyre's Theorem, that the only infinite totally transcendental fields are the algebraically closed ones. In order to do this, we will need to develop some further model-theoretic tools. But first, let us see what we can immediately harvest from the descending chain condition.
\section{Consequences of the descending chain condition}
By \Cref{rem:dcc}, if $G$ is a definable group of ordinal Morley rank, then it satisfies the \textsc{dcc} on definable subgroups. This has a lot of consequences.
\begin{pr}\label{pr:dcccon}
  Let $G$ be a definable group with the \textsc{dcc} on definable subgroups. The following facts hold.
  \begin{enumerate}
  \item Every definable injective homomorphism $G\to G$ is surjective.
  \item If $\set{H_i\mid i\in I}$ is a family of definable subgroups, then there is a finite $I_0\subseteq I$ such that $\bigcap_{i\in I}H_i=\bigcap_{i\in I_0}H_i$.
  \item The centraliser of any (not necessarily definable) $A\subseteq G(\monster)$ is definable.
  \end{enumerate}
\end{pr}
\begin{proof}
  \begin{enumerate}
  \item Any counterexample $f\from G\to G$ yields a violation of the \textsc{dcc} by considering $G\supsetneq f(G)\supsetneq f^2(G)\supsetneq\ldots$
  \item Otherwise there is an infinite sequence $(i_n)_{n\in \omega}$ such that $\bigcap_{j<n} H_{i_j}\supsetneq \bigcap_{j<n+1} H_{i_j}$, again violating the \textsc{dcc}.
  \item The centraliser of a single element  $a$ is definable by the formula $x\cdot a=a\cdot x$. Apply the previous point to the family of centralisers of elements of $A$.\qedhere
  \end{enumerate}
\end{proof}
This has an important consequence on stabilisers of types under a certain natural action. Before stating  it, let us introduce some commonly used notation.
\begin{notation}
  If $X$ is a definable set, say defined by $\phi(x)$, we write $S_X(A)$ for the subspace $[\phi(x)]$ of $S_x(A)$.
\end{notation}
\begin{defin}
For $p\in S_G(M)$ and $g\in G(M)$, we define $g\cdot p\coloneqq\set{\phi(x)\in L(M)\mid \phi(g\cdot x)\in p(x)}$. The \emph{stabiliser} of $p$ is $\stab(p)\coloneqq\set{g\in G(M)\mid g\cdot p=p}$.
\end{defin}
In other words, $a\models p$ if and only if $g\cdot a\models g\cdot p$. Of course, this is the \emph{left} stabiliser, and everything we are going to say also goes through, \emph{mutatis mutandis}, for the \emph{right} stabiliser, whose definition is left to the reader.

\begin{rem}
  Recall that a type $p(x)\in S_x(A)$ is definable iff for every $\phi(x;y)$ the set $\set{b\in A\mid \phi(x;b)\in p(x)}$ equals the set of solutions in $A$ of some $\psi(y)\in L(A)$. If $A=M$ is a model,\footnote{Without this assumption, the conclusion is in general false.} and $\psi_0(y),\psi_1(y)\in L(M)$ are as above, then $\psi_0$ and $\psi_1$ define the same subset of $M^{\abs y}$, and since $M$ is a model this implies $\models \forall y\; \psi_0(y)\coimplica \psi_1(y)$.
\end{rem}


\begin{notation}
If $A=M$ is a model and $p\in S_x(M)$ is a definable type, we denote such a $\psi(y)$ with $(d_p\phi)(y)$.
\end{notation}
\begin{thm}\label{thm:defstab}
  Let $G$ be a definable group in a totally transcendental $T$. For every $p\in S_G(M)$, the stabiliser $\stab(p)$ is definable.
\end{thm}
\begin{proof}
  Define
  \[
    \stab^\phi(p)\coloneqq\set*{g\in G(M)\bigm| \forall h\in G(M)\; \bigl( \phi(h\cdot x)\in p(x)\iff \phi(h\cdot g\cdot x)\in p(x)\bigr)}
  \]
  It is easy to show that $\stab(p)=\bigcap_{\phi(x)\in p(x)} \stab^\phi(p)$; therefore, by total transcendence and \Cref{pr:dcccon}, it is enough to show that every $\stab^\phi(p)$ is  a definable subgroup. The proof that it is a subgroup is again easy\footnote{Hint: use that the definition requires something to happen for \emph{all} $h\in G(M)$.}; as for  definability, recall that totally transcendental theories are stable, hence the type $p(x)$ is definable. If $\psi(x;y)$ is the formula $\phi(y\cdot x)$, consider $(d_p\psi)(y)$; by definition, if $h\in G(M)$, then $\models d_p\psi(h)\iff  \phi(h\cdot x)\in p(x)$. Therefore, $\stab^\phi(p)$ is defined by the formula $\theta(y)\coloneqq\forall z\; (d_p\psi(z)\coimplica d_p\psi(z\cdot y))$.
\end{proof}
\section{Interpretability}
Some constructions, e.g.\ projective space,\footnote{\ldots which by the way, since we are talking about groups, is where elliptic curves live,\ldots} are usually carried out by using quotients. When considering ``definable quotients'', we speak of \emph{interpretable} sets:  a set is interpretable iff it is the quotient of a definable set by a definable equivalence relation. We can also speak of interpretable structures.
\begin{defin}
Let $M_0$ be an $L_0$-structure and $M_1$ be an $L_1$-structure. We say that $M_1$ is \emph{interpretable} in $M_0$ iff there are
\begin{enumerate}
\item some $n$ and some $L_0$-definable $X\subseteq M_0^n$
\item an $L_0$-definable equivalence relation $E$ on $X$
\item for every $s\in L_1$, an $L_0$-definable $X_s$ in some $M_0^{n\cdot m_s}$, for a suitable $m_s$,\footnote{It depends on whether $s$ is a constant, function, or relation symbol, and on its arity. I have not written precisely who $m_s$ is, but it should be clear if you read the rest of the definition.}
\end{enumerate}
such that every $X_s$ is $E$-equivariant and $X/E$, with the $L_1$-structure induced by the $X_s$, is isomorphic to $M_1$.
\end{defin}
It is possible to lift this to the level of theories. It is also possible to define a structure, called $M^\eq$, and best viewed as a structure in multi-sorted logic, such that interpretability in $M$ is the same as definability in $M^\eq$. But we do not have much time left, so I will refer you to the literature for that, and leave you with these two exercises we will need later.
\begin{exr}\label{exr:fextint}
  Let $K$ be a field, and $F$ an algebraic extension of $K$ with $\dim(F/K)$ finite. Then $F$ is interpretable in $K$.
\end{exr}
\begin{exr}\label{exr:inttt}
 If $\Th(M)$ is totally transcendental (resp.~stable) and $M$ interprets $N$, then $\Th(N)$ is totally transcendental (resp.~stable).
\end{exr}

\section{Some forking calculus in disguise}
In a longer course, this chapter would have come only after another one developing the theory of \emph{forking} in stable theories. 
Given the name of this chapter, forking will only be served as an appetiser,  but you should be aware that it is a crucial tool in the analysis of stable theories and its applications, that it allows to define an \emph{independence relation}, known as \emph{nonforking independence}, and that in this section you are learning something about it, although only in special cases, and without even seeing its definition.\footnote{Ok, I guess I should at least say that in a totally transcendental theory, if $A\subseteq B$, then  $q\in S_x(B)$ is a nonforking extension of $p\in S_x(A)$ if and only if $q\supseteq p$ and $\rmor(q)=\rmor(p)$.}
\begin{notation}
  Write $\rmor(a/A)$ for $\rmor(\tp(a/A))$.
\end{notation}
\begin{pr}\label{pr:interalgebraicrm}
If $a\in \acl(Ab)$ then $\rmor(ab/A)=\rmor(b/A)$.
\end{pr}
\begin{proof}
  The inequality $\ge$ is easy to prove, and does not even need the assumption $a\in \acl(Ab)$.
  For the other inequality, let $\alpha\coloneqq\rmor(b/A)$, and start by choosing some $\phi(x,y)\in \tp_{xy}(ab/A)$ witnessing $a\in \acl(Ab)$. Up to adding conjuncts to $\phi$, we may further assume that 
  \begin{enumerate}
  \item $\rmor(\exists x\; \phi(x,y))=\alpha$ (just take a conjunction with  a formula in $y$ of rank $\alpha$ from $\tp(b/A)$), and
  \item  every $\phi(x,b')$ has finitely many solutions (just take a conjunction with a suitable $\exists^{\le n} t\;\phi(t,y)$; this conjunction is still in $\tp(b/A)$, and it cannot lower the Morley rank above, which is already minimum by definition of Morley rank of a type).
  \end{enumerate}
We prove that $\rmor(\phi(x,y))\le \alpha$. By  \Cref{exr:rmorisol}, it is enough to show that the following subset of $S_{xy}(\monster)$ is finite
  \[
    [\phi(x,y)]\cap \bigcap_{\rmor(\psi(x,y))<\alpha} [\neg \psi(x,y)]
  \]
We prove finiteness of the larger set
  \[
[\Phi(x,y)]\coloneqq    [\phi(x,y)]\cap \bigcap_{\rmor(\psi(y))<\alpha} [\neg \psi(y)]
  \]
Let $[\Psi(y)]$ be\footnote{Note that $\Psi(y)$ is still a closed set. You can prove this syntactically, or by recalling that continuous functions from a compact to an Hausdorff space are closed.} the projection of $[\Phi(x,y)]$ to $S_y(\monster)$, and note that $[\Psi(y)]\subseteq [\exists x\; \phi(x,y)]$. By definition of $[\Phi(x,y)]$, the set  $[\Psi(y)]\subseteq S_y(\monster)$ only contains types of Morley rank at least $\alpha$. Again by \Cref{exr:rmorisol}, the fact that $\rmor(\exists x\; \phi(x,y))=\alpha$ implies that $[\Psi(y)]$ is finite. Moreover, since every $\phi(x,b')$ is finite, so is $[\Psi(y)]\cap [\phi(x,y)]\subseteq S_{xy}(\monster)$. But this set contains $[\Phi(x,y)]$.
\end{proof}
This has the following important consequence. Note that the case of definable bijections is almost immediate from the definition of Morley rank.
\begin{exr}
If $X, Y$ are definable sets and $f\from X(\monster)\to Y(\monster)$ is a definable finite-to-one\footnote{You may wonder whether the size of the fibers needs to be uniformly bounded. That is why I have written $X(\monster)$ and not just $X$ (compactness!).} function, then $\rmor(X)=\rmor(Y)$.
\end{exr}
By now you are probably convinced that a definable subset of $M^{\abs{x}}$, say a $\emptyset$-definable one, is not ``really'' a subset of $M^{\abs x}$, but rather the equivalence class modulo $\ed(M)$ of a formula defining it; surely we can look at the set it defines in $M$, but we may also look at the set it defines in elementary extensions (see also \Cref{fn:functors} at \cpageref{fn:functors}).

It turns out that something similar is true of definable types: after all, they are defined through definable sets, so why can't we just evaluate that definable set in an elementary extension and see what happens? This allows us to get a canonical extension to bigger parameter sets, defined as follows.
\begin{defin}
  Let $B\supseteq M$, and let $p\in S_x(M)$ be a definable type. We define $p\invext B$ as
  \[
    (p\invext B)(x)\coloneqq\set{\phi(x;b)\mid \phi(x;y)\in L, b\in B^{\abs y}, b\models (d_p\phi)(y)}
  \]
\end{defin}
\begin{exr}\label{exr:invextbasic}
  \begin{enumerate}
  \item Check that $(p\invext B)\in S_x(B)$ and $(p\invext B)\supseteq p$.
  \item Check that whether $p\in S_x(M)$ is definable does not depend on whether we work on $T$ or in $\ed(M)$. In particular, in the definition of $p\invext B$, we may equivalently take $\phi(x;y)\in L(M)$ instead of $\phi(x;y)\in L$.
  \end{enumerate}
\end{exr}


\begin{pr}[Forking symmetry over models]\label{pr:forksymmod}
Suppose that $T$ is stable and $p(x), q(y)\in S(M)$. If $a\models p(x)$ and $b\models q(y)\invext M a$, then $a\models p(y)\invext M b$.
\end{pr}
\begin{proof}
  Start with $a_0\coloneqq a\models p(x)$ and $b_0\coloneqq b\models (q\invext M a)(y)$, and inductively choose $a_{i+1}\models p\invext  M a_{\le i} b_{\le i}$ and $b_{i+1}\models q\invext M a_{\le i+1} b_{\le i}$. Note immediately that, by construction,  both $b_0$ and $b_1$ realise  $q\invext M a_0$, hence for every $\phi(x,y)\in L(M)$
  \begin{equation}\label{eq:bzebo}
    \models \phi(a_0, b_0)\iff \models\phi(a_0, b_1)
  \end{equation}
  \begin{claim}
    The sequence of $\abs{a}+\abs{b}$-tuples $(a_ib_i)_{i<\omega}$ is $M$-indiscernible.
  \end{claim}
  \begin{claimproof}
By definition, for $i<2\le n$ we have  $a_n\models \phi(x,a_ib_i)\iff \models (d_p\phi)(a_ib_i)$. By~\eqref{eq:bzebo} we have $a_0b_0\equiv_M a_0b_1$. From this, the choice of $b_1$, and the fact that by construction $a_0\equiv_M a_1$, it follows that $a_0b_0\equiv_M a_1b_1$. 
Hence $\models (d_p\phi)(a_0b_0)\iff \models (d_p\phi)(a_1b_1)$, so $a_0b_0a_n\equiv_M a_1b_1a_n$. By a similar argument, $a_0b_0a_nb_n\equiv_M a_1b_1a_nb_n$. From here it is a matter of induction and not getting the indices wrong.
  \end{claimproof}
 By the claim and stability, $(a_ib_i)_{i<\omega}$ is \emph{totally} $M$-indiscernible, and in particular $a_0b_0a_1b_1\equiv_Ma_1b_1a_0b_0$. From this and the fact that, by construction, $a_1\models p\invext M b_0$, it follows that $a_0\models p\invext M b_1$. By \Cref{exr:invextbasic}, for every $\phi(x,y)\in L(M)$ we have $\models \phi(a_0, b_1)\iff \models (d_p\phi)(b_1)$, and because $b_1$ and $b_0$ both realise $q$, and $d_p\phi\in L(M)$, we have $\models (d_p\phi)(b_1)\iff \models (d_p\phi)(b_0)$. Hence $\models \phi(a_0, b_1)\iff \models (d_p\phi)(b_0)$, which together with~\eqref{eq:bzebo} gives us the conclusion.
\end{proof}
\begin{exr}\label{exr:iepmr}
Let $M$ be $\omega$-saturated. If $p\in S_x(M)$ and $B\supseteq M$, then $\rmor(p\invext B)=\rmor(p)$.
\end{exr}
\begin{rem}\label{rem:extraasssat}
In fact, in the previous exercise the saturation assumption is not necessary. One can prove the conclusion just assuming that $M$ is a model, but the proof gets more involved/requires developing a bit more forking calculus. For this reason, below we state a lot of things only for $\omega$-saturated $M$ (it will anyway suffice for our purposes), but be aware that this assumption can be dropped as soon as you know how to drop it from \Cref{exr:iepmr}.
\end{rem}
\section{The connected component}
\begin{defin}
  Let $G$ be a definable group. The \emph{connected component} $G^0(\monster)$ is the intersection of all $\monster$-definable subgroups of $G(\monster)$ of finite index. We say that $G$ is \emph{connected} iff $G(\monster)=G^0(\monster)$.
\end{defin}
In general, there can be infinitely many finite index definable subgroups of $G$, hence $G^0$ is not guaranteed to be of finite index, nor to be definable.

\begin{pr}\label{pr:gzpr}Let $G$ be a definable group.
  \begin{enumerate}
  \item $G^0(\monster)$ is normal; in fact, it is definably characteristic, that is, it is fixed setwise by every definable automorphism of $G(\monster)$.
  \item   If $G$  has the \textsc{dcc} on definable subgroups, then $G^0(\monster)$ has itself finite index, and is $\emptyset$-definable.
  \end{enumerate}
\end{pr}
  \begin{proof}
Clearly, every definable automorphism (and in particular every conjugation!) induces a permutation of the definable finite index subgroups of $G(\monster)$; since $G^0(\monster)$ is their intersection, it must be fixed setwise, proving the first part. For the second part,  \Cref{pr:dcccon} allows us to write  $G^0(\monster)$ as a finite intersection of finite index, definable groups. This immediately tells us that $G^0(\monster)$ is definable, and of finite index.
To prove it is $\emptyset$-definable, by \Cref{pr:adfleafixed} we only need to show that every  $f\in\aut(\monster/\emptyset)$ fixes $G^0(\monster)$ setwise. But every such $f$, as in the case of definable automorphisms,  induces a permutation of the definable finite index subgroups of $G(\monster)$, and we conclude as above.
\end{proof}
\begin{rem}\label{rem:g0toam}
 If $G^0(\monster)$ is $\emptyset$-definable, then $G(\monster)=G^0(\monster)$ if and only if for some/all $M\models T$ we have $G(M)=G^0(M)$, where the latter denotes the intersection of all $M$-definable finite index subgroups of $G(M)$.
\end{rem}
If $T$ is totally transcendental, then by \Cref{thm:defstab} stabilisers of types are definable, and by the previous proposition so is $G^0$. We may therefore compute their Morley ranks and compare them. We will make use of the following fact.
\begin{exr}\label{pr:invextstab}
Let $T$ be totally transcendental, and $G$ a definable group. Suppose that $p\in S_G(M)$ and $\psi(x)$ defines $\stab(p)$ in $M$. If $N\succ M$, then $\psi(x)$ also defines $\stab(p\invext N)$.\footnote{Hint: look at the proof of \Cref{thm:defstab}.}
\end{exr}
\begin{pr}\label{pr:stabppr}
Let $T$ be totally transcendental and let $M$ be $\omega$-saturated.\footnote{See \Cref{rem:extraasssat}.} If $p\in S_G(M)$, then
\begin{enumerate}
\item $\stab(p)\subseteq G^0(M)$, and
\item $\rmor(\stab(p))\le \rmor(p)$.
\end{enumerate}
\end{pr}
From this proof, we occasionally drop the multiplication symbol, that is, we write e.g.\ $ab$ instead of $a\cdot b$.\footnote{It should be clear from context whether $ab$ is the product of two elements of a definable group or the concatenation of two tuples.}
\begin{proof}
  Since $G^0$ is definable and of finite index, every type over $M$ must choose one of its finitely many cosets. Hence, if  $\phi(x)$ is a formula defining $G^0$, there must be $b\in G(M)$ such that $\phi(b\inverse  x)\in p(x)$.  Fix $a\in \stab(p)$, and note that $\phi(b\inverse a x)\in p(x)$ by definition. Therefore, whenever $c\in \monster$ is such that $c\models p$, we have that $b\inverse a c$ and $b\inverse c$ both belong to $G^0(\monster)$. Hence, so does $(b\inverse c)\inverse b\inverse a c$, which equals $c\inverse a c$. But $G^0(\monster)$ is normal, hence $a\in G^0(\monster)\cap M=G^0(M)$.

  For the second point, suppose that $\psi(x)$ defines $\stab(p)$, and let $q(x)\in[\psi(x)]\subseteq S_G(M)$ be such that $\rmor(q(x))=\rmor(\psi(x))$. Let $a\models p$, then take $b\models q\invext Ma$. 
  \begin{claim}
    $\rmor(\stab(p))\le \rmor(b\cdot a/M)$.
  \end{claim}
  \begin{claimproof}
By choice of $b$ and \Cref{exr:iepmr} , we have $\rmor(\stab(p))=\rmor(b/M)=\rmor(b/Ma)$. Because Morley rank is preserved by definable bijections, such as $x\mapsto x\cdot a$, we have $\rmor(b/Ma)=\rmor(b\cdot a/Ma)$, and by \Cref{pr:nfpr}  $\rmor(b\cdot a/Ma)\le \rmor(b\cdot a/M)$.
\end{claimproof}
By \Cref{pr:forksymmod}, we also have $a\models p\invext M b$; since, by \Cref{pr:invextstab}, $\psi$ still defines the stabiliser of $p\invext N$ in any $N\succ M$, and in particular in those $N$ containing $b$, we find that $b$ stabilises $\tp(a/M b)$, that is, $\tp(b\cdot a/M b)=\tp(a/M b)$. In particular $\tp(b\cdot a/M)=\tp(a/M)=p$, and we conclude by the claim.
\end{proof}
\section{Generic types}
\begin{defin}
Let $T$ be totally transcendental, $M\models T$,  and $G$ a definable group. We call $p\in S_G(M)$ \emph{generic} iff $\rmor(p)=\rmor(G)$.
\end{defin}

\begin{pr}\label{pr:gtpconn}Let $T$ be totally transcendental, $G$ a definable group, and $M\models T$ be $\omega$-saturated.\footnote{Again, see \Cref{rem:extraasssat}.}.
  \begin{enumerate}
  \item If $p\in S_G(M)$ is generic and $g\in G(M)$, then $g\cdot p$ is also generic.
  \item The following are equivalent.
    \begin{enumerate}
    \item \label{point:pgen}$p\in S_G(M)$ is generic.
    \item \label{point:spfi}$\stab(p)$ has finite index.
    \item \label{point:spg0}$\stab(p)=G^0(M)$.
    \end{enumerate}
  \item There is a unique generic $p\in S_G(M)$ if and only if $G$ is connected.
  \end{enumerate}
\end{pr}
\begin{proof}
  \begin{enumerate}
  \item This follows from \Cref{pr:interalgebraicrm} and the fact that $a\models p$ if and only if $g\cdot a\models g\cdot p$.
  \item If $p$ is generic, by the previous point and the fact that there can be only finitely many types of maximum Morley rank, the set $\set{g\cdot p\mid g\in G(M)}$ is finite, say equal to $\set{g_0 \cdot p,\ldots,g_n\cdot p}$. Then the index of $\stab(p)$ is at most $n+1$, since if $a\models p$ and $g\in G(M)$ there must be $i\le n$ with $g\cdot a\equiv_M g_i\cdot a$, that is, with $g\inverse g_i\in \stab(p)$, proving $\eqref{point:pgen}\allora\eqref{point:spfi}$. 

    For $\eqref{point:spfi}\allora \eqref{point:spg0}$, if the subgroup $\stab(p)$ has finite index, since it is definable it must contain $G^0$, but the other inclusion is always true by \Cref{pr:stabppr}.

    Finally, $\eqref{point:spg0}\allora \eqref{point:pgen}$ follows from \Cref{pr:stabppr} and the fact that, since $G^0$ has finite index, we have  $\rmor(G^0)=\rmor(G)$.


  \item By the first point,  if $p\in S_G(M)$ is generic and $g\in G(M)$, then so is $g\cdot p$. Hence, if there is a unique generic type, it is stabilised by the whole of $G$, and since $\stab(p)=G^0$ we have left to right.

    Right to left, suppose that $p,q\in S_G(M)$ are generic types, and that $a\models p$ and $b\models q\invext M a$. Take some $N\succ M$ with $b\in N$, and let $a_1\models p\invext N$. By \Cref{pr:forksymmod}, both $a$ and $a_1$ realise $p\invext M b$, so $\tp(a,b/M)=\tp(a_1,b/M)$. Now, $p\invext N$ is still generic by \Cref{exr:iepmr}, and connectedness of $G$ does not depend on $M$, so by the previous point $\stab(p\invext N)=G(N)$, and it follows that $b\cdot a_1\models p\invext N$, hence $b\cdot a_1\models p$. From this and the fact that $a,b\equiv_M a_1, b$ it follows that $b\cdot a \models p$. If we argue symmetrically, using right stabilisers instead of left stabilisers, we also find out that $b\cdot a\models q$, hence $p=q$.\qedhere
  \end{enumerate}
\end{proof}

 We will not prove (nor use) it, but you may like to know the following fact.
\begin{fact}
  If $G$ is a totally transcendental group, and $X\subseteq G$ is definable and generic, that is, of maximal Morley rank, then it is \emph{syndetic}, that is, finitely many translates of $X$ cover $G$.
\end{fact}


\section{Totally transcendental fields}
We conclude the course by characterising the totally transcendental fields. Extra structure is allowed, that is, the language may be larger than the language of fields. We will need the following two facts from Galois theory.
\begin{fact}\label{fact:perfnogal}
Every perfect\footnote{Recall that $K$ is \emph{perfect} iff either $\Char(K)=0$ or $x\mapsto x^{\Char{K}}$ is surjective (equivalently, an automorphism).}  field with no proper Galois extension is algebraically closed.
\end{fact}
\begin{fact}\label{fact:kumas}
  Let $F/K$ be a Galois extension of degree $n$.
  \begin{enumerate}
  \item If $n=p=\Char(K)>0$, then there is $a\in K$ such that the minimal polynomial of $F/K$ is $X^p+X-a$.
  \item If  $K$ contains all $n$-th roots of unity,  $\operatorname{Char}(K)$ is either $0$ or coprime with $n$, and $\operatorname{Gal}(F/K)$ is cyclic, then there is $a\in K$ such that the minimal polynomial of $F/K$ is $X^n-a$.
  \end{enumerate}
\end{fact}
\begin{lemma}\label{lemma:surjpow}
If $K$ is an infinite totally transcendental field and $n>1$, then $K^n=K$, that is, the map $x\mapsto x^n$ is surjective. If $p=\Char(K)>0$, then so is the map $x\mapsto x^p+x$.
\end{lemma}
\begin{proof}
  Observe immediately that whether a field $K$ satisfies the conclusion or not is written in $\Th(K)$. Hence, it is enough to prove the conclusion for whichever model of $\Th(K)$ we please, say $\monster$.
  
    If $a\ne 0$, then multiplication by $a$ is a definable automorphism of the additive group $(K(\monster),+)$, hence by \Cref{pr:gzpr} it fixes $K^0(\monster)$ setwise. This implies that $K^0(\monster)$ is an ideal, and since $K(\monster)$ is a field it must be either $\set{0}$ or $K(\monster)$. Since $K^0(\monster)$ has finite index and $K(\monster)$ is infinite, it follows that the additive group $K(\monster)$ is connected. Therefore, by \Cref{pr:gtpconn} there is a unique type in $S_K(\monster)$ of Morley rank $\rmor(K)$. Clearly, $\rmor(K)=\rmor(K\setminus\set 0)$, and the unique generic type must entail $x\ne 0$. Again by \Cref{pr:gtpconn}, it follows that the multiplicative group $(K^\times(\monster), \cdot)$ is also connected.

    Fix an $\omega$-saturated\footnote{I am once again asking for your support in looking at \Cref{rem:extraasssat}.}  $M\smallprec \monster$, let $p\in S_{K^\times}(M)$ be the unique generic type, and let $a\models p$. Since $a^n$ and $a$ are interalgebraic over $M$, by \Cref{pr:interalgebraicrm} we also have $a^n\models p$. Therefore, $p(x)\proves x\in (K^\times)^n$. It follows that $(K^\times)^n$  has maximal Morley rank. This is the image of  $x\mapsto x^n$, an endomorphism of $K^\times$, hence it is a subgroup of finite index, and since $(K^\times, \cdot)$ is connected we have $K^n=K$.

If $p=\Char(K)>0$, then $x\mapsto x^p+x$ is an endomorphism of $(K,+)$, the elements $a$ and $a^p+a$ are interalgebraic over $M$, and we can argue as above.
\end{proof}
\begin{lemma}\label{lemma:nogal}
  Let $n>1$ and $K$ be an infinite totally transcendental field. If, for every $m\le n$, the field $K$ contains all $m$-th roots of unity, then $K$ has no Galois extension of degree $n$.
\end{lemma}
\begin{proof}
  Suppose that $n$ is minimal such that there is some $K$ as above which is a counterexample, as witnessed by some Galois extension $F\supseteq K$ of degree $n$. If $q$ is a prime dividing $n$, by basic group theory there is a subgroup of $\Gal(F/K)$ of degree $q$, and by~\cite[Theorem~VI.1.8]{lang} there is $E$ such that  $K\subseteq E\subseteq F$ and $E\subseteq F$ is a Galois extension of degree $q$.

  But then, by   \Cref{exr:fextint} and \Cref{exr:inttt}, $E$ is still totally transcendental; since, for every $m\le n$, the field $K$ contains all $m$-th roots of unity,  so does $E\supseteq K$, and in particular this holds for every $m\le q$. Therefore, $E$ is another counterexample, and minimality of $n$ yields $E=K$, hence $q=n$. By \Cref{fact:kumas}, depending on whether $q=\Char(K)$ or not, the minimal polynomial of $F$ over $K$ is of the form $X^q+X-a$ or $X^q-a$. By \Cref{lemma:surjpow}, these polynomials are reducible over $K$, a contradiction.
\end{proof}
\begin{thm}[Macintyre]
  Every  totally transcendental infinite field, possibly with extra structure, is algebraically closed.
\end{thm}
\begin{proof}
  Let $K$ be infinite and totally transcendental. By \Cref{lemma:surjpow}, $K$ is perfect. If $n$ is minimal such that $\zeta$ is a primitive $n+1$-th root of unity not in $K$, then $K(\zeta)$ is a Galois extension of degree at most $n$, contradicting \Cref{lemma:nogal}. It follows that $K$ contains all roots of unity, and again by \Cref{lemma:nogal} $K$ has no Galois extension, so we conclude by \Cref{fact:perfnogal}.
\end{proof}
Cherlin and Shelah have shown that, in fact, every superstable field is algebraically closed, where a theory is \emph{superstable} iff it is $\kappa$-stable for every sufficiently large $\kappa$; we know by \Cref{thm:tttan} that totally transcendental theories are superstable, but the converse is false: if you go through your list of standard examples, you should be able to find  pretty soon a superstable theory which is not $\omega$-stable, and a stable theory which is not superstable. 

 You may wonder if the above can be generalised to stable fields.  The answer is negative: separably closed fields (with no extra structure) are always stable, but they are not always algebraically closed, see \cite[Example~8.6.7]{tent-ziegler}. It is still unknown whether these are the only examples.
\begin{conjecture}[Stable fields conjecture]
  Every infinite stable field is separably closed.
\end{conjecture}
The conjecture is still open; Scanlon has recently suggested that a possible counterexample could be the field $\mathbb C(t)$.
\section{An alternate ending}
Some weeks before writing this chapter, I held a poll among the attendees of the course  these notes grew out of, asking whether they preferred fields or groups. You probably already guessed who won; had the outcome be different, this chapter would have contained a proof of the following theorem. It also uses the machinery of generic types, and you can read a proof in~\cite[Section~7.2]{marker}.
\begin{thm}[Reineke]
  Let $G$ be an infinite totally transcendental group.
  \begin{enumerate}
  \item If $G$ has no proper definable infinite subgroup, then $G$ is
    abelian, and either $G$ is divisible (not necessarily torsion-free), or there is a prime
    $p$ such that every element has order $p$.
  \item If $\rmor(G)=1$, then $G^0$ is abelian. In particular, $G$ is abelian-by-finite.
\end{enumerate}
\end{thm}
Finally, I should say that several proofs in this chapter are not as conceptual as they could be\footnote{And some statements are not optimal.  Did I already mention \Cref{rem:extraasssat}?}, since giving more enlightening ones would have required, as I hinted some sections ago, the developing of more machinery than we would have had time to go through, namely, stability theory and forking calculus.

If you are curious, luckily there is no shortage of literature about it. Some common sources are~\cite{baldwin, buechler, pillayintro, poizat, shelah, tent-ziegler}. Some applications of stability theory are in \cite{bouscaren, markerfields, gstheory, poizatgroups, wagnergroups}.

People have also applied ideas from stability theory to wider settings; see for example \cite{casanovas,kim,simon,vandendries,wagner}. This has resulted in the developing of a wide array of \emph{dividing lines}, classifying first-order theories according to which combinatorial patterns they display (such as $\mathsf{OP}$) and which consequences follow from omitting them. A very nice map of most of them can be found at \url{http://forkinganddividing.com}.
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Chapter 0

Structures and formulas

0.1 First-order structures

0.1.1 A “definition by example”
Example 0.1.1. The language of ordered abelian groups is Loag := {+, 0,−, <},
where + is a binary function symbol, 0 is a constant symbol, − is a unary function
symbol and < is a binary relation symbol.

The “natural” way to define an Loag-structure R := (R,+, 0,−, <) on the
real numbers is as follows. The domain of R is R, and we interpret + as the
function sending x, y to their usual sum, 0 as the usual number zero we all know
and love, − as the function sending x to its additive inverse, and < as the usual
order relation, that is, as the set of those (x, y) ∈ R2 such that x is strictly
smaller than y.

The previous paragraph has a lot of words in order to avoid writing things
like

“we interpret < as <:= {(x, y) ∈ R2 | x < y}” (1)

Here there is a lot of abuse of notation going on: the first instance of < is a
symbol; the second a subset of R2; and the third one means what you expect. If
we want to distinguish between, say the symbol <, its interpretation in R, and
maybe we also want to be able to write < to refer to the usual order of the reals
(as in the third instance), we could for example use ⊏ as a symbol and write

“we interpret ⊏ as ⊏R:= {(x, y) ∈ R2 | x < y}”

In practice, once these distinctions are understood, writing things like <R every
time becomes very boring very quickly, so abuses of notation as in (1) are
commonplace.

To stress the point further: it is completely legitimate to define an Loag-
structure S with domain R by setting the interpretation +S to be multiplication,
−S to be the function sending x to ex/x3, 0S := 23579, and <S to be the open
unit disc intersected with Q2. But of course, while R is actually an ordered
abelian group,1 S is not, so if for some reason we want to study S it would be
better to use a language with different symbols, instead of Loag.

1In which sense? See section 0.2.
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2 Structures and formulas

0.1.2 An actual definition (or two)
Let’s give a couple of precise definitions.

Definition 0.1.2. A (single-sorted, first-order) language is a quadruple L =
(Lc, Lf , Lr, arL), where

1. Lc, Lf , Lr are pairwise disjoint sets, respectively the sets of constant sym-
bols, function symbols, and relation symbols2 of L; and

2. arL is a function Lf ∪ Lr → N \ {0}.

• If s ∈ Lf , we call arL(s) the arity of s, and say that s is a arL(s)-ary
function symbol.

• If s ∈ Lr, we call arL(s) the arity of s, and say that s is a arL(s)-ary
relation symbol.

For instance, in Example 0.1.1, we have arLoag
(+) = 2, and we call + a 2-ary

function symbol. Synonyms such as “binary” instead of “2-ary”, are also used.
In practice, one abuses the notation and just lists the symbols of a language

in a single set and specifies in some way which symbols are constants, which are
functions, and which are relations, as in Example 0.1.1. Another shorthand is
to write arities as superscripts, as in “Loag := {+(2), 0,−(1), <(2)}”.

Definition 0.1.3. Let L be a language. An L-structure M is given by the
following.

1. A set M , called the domain (or universe) of M.

2. For each constant symbol c ∈ Lc, an element cM ∈M .

3. For each function symbol f ∈ Lf , a function fM : Mar(f) →M .

4. For each relation symbol R ∈ Lr, a subset RM ⊆Mar(R).

If s is a symbol, we call sM its interpretation in M.

Remark 0.1.4. Some authors only allow structures with nonempty domain.
Sometimes this is convenient, sometimes it is not, see e.g. [Poi00, page 22].

Example 0.1.5. The language of graphs is Lgraph := {E(2)}. Your favourite
graph G can be made into an Lgraph-structure G := (G,EG), where EG is the
set of (x, y) ∈ G2 such that there is an edge between x and y.

Example 0.1.6. Again, formally, any set G with any subset of G2 is a perfectly
legit Lgraph-structure.

It is also commonplace to use the same notation for a structure and its
domain, as in “the Loag-structure R”, with the understanding that the inter-
pretation of each symbol is clear from context. For the time being we will keep
the notation distinct (but not for very long).

Remark 0.1.7. Slightly different approaches exist. For instance one may re-
place constant symbols by 0-ary function symbols; some authors also allow 0-ary
relation symbols, which are interpreted as “always true” or “always false”.

2Relation( symbol)s are sometimes also called predicates.
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0.1.3 Expansions and reducts

Definition 0.1.8. Let L,L′ be languages. We say that L′ is a sublanguage of
L, and write L′ ⊆ L, iff L′

c ⊆ Lc, L′
f ⊆ Lf , L′

r ⊆ Lr, and arL′ = arL ↾ L′
f ∪ L′

r.

So a sublanguage of L is just a language with fewer symbols.

Definition 0.1.9. Let M be an L-structure and L′ ⊆ L. The reduct M ↾ L′ of
M to L′ is the L′-structure M′ with the same domain as M, and where every
symbol s ∈ L′ is interpreted as sM

′
= sM. We call M an expansion of M′ to

L.

In other words, the reduct of an L-structure to L′ ⊆ L is obtained by for-
getting the interpretations of symbols in L \ L′.

By the way, s ∈ L′, L \ L′, etc, are more abuses of notation: formally
we should say, for example, “the constant symbols in Lc \ L′

c, the function
symbols in. . . ”. Hopefully, by now it should be clear what kinds of pedantries
are happening in the background, so we will stop commenting on them.

0.2 Formulas and theories

We still have a bunch of definitions to give but, as it is probably clear from the
previous section, spelling out everything formally tends to be more lengthy than
enlightening. So I am going to be brief and compensate with some examples.
To see the details spelled out more precisely, see the literature, or the notes of
a course in logic. Some references are [CK90,HL19,Hod93,Kir19,MT03,Mar02,
Poi00,TZ12].

0.2.1 Formulas

Fix a language L, and fix a countably infinite3 set V of variables, e.g. V =
{x0, x1, x2, . . .}.

Definition 0.2.1. Let L be a language. The set of terms of L is the closure of
Lc ∪ V under the functions of Lf . We write t(x0, . . . , xn) to denote a term in
which the set of variables appearing is included in {x0, . . . , xn}.

Example 0.2.2. 1. In Loag, examples of terms are x0, 0. Another example
is +(x0, 0), but we also denote it by x0 + 0. Yet another example is
(x0 + 0) + (−x1).

2. In Lgraph the only terms are the variables. The same is true in every
relational language, that is, a language with only relation symbols.

Remark 0.2.3. A term t(x0, . . . , xn) need not necessarily mention all the vari-
ables x0, . . . , xn. For example it is perfectly legit to write t(x0, . . . , x7) := x0+x4.
It is also perfectly legit to write t(x0, x4) := x0+x4. Or simply x0+x4, but this
is yet another (useful!) abuse of notation, and we may need to specify whether
we regard this as a term in 2 or 8 variables (cf. Remark 0.2.5).

3For most purposes, countably many variables suffice, so we will assume this, but in some
applications one needs larger sets of variables. Everything generalises fairly easily.
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Non-Example 0.2.4. x0 < 0 is not a term: it contains a relation symbol.
x0 + x1 + x2 is, strictly speaking, not a term: we need parentheses somewhere
(no one guarantees that + will be interpreted as an associative operation).

Remark 0.2.5. If M is an L-structure, every term t(x0, . . . , xn−1) of L induces
a function Mn →M , obtained in the obvious way.

Example 0.2.6. In the structure R that we encountered in Section 0.1.1, the
Loag-term t(x0, x1, x2) := x0 + x2 induces the function R3 → R summing the
first and last coordinate.

Definition 0.2.7. An atomic formula of L is either:

1. t0(x0, . . . , xn−1) = t1(x0, . . . , xn−1), where t0, t1 are terms, or

2. R(t0(x0, . . . , xn−1), . . . , tm−1(x0, . . . , xn−1)), where the ti are L-terms and
R is an m-ary relation symbol of L.

So, in a sense, every structure is automatically equipped with the binary
relation =. While other symbols in L can be interpreted in any way (consistent
with their arity), = must be interpreted as the diagonal.

Example 0.2.8. In Loag, examples of atomic formulas are

• x0 + x1 = x2

• x0 + x1 < 0

Definition 0.2.9. The set of first-order L-formulas is the closure of the set of
L-atomic formulas under:

1. Boolean connectives ∧,∨,¬.

2. First-order quantifiers ∃x, ∀x, where x is a variable.

Usual conventions about dropping parentheses apply. We also use the ab-
breviations φ→ ψ for (¬φ) ∨ ψ and φ↔ ψ for (φ→ ψ) ∧ (ψ → φ).

“First-order” means that quantifiers (well, variables, to begin with) range
over M ; that is, variables stand for elements of the domain. So, for example
we cannot quantify over subset of M , topologies on M , etc. Unless otherwise
specified, every formula we consider will be first-order, so we just say “formula”
instead of “first-order formula”.

One also defines the set of free variables of a formula: those which, at least
once, occur not in the scope of any quantifier. This is one of the things were I
will avoid giving a precise definition, refer to the literature, and supply examples
instead.

Example 0.2.10. Examples of Loag-formulas:

1. Those in Example 0.2.8.

2. (x0 < 0) ∧ (x0 > 0).

3. ∃x0
(
((x1 + x0 > 0) ∨ (x1 + x0 = 0)) ∧ (∀x2 (x2 < x1))

)
4. ∃x3

(
((x1 + x0 > 0) ∨ (x1 + x0 = 0)) ∧ (∀x2 (x2 < x1))

)
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5. (∃x0 (x0 = 0)) ∧ (x0 > 0).

Note that x0 is not free in Item 3, but it is free in Item 4. The fact that x3
is never mentioned after the quantifier in Item 4 is not a problem. In Item 5
x0 is free. Formally, a variable may be used both free and bound in the same
formula, but of course this has a tendency to make the reader angry, and it is
good practice to use a fresh variable whenever possible.4

Non-Example 0.2.11. These are not first-order Loag formulas:

1. ∃n ∈ N x0 = n. Formulas are allowed to talk about elements of the
domain of the structure in which they will be interpreted; they do not
know about natural numbers.

2. The usual formula saying that R is complete: we are not allowed to
quantify over subsets of the domain.5

Remark 0.2.12. If we write φ(x0, . . . , xn) we mean that φ is a formula with
free variables included in {x0, . . . , xn}. The same abuse of notation as in Re-
mark 0.2.3 applies, so we may for example write φ(x0) := (x0 < 0) ∧ (x0 > 1)
but also φ(x0, x1) := (x0 < 0) ∧ (x0 > 1). This becomes relevant when using
formulas to define sets, see Definition 0.2.14.

One more tedious thing to define is what it means to substitute a term for
a free variable in a formula. An example is: let φ(y) := y < 0, let t(x0, x1) :=
x0 + x1; then φ(t(x0, x1)) is x0 + x1 < 0. One just needs to be careful for
variables not to be captured, that is, a substitution should not bound variables
to a quantifier, as in substituting x0 for y inside φ(y) := ∃x0 (¬x0 = y). These
problems disappear if one uses fresh variables whenever possible.

Another thing that works as you expect is what it means for a point to
satisfy a formula in a structure. To say that (a0, . . . , an−1) ∈ Mn satisfies
φ(x0, . . . , xn−1) in M, we write M ⊨ φ(a0, . . . , an−1).

Example 0.2.13. In R, let (a0, a1) = (−5, 3) and φ(x0, x1) := x0 < x1. Then
R ⊨ φ(a0, a1). If ψ(x0, x1) := ∃y ((x1 < y)∧(y < x0), then R ̸⊨ ψ(a0, a1). Also,
R ⊨ (∃z (φ ∧ ¬ψ))(a0, a1) (yes, that ∃z is entirely superfluous).

The formal definition is by induction on the complexity of the formula: M ⊨
(φ ∧ ψ)(a0, . . . , an) iff M ⊨ φ(a0, . . . , an) and M ⊨ ψ(a0, . . . , an), while M ⊨
∃x φ(a0, . . . , an, x) iff there is b ∈ M such that M ⊨ φ(a0, . . . , an, b), etc.

While we are here, let us say that a formula with no free variables is called
a sentence. If φ is a sentence, then either M ⊨ φ or M ⊨ ¬φ (with no need
to assign a point to free variables, since there are none). For example, R ⊨
∀x x+ 0 = x.

So, what sentences do in a structure is either holding or not holding. What
formulas with free variables do is defining sets.

4Well, in fact there are instances where minimising the number of variables used in a
formula is useful, and one tries to recycle them as much as possible, but we will not talk
about it in this course.

5Allowing that results in second-order logic. Allowing also quantification over families of
subsets yields third-order logic, etc.
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0.2.2 Definable sets
Definition 0.2.14. The set defined by an L-formula φ(x0, . . . , xn−1) in M is

φ(M) := {(a0, . . . , an−1) ∈Mn | M ⊨ φ(a0, . . . , an−1)}

A subset of Mn is definable (in M) iff it is defined by some L-formula.

Example 0.2.15. In R, the formula φ(x0, x1, x2) := x0 + x1 = x2 defines the
graph of addition.

Non-Example 0.2.16. Using techniques that we will develop later in the
course, it is possible to prove that the set Z is not definable in R.

Quite often it is necessary to look at formulas with parameters from some
subset A ⊆M . It means what you expect, but formally this is what one does.

Definition 0.2.17. Let M be an L-structure and A ⊆ M . Define a language
L(A) ⊇ L by adding to L a new constant symbol ca for every a ∈ A. Expand
M to an L(A) structure MA by interpreting each ca with a. A subset of Mn

is A-definable, or definable over A iff it is definable in MA.

Example 0.2.18. In R, the set {(x0, x1) ∈ R2 | x0 < x1 + 5} is definable over
Z (or even just over {5}).

See the literature for more lists of examples, e.g. [Mar02, Section 1.3] has
some nice, more convoluted (and more interesting!) ones.

Sometimes we say that a set is ∅-definable to emphasise that it is definable
without using parameters. Depending on the context, people use the work
definable to mean “definable over ∅” or “definable over M ”. For now, we stick to
the first meaning.

Remark 0.2.19. The set Z is not Z-definable in R. We cannot prove this yet,
but for now observe that the natural attempt to a Z-formula defining it would
use an infinite disjunction

∨
i∈Z x = i. This is not a first-order formula.

Remark 0.2.20. Definable sets in a given dimension form a boolean algebra,
with the operations induced by the connectives ∧,∨,¬, which of course corres-
pond to intersection, disjunction, and complement of definable sets.

Some spoilers

Boolean algebras of definable sets, and their Stone duals,6 are central objects
of study in model theory, to the point that some people would go as far as saying
that contemporary model theory is the study of definable sets in “tractable”
structures. Of course one needs to make “tractable” precise —actually, the
word “tame” is usually more popular in this context— and in fact there are
several different notions of “tameness”, that apply to different structures and
have different consequences. For example, the fact that, in every dense linear
order with no endpoints M, for every n, there are only finitely many ∅-definable
subsets of Mn, is intimately connected to the fact that all countable dense linear

6If you do not know what this means, then I recommend reading about Stone duality after
you get familiar with types, later on in the course. But of course, if you are going to read
about it straight away I will not try to stop you.
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orders without endpoints are isomorphic to (Q, <) (we will see this later on in
the course). Hence, looking at definable sets can allow us to say something
about certain classes of structures.

Things also work in the other direction, and definable sets are at the centre
of several applications of model theory: one is interested in a certain family of
sets, and uses their definability in some tame structure to say something about
them. For example, we will prove later that the sets which are R-definable in R
are precisely the semilinear sets: that is, boolean combinations of sets defined
by inequalities between affine functions, e.g. polyhedra. One specific flavour of
tameness enjoyed by the structure R implies, among other things, that:

• semilinear sets have certain decompositions in finitely many semilinear
pieces of a nice form; this implies, for example, that semilinear sets have
finitely many connected components;

• for every n, functions definable in R are piecewise Cn;

• definable families of semilinear sets are learnable by certain kinds of al-
gorithms.7

Now, one of the reasons R is our recurring example is that it is quite understand-
able, so, for semilinear sets, the things above can probably be proven directly
and quite painlessly. The point is that the same notion of tameness applies
to more complicated structures, and then the statements above become quite
nontrivial. For instance, the same notion of tameness8, hence the consequences
above, hold for sets definable in the expansion of R by the field structure,
the exponential functions, and the restrictions to bounded boxes of all analytic
functions (simultaneously!).

At this point, the above will probably make little sense. That’s normal. The
point is that definable sets are important, and the subsection where they are
introduced should definitely be at least one page long, but we still need to set
up a bunch of things, so for now I could only give a couple of definitions and
examples. I guess that this is enough rambling to make this longer than one
page, so maybe it’s time to stop.

If you do not like formulas, then why are you even reading th there is an
alternative presentation of definable sets: see [Mar02, Proposition 1.3.4].

0.2.3 Theories
As remarked above, if we are given an Loag-structure M, there is no guar-

antee that, for example, the symbol + will be interpreted as an associative
operation. But associativity of + can be expressed by a sentence, namely9

∀x0, x1, x2
(
(x0 + x1) + x2 = x0 + (x1 + x2)

)
If we want to study ordered abelian groups, we may then write a set of Loag-
sentences such that, if a structure M satisfies them, then it actually is an ordered
abelian group. A set of sentences which is satisfied in at least one structure is
called a theory.

7The precise statement is that they have finite Vapnik–Chervonenkis dimension.
8Which, by the way, is called o-minimality. A standard reference is [vdD98a].
9Of course ∀x0, x1, x2 is an abbreviation for ∀x0(∀x1(∀x2 . . .))
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Definition 0.2.21. Let Φ be a set of L-sentences.

1. An L-structure M satisfies Φ, or is a model of Φ, written M ⊨ Φ, iff for
all φ ∈ Φ we have M ⊨ φ.

2. We say that Φ is consistent iff it has a model, i.e. iff there is M with
M ⊨ Φ.

3. An L-theory is a consistent set of L-sentences.

4. If T is a theory, its elements are called its axioms.

Some authors use “theory” to mean just “set of sentences”, without requiring
consistency.

Example 0.2.22. The theory of ordered abelian groups Toag is the Loag-theory
containing the axioms:

1. ∀x0, x1, x2
(
(x0 + x1) + x2 = x0 + (x1 + x2)

)
2. ∀x0

(
x0 + 0 = x0

)
3. ∀x0, x1

(
x0 + x1 = x1 + x0

)
4. ∀x0

(
x0 + (−x0) = 0

)
5. ∀x0, x1, x2

(
(x0 < x1) → (x0 + x2 < x1 + x2)

)
For some other standard examples of theories, see e.g. [Mar02, Section 1.2]

or [Hod93, Section 2.2].

Definition 0.2.23. If T is an L-theory and φ is an L-sentence, we write T ⊢ φ,10
and say that φ is a consequence of T , iff for all M ⊨ T we have M ⊨ φ. The
deductive closure of T is the set of its consequences.

One says that Φ is an axiomatisation of T to mean T and Φ have the same
consequences, i.e., the same deductive closure. For many purposes, it is con-
venient to identify a theory T with its deductive closure;11 from now on, we will
adopt this convention.

Definition 0.2.24. An L-theory T is complete iff, for every L-sentence φ, either
T ⊢ φ or T ⊢ ¬φ.

Non-Example 0.2.25. Toag is not complete: if φ is the sentence

φ := ∀x ∃y y + y = x

then R ⊨ φ, but Z ⊨ ¬φ (where Z is made into an Loag-structure in the natural
way).

10We may also write T ⊨ φ. There is a subtle difference which you should know if you have
taken a course in logic. Otherwise, you may take them as synonyms.

11Sometimes, the distinction is important, e.g. sometimes it is important to know whether
certain theories can be finitely axiomatised.
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Example 0.2.26. Let T be the theory of infinite sets, that is, the theory in the
empty language L (so, the only atomic formulas are equalities between variables)
axiomatised by {φn | n ∈ N \ {0}}, where12

φn := ∃x0, . . . , xn−1

∧
i ̸=j<n

xi ̸= xj

With tools to be developed soon, it is possible to prove that T is complete.

Example 0.2.27. If M is any L-structure, the theory Th(M), defined to be
the set of L-sentences that hold in M, is (trivially) complete.

The example above is trivial, but typical:

Exercise 0.2.28. Prove the following statements.13

1. An L-theory is complete if and only if its deductive closure is maximal
under inclusion (among L-theories, that is, consistent sets of L-formulas).

2. For every complete L-theory T , there is an L-structure M such that T =
Th(M).

Of course, having the same complete theory, that is, satisfying the same
sentences, deserves a name. And so does having the same models.

Definition 0.2.29. Two L-structures M and N are elementarily equivalent,
written M ≡ N , iff Th(M) = Th(N ).

Definition 0.2.30. Let T be an L-theory. Two L-sentences φ,ψ are equivalent
modulo T iff, for every M ⊨ T , we have M ⊨ φ ⇐⇒ M ⊨ ψ. Two formulas
φ(x0, . . . , xn) and ψ(x0, . . . , xn) are equivalent modulo T iff, for all M ⊨ T , we
have φ(M) = ψ(M).

Remark 0.2.31. Two formulas φ(x0, . . . , xn) and ψ(x0, . . . , xn) are equivalent
modulo T if and only if T ⊢ ∀x0, . . . , xn (φ(x0, . . . , xn) ↔ ψ(x0, . . . , xn)).

If we say that φ,ψ are equivalent, or logically equivalent, without specifying
T (and without having a fixed T which is clear from context), we mean that
they are equivalent modulo T = ∅, or modulo T = {∃x x = x} if we want to
exclude empty structures, cf. Remark 0.1.4. Usually the second convention is
used; note that, for example, ∀x x = x and ∃x x = x are equivalent under the
second convention but not under the first one.

It is harmless, and also quite convenient, to introduce a logical symbol ⊥ for
“false”. That is, ⊥ is an atomic formula and is false in every structure.

Remark 0.2.32. Up to equivalence, we may write every formula using only
∧,¬,⊥,∃, and recover ∀ and ∨ from them in the usual way.

This is useful when proving things by induction on (complexity of) formulas,
since it allows to consider fewer cases (see e.g. the proof of Theorem 0.2.51).

12Below there are a bunch of abuses of notation going on, such as xi ̸= xj for ¬(xi = xj);
hopefully the meaning is clear.

13Hint: the second one follows from the first.
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0.2.4 Substructures
Definition 0.2.33. We say that the L-structure M is a substructure of the
L-structure N (and that N is an extension14 of M), and write M ⊆ N , iff:

1. M ⊆ N ;

2. for every constant symbol c ∈ L, we have cM = cN ;

3. for every n-ary function symbol f ∈ L, we have fM = fN ↾Mn; and

4. for every n-ary relation symbol R ∈ L, we have RM = RN ∩Mn; in other
words, for every a0, . . . , an−1 ∈ M , we have M ⊨ R(a0, . . . , an−1) ⇐⇒
N ⊨ R(a0, . . . , an−1).

Example 0.2.34. Seen as Loag-structures with the usual interpretations, we
have Z ⊆ Q and Q ⊆ R.

Example 0.2.35. If G is a graph, viewed as an Lgraph structure in the natural
way15, then a substructure of G is the same as an induced subgraph of G.

Non-Example 0.2.36. Let G be the complete graph on N, and let H be a
graph on N with no edge between 3 and 64. Then H is not a substructure of G.

Non-Example 0.2.37. Let P be a poset in the language {≤}, and suppose
a, b ∈ P are not comparable, that is, P ⊨ (¬(a ≤ b)) ∧ (¬(b ≤ a)). Let P ′ be
some linear order with domain P extending the order of P. Then P is not a
substructure of P ′ (nor the other way around).

Example 0.2.38. If L is a relational language, and M an L-structure, then
every A ⊆M can be made into an L-substructure of M in a unique way.

Example 0.2.39. More generally, if A ⊆M , and B is the closure of A under the
functions and constants of L, then B can be (uniquely) made into a substructure
of M . Of course, this substructure is called the substructure of M generated by
A.

Definition 0.2.40. An injective map M → N is an embedding of M into N
iff its image is a substructure of N .

Almost by definition, embeddings are injective maps preserving atomic for-
mulas, that is, an injective map ι : M → N is an embedding M → N if and
only if, for every atomic formula φ(x0, . . . , xn) and a0, . . . , an ∈M , we have

M ⊨ φ(a0, . . . , an) ⇐⇒ N ⊨ φ(ι(a0), . . . , ι(an)) (2)

We will not use them, but it is worth mentioning that morphisms of L-structures
are defined similarly, by dropping the requirement of injectivity and weaken-
ing (2) by replacing ⇐⇒ with =⇒. For instance, in Non-Example 0.2.37, the
identity map P → P is a morphism (but not an embedding) P → P ′. And I do
not want to risk offending any of you by telling you what an isomorphism is, or
what automorphisms are.

Anyway, we were saying, embeddings preserve atomic formulas. A bit more
is true.

14Not to be confused with expansion, cf. Definition 0.1.9.
15I’ll stop writing this kind of stuff. If an interpretation is not specified, it’s supposed to be

the natural one.



Formulas and theories 11

Definition 0.2.41. A formula φ(x0, . . . , xn) is quantifier-free if no quantifier
appears in φ.

Exercise 0.2.42. If M ⊆ N and φ(x0, . . . , xn) is quantifier-free, then for every
a0, . . . , an ∈M we have M ⊨ φ(a0, . . . , an) ⇐⇒ N ⊨ φ(a0, . . . , an).

The assumption that φ is quantifier-free is important:

Example 0.2.43. Let L = {<}, M = (Z, <) and N = (Q, <). Then M ⊆ N .
Let φ(x0, x1) be the formula ∃y

(
(x0 < y) ∧ (y < x1)

)
. Then φ(0, 1) holds in

N , but not in M.

In particular, φ(M) ̸= φ(N ) ∩M2. Even if 0, 1 ∈M , whether φ(0, 1) holds
or not depends on whether we check in M or in N .

Substructures where this never happens are called elementary.

Definition 0.2.44. We say that M is an elementary substructure of N (and
N an elementary extension of M), written M ⪯ N , iff M ⊆ N and, for every
formula φ(x0, . . . , xn) and a0, . . . , an ∈M , we have

M ⊨ φ(a0, . . . , an) ⇐⇒ N ⊨ φ(a0, . . . , an)

An embedding M → N is an elementary embedding iff its image is an elementary
substructure of N .

These easy observations are essentially exercises in spelling out definitions,
but are quite important:

Remark 0.2.45. Let M ⊆ N .

• M ⪯ N if and only if, for every formula φ(x0, . . . , xn−1), we have φ(M) =
φ(N ) ∩Mn.16

• M ⪯ N if and only if they have the same L(M)-theory.

• In particular, if M ⪯ N , then M ≡ N .

At the risk of offending someone, let me point out that isomorphisms are
elementary embeddings. Nevertheless, elementarity is really a condition on the
embedding, and not just on the isomorphism type:

Example 0.2.46. Let N := (Z, <) and M = (2Z, <). Then M ⊆ N , M ∼= N ,
but M ̸⪯ N , as can be checked by looking at the formula ∃x 0 < x < 2.17

How does one check that a substructure is elementary? See the Tarski–
Vaught test below, Theorem 0.2.51.

0.2.5 Diagrams
Recall the natural expansions by constants defined in Definition 0.2.17.

Definition 0.2.47. Let M be an L-structure.

1. Its elementary diagram ed(M) is the complete L(M)-theory of MM .

2. Its diagram18 diag(M) is the subset of ed(M) given by atomic formulas
16If you are particularly categorically-minded, you may like to think of definable sets as (a

particular kind of) functors from the category of L-structures with elementary embeddings to
the category of sets with injective maps.

17Which of course is an abbreviation for ∃x ((0 < x) ∧ (x < 2)), but I guess it’s time to
start being a bit less pedantic.

18Also known as atomic diagram.
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and negations of atomic formulas.

Note that ed(M) is, by definition, always a complete L(M)-theory. On the
other hand, diag(M) need not be (Exercise 0.2.50).

Exercise 0.2.48. If φ is a quantifier-free L(M)-sentence and MM ⊨ φ, then
diag(M) ⊢ φ.

The point of these definitions is that models of the (elementary) diagram of
M correspond to (elementary) extensions of M:

Proposition 0.2.49. Let M be an L-structure, and N be an L(M)-structure.
Let ι : M → N be the map m 7→ cNm . Then:

1. ι is an embedding if and only if N ⊨ diag(M).

2. ι is an elementary embedding if and only if N ⊨ ed(M).

Proof. Exercise (easy).

This is useful, because it allows us to build elementary extensions of M with
certain properties by writing down suitable theories containing19 ed(M).

Exercise 0.2.50. Find an M such that diag(M) is not complete.

Theorem 0.2.51 (Tarski–Vaught test). Let N be an L-structure, and suppose
that M ⊆ N . The following are equivalent.

1. M is the domain of an elementary substructure M ⪯ N .

2. For all φ(x, y0, . . . , yn) and all b0, . . . , bn ∈M , if there is a ∈ N such that
N ⊨ φ(a, b0, . . . , bn), then there is a′ ∈M such that N ⊨ φ(a′, b0, . . . , bn).

The statement of the Tarski–Vaught test (or criterion) looks very similar to
the definition of ⪯. The difference is that, in order to check the condition in
the criterion, we only need to look at which formulas are satisfied in N : there
is no “M ⊨” in the statement; in fact, in the assumptions M is just a subset of
N , and has not been given an L-structure (yet). This is subtle but important,
as it allows arguments like the proof of Theorem 0.4.14 to go through.20

Proof. (1) ⇒ (2) follows easily from the definition of ⪯.
Towards proving (2) ⇒ (1), observe that, if f(y0, . . . , ym) is an m-ary

function symbol of L and b0, . . . , bm ∈ M , by using (2) with the formula
φ(x, y0, . . . , ym) := x = f(y0, . . . , ym), we find that M is closed under the func-
tion symbols of L. A similar argument shows that M contains the interpretation
of every constant, therefore M is the domain of a substructure M of N .

To show elementarity, we now need to show that, whenever φ ∈ L(M) is a
sentence, then

M ⊨ φ ⇐⇒ N ⊨ φ (3)

We argue by induction on formulas. If (3) holds for φ and ψ, then it is immediate
to observe that it also holds for ¬φ and for φ ∧ ψ. Let us consider the case

19In languages larger than L(M), since ed(M) is already complete.
20By the way, that proof only uses things which we have already introduced, so you can

read it right now if you wish. Just make sure to read Notation 0.4.13 first.



Multi-sorted structures 13

∃x φ(x). If M ⊨ ∃x φ(x), then there is a ∈ M such that M ⊨ φ(a). But φ(a)
has lower complexity, so by induction N ⊨ φ(a), and in particular N ⊨ ∃x φ(x),
proving =⇒. For the converse, suppose N ⊨ ∃x φ(x); then there is a ∈ N such
that N ⊨ φ(a). By assumption, there is a′ ∈M such that N ⊨ φ(a′), and again
by inductive hypothesis M ⊨ φ(a′), hence M ⊨ ∃x φ(x).

0.3 Multi-sorted structures

As you may have expected from the “single-sorted” in Definition 0.1.2, there
are things called “multi-sorted” (or “many-sorted”) languages. This is one of
those things where an example may be clearer than a definition:

Example 0.3.1. The language of vector spaces has two sorts, denoted by K
and V , together with:

1. a constant symbol 0K of arity K,

2. a function symbol +K of arity K2 → K,

3. a function symbol −K of arity K → K,

4. a constant symbol 1 of arity K,

5. a function symbol ·K of arity K2 → K,

6. a constant symbol 0V of arity V ,

7. a function symbol +V of arity V 2 → V ,

8. a function symbol −V of arity V → V , and

9. a function symbol · of arity K × V → V .

Instead of having a single set as a domain, a structure M for this language
will have set K(M) interpreting the sort K, and a set V (M) interpreting the
sort V . The constant symbol 0K will be interpreted as an element of K(M),
the function symbol · as a function K(M)× V (M) → V (M), etc.

An example of formula in this language is φ(x, v) := x · v = 0, where x
is a variable of sort K and v is a variable of sort V . It defines a subset of
K(M)× V (M).

Below is a quick list of what changes from single-sorted languages to multi-
sorted ones. See [End01, Section 4.3] for a formal definition.

1. Each sort has its own variables; in other words, each variable has a sort
and ranges over that sort.

2. Each constant symbol has an arity, which is a sort,

3. Each function symbol has an arity, which is of the form A → B, where
A is a cartesian product of sorts and B is a sort; when building terms,
we are only allowed to plug variables/constants/parameters in a function
symbol if they come from the correct sorts.
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4. Each relation symbol has an arity, which is a cartesian product of sorts;
inside (atomic) formulas, variables/constants/parameters are only allowed
to be plugged in a relation symbol if they come from the correct sort.

5. Inside (atomic) formulas, equality is only allowed between variables, con-
stants, and parameters coming from the same sort.

Especially if you are already familiar with first-order logic (or if you looked
into [End01, Section 4.3]), you may have observed that it is possible to “code” a
multi-sorted structure inside a single-sorted one by using 1-ary relation symbols
instead of sorts and writing down a suitable theory to avoid pathologies (for
instance, to guarantee that the predicates are interpreted as disjoint sets).

This yields something very similar to multi-sorted logic, but with one im-
portant difference. Assume we perform such a “translation” on a language with
infinitely many sorts, say (Si)i∈I , say “translated” as predicates (Pi)i∈I . In some
models of the translation there may be points which are not in any Pi, while in
the multi-sorted version every point of a model must belong to a (unique) sort.
The problem is that, if I is infinite, and T is a theory saying that the Pi are
pairwise disjoint, then there will always be models of T containing points which
are not in any Pi. This can be proven easily by using compactness (which, by
the way, is about time to introduce), see Exercise 0.4.5.

Many-sorted languages are useful, but stating results for them tends to com-
plicate notation and terminology. For this reason, we will mostly state results
in the single-sorted case. The generalisation to the multi-sorted case is usually
done with essentially the same proofs.

Assumption 0.3.2. Unless otherwise stated, everything below will be single-
sorted.

0.4 Building models: basic techniques

0.4.1 Using magic
Theorem 0.4.1 (Compactness Theorem). Let Φ be a set of sentences. Then
Φ is consistent if and only if every finite Φ0 ⊆ Φ is consistent.

In model theory, this theorem is used all over the place. Its name comes
from the fact that, after some rephrasing, it is equivalent to saying that certain
topological spaces we will encounter later are compact.

We will not see the proof of compactness here (see the literature, or a course
in logic), but here is a typical proof by compactness.

Example 0.4.2. There exists an elementary extension M ⪰ R containing an
element m with m > R.

Proof. Let L = Loag(R) ∪ {c}, where c is a new constant symbol. Consider the
set of L-sentences

Φ := ed(R) ∪ {c > r | r ∈ R}
If Φ0 ⊆ Φ is finite, then it contains only finitely formulas of the form c > r. Let
r0 ∈ R be larger than all these finitely many r. Expand RR to an L-structure
S by interpreting cS := r0. Then, by construction, S ⊨ Φ0, so, by definition, Φ0

is consistent.
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By compactness, Φ is consistent, hence there exists M′ ⊨ Φ. Let M :=
M′ ↾ Loag(R). By construction, M′ ⊨ ed(R), so by Proposition 0.2.49 there
is an elementary embedding R → M, which we may assume, for notational
convenience, to be the inclusion. Now let m := cM

′
. By construction, for all

r ∈ R we have Φ ⊨ c > r, hence M′ ⊨ c > r, that is, M′ ⊨ m > r, hence
M ⊨ m > r, and we are done.

In this proof, I have freely confused r ∈ R with the corresponding constant
symbol in Loag(R) standing for it, but besides that I have been quite pedantic,
and spelled out explicitly all the naming new constants and taking reducts.
These steps of compactness proofs are usually very easy, and we will from now
on omit them.

As is typical with compactness arguments, the proof above tells us very little
about the structure we have proven to exist, but at least it allows us to conjure
one basically out of thin air (hence the title of this subsection). Here is another
standard compactness argument which allows us to conjure quite large things.

Corollary 0.4.3 (Upward Löwenheim–Skolem Theorem). Let T be a theory
such that, for every n ∈ N, there is M ⊨ T of cardinality at least n. Then, for
every cardinal κ, there is M ⊨ T of cardinality at least κ.

Furthermore, if T has an infinite model M0, we may also require that M ⪰
M0.

By the way, the cardinality of M is, by definition, the cardinality of M .21

Proof. Expand the language L of T to L′ by adding new constant symbols
{cα | α < κ}, and let Φ be the set of L′-sentences

Φ := T ∪ {cα ̸= cβ | α < β < κ}

Every finite subset of Φ can only mention finitely many cα, hence by compactness
and our assumptions on T , the set Φ has a model. Its reduct to L is the required
M.

For the “furthermore” part, argue as above, but replacing T with ed(M0).

Here is another standard fact which can be proven by using compactness.

Exercise 0.4.4. Let T be an L-theory. Prove that the class of models of T , to-
gether with elementary embeddings, has the amalgamation property : whenever
A,B0, B1 are models of T , and fi : A → Bi are elementary embeddings, there
are C ⊨ T and elementary embeddings gi : Bi → C such that g0 ◦ f0 = g1 ◦ f1.

A

B0

B1

C

f0

f1

g0

g1

21In the multi-sorted case, it’s the sum of the cardinalities of the domains of each sort.
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Exercise 0.4.5. Suppose that L contains infinitely many unary relation sym-
bols (Pi)i∈I , and that T is an L-theory where the Pi are nonempty and disjoint,
that is, such that,

1. for every i ∈ I, we have T ⊢ ∃x Pi(x), and

2. for every i ̸= j ∈ I, we have T ⊢ ¬∃x (Pi(x) ∧ Pj(x)).

Prove that there are some M ⊨ T and m ∈M such that, for all i ∈ I, we have
M ⊨ ¬Pi(m).

Here is a small list of some more (fairly standard) things you can prove
with compactness and some thinking. If this is your first encounter with the
Compactness Theorem, it is a good idea to try doing these exercises, and maybe
to look for more in the literature.

Exercise 0.4.6. Let Lgrp = {·, e,−1}. There is no Lgrp = {·, e,−1}-theory
whose models are precisely the groups where every element is torsion (i.e. has
finite order).

Exercise 0.4.7. There is no Lgraph-theory whose models are precisely the
graphs of finite diameter.

Exercise 0.4.8. There is an elementary extension of (Z, <) in which we may
embed (R, <). Can such an embedding be elementary?

Exercise 0.4.9. Fix a theory T , a formula φ(x), and suppose that, for every
M ⊨ T , the set φ(M) is finite. Then there is n ∈ ω such that, for every M ⊨ T ,
the set φ(M) has size at most n.

Exercise 0.4.10. Let G be a graph and n ∈ ω. Then G is colourable with n
colours if and only if each of its finite induced subgraphs is.

Exercise 0.4.11. Every partial order extends to a linear order.

0.4.2 Using bookkeeping
The “magic” from the previous subsection (that is, compactness) is very

useful when we want to build “large enough” objects. Sometimes, we want
things not to be too large, and in that case different tools are needed. One of
these, is the Downward Löwenheim–Skolem Theorem. The technique used below
to prove it is one of those ideas that will come handy again from time to time.

Definition 0.4.12. The cardinality |L| of a language L is the cardinality of the
set of L-formulas. The cardinality |T | of an L-theory T is the same as |L|.

So, for example, the cardinality of Loag = {+, 0,−, <} equals ℵ0, and so
does the cardinality of the empty language (where the only atomic formulas are
equalities between variables). If T is the empty theory in the empty language,
we still have |T | = ℵ0.

Sometimes we will want to consider languages which have finitely many
symbols. In that case, we will simply say that “L is finite”.

By the way, I hope that by now the difference between an L-structure M
and its domain M is clear enough to introduce some abuse of notation.
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Notation 0.4.13. From now on, we will freely use the same symbol (typically
“M ”) to denote both a structure and its domain.22 We will also start writing
tuples as single letters, as in y = (y0, . . . , y|y|−1), where |y| is the length of y.

Theorem 0.4.14 (Downward Löwenheim–Skolem). Let M be an L-structure
and A ⊆ M . There is an elementary substructure M0 ⪯ M with A ⊆ M0 and
|M0| ≤ |A|+ |L|.

Proof. We do an inductive construction, starting with B0 := A. For every L-
formula φ(x, y) with |x| = 1 and tuple b ∈ B

|y|
n , if there is m ∈ M such that

M ⊨ φ(m, b), put one such m in Bn+1. Note that |Bn+1| ≤ |L(Bn)| = |Bn|+|L|,
hence inductively |Bn+1| ≤ |A| + |L|. Therefore, M0 :=

⋃
n∈ω Bn has the

required cardinality.
By the Tarski–Vaught test (Theorem 0.2.51) we need to check that, whenever

b is a tuple from M0 and M ⊨ ∃x φ(x, b), then there is a ∈ M0 such that
M ⊨ φ(a, b). Since b is a finite tuple from M0 =

⋃
n∈ω Bn, it must be contained

in some Bn, and by construction we can find the required a inside Bn+1.

The following exercises can be solved with a combination of magic and book-
keeping.

Exercise 0.4.15. Let M be an infinite L-structure. If A ⊆ M and κ is a
cardinal with |A| + |L| ≤ κ ≤ |M |, then there is M0 ⪯ M with A ⊆ M0 and
|M0| = κ.

Exercise 0.4.16. Let M be an infinite L-structure. If κ is a cardinal with
κ ≥ |M |+ |L|, then there is N ⪰M with |N | = κ.

Exercise 0.4.17 (Vaught’s test). Let T be an L-theory with no finite models.
If there is a cardinal κ ≥ |L| such that T has a unique model of cardinality κ
up to isomorphism, then T is complete.

Exercise 0.4.18. Prove that the theory of infinite sets (defined in Example 0.2.26)
is complete.

22If you are particularly allergic to abuses of notation, you may have noticed that, with this
convention, if now we write, for example, A ⊆ M , it’s not clear anymore if we mean that A
is contained in the domain of M , or that A is a substructure of M . Fortunately, this is very
unlikely to create problems, cf. Example 0.2.39.





Chapter 1

Five things everyone should
see at least once in a model
theory course (Corollary 1.3.2
will SHOCK you!!!)

1.1 Normal forms
Here are some standard (and quite useful) logic facts.

Fact 1.1.1. Every formula can be put in prenex normal form. That is, every
L-formula φ(x0, . . . , xn) is equivalent to one of the form

Q0y0 Q1y1 . . . Qmym θ(x0, . . . , xn, y0, . . . , ym, )

where the Qi are either ∃ or ∀ and θ is quantifier-free.

Notation 1.1.2. If φ is a formula, denote φ0 := ¬φ and φ1 := φ

Fact 1.1.3. Every boolean combination of the formulas φ0, . . . , φn is equivalent
to one in disjunctive normal form, that is, of the form

∨
i<m

∧
j<ki

φ
βi,j
αi,j , and

to one in conjunctive normal form, that is, of the form
∧
i<ℓ

∨
j<hi

φ
βi,j
αi,j .

Definition 1.1.4. A formula is basic iff it is atomic or the negation of an atomic
formula. A formula is negation normal iff it is in the closure of basic formulas
under ∃,∀,∧,∨.

In other words, the negation normal formulas are those where the only oc-
currences of ¬ are immediately before atomic formulas. The normal forms above
in particular imply:

Corollary 1.1.5. Every formula is equivalent to a negation normal one.

1.2 Automorphisms
We still cannot prove Remark 0.2.19, but we can already prove something

weaker.
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Notation 1.2.1. If M is an L-structure and A ⊆M , we denote by Aut(M/A)
the pointwise stabiliser of A, that is, the group of automorphisms f of M such
that, for every a ∈ A, we have f(a) = a.

Exercise 1.2.2. Let X ⊆Mn be A-definable in M. Then every automorphism
fixing A pointwise fixes X setwise. That is, if f ∈ Aut(M/A), then f(X) = X.1

Corollary 1.2.3. The set Z is not ∅-definable in R.

Proof. For any positive λ ∈ R, the map x 7→ λ · x is an automorphism of R. If
λ ̸= 1, this automorphism does not fix Z setwise.

1.3 Some consequences of Löwenheim–Skolem

Corollary 1.3.1. There is M ⪯ R which is not complete.

Proof. By Löwenheim–Skolem, there is a countable M ⪯ R with Q ⊆M . Since
M is an ordered abelian group embedded in the reals, it must be Archimedean,
and it follows easily by considering the group generated by any m ∈ M \ {0}
that M is unbounded in R. Therefore, if r ∈ R \M , the set {m ∈ M | m < r}
is bounded in M . But, since M includes Q, it is dense in R, hence {m ∈ M |
m < r} has no supremum in M .

You may be wondering why we didn’t take M = Q directly, instead of
invoking Löwenheim–Skolem. The answer is that, at the moment, we do not
known whether Q ⪯ R. This is in fact true, and we will soon develop tools to
prove it.

As usual with clickbaits, the fact below is probably something you have
already heard.

Corollary 1.3.2 (Skolem paradox). If ZFC has a model, then it has a countable
one.

The reason this is called a paradox, is that ZFC proves the existence of
uncountable sets. The catch here is that, if M ⊨ ZFC is countable, and a ∈ M
is such that M ⊨ “a is uncountable”, the only thing we can conclude is that
M has no bijection between a and its set of natural numbers. But, of course,
this does not prevent a bijection between ω and {b ∈ M | M ⊨ b ∈ a} to exist
outside of M .

By the way, using compactness and Löwenheim–Skolem, we can make the
example above even more pathological, and find a countable M ⊨ ZFC which
contains nonstandard natural numbers, that is, elements a such that M ⊨
“a is a natural number” but for every n ∈ ω we have M ⊨ a > n. And even con-
taining an infinite descending membership chain a0 ∋ a1 ∋ a2 ∋ . . .; the reason
this does not contradict the fact that M satisfies the Axiom of Foundation is
that there will be no b ∈M such that {ai | i < ω} = {a |M ⊨ a ∈ b}.

1Of course here the notation is being abused yet again: we should replace f with the map
(f, f, . . . , f) : Mn →Mn.
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1.4 Taking unions
Definition 1.4.1. A poset (I,<) is upward directed iff for every i, j ∈ I there
is k ∈ I such that k ≥ i and k ≥ j.

Example 1.4.2. All linear orders are upward directed.

Proposition 1.4.3. Let (I,<) be an upward directed poset, and (Mi | i ∈ I)
an I-sequence of L-structures such that, if i < j, then Mi ⊆ Mj . The union of
the domains of the Mi can be uniquely made into an L-structure M :=

⋃
i∈IMi

such that every Mi is a substructure of M .

Proof. If R is a relation symbol and a0, . . . , an ∈ M , then each aj belongs
to some Mij . Since I is upward directed, an easy induction shows that there
is i ∈ I such that i0, . . . , in ≤ i. By assumption, a0, . . . , an ∈ Mi. We set
M ⊨ R(a0, . . . , an) iff Mi ⊨ R(a0, . . . , an). Of course we need to check that this
does not depend on i, but this follows again by our assumptions: if j satisfies
the same assumptions as i above, then there is k ≥ i, j. Both Mi, Mj are
substructures of Mk, hence Mi ⊨ R(a0, . . . , an) ⇐⇒ Mk ⊨ R(a0, . . . , an) ⇐⇒
Mj ⊨ R(a0, . . . , an).

One may use an analogous argument to define the interpretations of function
symbols and constant symbols inM . Or, we can use the following standard trick.

We reduce to the previous case by assuming that the language is relational.
This is done by changing the language, from L to L′, say, by replacing every
n-ary function symbol f of L with an n+1-ary relation symbol of L′, to be inter-
preted as the graph of f , and every constant symbol of L by a 1-ary predicate,
to be interpreted as a singleton. You may object that this involves checking that
all the notions we are interested in (substructure, elementary substructure. . . )
are preserved by this translation, and that the conclusion may be translated
back. It is a good idea to convince yourself that this is indeed true, since this
kind of trick is used fairly often.2

Finally, the condition that Mi is a substructure of M easily implies unique-
ness.

If we sprinkle a modicum of Tarski–Vaught test in the proof of the previous
proposition, we obtain the analogous statement for elementary embeddings.
Spelling out the details of the proof is left as an exercise.

Exercise 1.4.4. Let (I,<) be an upward directed poset, and let (Mi | i ∈ I)
be an I-sequence of L-structures such that, if i < j, then Mi ⪯ Mj . Let
M :=

⋃
i∈IMi. Then, for every i ∈ I, we have Mi ⪯M .

1.5 Finite structures
A lot of things in this course are stated for theories with infinite models,

e.g. Exercise 0.4.17. The reason is that on finite structures, by the proposition
below, a lot of the questions we will consider have trivial answers.

2Careful though, since some notions do change after this translation. An example is the
notion substructure, hence that of “substructure generated”. Furthermore, while the trans-
lation preserves substructures, it does not necessarily reflect them: a substructure in the
original language is automatically a substructure in the translated one, but the converse need
not hold.
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Proposition 1.5.1. If M , N are L-structures and M is finite, then M ≡
N ⇐⇒ M ∼= N .

Proof. The implication ⇐ is easy, and does not need finiteness. Suppose that
|M | = n. We first prove ⇒ in a special case, but in a stronger form.

Claim 1.5.2. Assume that L has only finitely many symbols. Then there is an
L-sentence φM such that, if N ⊨ φM , then N ∼=M .

Proof of the Claim. Common sense dictates that this is the kind of “obvious but
boring” thing that is usually left to the reader, since it is usually easier (and
possibly instructive) to convince oneself that such a formula can be written,
than to write it explicitly. Anyway, today I happened to leave common sense
at home.

If n = 0, then the required sentence is ∀x x ̸= x. Otherwise, the idea is to
exploit finiteness of L to write a sentence saying “there are exactly n elements
and they satisfy the diagram of M ”. Define the formula

ψn(x0, . . . , xn−1) :=

 ∧
i<j<n

xi ̸= xj

 ∧

(
∀y

∨
i<n

y = xi

)

Enumerate the elements of M in a tuple a = (a0, . . . , an−1).3 Note that M ⊨
ψn(a) and, conversely, if N ⊨ ψn(b), then b = (b0, . . . , bn−1) is an enumeration
of all elements of N .

Observe that whenever N satisfies the sentence4 ∃x ψn(x) then we must
have |N | = n. Of course this is not enough to guarantee the existence of an
isomorphism M → N , so we need a longer formula.

Let φM be ∃x0, . . . , xn−1 ψM (x0, . . . , xn−1), where ψM is defined below.5

ψM :=ψn(x0, . . . , xn−1)

∧
∧
i<n
c∈Lc

M⊨c=ai

c = xi

∧
∧
f∈Lf


∧
i<n

h : arL(f)→n
M⊨f(ah(0),...,ah(arL(R)−1))=ai

f(xh(0), . . . , xh(arL(R)−1)) = xi



∧
∧
R∈Lr

 ∧
h : arL(R)→n

M⊨R(ah(0),...,ah(arL(R)−1))

R(xh(0), . . . , xh(arL(R)−1))

∧
∧

h : arL(R)→n
M⊨¬R(ah(0),...,ah(arL(R)−1))

¬R(xh(0), . . . , xh(arL(R)−1))


3Enumerations are assumed to be without repetitions unless otherwise stated.
4Recall that lower case letters are allowed to be tuples. I will not recall this further.
5For ease of notation, we use the identification m = {0, . . . ,m− 1}.
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If N ⊨ φM , there are b0, . . . , bn−1 such that N ⊨ ψM (b0, . . . , bn−1), and by
construction the map ai 7→ bi is an isomorphism.

claim

In order to reduce the general case to that where L is finite, we use (of
course) compactness. Consider the language L(N) ∪ {c0, . . . , cn−1}, where the
ci are new constant symbols. In this language, consider the theory

ed(N) ∪
⋃
L0⊆L
L0 finite

ψM↾L0
(c0, . . . , cn−1)

By the Claim and compactness, this theory is consistent, hence has a model
Ñ . The restriction N ′ := Ñ ↾ L is an elementary extension of N , but since
N satisfies ∃x ψn(x), so does N ′. Since N is a substructure of N ′ and both
have the same finite cardinality, we must have N = N ′. It follows that the map
sending ai 7→ cÑi is the required isomorphism.

Finite structures will still play an auxiliary role every now and then, but
usually we will not look at their complete theories. This does not mean that
model theory has nothing to say about finite structures: finite model theory is
related to questions in computer science, especially in the area of computational
complexity. See for example [EF95].





Chapter 2

First-order quantifiers and
where to eliminate them

2.1 The first back-and-forth proof

What we do in this section may prima facie look completely unrelated to
the title of this chapter, or to model theory in general, for that matter. Except
it is very much not, as we will see later. For now, observe that we are proving
that a certain theory (defined below) has only one countable model. The main
focus is not on the theorem itself, but on its proof.

Definition 2.1.1. Let L = {<}, where < is a binary relation symbol. The
theory DLO of dense linear orders without endpoints has the following axioms:

1. < is a strict order : an irreflexive, transitive relation;1

2. < is linear : ∀x, y ((x < y) ∨ (x = y) ∨ (x > y));2

3. < has no endpoints: it has no maximum and no minimum;

4. < is dense: ∀x, y
(
(x < y) → (∃z (x < z < y))

)
.

Ok, the above definition has an hidden statement: I said “the theory DLO”,
so we should check it has a model. But, clearly, (Q, <) ⊨ DLO.

Legend has it that the first back-and-forth proof was by Cantor, who inven-
ted the method to prove the theorem below. Except this is false, and Cantor
managed to prove it by only going “forth”. Also, I have no idea whether the
proof below is the first proof by back-and-forth ever written, but nowadays it is
usually the first one people see. Anyway, here is the proof.

Theorem 2.1.2 (Cantor). All countable dense linear orders with no endpoints
are isomorphic (to (Q, <)).

1I leave it as an (easy) exercise to write these as first-order L-sentences. Also, note that
the conjunction of irreflexivity and transitivity implies asymmetry.

2Of course ∨ is associative, so we may use fewer parenthesis. But I guess at some point
above I promised not to stress such pedantries anymore.
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Proof. Let (M,<) and (N,<) be countable dense linear orders with no end-
points, viewed as L-structures with L = {<}. Since they are dense (or, if you
prefer, since they have no endpoints), M and N must both be infinite. Fix enu-
merations (ai)i<ω of M and (bj)j<ω of N . We build an isomorphism f : M → N
inductively, by extending partial isomorphisms.

Start with f0 being the empty function. If you prefer, f0 is an isomorphism
between the empty substructure of M and the empty substructure of N . We
inductively define fn in such a way that, for every n ∈ ω \ {0},

1. fn : An → Bn, where An is a finite substructure of M and Bn is a finite
substructure of N ;

2. An ⊆ An+1, Bn ⊆ Bn+1, and fn ⊆ fn+1;

3. fn is an isomorphism of L-structures;

4. if n = 2m, then am ∈ An;

5. if n = 2m+ 1, then bm ∈ Bn.

Suppose we manage to do this for every n ∈ ω. If you think about it for ≈ 30
seconds, you will realise that this is enough to conclude. But, to be more formal:

Because An ⊆ An+1, the union
⋃
n∈ω graph(fn) is the graph of a function,

call it f , with domain a subset of M and codomain N . In fact, by Item 4
its domain is the whole M , and its image is the whole of N by Item 5. If
m < m′ < ω, then am, am′ ∈ A2m′ and by Item 3 we have

M ⊨ am < am′ ⇐⇒ A2m′ ⊨ am < am′ ⇐⇒ B2m′ ⊨ f2m′(am) < f2m′(am′)

⇐⇒ N ⊨ f2m′(am) < f2m′(am′) ⇐⇒ N ⊨ f(am) < f(am′)

Therefore, f : M → N is an isomorphism of L-structures.
Let us do this inductive construction then. Suppose we have build an iso-

morphism fn−1 : An−1 → Bn−1 as above. Write An−1 = {ai0 < ai1 < . . . < aik}
and Bn−1 = {bj0 < bj1 < . . . < bjk}, and recall that for all i ≤ k we have ai ∈M
and bi ∈ N . If n is even, say n = 2m > 0, we take care of the “forth” part, that
is, we extend fn−1 to An := An−1 ∪ am. We have four cases:

a) If we already have am ∈ An−1, do nothing. Or, more formally, set An :=
An−1, Bn := Bn−1, and fn := fn−1.

b) am < ai0 . In this case, since N has no endpoints, in particular it has no
minimum, hence there must be some b ∈ N with N ⊨ b < bi0 . Send am
to b. Or, more formally, put An := An−1 ∪ {am}, Bn := Bn−1 ∪ {b}, and
fn := fn−1 ∪ {(am, b)}.

c) am > aik . Similarly, N has no maximum, so it contains some b > bik
where to send am. Or, more formally,. . . well, ok, you know what needs
to be written here.

d) There is ℓ < k with M ⊨ aiℓ < am < aiℓ+1
. Because N is dense, there is

b ∈ N with N ⊨ biℓ < b < biℓ+1
. Send am to b.
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This takes care of the “forth” part. The “back” part, that is, the odd stages
of the construction, are handled in the same way, with the roles of M and N
reversed;3 the only subtlety is that, for n = 1, there are no i0, j0. In that case,
we start by simply choosing the preimage of b0 arbitrarily, e.g. we can take
f1(a0) = b0.

Here is a consequence of Cantor’s theorem.

Corollary 2.1.3. DLO is complete.

Proof. By combining Theorem 2.1.2 with Exercise 0.4.17.

In fact, we can squeeze more than just completeness from the proof of The-
orem 2.1.2, and not just for dense linear orders. The rest of the chapter performs
this squeezing.

Exercise 2.1.4. Prove that every countable linear order embeds into (Q, <).

2.2 Quantifier-free types

Let us look at the proof of Theorem 2.1.2. The crucial step was replicating
the “position” of am with respect to An−1. The word “position”, makes perfect
sense in linear orders, but in general we will need something more adequate.

Definition 2.2.1. Let M be an L-structure, A ⊆ M , and a = (a0, . . . , an) a
tuple in M . Fix variables x0, . . . , xn. The quantifier-free type of a over A in M
is the set of formulas

qftpM (a/A) := {φ(x0, . . . , xn) ∈ L(A) | φ quantifier-free, M ⊨ φ(a0, . . . , an)}

In other words, qftpM (a/A) is obtained by taking all quantifier-free formulas
φ(a0, . . . , an) true in M , and replacing each ai with a free variable xi. The
formula φ(x0, . . . , xn) is allowed to contain parameters from A.

Remark 2.2.2. Of course there is nothing special in the variables x0, . . . , xn,
and we may have used y0, . . . , yn instead; for many purposes, the quantifier-
free types obtained in these two ways are identified.4 You can also think of
qftpM (a/A) as the collection of A-definable subsets of M containing a. This
has the advantage of not needing to fix variables, but it makes it more difficult
to compare quantifier-free types over different structures. Both points of view
are useful.

At any rate, the key property we exploited in the proof was the following.

Exercise 2.2.3. Let a, b be tuples of the same length from M , N respectively.

3It is usual, in back-and-forth proofs, to have symmetrical hypothesis, hence to only do
the “forth” part and say that the “back” part is analogous. So, why is this not called “forth-
and-back”? I guess that’s because “back-and-forth” is an existing English sentence but, if you
want, the first step where we actually send elements somewhere is step 1, which is a “back”.

4But sometimes being careless with identifications may result in trouble; more about this
at the end of Section 2.5.
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1. Assume that qftpM (a/∅) = qftpN (b/∅). Check that ai 7→ bi induces an
isomorphism between the substructure of M generated by5 a and the
substructure of N generated by b, defined in the obvious manner: e.g. if
f is a function symbol and c a constant symbol then f(a0, a1, c) is sent to
f(b0, b1, c).

2. Check that, conversely, if this map is well-defined6 and an isomorphism,
then qftpM (a/∅) = qftpN (b/∅).

3. Check that, if in addition A is a substructure of both M and N , then
qftpM (a/A) = qftpN (b/A) if and only if the map sending ai 7→ bi induces
(in the way as above) a well-defined isomorphism between the substructure
of M generated by7 Aa and the substructure of N generated by Ab.

In other words, in the proof we did the following. Use fn−1 to identify An−1

with Bn−1. Take the next point am to be considered, and look at p(x) :=
qftpM (am/A). Find, inside N , a realisation of p(x).

Definition 2.2.4. Let N be an L-structure, A a subset of N , and p(x) a
quantifier-free type over A. A tuple b in N with |b| = |x| is said to realise p(x),
written, b ⊨ p(x), iff N ⊨ p(b). That is, for every φ(x) ∈ p, we have N ⊨ φ(b).

Example 2.2.5. Let M = (Q, <) and A = {−1/n | n ∈ ω \ {0}}. Let p(x) :=
qftpM (2/A). Then 3 ⊨ p(x). In fact, all positive rationals have the same
quantifier-free type over A. More generally, b, c ∈ M have the same quantifier-
free type over A if and only if for every a ∈ A we have M ⊨ b ≥ a ⇐⇒ M ⊨
c ≥ a. In other words, qftpM (a/A) = qftpM (b/A) if and only if a, b fill the same
cut of A (in the degenerate case where a ∈ A by the cut of a in A we mean just
{a}).

2.3 The Ra(n)do(m) graph
Before developing the theory further, here is a good exercise to get familiar

with back-and-forth. Work in Lgraph = {E}.

Definition 2.3.1. Let Trg be the set of Lgraph-formulas:

1. E is a graph (i.e. irreflexive and symmetric).

2. For every (n,m) ∈ ω2 \ {(0, 0)}, the formula

∀x0, . . . , xn−1, y0, . . . , ym−1∧
i<n
j<m

xi ̸= yj

→

∃z
(∧
i<n

E(xi, z)
)
∧
( ∧
j<m

¬E(yj , z)
)

5By the way, have I already said that there is another abuse of notation going on, where
a tuple is sometimes treated as a set, as in “the substructure generated by a”? Formally, we
should say “generated by {ai | i < |a|}”. Anyway, the important thing to keep in mind is that
tuples are allowed repetitions (while sets are not).

6Think of what happens if a satisfies f(x) = g(x) but b does not.
7That’s right, another abuse of notation: AB stands for A∪B. Composed with the previous

abuse of notation, Aa means A ∪ {ai | i < |a|}.
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In words, Trg says that its models are graphs where, for every finite sets
U, V , if U ∩ V = ∅ then there is a point with an edge to all elements of U and
no edge to any element of V .

Exercise 2.3.2.

1. Prove that Trg is consistent.8

2. Prove that Trg has a unique countable model (up to isomorphism).

The unique countable model of Trg is known as the Random Graph, or Rado
Graph.

3. Prove that every countable graph embeds into the Random Graph as an
induced subgraph.

The name “Random Graph” is due to the following fact: fix a countable
set, and put an edge between any two distinct points with fixed probability
0 < p < 1, independently. Then, with probability 1, the resulting graph is
(isomorphic to) the Random Graph.

2.4 Syntax: eliminating quantifiers by hand
Recall that, for technical convenience, we added to our logic a symbol ⊥,

which is a (quantifier-free) atomic sentence in every language, and it is always
false. We also write ⊤ for ¬⊥.

Definition 2.4.1. The L-theory T has quantifier elimination iff, for every n ∈
ω, and every L-formula φ(x) with |x| = n, there is an L-formula ψ(x) without
quantifiers such that T ⊢ ∀x φ(x) ↔ ψ(x). An L-structure M has quantifier
elimination iff Th(M) does.

Remark 2.4.2.

• Note that ψ is required to have the “same” (cf. Remark 0.2.12) free vari-
ables as φ.

• The semantical counterpart to this (syntactical) definition is: T has quan-
tifier elimination if and only if every ∅-definable set is a boolean combina-
tion of sets defined by atomic formulas. See also Remark 2.4.7 for a more
geometric interpretation.

• The reason we added ⊤,⊥ to the logic is that, otherwise, if L has no
constant symbols, there are no quantifier-free sentences. This happens for
example in the language of orders, or the language of graphs.

Below, we will see some methods to prove that a theory has quantifier elim-
ination. But first, some examples.

Example 2.4.3. Let L = {+, 0,−, ·, 1, <} and T = Th(R). Consider the
formula

φ(x0, x1, x2) := ∃y (x2 · y2 + x1 · y + x0 = 0)

8Hint: do an inductive construction, or, if you like probability, see below.
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where y2 is an abbreviation for y · y. Then φ(x) is equivalent modulo T to the
quantifier-free formula

(x2 = x1 = x0 = 0)

∨ (x2 = 0 ∧ x1 ̸= 0)

∨ (x2 ̸= 0 ∧ x21 − (1 + 1 + 1 + 1) · x2 · x0 > 0)

Example 2.4.4. Let L = {+, 0,−, ·, 1} and T be the L-theory of fields. It
is easy (but it takes a while) to write an existential formula φ(x0, . . . , xn2−1)
saying that the xi are (in that order) the entries of an invertible n× n matrix.
This φ is equivalent modulo T to a quantifier-free formula, saying that this
matrix has nonzero determinant.

One way to eliminate quantifiers is to take them out one at a time by in-
duction on formulas. Some steps are always the same: for example, if φ(x) and
ψ(x) are quantifier-free, clearly so is φ(x) ∧ ψ(x). The next lemma packages
together all the easy steps, and tells us where we the actual work needs to go.

Definition 2.4.5. A formula ψ(x) is primitive iff it is of the form ∃y
∧
i<k φi(x, y),

where every φi is basic.

Lemma 2.4.6. Suppose that every primitive formula ∃y
∧
i<k φi(x, y) with

|y| = 1 (and the φi(x, y) basic) is equivalent modulo T to a quantifier-free
formula. Then T has quantifier elimination.

Proof. By induction on formulas. If ψ(x) is atomic, there is nothing to do.
If ψ is of the form ¬φ0, by induction there is a quantifier-free θ such that
T ⊢ ∀x φ0(x) ↔ θ(x). Clearly, ψ is equivalent modulo T to ¬θ, which is
quantifier-free. The case where ψ is of the form φ0 ∧ φ1 is dealt with similarly.

We are left to deal with the case ∃y φ(x, y), with |y| = 1. Inductively, φ(x, y)
is equivalent to a quantifier-free formula θ(x, y). Using disjunctive normal form,
θ(x, y) is equivalent to a formula

∨
i

∧
j φi,j(x, y), with the φi,j basic. Since

∃y (α(x, y) ∨ β(x, y)) is equivalent to (∃y α(x, y)) ∨ (∃y β(x, y)), we reduce to
the case where θ(x, y) is a conjunction of basic formulas. But then ∃y θ(x, y)
is primitive with |y| = 1, hence it is equivalent to a quantifier-free formula by
assumption.

Remark 2.4.7. Geometrically, the quantifier ∃ corresponds to a projection.
By the previous lemma, quantifier elimination is equivalent to the following: if
X ⊆Mn+1 is an intersection of subsets of Mn+1 sets defined by basic formulas,
and we consider the projection π : Mn+1 →Mn on the first n coordinates (say),
then π(X) can be written as a boolean combination of subsets of Mn defined
by atomic formulas.

Let us look at one easy example of quantifier elimination “by hand”.

Example 2.4.8. The theory of infinite sets has quantifier elimination.

Proof. By Lemma 2.4.6 and the fact that the only atomic formulas are of
the form xi = xj , we just need to eliminate the quantifier from formulas
φ(x0, . . . , xn−1) of the form

∃y
(∧
i∈I

y = xi ∧
∧
j∈J

y ̸= xj ∧
∧

(k0,k1)∈K

xk0 = xk1 ∧
∧

(h0,h1)∈H

xh0
̸= xh1

)
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for some I, J ⊆ n and K,H ⊆ n × n. If I ̸= ∅, say because i0 ∈ I, we
may discard ∃y, replace every occurrence of y by xi0 , and obtain an equivalent
formula of the same form as above, but where I = ∅. So we may assume I = ∅.
Set ψ(x) :=

∧
(k0,k1)∈K xk0 = xk1 ∧

∧
(h0,h1)∈H xh0

̸= xh1
. Because y does not

appear in ψ(x), we have that φ(x) is equivalent to
(
∃y
∧
j∈J y ̸= xj

)
∧ ψ(x).

Since T ⊢ ∀x ∃y
∧
j∈J y ̸= xj , we have that φ(x) is equivalent to ψ(x).

Some proofs of quantifier elimination “by hand” are in [TZ12, Section 3.3].
This way of proving quantifier elimination can be very efficient, but in some

cases using this technique may involve dealing with complicated formulas, sev-
eral distinctions by cases, preliminary lemmas, etc.9 So we better have more
tools at our disposal.

2.5 Types: packaging formulas together

Perhaps counterintuitively, it turns out that sometimes it is easier to manage
complete theories than single formulas. Complete theories are sets of sentences,
while formulas φ(x) are allowed free variables. If we are interested in formulas
with free variables, and want to pass through complete theories, the standard
trick is to introduce new constants c and replace φ(x) with φ(c).

In this order of ideas, quantifier elimination becomes: quantifier-free types
are enough to determine a complete type.

Definition 2.5.1. Let T be an L-theory and n ∈ ω. Let c0, . . . , cn−1 be new
constant symbols.

1. A partial n-type is an L ∪ {c0, . . . , cn−1}-theory containing T .

2. A complete n-type is a complete L ∪ {c0, . . . , cn−1}-theory containing T .

Remark 2.5.2.

1. In the literature, the word “type” is used sometimes as a synonymous of
“partial type” and sometimes as a synonymous of “complete type”. We will
go with the second convention.

2. Also, some authors allow partial types to be inconsistent (i.e., not a the-
ory).

3. Soon we will concentrate on complete T , but the definition above allows
to talk of types of incomplete theories, which we will need. For complete
T , it also makes sense to talk of types over parameters. We will see this
later.

4. A 0-type is the same as a completion of T .
9As a baby example, try to prove that the theory of the Random Graph eliminates quan-

tifiers with an argument similar to that of Example 2.4.8. You will probably end up having
to prove that in the Random Graph, if U, V are finite and U ∩V = ∅, then there are infinitely
many x connected to all points of U and no point of V (the axioms only state the existence
of one such x).
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Lemma 2.5.3. Let c0, . . . , cn−1 be constant symbols not in L. Let T be an
L-theory, and T ′ be the deductive closure of T in L ∪ {c0, . . . , cn−1}. For all
L-formulas φ(x) with |x| = n, the following are equivalent:

1. T ⊢ ∀x φ(x)

2. T ′ ⊢ φ(c).

Proof. Since T ⊆ T ′ we immediately have (1) ⇒ (2). We prove ¬(1) ⇒ ¬(2).
Suppose that T ̸⊢ ∀x φ(x). This means that T ∪ {∃x ¬φ(x)} is consistent,
so it has a model M . This M is a model of T , and there is a ∈ M |x| such
that M ⊨ ¬φ(a). Expand M to an L′-structure by interpreting cM

′

i := ai. By
definition, T ⊢ T ′, hence M ′ ⊨ T ′ ∪ {¬φ(c)}, and we have ¬(2).

Corollary 2.5.4. Let c0, . . . , cn−1 be constant symbols not in L. Let T be an
L-theory, and T ′ be the deductive closure of T in L ∪ {c0, . . . , cn−1}. Let Φ(x)
be a set of formulas φ(x) with |x| = n. The following are equivalent.

1. Φ(c) is a partial type.

2. For every φ0(x), . . . , φm(x) ∈ Φ(x), the set T ∪
{
∃x
∧
i≤m φi(x)

}
is con-

sistent.

Proof. By the previous lemma, compactness, and a pinch of logic.

Definition 2.5.5. Let M ⊨ T and a ∈ Mn. The type of a in M , denoted by
tpM (a), is {φ(x0, . . . , xn−1) ∈ L |M ⊨ φ(a0, . . . , an−1)}.

In other words, tpM (a) is the collection of all L-formulas defining a set to
which a belongs (in a fixed tuple of variables10).

Using Corollary 2.5.4, you can check that, by replacing every xi in tpM (a)
with ci, we obtain a type in the sense of Definition 2.5.1. A standard abuse of
notation, to which we will immediately start conforming, is to confuse xi with
ci, and write types with variables instead of extra constants. So, for example,
we may say that p(x) = tpM (a) is a type of T . The converse holds as well: all
(complete!) types are types of tuples in some model:

Proposition 2.5.6. For every n-type p(x) there are M ⊨ T and a ∈ Mn such
that p(x) = tpM (a).

Proof. This is so trivial it almost hurts: by assumption a type is a complete
L ∪ {c0, . . . , cn−1}-theory containing T . Take a model M of this theory, set
ai := cMi , and (obviously) take a = (a0, . . . , an−1).

This does not mean that every type is realised in every model. We will come
back to this at length later on in the course.

Let us now look at an easy but important fact.

Exercise 2.5.7. If M ⪯ N and a ∈Mn, then tpM (a) = tpN (a).

Note that, if |a| = n, and m < n, then tpM (a) decides in particular all the
m-types of its subtuples of length m; for m = 0, this means that tpM (a) implies
Th(M), that is, it decides a completion of T .

At last, the theorem promised at the beginning of this section.
10Or maybe not. See Remark 2.2.2 and the last part of this section.
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Theorem 2.5.8. The following are equivalent.

1. T has quantifier elimination.

2. For all models M,N of T , and all n ∈ ω, whenever a ∈ Mn and b ∈ Nn

are such that qftpM (a/∅) = qftpN (b/∅), then tpM (a) = tpN (b).

Proof. (1) ⇒ (2) is an immediate consequence of the definitions, so let us focus
on (2) ⇒ (1).

Fix T and an L-formula ψ(x), say with |x| = n, from which we want to elim-
inate quantifiers. If T ⊢ ¬∃x ψ(x), then ψ(x) it is equivalent to the quantifier-
free formula ⊥ and we are done. Otherwise, consider the set of quantifier-free
consequences of ψ(x)

Ψ(x) := {θ(x) quantifier-free | T ⊨ ∀x ψ(x) → θ(x)}

By definition, ψ(x) ⊢ Ψ(x), where this notation means that, for suitable con-
stants c, we have T ∪{ψ(c)} ⊢ Ψ(c). The heart of the proof lies in the following
claim.

Claim 2.5.9. Ψ(x) ⊢ ψ(x).

Proof of the Claim. If not, there is a model (M,a) of T ∪Ψ(c)∪{¬ψ(c)}, where
a denotes the interpretation of c. Let us look at π(x) := qftpM (a/∅). By our
hypothesis, T∪π(c) should imply a complete type. We will reach a contradiction
by showing that this is not the case.

Subclaim 2.5.10. T ∪ π(x) ∪ {ψ(x)} is consistent.

Proof of the Subclaim. Otherwise, by compactness, there is a finite conjunc-
tion

∧
j<ℓ φj(x) of formulas in π(x) such that T ⊢ ∀x (

∧
j<ℓ φj(x) → ¬ψ(x)).

Taking the contrapositive, T ⊢ ∀x (ψ(x) →
∨
j<ℓ ¬φj(x)). Since

∨
j<ℓ ¬φj(x) is

quantifier-free, by definition it belongs to Ψ(x). But now, on one hand, by choice
of M and a, we have M ⊨ Ψ(a), and in particular M ⊨

∨
j<ℓ ¬φj(a). On the

other hand, every φj(x) belongs to π(x) = qftpM (a/∅), hence M ⊨
∧
j<ℓ φj(a),

a contradiction.
subclaim

Therefore, there is (N, b) ⊨ T ∪ π(x) ∪ {ψ(x)}. As promised, this is a con-
tradiction: N ⊨ π(b), that is, b satisfies the same quantifier-free formulas as a;
by our hypothesis, this guarantees the same formulas, even with quantifiers, are
satisfied by a (in M) and by b (in N); but M ⊨ ¬ψ(a) and N ⊨ ψ(b).

claim

By the Claim and compactness, there is a finite conjunction
∧
i<k ψi(x) of

formulas in Ψ(x) such that T ⊢ ∀x
(∧

i<k ψi(x) → ψ(x)
)
. By definition of Ψ, all

the ψi are quantifier-free and T ⊢ ∀x
(
ψ(x) →

∧
i<k ψi(x)

)
. We conclude that

ψ(x) is equivalent modulo T to the quantifier-free formula
∧
i<k ψi(x).

Types are one of the most used tools in model theory, and we will deal with
them at great length later on in the course. Before we go back to quantifier
elimination, we finish this section with some final remarks about types.

Another way to think about types is: a partial n-type in M is a filter on
the boolean algebra of formulas φ(x), with |x| = n, modulo being equivalent
modulo T . In this identification, complete n-types correspond to ultrafilters on
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this algebra. We will not go into details, but if you want to read about it, this
algebra is called the Lindenbaum algebra, or Lindenbaum–Tarski algebra.11 For
complete T , one may equivalently fix some M ⊨ T and look at the boolean
algebra of definable subsets of Mn.

Finally, let me clarify an abuse of notation which may seem (and usually is)
harmless, but may give you some headaches down the road. When we defined
types, we might as well have used different constants, say di instead of ci, and
when replacing constants with variables we may have used yi instead of xi,
and we would have ended up with essentially the same notions, (see also Re-
mark 2.2.2). Therefore, if we strive for complete, pedantic precision, it would
have probably been more correct to define types in some other, constant-free
and variable-free way; for example, as equivalence classes of the relation “sat-
isfying the same formulas” (coded via some suitable set-theoretic trick—those
equivalence classes are proper class-sized).

Still, formulas and variables are very convenient to handle, but, in some
situations, care is needed. For example: are p(x0, x1) and p(y0, y1) the same
type or not? Usually these two types are identified, unless they are used jointly,
e.g. to define a type q(x0, x1, y0, y1) as p(x0, x1)∪ p(y0, y1)∪ {(x0 = y0)∧ (x1 =
y1)}. So one may say that types are really to be considered up to change of
variables/constants, but we should be careful not to take quotients too early.
This phenomenon is already present at the level of formulas: is φ(x0, x1) the
same as φ(x1, x0)? If, for instance, we want to write T ⊢ ∀x φ(x0, x1) ↔
φ(x1, x0) to say that the set defined by φ is symmetric with respect to the
diagonal, we better not identify φ(x0, x1) with φ(x1, x0) too early. One may
use “variable-free” presentations of types like the one in the previous paragraph
(and even of formulas and partial types), but at a price: for example, defining
the partial type q above becomes more cumbersome.

2.6 Semantics: eliminating quantifiers by back-
and-forth

Sometimes, dealing with substructures is easier than dealing with formulas;
for example, because we are doing model theory of some algebraic structures,
and we want to exploit facts that the algebraists have already proven about
them. In those cases, the main theorem of this section allows us to prove
quantifier elimination by using the back-and-forth method.

Definition 2.6.1. Let M,N be L-structures.

1. A partial isomorphism between M and N is an isomorphism between a
substructure A ⊆M and a substructure B ⊆ N .

2. A family F of partial isomorphisms between M and N has the back-and-
forth property iff for every f ∈ F

(forth) for every a ∈M there is g ∈ F with a ∈ dom g and g ⊇ f , and

(back) for every b ∈ N there is g ∈ F with b ∈ im g and g ⊇ f .
11If you are curious about Stone duality, now could be a good moment to read about it. Or

you may wait until we talk about type spaces.
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Theorem 2.6.2. Let T be an L-theory. Suppose that, for every M0 ⊨ T and
N0 ⊨ T , there are M ⪰ M0 and N ⪰ N0 such that the family of all partial
isomorphisms between finitely generated substructures of M and N has the
back-and-forth property. Then T eliminates quantifiers.

Proof. Towards a contradiction, assume this is not the case. By Theorem 2.5.8,
there are finite tuples12 a ∈M0 and b ∈ N0 with

qftpM0(a/∅) = qftpN0(b/∅) (2.1)

but
tpM0(a) ̸= tpN0(b) (2.2)

The last inequality must be witnessed by some L-formula; by Lemma 2.4.6 the
offending formula may be taken of the form ∃y φ(x, y), with φ(x, y) quantifier-
free and |y| = 1. We use the “forth” in “back and forth” to deal with the case
when

M0 ⊨ ∃y φ(a, y) N0 ⊨ ¬∃y φ(b, y) (2.3)

The case where M0 ⊨ ¬∃y φ(a, y) but N0 ⊨ ∃y φ(b, y) is dealt with in the same
way, by using the “back” instead.

Since M ⪰ M0 and N ⪰ N0, by definition of ⪯ (and Exercise 2.5.7, if you
want) (2.1), (2.2), and (2.3) still hold after replacing M0 by M and N0 by N .

Because qftpM (a/∅) = qftpN (b/∅), by Exercise 2.2.3 the map sending ai 7→
bi extends to an isomorphism f : A→ B, where A ⊆M and B ⊆ N are (finitely)
generated by a, b respectively. Since M ⊨ ∃y φ(a, y), there is d ∈ M such that
M ⊨ φ(a, d). Let Â be the substructure of M generated by ad. Because φ(x, y)
is quantifier-free, by Exercise 0.2.42 Â ⊨ φ(a, d). Clearly, Â is finitely generated
and contains A. By the “forth” property there is an isomorphism g ⊇ f with
domain Â. Let B̂ := im(g); note that it is a substructure of N containing B.
Since g is an isomorphism and g(a) = b, we have B̂ ⊨ φ(b, g(d)). Again by
Exercise 0.2.42, this yields N ⊨ φ(b, g(d)), and in particular N ⊨ ∃y φ(b, y).
This contradicts the fact that, by (2.3) and elementarity, N ⊨ ¬∃y φ(b, y).

Remark 2.6.3. Some comments and a spoiler:

1. It may (and will) happen that for some M0 and N0, for all M ⪰ M0 and
N ⪰ N0, the family of partial isomorphisms between finitely generated
substructures of M and N is empty. Vacuously, the empty family does
have the back-and-forth property. Note that Theorem 2.6.2 does not need
such families to be nonempty (if you don’t believe me, check the proof).

2. It may (and will) happen that, even if T has quantifier elimination, the
family of partial isomorphisms between finitely generated substructures
of some M0 and N0 does not have the back-and-forth property. In other
words, passing to an elementary extension is in general necessary.

3. If L is relational, one may avoid passing to an elementary extension by
weakening the back-and-forth property; I won’t elaborate here, but if you
are interested search for Ehrenfeucht–Fraïssé games.

4. The converse of the previous theorem is also true; to prove it, one takes
M , N to be ω-saturated, a notion we will introduce later.

12From now, I will start writing e.g. a ∈M0 instead of a ∈M
|a|
0 whenever convenient.
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2.7 Consequences: eliminating quantifiers for a
purpose

In the next chapter, we will see some applications of quantifier elimination
in concrete structures. Here we look at some more general consequences.

Theorem 2.7.1. Suppose that T is an L-theory such that

1. T eliminates quantifiers, and

2. for all models M,N of T , there is an L-structure A which embeds in both
M and N .

Then T is complete.

Proof. We need to show that, for all models M , N of T , we have M ≡ N , so we
fix an L-sentence φ, we assume that M ⊨ φ, and we aim to show that N ⊨ φ.
By assumption, there is a quantifier-free sentence ψ such that T ⊢ φ ↔ ψ. In
particular, M ⊨ ψ. Take A as in the assumptions of the theorem, and assume
for notational convenience that the embeddings of A in M and N are inclusions.
Because ψ is quantifier-free, M ⊨ ψ implies A ⊨ ψ, which in turn implies N ⊨ ψ.
But N is a model of T , hence N ⊨ φ↔ ψ, so N ⊨ φ.

Remark 2.7.2.

1. In the proof above, we may have A ⊨ ¬φ. This is due to the fact that A
is not required to be a model of T , hence, in A the sentence φ ↔ ψ need
not hold.

2. We will encounter examples of incomplete theories with quantifier elimina-
tion; by the previous theorem, this can only happen if some pair of models
of T share no common substructure, even up to embeddings (compare also
with point 1 of Remark 2.6.3).

3. If L has no constant symbol13, the empty structure is an L-structure, and
a perfectly good A to use in this theorem.

If for some reason you only need to prove completeness of a theory, and don’t
care about quantifier elimination, the following exercise may come out handy.

Exercise 2.7.3. 1. Suppose that F is some14 family of partial isomorphisms
between M and N with the back and forth property. Prove that every
f ∈ F is an elementary map, that is, for every L-formula φ(x) and a ∈
(dom f)|x|, we have M ⊨ φ(a) ⇐⇒ N ⊨ φ(f(a)).15

2. Deduce that, if for all models M , N of T there is some nonempty F as
above, then T is complete.

Remark 2.7.4. If T eliminates quantifiers, then it is model complete: namely,
all embeddings between models of T are elementary.

13Those who have already read Section 2.8 may also want to assume that L has no 0-ary
relation symbol.

14Not necessarily that of all partial isomorphisms between finitely generated substructures.
15This does not mean that f is an elementary embedding: we may have dom f ̸=M .



Cheating: eliminating quantifiers by definitional expansions 37

We finish the section with a characterisation.

Definition 2.7.5. A theory T is substructure complete iff for every M ⊨ T and
every substructure A ⊆M , the theory T ∪ diag(A) is complete.

Theorem 2.7.6. The following are equivalent for an L-theory T .

1. T is substructure complete.

2. For every M ⊨ T and every finitely generated substructure A ⊆ M , the
theory T ∪ diag(A) is complete.

3. If A is a substructure of two models M , N of T , and a is a finite tuple
from A, then tpM (a) = tpN (a).

4. T has quantifier elimination.

Proof. This theorem has been, in a sense, already proven. In fact, (1) ⇒ (2)
is trivial, (2) ⇒ (3) is an easy consequence of the definitions, and (3) ⇒ (4)
follows from Theorem 2.5.8 up to replacing embeddings with inclusions. As
for (4) ⇒ (1) observe that, if T has quantifier elimination, it follows easily
from Lemma 2.5.3 that so does T ∪ diag(A);16 the embedding provided by
Proposition 0.2.49 then allows us to invoke Theorem 2.7.1.

2.8 Cheating: eliminating quantifiers by defini-
tional expansions

There is a reason if the title of this chapter has a “where” in it: namely,
whether quantifier elimination holds or not, heavily depends on the language L
in which we are working.

In order for everything below to go through smoothly, we need to allow 0-ary
relation symbols. If R is 0-ary, then R is an atomic formula. In a fixed structure
M , it can be interpreted as ⊤ or as ⊥.

Definition 2.8.1. Let T be an L-theory. A definitional expansion of T is a
theory TΦ obtained as follows.

1. Fix a set of L-formulas Φ.

2. Let LΦ be obtained by adding to L, for every φ(x) ∈ Φ, an |x|-ary relation
symbol Rφ(x).

3. Let TΦ := T ∪ {∀x (φ(x) ↔ Rφ(x)(x)) | φ(x) ∈ Φ}.

The Morleyisation of T is the definitional expansion obtained by setting Φ to
be the set of all L-formulas.

In other words, the definitional expansion given by Φ makes all formulas in
Φ equivalent to an atomic formula.

Remark 2.8.2.
16More generally, if T has quantifier elimination and T ′ ⊇ T is a theory in a language

L′ ⊇ L where the only new symbols are constant symbols, it is easy to show that T ′ still
eliminates quantifiers.
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1. Φ is allowed to contain formulas with different free variables, e.g. a sentence
φ and some ψ(x) with |x| = 6.

2. One may similarly define a definitional expansion MΦ of M , and, for fixed
Φ, if M ⊨ T then MΦ ⊨ TΦ.

3. The reason we allowed 0-ary relation symbols is to cover the case where φ ∈
Φ is a sentence; this wouldn’t have been necessary if we only considered
complete T , since in that case every sentence is, modulo T , equivalent to ⊤
or equivalent to ⊥. Note that, in a language L without constant symbols,
but with 0-ary relation symbols, there is more than one way to make ∅
into an L-structure: we need to decide which 0-ary relation symbols are
true and which ones are false. Compare with point 3 of Remark 2.7.2, and
think about what happens when you start with the empty theory in the
empty language (it is not complete!), and then Morleyise.

The next remark is as trivial as it is important.

Remark 2.8.3. Let TΦ be the Morleyisation of T .

1. TΦ has quantifier elimination. In particular, all embeddings between mod-
els of TΦ are elementary.

2. Every model of T expands uniquely to a model of TΦ.

Hence, the models of T and those of its Morleyised, even if they are structures
in different languages, are essentially the same structure, in the sense that they
have the same definable sets; what changes is the embeddings between them.

Morleyisation is very useful when proving abstract model-theoretic facts,
since it allows us to assume quantifier elimination for arbitrary structures, let
me stress this again, without changing the definable sets.17

But then you may ask: why going through all the proofs in this chapter if we
could just establish quantifier elimination by brute force? Because Morleyisation
is just as useful in the abstract as it is useless in the concrete. Or, in other words,
having quantifier elimination in a simple language allows us to understand the
definable sets, while forcing quantifier elimination tells us nothing in this regard.

For instance, you may prove as an exercise that DLO eliminates quantifiers in
L = {<} (ok, this is a lousy exercise: basically, read the proof of Theorem 2.1.2
again, then invoke Theorem 2.6.2). By inspecting the quantifier-free formulas
in L = {<}, we find that all subsets of Q1 are finite unions of intervals (possibly
unbounded) and points (if you don’t see it yet, use disjunctive normal form). By
contrast, take (N,+, ·). Surely, if we Morleyise this structure, every definable
set becomes quantifier-free definable. But understanding what is Rφ(x)(N) is
just as difficult as understanding what is φ(N).

Even if Morleyising does not help us understanding the definable sets of a
given structure, other definitional expansion may do. For example, an L-theory
may not have quantifier elimination in L, but maybe we can eliminate quantifiers
in a “reasonable” definitional expansion. E.g., if in T every formula is equivalent
to a boolean combination of existential ones (that is, of the form ∃x φ(x) with
x quantifier-free), then we can take Φ to be the set of existential formulas and
prove quantifier elimination “down to Φ”, that is, for the definitional expansion
induced by Φ.

17As opposed to, for those in the know, adding Skolem functions, for example.



Chapter 3

Some examples and a few
applications

3.1 Algebraically closed fields
Definition 3.1.1. Let Lring := {+, 0,−, ·, 1}. The theory of algebraically closed
fields ACF has axioms

1. axioms of fields

2. for every n > 0, the axiom

∀y ∃x (xn + yn−1x
n−1 + . . .+ y1x+ y0 = 0)

If p is a prime number, we define

ACFp := ACF ∪ {1 + 1 + . . .+ 1︸ ︷︷ ︸
p times

= 0}

Finally, we define

ACF0 := ACF ∪ {1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

̸= 0 | n > 0}

As usual, one should check that these have a model. But, as you know from
algebra,

Fact 3.1.2. Every field K has an algebraic closure Kalg: an algebraic extension
which is algebraically closed.

By the way, you can prove this in a very model-theoretic fashion: first show
(using algebra1) that there is an algebraic extension K1 of K0 := K where every
polynomial over K0 of positive degree has a root. Then iterate this and take
the union of the chain you built.2

Clearly, ACF is not complete, since it does not decide whether 1 + 1 = 0. If
you know a little bit of field theory, you will recall that an algebraically closed

1No free lunches. I mean, at some point we should use that these are fields, no?
2In fact, one step suffices. See [Gil68].
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field is determined up to isomorphism by its characteristic and its transcendence
degree over its prime field.3 If we take this for granted, we see immediately that
ACF0 and each ACFp are complete: for every uncountable κ, they have a unique
model of size κ, and we may apply Vaught’s test (Exercise 0.4.17).

But even without taking this fact for granted, we can prove something
stronger, namely quantifier elimination, even for the incomplete theory ACF.
The characterisation of its completions will then follow easily.

If you want to do this by using as little algebra as possible, you can: you will
need Lemma 2.4.6 and some elbow grease. But since we know a lot of things
about the algebra of fields, we may as well exploit it to do a neat back-and-forth
proof.

Theorem 3.1.3. ACF eliminates quantifiers.

Proof. We use Theorem 2.6.2. Given M0, N0 ⊨ ACF, by Löwenheim–Skolem
there are uncountable M ⪰ M0 and N ⪰ N0. Since our assumptions are
symmetrical, up to reversing the roles of M and N we only need to take care of
the “forth” part.

Let A ⊆ M and B ⊆ N be finitely generated substructures, which in this
language means finitely generated subrings, and f0 : A → B an isomorphism.4
If K,L are the fields they generate in M,N , we can easily (and uniquely) extend
f0 to an isomorphism f : K → L.

If a ∈ M \K is transcendental over K, denote by K[a] the ring generated
by Ka and by K[X] the ring of polynomials over K in one variable X. Since a
is transcendental, idK ∪{a 7→ X} extends to an isomorphism g0 : K[a] → K[X].
Clearly, f extends to an isomorphism g1 : K[X] → L[X] mapping X to X. Since
L is finitely generated, its algebraic closure is countable, hence by choice of N
there is b ∈ N transcendental over L. By transcendence, the map g2 : L[X] →
L[b] sending a polynomial to its value in b is an isomorphism, hence g2 ◦ g1 ◦ g0
is the required extension of f .

If a ∈ M \K is algebraic over K, let g(X) be its minimal polynomial. Let
h(X) be its image under f . Since N is algebraically closed, h(X) has a root
b in N , and we conclude similarly as above, by using K[X]/(g(X)) instead of
K[X].

This is an example where it was necessary to pass to elementary extensions:
if M0 contains an element a transcendental over the prime field F , and N0 is
F alg, there is no partial isomorphism M0 → N0 with a in its domain.

Corollary 3.1.4. The completions of ACF are ACF0 and, for each p prime,
ACFp.

Proof. If T ⊇ ACF is complete, for each n > 0 it needs to decide whether

1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

= 0

3The subfield generated by 1, that is, either Q or Fp. Up to isomorphism, of course. But
maybe it’s time to stop saying “up to isomorphism” every time.

4If M,N have different characteristic, then there is no partial isomorphism between them,
since every finitely generated substructure needs to contain the interpretation of the constant
1, which is preserved by isomorphisms. So in this case there is no such f0 and we are already
done.



Algebraically closed fields 41

holds or not. Field theory tells us that this can hold for at most one n, and that
such an n must be prime. This shows that each completion contains some ACFp
or ACF0, so we only need to show that these are complete. But this follows from
Theorem 2.7.1, since Z embeds in every field characteristic 0 and Fp in every
field of characteristic p.

Corollary 3.1.5 (Chevalley–Tarski). If K ⊨ ACF and X ⊆ Kn+1 is construct-
ible, that is, a Boolean combination of Zariski-closed sets, then its projection on
the first n coordinates is still constructible.

Proof. This is essentially a restatement of quantifier elimination, after observing
that “constructible” is the same as “quantifier-free definable”.

Corollary 3.1.6 (Lefschetz principle). Let φ be a sentence in Lring. The fol-
lowing are equivalent:

1. C ⊨ φ.

2. ACF0 ⊢ φ.

3. For cofinitely many primes p we have ACFp ⊢ φ.

4. For infinitely many primes p we have ACFp ⊢ φ.

Proof. (1) ⇔ (2) holds because ACF0 is complete. If ACF0 ⊢ φ, then by com-
pactness a finite subset of ACF0 suffices to entail φ. This finite subset can
only say that the characteristic is different from finitely many primes, so we get
(2) ⇒ (3). Since (3) ⇒ (4) is trivial, we conclude by proving ¬(2) ⇒ ¬(4).
Again because ACF0 is complete, if ACF0 ̸⊢ φ then ACF0 ⊢ ¬φ. By the pre-
vious implications, for cofinitely many primes p we have ACFp ⊢ ¬φ, and by
consistency ACFp ̸⊢ φ.

Combining this with a standard algebraic fact yields a proof of (one of the
several forms of) the Nullstellensatz.

Corollary 3.1.7. Let K ⊨ ACF. If m ⊆ K[X0, . . . , Xn−1] is a maximal ideal,
then there is a ∈ Kn where all f ∈ m are 0.

Proof. Clearly, all f ∈ m have a zero in an extension of K, namely in the
field K[X0, . . . , Xn−1]/m, and a fortiori in L := (K[X]/m)alg. By Hilbert’s
Basis Theorem, m is finitely generated, say m = (f0, . . . , fk), hence a anni-
hilates all f ∈ m if and only if a annihilates all fi. By construction, L ⊨
∃x0, . . . , xn−1

∧
j≤k f(x) = 0. By quantifier elimination, the embeddingK ↪→ L

is elementary, hence K ⊨ ∃x0, . . . , xn−1

∧
j≤k f(x) = 0.

We conclude this section with a beautiful model-theoretic proof (in fact, the
first one to be found) of an algebraic fact. First, an easy observation.

Exercise 3.1.8. Let (I,<) be upward directed, (Mi | i ∈ I) be a family of
L-structures such that i < j =⇒ Mi ⊆ Mj , and M :=

⋃
i∈IMi. Let φ be a

∀∃-sentence, that is, one of the form ∀x ∃y ψ(x, y), with ψ(x, y) quantifier-free.
If, for every i ∈ I, we have Mi ⊨ φ, then M ⊨ φ.5

5We will not prove it here, but you should be aware that this has a converse: if the class
of models of T models is closed under unions of chains (we don’t even need to check arbitrary
directed sets), then T is ∀∃-axiomatisable. See [Mar02, Exercise 2.5.15] for a proof sketch.
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Theorem 3.1.9 (Ax). Let f : Cn → Cn be a polynomial function, that is, a
function (f0, . . . , fn−1) where every fi is a polynomial in (the same) n variables.
If f is injective, then it is surjective.

Proof. By quantifying over coefficients as in Definition 3.1.1, it is easy to see
that, for fixed n and d := maxi<n deg fi, the conclusion may be expressed by
an Lring-sentence. If you actually write down this sentence and put in prenex
normal form, you will in all likelihood end up with a ∀∃ sentence,6 call it φn,d.

A moment’s thought reveals that φn,d holds over every finite field. Since Falg
p

can be written as a directed union of finite fields, by Exercise 3.1.8 Falg
p ⊨ φn,d.

Since ACFp is complete, it follows that ACFp ⊨ φn,d. This is true for every p, so
we conclude by Corollary 3.1.6.

Exercise 3.1.10. Consider R with its natural Lring-structure. Prove that
∃y x = y2 is not equivalent to a quantifier-free formula.

Exercise 3.1.11. Fix a field K. The language of K-vector spaces is LK−VS :=
{+, 0,−} ∪ {λ · − | λ ∈ K}. Each K-vector space is made into an LK−VS-
structure by interpreting +, 0,− as the functions giving its underlying abelian
group and λ · − as the 1-ary function “scalar multiplication by λ”. Denote by
K−VS the common theory of all infinite K-vector spaces. Prove that K−VS
eliminates quantifiers and is complete.

If instead of a field K we take a ring R, and look at R-modules in a similar
fashion, then quantifier elimination tout court can fail, but there is still quantifier
elimination down to positive primitive formulas. There are many sources for this,
e.g. [Poi00, Theorem 6.26], [TZ12, Theorem 3.3.5], or the extensive monograph
[Pre88].

Remark 3.1.12. If K is a field and V a vector space, and we are interested
in studying the model theory of V , we have two natural choices: viewing V as
an LK−VS-structure, or throwing K inside the structure and looking at (K,V ),
see Example 0.3.1. The two resulting structures behave very differently, unless
K is finite: if K is infinite, there are elementary extension of (K,V ) where the
field sort grows!

3.2 Some combinatorial structures
It is often useful to have at the ready an array of understandable structures

and theories to test conjectures, understand new definitions, etc. Usually we
like these structures to have quantifier elimination in a reasonable language, so
that we understand, at least to some extent, their definable sets. This section
contains some theories you can use for this purpose, and to get some practice
with proofs of quantifier elimination (and of consistency!).

Definition 3.2.1. Recall that, by definition, 2<ω := {f : n → {0, 1} | n ∈ ω}.
Let L = {Pσ | σ ∈ 2<ω}, where each Pσ is a unary predicate. Let T2<ω be the
theory with axioms7

6If you don’t, and you tried writing it in good faith, please let me know what you wrote.
My email address is at page vi.

7I am not aware of any standard name/notation for T2<ω , I just put down the first that
came to mind; suggestions are welcome.
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1. ∀x P∅(x), where we think of ∅ as the unique function 0 → {0, 1};

2. each Pσ is infinite;

3. whenever σ0 ⊆ σ1,8 the axiom ∀x Pσ1
(x) → Pσ0(x);

4. for all σ ∈ 2<ω, the axiom9

(¬∃x P
σ⌢0

(x) ∧ P
σ⌢1

(x)) ∧ ∀x (Pσ(x) → (P
σ⌢0

(x) ∨ P
σ⌢1

(x)))

Definition 3.2.2. Let κ be a nonzero cardinal (possibly finite) and let L :=
{Ei | i < κ}, where each Ei is a binary relation symbol. The theory of κ generic
equivalence relations is axiomatised by

1. every Ei is an equivalence relation with infinitely many classes;

2. for every finite nonempty I ⊆ κ, an axiom saying that, whenever Xi is an
equivalence class of Ei, the intersection

⋂
i∈I Xi is infinite.

Definition 3.2.3. In L = {0, 1,∩,∪,⊆, (·)∁}, the theory of atomless boolean
algebras is the theory of the Boolean algebras B such that B \ {0} has no
⊆-minimal elements.

We already said that DLO is complete and eliminates quantifiers. If you have
already done Exercise 2.3.2, you will have probably realised that Trg does too.
And of course, so does the theory of infinite sets. Here are some useful variants:

1. The theory of a DLO together with a dense and codense unary predicate
P .

2. For a fixed cardinal κ, the theory of κ-many DLO’s <i on the same under-
lying set, where the intersection of finitely many intervals, each relative to
a different <i, is nonempty.

3. The theory of the densely ordered random graph: in the language L =
{E,<}, take DLO together with a strengthened version of the axioms in
Definition 2.3.1, stating not only the existence of one z with the required
edges, but of a dense set of such z.

Exercise 3.2.4. Choose a (preferably nonempty) subset of the set of theories
introduced in this section. Prove that the theories in this subset

1. are indeed theories, that is, they have a model,

2. eliminate quantifiers, and

3. are complete.

Exercise 3.2.5. Consider T := Th(Z, <).

1. Prove that T does not eliminate quantifiers.

2. Find an expansion of (Z, <) by one symbol only which has the same defin-
able sets and quantifier elimination.

8That is, σ1 extends σ0.
9If domσ = n = {0, . . . , n− 1}, we denote by σ ⌢ i the function with domain n+ 1 which

restricts to σ and maps n 7→ i.
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Realising many types

4.1 Types over parameters
Notation 4.1.1. Unless otherwise stated, T denotes a complete L-theory with
infinite models, and M , N , M0, etc. models of T .

We may still repeat that T is complete for emphasis.
We already saw what a type is in Definition 2.5.1. A type over a set of

parameters is just what you expect:

Definition 4.1.2. Let M ⊨ T and A ⊆ M . A partial (respectively, complete)
n-type over A is a partial (respectively, complete) n-type in Th(MA).

Some easy but important observations:

Remark 4.1.3.

1. Let Φ(x) be a set of L(M)-formulas. Then Φ(x) is a partial type over M
if and only if {φ(M) | φ(x) ∈ Φ(x)} has the finite intersection property,
that is, every intersection of finitely many of its elements is nonempty.

2. Every partial type over A can be extended to a complete type over A,
since every theory extends to a complete theory.

If you solved Exercise 0.4.4, you already know how to solve this:

Exercise 4.1.4. The class of models of a complete T with elementary embed-
dings has the joint embedding property : given any two models M0, M1 of T
there are N ⊨ T and elementary embeddings M0 → N and M1 → N .

If N ⪰ M , then Th(NA) = Th(MA). Therefore, the types over A ⊆ M do
not change when passing to an elementary extension of M . For this reason, we
may drop the M in “tpM ”:

Definition 4.1.5. Let A ⊆M ⊨ T and b ∈Mn. The type of b over A is

tp(b/A) := {φ(x0, . . . , xn−1) ∈ L(A) |M ⊨ φ(b0, . . . , bn−1)}

If p(x) is a type over A, we say that b realises p(x) iff p(x) = tp(b/A); in this
case, we write b ⊨ p.
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4.2 Type spaces
Definition 4.2.1. Let A ⊆ M ⊨ T , and fix a tuple of variables x. The space
Sx(A) is the set of |x|-types p(x) over A, equipped with the topology generated
by the basis of open sets {[φ(x)] | φ(x) ∈ L(A)}, where

[φ(x)] := {p(x) ∈ Sx(A) | p(x) ⊢ φ(x)}

Remark 4.2.2.

1. This is indeed a basis for a topology, as opposed to just a prebasis. In
fact, it is even closed under finite intersections, since [φ(x)] ∩ [ψ(x)] =
[φ(x) ∧ ψ(x)]. Similarly, it is closed under finite unions, since [φ(x)] ∪
[ψ(x)] = [φ(x) ∨ ψ(x)]. By definition of basis, open sets are those of the
form

∨
i∈I [φi(x)].

2. Sx(A) is Hausdorff, since if p(x) ̸= q(x) there must be φ(x) ∈ p(x) such
that φ(x) /∈ q(x). Because q(x) is complete, then ¬φ(x) ∈ q(x). Therefore
p(x) ∈ [φ(x)], q(x) ∈ [¬φ(x)], and since types are consistent, we clearly
have [φ(x)] ∩ [¬φ(x)] = ∅.

3. Each [φ(x)] is clopen, since it has complement [¬φ(x)].

4. It follows from the previous points that the [φ(x)] also form a basis for
the closed sets.

5. Nonempty closed sets correspond to partial types. More precisely, every
nonempty closed set is of the form F =

⋂
φ(x)∈Φ(x)[φ(x)], for Φ(x) a partial

type over A. In other words, p(x) ∈ F if and only if p(x) is a completion
of Φ(x). We denote F by [Φ(x)].

6. Sx(A) is compact, because of. . . compactness. To see this, recall that
an equivalent definition of (topological) compactness is “every family of
closed sets with the finite intersection property has nonempty intersec-
tion”. Spelling this out, if we think of types as complete L ∪ {c}-theories,
this means precisely that if every finite subset of Φ(c) is consistent, then
Φ(c) is consistent.

7. Restricting a type p(x, y) to the formulas which do not involve y yields a
continuous, surjective map Sxy(A) → Sx(A). Similarly, if A ⊆ B ⊆ M ,
then the restriction map p 7→ p ↾ A : Sx(B) → Sx(A) is surjective and
continuous.

8. Sxy(A) is not the product Sx(A) × Sy(A). In other words, even if p(x)
and q(y) are complete, p(x) ∪ q(y) need not be. This depends on the fact
that not every formula φ(x, y) can be written as a boolean combination of
formulas of the form ψ(x) or θ(y). An easy example is the formula x = y.
If for example A = M is a model, and p(x) is a nonrealised type, that is,
a type extending {x ̸= a | a ∈M |x|}, then p(x) ∪ p(y) has one completion
containing1 x = y and (at least) one completion containing x ̸= y. If you
are familiar with the Zariski topology, this is a akin to the fact that the
Zariski topology on A2 is not the product of the Zariski topology on A1

with itself.
1If |x| > 1 this is an abbreviation for

∧
i<|x| xi = yi.
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9. If A =M is a model, then the set of realised types, that is, those containing
a formula x = a for some a ∈ M , is dense. In fact, let [φ(x)] be a basic
open set. If [φ(x)] is nonempty, it contains some p(x). This p(x) is realised
in some N ⪰M , say by b. In particular, N ⊨ φ(b), so N ⊨ ∃x φ(x), hence
M ⊨ ∃x φ(x). If a ∈ M is such that M ⊨ φ(a), then {x = a} implies a
complete type, which is clearly realised, and clearly contained in [φ(x)].

Clearly, up to homeomorphism, Sx(A) only depends on |x|, and not on
the specific tuple of variable used. Therefore, if we do not care about the
particular variables used, or if they are clear from context, we also use the
following notation.

Notation 4.2.3. We write Sn(A) to denote the topological space Sx(A) for
some x with |x| = n. We denote by S<ω(A), or simply by S(A), the disjoint
union of the Sn(A) for n ∈ ω.

Exercise 4.2.4. All clopen subsets of Sx(A) are of the form [φ(x)], for some
φ(x) ∈ L(A).

A crucial idea behind modern model theory (if not the idea which kickstarted
modern model theory) is that certain topological properties of the spaces Sx(A)
are intimately connected to the behaviour of T and of its models. We will see
some of this later. As a warm up, try to answer the following question.

Question 4.2.5. What does it mean for {p(x)} to be an isolated point of Sx(A)

1. for an arbitrary A?

2. in the special case where A =M is a model?

4.3 Examples

Before we develop the theory further, it is time to familiarise ourselves with
type spaces by looking at a bunch of examples.

4.3.1 Infinite sets

Let T be the theory of infinite sets, for which by now you should be able to
prove quantifier elimination in at least two different ways. Fix A ⊆M ⊨ T , and
let us look at S1(A).

First, let us look at the case A = ∅. A direct inspection of the possible
quantifier-free formulas with no parameters and with only one free variable
should convince you that S1(∅) has only one element, implied by the formula
x = x. But there is a more elegant way of proving this, which has the advantage
of working just as quickly also in some cases where the language is a bit more
complicated.

Exercise 4.3.1. 1. If there is f ∈ Aut(M/A) such that f(a) = b, then
tp(a/A) = tp(b/A).

2. More generally, if there are N ⪰M and f ∈ Aut(N/A) such that f(a) = b,
then tp(a/A) = tp(b/A).
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3. Find T,M,A with A ⊆ M ⊨ T , some f ∈ Aut(M), and a, b ∈ M such
that

(a) f fixes A setwise,

(b) b = f(a), and

(c) tp(a/A) ̸= tp(b/A).

Take now your favourite M ⊨ T , that is, your favourite infinite set. An
f ∈ Aut(M) is nothing more than a permutation of M , that is, a bijection
M → M , and it follows from the previous exercise that there is only one type
over ∅ realised in M . Since M was arbitrary, by Exercise 4.1.4 and point 2 of
Exercise 4.3.1 there is only one type over ∅, full stop.

What about S1(A) for nonempty A? Again by inspection, or again by using
automorphisms, we see that

1. for every a ∈ A, there is a 1-type pa(x) implied by the formula x = a. In
particular, each {pa} is open, that is, isolated, in S1(A);

2. there is one, and only one, element not of the form above, the generic type
pg(x), axiomatised by {x ̸= a | a ∈ A}; if A is infinite, it is a (well, the
only) nonisolated point.

You may have thought that these very disconnected compact spaces are
either trivial (e.g. S1(∅) above, which has just one point), or very difficult to
visualise. This is not true. For example, if |A| = ℵ0, the description above may
be very quickly turned into an homeomorphism between S1(A) and {0}∪{1/n |
n ∈ ω \ {0}} (with the usual subspace topology inherited from R), sending pg
to 0.

While we are here, observe the following.

Remark 4.3.2. In every theory, if S1(A) is infinite, then it must have at least
one nonisolated point: otherwise it would be an infinite discrete space, so it
wouldn’t be compact.

This kind of considerations will play a crucial role in the next chapter. But
now, let’s go back to examples.

What about Sn(A), for n ≥ 2? Clearly, an n-type p(x) will, to begin with,
determine n 1-types p ↾ xi, obtained by considering only the formulas with no
free variable other than xi. If all the p ↾ xi are realised in A, then this already
determines p(x). But if, for example, p ↾ x0 = pg(x0) and p ↾ x1 = pg(x1), then
there are at least two completions of (p ↾ x0)∪ (p ↾ x1), since we need to decide
whether x0 = x1 or x0 ̸= x1 will be in our completion.

Long story short, an element p(x) ∈ Sn(A) is determined by:

1. which xi are equal to some point a ∈ A (and, for these, which a ∈ A they
equal), and

2. for the other xi, for which pairs (i, j) we have p(x) ⊢ xi = xj , and for
which instead p(x) ⊢ xi ̸= xj .

Clearly, every type needs to specify the information above. But why is that
enough to entail a complete type? You can prove this in two ways:
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1. use quantifier elimination and show that every L(A) formula φ(x) is de-
cided by fixing the information above; or

2. show that if a, b ∈ M |x| agree on the conditions mentioned above, then
there are N ⪰ M and f ∈ Aut(N/A) such that f(a) = b (where f(a) =
(f(a0), . . . , f(a|a|−1)).

Do we really need to pass to an elementary extension in order to use these
automorphism arguments? Well, in general yes: for example if A =M then pg
is not realised in M . “Ok —you may say— but you took the whole of M , what
if A is small? For example, what if all types over A are realised in M?” Keep
reading.

4.3.2 DLO
Let T = DLO. Let us look at spaces of 1-types S1(A). By quantifier elimin-

ation, we may equivalently look at quantifier-free types. If p(x) ∈ S1(A), since
p(x) is complete, if φ(x) ∈ ψ(x) ∈ L(A) and p(x) ⊢ φ(x) ∨ ψ(x) then we must
have p(x) ⊢ φ(x) or p(x) ⊢ ψ(x). By disjunctive normal form and the axioms
of DLO, it follows that p(x) is determined by which formulas of the form x > a,
a > x, x = a, x ̸= a it contains.

The types containing x = a are, by definition, the realised ones. Every other
type determines (and is uniquely determined by) a cut in A, that is, a pair (L,R)
with A = L ⊔ R with L < R, including the degenerate cases where L or R are
empty. In detail, each such cut C = (L,R) determines a nonrealised 1-type by
setting pC(x) := {x > a | a ∈ L}∪{x < a | a ∈ R}. Conversely, each nonrealised
type p(x) determines a cut Cp = (Lp, Rp), where Lp = {a ∈ A | p(x) ⊢ x > a}
and Rp = {a ∈ A | p(x) ⊢ x < a}. These maps are clearly inverses of each
other.

Let us look at three very concrete cases.

Example 4.3.3. A = ∅. There is a unique 1-type p(x), implied by the formula
x = x.

Example 4.3.4. A = Q. We have different kinds of types:

1. For each a ∈ Q, a realised type pa(x), implied by x = a.

2. The type p+∞(x) := {x > a | a ∈ Q}, corresponding to the cut with
R = ∅, and the type p−∞(x), corresponding to L = ∅.

3. For each a ∈ Q, a type pa+(x) := {x > a}∪{x < b | b > a}, corresponding
to the cut with R = (a,+∞), and a type pa−(x), corresponding to the cut
with R = [a,+∞).

4. Types corresponding to irrational cuts, that is, cuts (L,R) where L has
no maximum, R has no minimum, and both are nonempty. If you prefer,
these are precisely the cuts of the form {x > q | q < r} ∪ {x < q | q > r},
for r ∈ R \Q.

Example 4.3.5. If A = R, and C = (L,R) is a cut with L and R both
nonempty, then completeness of R tells us that L must have a supremum r,
which will either be in L or in R. It follows that over R there are no irrational
cuts. All other kinds of 1-types described above are clearly still possible, and
there are no other kinds of 1-types.
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What about the topological structure? You may imagine S1(A) as some sort
of very disconnected completion of A: open sets are generated by those of the
form [x = a], [x > a], and [x < a].2

And what about n-types for n > 1? Again by quantifier elimination and
inspection of the quantifier-free L-formulas, we see that an n-type p(x) is de-
termined by its 1-subtypes p ↾ xi, together with its restriction p(x) ↾ ∅. In other
words an n-type p(x) over A is determined by

1. in which cut of A it places each xi (including the degenerate case where
p(x) ⊢ xi = a for some a ∈ A), and

2. in which order it puts its variables, including the case where some of them
are identified; in other words, which formulas of the form xi < xj or
xi = xj it implies.

4.3.3 A digression: binarity
Careful: the trick we used for infinite sets and DLO, namely, reducing an

n-type over A to n 1-types over A and one n-type over ∅ does not always work.
But what is it that we used exactly?

Exercise 4.3.6. For a complete T , the following are equivalent.

1. Every formula φ(x) is equivalent to a boolean combination of formulas
with at most two free variables.3

2. For all tuples a, b and all sets A, we have tp(a/A) ∪ tp(b/A) ∪ tp(ab/∅) ⊢
tp(ab/A).

3. For all tuples a0, a1, . . . , ak and all sets A, we have tp(a0/A)∪ tp(a1/A)∪
. . . ∪ tp(ak/A) ∪ tp(a0, . . . , ak/∅) ⊢ tp(a0, . . . , ak/A).

Exercise 4.3.7. DLO is binary. More generally, any complete theory which
eliminates quantifiers in a language L where

1. there are no function symbols, and

2. every relation symbol has arity at most 2

is binary.

For the sake of simplicity, most (but not all!) examples in this section will
be binary.

4.3.4 The random graph
Since the random graph eliminates quantifiers in a binary relational lan-

guage, it is binary.4 By quantifier elimination, n-types over ∅ are easily de-
scribed: a type p(x) over ∅ needs to say which xi coincide and, for the pairs
with p(x) ⊢ xi ̸= xj , whether p(x) ⊢ E(xi, xj) or p(x) ⊢ ¬E(xi, xj).

So we are left to describe S1(A) for arbitrary A. Clearly, a 1-type p(x) will
need to decide

2Careful, a here is an element of A, not a type!
3Not necessarily always the same two variables, e.g. φ(x0, x1) ∧ φ(x1, x2) is fine.
4If you prefer, you can use quantifier elimination directly.
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1. whether x = a for some a ∈ A, and

2. if this is not the case, for which a ∈ A we have E(x, a), and for which
a ∈ A we have ¬E(x, a).

It follows from quantifier elimination that providing this information determines
a complete 1-type. But does every choice give a 1-type, or are there some
inconsistent ones? The Random Graph axioms and compactness tell us that
any choice will do:

Exercise 4.3.8. For every B ⊆ A there is p ∈ S1(A) such that

1. p(x) ⊢ {x ̸= a | a ∈ A},

2. p(x) ⊢ {E(x, a) | a ∈ B}, and

3. p(x) ⊢ {¬E(x, a) | a ∈ A \B}.

Exercise 4.3.9. Consider the subspace X ⊆ S1(A) of nonrealised types, that
is, the closed subspace given by the partial type {x ̸= a | a ∈ A}. Prove that X
is homeomorphic to 2|A|, that is, the product of |A|-many copies of the discrete
space {0, 1}, with the product topology.

If |A| = ℵ0, you may have recognised that the space X above is nothing
more that Cantor space, that is, the Cantor set with the subspace topology
inherited from R. If you want a full type space homeomorphic to the Cantor
space, without needing to pass to subspaces, here is an example.

Exercise 4.3.10. Prove that, if T2<ω is as in Definition 3.2.1, then S1(∅) is
homeomorphic to Cantor space.

4.3.5 Generic equivalence relation
Let T be the theory of a generic equivalence relation E. This is the case

κ = 1 of Definition 3.2.2, except that here we just write write E instead of E0.
Elements of S1(A) can be of three kinds:

1. Realised. You know the drill. Isolated, etc etc.

2. For each a ∈ A there is a “generic type of the class of a”, axiomatised by
{x ̸= a | a ∈ A} ∪ {E(x, a)}, that is, the type of a new point in the class
of A. If {b ∈ A | E(b, a)} is infinite, then this point is not isolated.

3. A single “generic” type, axiomatised by {¬E(x, a) | a ∈ A}, that is, the
type of a point in a new equivalence class. Similarly, if A/E is infinite,
then this point is not isolated.

Spoiler 4.3.11. You may object: “ok, but {x ̸= a | a ∈ A} ∪ {E(x, a)} is only
nonisolated because of {x ̸= a | a ∈ A}; that is, in the subspace of nonrealised
types, this type is isolated by [E(x, a)].” Congratulations, you are halfway
through the road to the definition of Morley rank. Keep reading.5

While we are on the subject of spoilers: soon we will be interested in cardinalities
of type spaces. The following exercise is recommended.

5Or just go straight away to Definition 7.1.1.
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Exercise 4.3.12.

1. Assuming that A is infinite, compute the cardinality of S1(A).

2. Do the same for the theory of κ generic equivalence relations, for every
nonzero cardinal κ.

Note that the number of equivalence relations here is fixed by the language.
But, as in the case of vector spaces (cf. Remark 3.1.12), we can also make a
different choice: what if we allow the equivalence relations to be part of the
model?

Definition 4.3.13. Let L = {P,R,E}, where P , R are unary predicates
(“Points” and “Relations”) and E is a ternary relation symbol. The theory
T ∗
feq has the following axioms.

1. ∀x, y, z
(
E(x, y, z) → (P (x) ∧ P (y) ∧R(z))

)
.6

2. The predicate R is infinite.

3. Every E(−,−, z) (for fixed z) is an equivalence relation on P with infinitely
many classes.

4. For every n ∈ ω, an axiom saying that pairwise distinct equivalence
relations R(−,−, z0), . . . , R(−,−, zn) interact generically (as in Defini-
tion 3.2.2).

Exercise 4.3.14. 1. Prove that T ∗
feq is indeed a theory.

2. Prove that T ∗
feq is complete and has quantifier elimination.

3. Prove that T ∗
feq is not binary.

4. Count how many 1-types there are over a model M .7

4.3.6 Algebraically closed fields

Let p be either a prime or 0, and let T = ACFp. Fix M ⊨ T , and let us
look at S1(M). By quantifier elimination, a type p(x) is determined by which
polynomials with coefficients in M are 0 in x, and which are not. Since we are
working over a model M , this means that we have two possibilities:

1. For some f(X) ∈ M [X] of positive degree, we have p(x) ⊢ f(x) = 0.
Since M is algebraically closed, there are a0, . . . , adeg f−1 ∈ M such that
p(x) ⊢

∨
i<deg f x = ai. Since p(x) is complete, it needs to choose one of

these disjuncts, hence for some i < deg f we have p(x) ⊢ x = ai.

2. The only remaining option is the generic type p(x) = {f(x) ̸= 0 | f(X) ∈
M [X],deg f > 0}. Again, by compactness this type cannot be isolated.

6If you want to use multi-sorted structures, this is a good place to view P , R as sorts
instead of predicates, and E as a relation of arity P 2 ×R.

7Hint: you can do this even without obtaining a complete description of all types.
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Note anything strange? S1(M) is essentially the same as the space of 1-types
over an infinite set M with no structure. What about S1(A), for A not a model?
In this case, it is not true that every isolated type is realised in A. For example,
if p = 0 and A = Q, then x · x = 2 implies a complete type, but of course no
a ∈ Q realises it. More generally, if f(X) ∈ Q[X] is irreducible, then f(X) = 0
will imply a complete type.

What is Sn(A) in general? ACFp is not binary,8 so we cannot resort to the
same trick we used over and over in this section, and we need a bit of algebra.
It is easy to see that Sn(A) is essentially the same as Sn(⟨A⟩), where ⟨A⟩ is the
structure generated by A, which in this language means the ring generated by
A. By quantifier elimination we only need to deal with formulas of the form
f(X) = 0, and by clearing denominators we see that we may pass to the fraction
field of ⟨A⟩. Long story short, we only need to look at Sn(K) for K a field, not
necessarily algebraically closed.

So we need a convenient way to describe a consistent, complete choice of
formulas of the form f(X) = 0 and f(X) ̸= 0, where f ∈ K[X] and X =
(X0, . . . , Xn−1). Of course, we already know the answer from algebra: the
types p(x) ∈ Sn(K) are in bijection with the prime ideals of K[X]. The “prime”
here depends on completeness of p(x): by completeness, there is some N ≻ M
and some a ∈ Nn such that p(x) = tp(a/K). If f(a) · g(a) = 0; then clearly
f(a) = 0 or g(a) = 0. I will leave the details as an exercise.

Exercise 4.3.15. The map p(x) 7→ {f(X) ∈ K[X] | p(x) ⊢ f(x) = 0} is a bijec-
tion between Sn(K) and the prime ideals of K[X], where X = (X0, . . . , Xn−1).

So Sn(K), as a set, is essentially the same as Spec(K[X0, . . . , Xn−1]). If you
have never seen this notation before, you may safely skip to the next section.

On the other hand, if you are a bit familiar with algebraic geometry, you
may ask yourself whether, if Spec(K[X0, . . . , Xn−1]) is equipped with the Zar-
iski topology, then this bijection is a homeomorphism. The answer is no: the
topology induced by the bijection above coincides with the constructible one:
each [f(X) = 0] is clopen. In fact, it is possible to view Spec(K[X0, . . . , Xn−1])
with the Zariski topology as a type space, but this requires the notion of “type
space” to be generalised: in particular, we need to allows for non-Hausdorff
spaces. See [DST19, Section 14]. In fact, by changing the logic, one may view
every spectral space as a type space. See for example [Hay19,Kam22].

4.4 Saturation

Proposition 2.5.6 tells us that all types over A are realised by some element
in some model of Th(MA). By Exercise 4.1.4 (or, if you prefer by proving this
fact directly), we find that

Remark 4.4.1. Every type over A ⊆M is realised in some elementary exten-
sion of M .

In general, passing to an elementary extension is necessary:

8Here is a hint to prove it: let A = (Q(c))alg, with c transcendental over Q. Take a, b ∈ C
algebraically independent over Qalg, but such that a− b = c. Use one of the equivalent forms
of binarity from Exercise 4.3.6.
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Example 4.4.2. The partial type9 π(x) := {x ̸= m | m ∈M} is not realised in
M .

Therefore, we cannot hope for all partial types over M to be realised in M .
In fact, the example above shows that this is never true, unless M is finite.

Definition 4.4.3. Let κ be an infinite cardinal. We say that M is κ-saturated
iff, whenever A ⊆M is such that |A| < κ, and n ∈ ω, then every n-type over A
is realised in M .

Notation 4.4.4. Even if κ-saturation depends only on the cardinality of κ, and
not on its order type, it is common to say ω-saturated instead of ℵ0-saturated.
Things like “ω1-saturated” instead of “ℵ1-saturated” also appear in the literat-
ure.

Saturation can be checked on 1-types:

Proposition 4.4.5. Suppose that, whenever A ⊆M is such that |A| < κ, then
every 1-type over A is realised in M . Then M is κ-saturated.

Proof. Let p(x) ∈ Sn+1(A), where A ⊆ M and |A| < κ. Let q(x0, . . . , xn−1) :=
{φ(x0, . . . , xn−1) | p(x) ⊢ φ(x0, . . . , xn−1)} be its restriction to the first n co-
ordinates. Inductively, there is a ∈ Mn such that a ⊨ q. By substituting ai for
xi inside p(x), we find a 1-type r(xn) over Aa,10 and by assumption there is
an ∈M realising r(xn). Clearly, (a0, . . . , an) ⊨ p(x).

Exercise 4.4.6.

1. Prove that (R, <) is ω-saturated, but not ℵ1-saturated.

2. Characterise the ω-saturated M ⊨ ACF.

3. Which of these theories have a countable ω-saturated model? For which
of these theories all countable models are ω-saturated?

(a) The theory of infinite sets.

(b) DLO.

(c) The theory of the Random Graph.

(d) K−VS, for K a field.11.

(e) The theory T2<ω from Definition 3.2.1.

(f) The theory of 1 generic equivalence relation.

(g) T ∗
feq.

Another addition to the list of trivial but important things:

Remark 4.4.7. Since types over A are in particular sets of L(A)-formulas, for
every n ∈ ω there are at most 2|L|+|A|-many n-types over A.

9Recall that we are assuming that T has infinite models; since it is also complete, it has
no finite models, so π(x) is consistent.

10You may want to check as an exercise that r(xn) is indeed a (complete) type over Aa.
11Semi-hint: the answer may depend on K.
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Lemma 4.4.8. Let κ ≥ |L| and |M | ≤ 2κ. Then there is N ⪰M with |N | ≤ 2κ

and such that, for every A ⊆M with |A| ≤ κ, the model N contains realisations
of all types over A.

Proof. For every n ∈ ω and every n-type p(x) over some A ⊆M of size |A| ≤ κ,
add to L(M) a tuple of constants cp = (cp,0, . . . , cp,|x|−1); call the resulting
language L′. Since 2κ has cofinality larger than κ, there are at most 2κ subsets
of M of size κ. Together with the previous remark, this yields |L′| ≤ 2κ, and by
compactness there is N ′ ⊨ ed(M) ∪ {p(cp) | A ⊆ M, |A| ≤ κ, p(x) ∈ S(A)}.12
Let C be the set of interpretations in N ′ of all the new constants introduced
above. Then |C ∪M | ≤ 2κ, and by applying downward Löwenheim–Skolem and
taking the reduct to L we obtain the desired N .

In the last step of last proof, we can justify that N ⪰M in two ways: one is
observing, before taking the reduct to L, that the L′-structure we built satisfies
ed(M). Alternatively, we can use the following:

Exercise 4.4.9. Suppose M0 ⊆M1 ⊆M2.

1. Suppose that M1 ⪯M2. Then M0 ⪯M2 if and only if M0 ⪯M1.

2. Find an example where M0 ⪯M2, M0 ⪯M1, but M1 ̸⪯M2.

The N we built in the previous lemma need not be κ-saturated, for the
simple reason that we introduced new parameters. We fix this by repeating the
construction transfinitely many times.

Theorem 4.4.10. Let κ ≥ |L| and |M | ≤ 2κ. Then there is a κ+-saturated
N ⪰M of size at most 2κ.

Proof. We do an inductive construction of length κ+. We start with M0 :=M .
At successor stages, we use Lemma 4.4.8 to take as Mα+1 some elementary
extension of Mα of size at most 2κ and realising all types over subsets of Mα of
size at most κ. At limit stages λ, we take Mλ :=

⋃
α<λMα, and observe that

this is an elementary extension of each previous Mα by Exercise 1.4.4. Since λ
is an ordinal of cardinality at most κ, we have |Mλ| ≤ κ · 2κ = 2κ, so we may
continue the construction. Keep doing this for every ordinal below κ+, and at
the end set N :=

⋃
α<κ+ Mα; observe immediately that |N | ≤ κ+ · 2κ = 2κ.

In order to check that N is κ+-saturated, take A ⊆ N of size |A| < κ+, and
let p(x) ∈ S(A). Since κ+ is regular, there must be α < κ+ such that A ⊆Mα.
By construction, Mα+1 contains the required b.

Even if it does not really simplify the proof, note that we could have just
worked with 1-types and obtained the same result by Proposition 4.4.5.

Exercise 4.4.11. Suppose that |L| = ℵ0 and, for every n, there are at most ℵ0

types over ∅. Then T has a countable ω-saturated model.13

The converse is trivial: a countable model can only realise countably many
types over ∅, and if it is ω-saturated then it realises all types over ∅.

Here is the promised converse to Theorem 2.6.2. Alas, you will have to
supply the proof yourself.14

12As usual, check that this is consistent as an exercise.
13Hint: prove first that, over any finite A, there are at most ℵ0 types.
14Hint: back-and-forth is about realising quantifier-free types, no?
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Exercise 4.4.12. Let T be a possibly incomplete theory with quantifier elim-
ination. If M,N are ω-saturated models of T , then the family of all partial
isomorphisms between finitely generated substructures of M and N has the
back-and-forth property.

4.5 Properties of saturated models

In this section we look at consequences of saturation.
In the proof of Theorem 4.5.2 below, we will deal with types of infinite tuples

or, if you prefer, types in infinitely many variables. While essentially everything
translates, keep in mind that the definition of saturation only talks of finitary
types.15 Recall the notion of elementary map from Exercise 2.7.3.

Remark 4.5.1. Elementary maps preserve types: if f : M → N is elementary,
then tp(a) = tp(f(a)).

Theorem 4.5.2. Every κ-saturatedN is κ-universal : for everyM with16 |M | ≤
κ there is an elementary embedding M → N .

Proof. We do a “only forth” proof, not just in the usual sense that we say “the
‘back’ is analogous”, but in the sense that we only need (and only have enough
hypothesis to prove) the “forth”. Fix an enumeration (ai)i<κ of M of order type
κ. Inductively, we define a partial elementary map fα : a<α → N ; notationally,
write ai 7→ bi. Because T is complete, the (unique) partial map with domain ∅ is
elementary. At limit stages, we take unions; since fα is elementary if and only if
each of its restrictions to a finite domain is, elementarity is preserved in unions
of chains. At the end, we take f :=

⋃
α<κ fα, which will be an elementary map

with domain the whole of M , that is, an elementary embedding.
So we are left to deal with the inductive definition of fα+1. By inductive

hypothesis, a<α and b<α have the same type. Consider p(x) := tp(aα/a<α),
and let q(x) be obtained by p(x) by replacing, for i < α, each ai with bi. If
q(x) is consistent, by saturation of N and the fact that q(x) is over fewer than
κ parameters we can find bα ⊨ q(x) in N , and we are done. So suppose that
q(x) is inconsistent. Hence, for some φ(x,w) ∈ L such that17 p(x) ⊢ φ(x, a<α),
we have Th(Nb<α

) ⊢ ¬∃x φ(x, b<α).18 Since p(x) is a type, on the other hand
Th(Ma<α) ⊢ ∃x φ(x, a<α). This contradicts that f<α is elementary (or, if you
prefer, that a<α and b<α have the same type).

Note that in order for this to go through, we really need to work with types,
as opposed to quantifier free types. Otherwise, there is no guarantee that q(x)
will be consistent. Of course, if T has quantifier elimination (which, at this level
of generality, we may assume by Morleyising), then the difference is immaterial.

How saturated can a model be? By Example 4.4.2, we cannot hope to find
an |M |+-saturated M . What about the next best thing?

15Although of course one can enumerate an infinite tuple on its cardinality to show that
κ-saturated models realise all types in κ variables over a set of size < κ.

16This is not a typo: while for κ-saturation we require a condition for sets of size < κ, for
universality the inequality is not strict.

17Clearly, only finitely many ai will appear in φ.
18If we were checking the consistency of an arbitrary set of formulas, we should have replaced

φ with a finite conjunction
∧

i φi. But p(x) is closed under conjunctions, hence so is q(x).
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Definition 4.5.3. A model M is saturated iff it is |M |-saturated.

We will say something about the existence of such models in the next section.
For now, let us look at their properties.

Theorem 4.5.4. Suppose that M and N are saturated models of the same
cardinality. Then M ∼= N . In fact, every partial elementary map M → N with
domain of size < |M | extends to an isomorphism M → N .

Proof. Suppose M , N have cardinality κ. Fix enumerations (aα)α<κ of M and
(bα)α<κ of N . Take the proof of Theorem 2.1.2 and the proof of Theorem 4.5.2.
Add ice, shake well, strain into a chilled martini glass. Garnish with a lemon
twist (optional).

For the second statement, suppose A ⊆ M has cardinality µ < κ, and f
is a partial elementary map with domain A. Make sure that the enumeration
(aα)α<κ starts by enumerating A, that is, A = a<µ,19 and that (bα)α<κ starts by
enumerating f(A) accordingly, that is, that for every α < µ we have bα = f(aα).
Now argue as above, but starting the back-and-forth at stage µ.

The second part of the previous theorem is particularly interesting in the
special case where M = N .

Corollary 4.5.5. Every saturatedM of cardinality κ is strongly κ-homogeneous:
every partial elementary map from M into itself with domain of cardinal-
ity < κ extends to an element of Aut(M). In particular, if |A| < κ then
tp(a/A) = tp(b/A) if and only if a and b are in the same Aut(M/A)-orbit.

Proof. Everything is immediate, except perhaps the “in particular” bit, so let’s
spell that out. One direction is Exercise 4.3.1, and does not even need strong
homogeneity. In the other direction, note that “the map idA∪{a 7→ b} is element-
ary” is just a fancy way of saying “tp(a/A) = tp(b/A)”, and that any extension
of this map to an automorphism will, by definition, belong to Aut(M/A).

If you are wondering why there is a “strongly” before “homogeneous” above,
you may want to know that there is also a weaker notion of κ-homogeneity,
requiring only that partial elementary maps with domain smaller than κ may
be extended to one extra point. An argument in the same spirit as the other
ones in this section shows that κ-saturated models, of whatever cardinality, are
κ-homogeneous. This notion is involved in some characterisations of saturation,
see e.g. [Poi00, Chapter 9].

Saturation is sometimes phrased as a matter of being “large”. This is inac-
curate, or at least a bit odd, since if M is “large” and N ⪰M , we would expect
N to be “large” as well. For saturation, this is false:

Exercise 4.5.6. Find a cardinal κ, a κ-saturated M , and an N ⪰ M which is
not κ-saturated.

Saturation is closer to being compact, since it tells us that the intersection
of certain families with the finite intersection property (cf. Remark 4.1.3) is
nonempty.

19Usual abuses of notation about treating tuples as sets apply.
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4.6 Monster models
In some contexts, we need to realise a lot of types, and deal with several

models at once. A common convention is to choose a κ-saturated model U,
for κ “larger than everything we want to consider”, and embed everything in
there (elementarily), which we may do by Theorem 4.5.2. That way, instead
of saying, for example, “let N ⪰ M contain a realisation a ⊨ p(x)”, we may
just convene at the start that everything we mention lives inside U, and simply
say “let a ⊨ p(x)”. Under this convention, that is, only considering elementary
substructures M ⪯ U, applying Exercise 4.4.9 with M2 = U tells us that all
inclusions between these M are elementary.

Now, the “larger than everything we want to consider” is justified by The-
orem 4.4.10: if we need to consider larger sets (for example, because we want
to realise a type over U), we may pass to an elementary extension of U with a
higher degree of saturation. So far, so good. But, while it may not be immedi-
ately clear why, we would like U to also be strongly κ-homogeneous, since a lot
of proofs may be simplified by using so-called “automorphism arguments” (we
will see one of these soon). Essentially, the point is that “over small sets, types
are the same as orbits” is a nice property for U to have, if we want to work
inside it.

By the results in the previous section, if we were able to find, for arbitrarily
large κ, a saturated U of cardinality κ (as opposed to, merely, a κ-saturated U),
then we would be happy: our U would be |U|-strongly homogeneous, and even
uniquely determined by its cardinality.

If we assume additional set theoretic assumptions, then this can be done: if
κ ≥ |L| and κ+ = 2κ, then by Theorem 4.4.10 there is a saturated model of size
κ+, hence if GCH holds, or at least if it holds at arbitrarily large cardinals, then
we can find arbitrarily large saturated models.

But what if we want the “small subsets” of U to be closed under some con-
struction which, for example, sends A to something of size 22

|A|
? Clearly, taking

U to be saturated of size κ+ and declaring “small” to mean “of size ≤ κ” is not
a good idea. Things would be better if we had a saturated model of size κ for
κ a strong limit, that is, such that λ < κ =⇒ 2λ < κ. But in the proof of The-
orem 4.4.10 we used regularity of κ+, so we would like some κ which is regular,
a strong limit, and larger than |L|, so at the very least uncountable. In other
words, we want arbitrarily large strongly inaccessible cardinals to exist. If we
go, consistency-wise, a bit beyond ZFC, and assume a proper class of strongly
inaccessible cardinals, then we are once again done. The reason is that the proof
of Theorem 4.4.10 may be adapted to show the following:20

Exercise 4.6.1. If κ ≥ |L| is strongly inaccessible, there is a saturated model
of cardinality κ.

If we want to stay within the reach of ZFC though, we cannot assume in-
stances of GCH, let alone a proper class of inaccessibles. So we proceed as
follows.21 We show that, for every M and every κ ≥ |L|, there is U ⪰ M

20This will also follow from what we will do in this subsection, but if you try to solve the
exercise now then you will probably stumble on the idea underlying the constructions below.

21Another possible approach is to work in NBG instead of ZFC, and build a class-sized, set-
saturated monster model. Yet another approach (for those who know a bit more set theory) is
this: several theorems have an arithmetic conclusion (code formulas in a countable language
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which is κ-saturated and κ-strongly homogeneous. We may then choose a “large
enough” strong limit κ, declare “small” to mean “of size < κ”, and work in U. If
we need to deal with larger things, we enlarge κ to κ′ and pass to a κ′-monster
U1 ≻ U.

Notation 4.6.2. If κ is a cardinal, we denote by Cκ the set of cardinals strictly
small than κ.

Definition 4.6.3. Suppose that |M | = κ. We call M special iff it has a spe-
cialising chain, that is, iff it is the union of an elementary chain

M =
⋃
µ∈Cκ

Mµ

such that each Mµ is µ+-saturated.

The idea is to fix a strong limit κ, and prove that if U is special and of
carefully chosen cardinality (spoiler: it will not be κ), then U is κ-saturated and
κ-strongly homogeneous. Since there are always arbitrarily large strong limit
(not necessarily regular) cardinals, this will suffice. You may object that we need
to build not just arbitrarily large U but, for arbitrarily large M , some special
U ⪰M , but we will get this for free from saturation because of Theorem 4.5.2.

Remark 4.6.4. If M is saturated, we may take as a specialising chain the one
constantly M . So saturated models are special.

Theorem 4.6.5. Let κ > |L| be a strong limit. Then there is a special U ⊨ T
of size κ.

Proof. The strategy of proof is as follows: we build a suitable elementary chain,
then take as U its union. We then trim the chain we built to obtain a specialising
chain for U.

Since κ is a strong limit, we can find an increasing cof(κ)-sequence of car-
dinals (κi | i < cof(κ)) such that22

κ =
∑

i<cof(κ)

κi =
∑

i<cof(κ)

2κi

where without loss of generality κ0 > |L|. Start with M0 any model of size
κ0.23 At successor stages, use Theorem 4.4.10 to obtain an |Mi|+-saturated
Mi+1 ⪰ Mi of size at most 2|Mi|. If i is a limit ordinal, set Mi :=

⋃
j<iMj ,

invoke Exercise 1.4.4 to get elementarity, and observe that

|Mi| =
∣∣∣⋃
j<i

Mj

∣∣∣ ≤ sup
j<i

2κj ≤ 2κi

Set U :=
⋃
i<cof(κ)Mi, then trim (Mi | i < cof(κ)) by choosing any weakly in-

creasing function ι : Cκ → cof(κ) with the property that κι(µ) ≥ µ. The required
specialising chain is (Mκι(µ)

| µ ∈ Cκ). It is easy to check that |U| ≤ κ; if the
inequality was strict, we would easily get a contradiction by using Theorem 4.5.2
to obtain an embedding of U inside one of the pieces of the specialising chain
above, say Mκι(µ)

, and observing that Mκι(µ+)
has larger cardinality.

inside N). Use absoluteness results to assume GCH without loss of generality.
22Here i ranges on ordinals less than cof(κ).
23If you want to prove directly the existence of special U ⪰M , you may start with M0 =M

(of course this requires taking κ large enough).



60 Realising many types

Theorem 4.6.6. If U0, U1 are special models of T of the same cardinality, then
they are isomorphic.

Proof. We prove this by back and forth along carefully built enumerations. Let
κ := |U0| = |U1|, and write our special models as unions of fixed specialising
chains U0 =

⋃
µ∈Cκ

M0
µ and U1 =

⋃
µ∈Cκ

M1
µ.

Claim 4.6.7. For ℓ < 2, there are enumerations (aℓi)i<κ of Uℓ, possibly with
repetitions, such that, if µ ∈ Cκ, then (aℓi | i < µ+) ⊆M ℓ

µ.

Proof of the Claim. Clearly the assumptions are the same for U0 and U1, so in
the proof of this claim we drop ℓ from the notation. Fix an enumeration without
repetitions (bj | j < κ) of U. Inductively, define ai as the first bj in M|i| not yet
enumerated as one of the a− if one exists, and as a0 otherwise. This clearly gives
as the desired property, but we need to check that we have indeed enumerated
all points of U. Towards a contradiction, let j0 be minimal such that bj0 does
not equal any of the ai. Let µ be minimum such that bj0 ∈Mµ, and look at (ai |
µ ≤ i < κ). This can contain only elements bj with j < j0, and never repeating
any of those twice, which is impossible because |κ \ µ| = κ > |j0|.

claim

We can now proceed by back-and-forth, by inductively building a partial
elementary map fi such that a0i ∈ dom fi and dom fi ⊆ M0

|i|, while a1i ∈ im fi

and im fi ⊆ M1
|i|.

24 It is possible to ensure this because we are using the
enumerations given by the Claim: first of all, a0i ∈M0

|i|. To define fi on a0i , we
need to realise a type over a subset of M1

|i| of size |i|; by definition of specialising
chain, this can be done inside M1

|i|, so our inductive assumption is preserved.
With a symmetric argument, we then ensure a1i ∈ im fi, then move to i+1.

While proving that certain objects are unique is always very satisfying, per-
haps counterintuitively uniqueness of special models will not be especially useful
per se, but rather because it implies strong homogeneity. This is proven via the
following trick.

Exercise 4.6.8. Let U be special of cardinality κ, and let A ⊆ U have size
|A| < cof(κ). Then UA is special.

Corollary 4.6.9. Every special U of size κ is cof(κ)-saturated and cof(κ)-
strongly homogeneous.

Proof. The cof(κ)-saturation of U is an easy consequence of the definition of
“special”, while cof(κ)-strong homogeneity is a consequence of Theorem 4.6.6
and the previous exercise: if a 7→ b is a partial elementary map M → M with
|a| < cof(κ), just expand L with constants ci to be interpreted as ai in the first
copy of M and bi in the second one.

If you are kidnapped by an evil wizard who is about to make you magically
forget everything contained in the present subsection except for one sentence of
your choice, I strongly recommend you save the following corollary.

Corollary 4.6.10. For every M and every infinite cardinal κ, there is U ⪰ M
which is κ-saturated and κ-strongly homogeneous.

24Note: we are not necessarily mapping a0i 7→ a1i .
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Proof. By Theorem 4.5.2 and Corollary 4.6.925 we only need to show that there
are arbitrarily large strong limit cardinals of arbitrarily large cofinality. Recall
that ℶ0 := ℵ0, ℶα+1 := 2ℶα , and ℶλ := supµ<λ ℶµ for limit λ. Since ℶ is
increasing and continuous, it has arbitrarily large fixed points, that is, cardinals
µ with ℶµ = µ. Note that fixed points of ℶ are strong limit cardinals. Enumerate
increasingly and continuously the fixed points of ℶ on the ordinals, say with
a class-function f . If α is a limit ordinal, then f(α) = supβ<α f(β), hence
cof(f(α)) = cof(α). Therefore, if µ is a regular cardinal, then cof(f(µ)) = µ,
and we conclude by choosing any regular µ > κ.

While saturation is clearly preserved under reducts, for κ-strong homogen-
eity this is not the case, in general. A good reason to work in special models,
instead of just any κ-saturated, κ-strongly homogeneous one, is the following.

Remark 4.6.11. It follows easily from the definitions that if L′ ⊆ L and U is
special, then so is U ↾ L′. In particular, U ↾ L′ is cof(|U|)-strongly homogeneous

Exercise 4.6.12. Find a cardinal κ and a structureM such thatM is κ-strongly
homogeneous, but some reduct of M is not.26

4.7 Working in a monster model

Notation 4.7.1. From now on the following conventions and notations apply.

1. We fix a strong limit cardinal κ “larger than everything we want to con-
sider”, we work inside a special model U with cof(|U|) > κ, and if we say
that something is small we mean it has size < κ. We call U the monster
model.

2. We write ⊨ φ(a) for U ⊨ φ(a), etc.

3. We write ⊨ φ(x) for ⊨ ∀x φ(x).

4. We write A ⊂+ U to mean that A is a small subset of U, and M ≺+ U to
mean that M is a small elementary substructure of U. We use A,B, . . . to
denote small sets.

5. We write a ≡A b to mean that tp(a/A) = tp(b/A).

6. All tuples, small sets, etc. are assumed to be inside U, and when we say
“model” we mean “small elementary substructure of U”, unless the “model”
is U is self, or unless we specify otherwise.27

7. Definable means “U-definable”, and formula means “L(U)-formula”. If
parameters are not allowed, we write “L-formula”, or “L(∅)-formula”. More
generally, we say “L(A)-definable” or “A-definable” if we only allow para-
meters from A.

25. . . , and the fact that saturation in a cardinal implies saturation in all the smaller ones,
and similarly for strong homogeneity,. . .

26Hint: take as Th(M) the expansion of DLO by a predicate interpreted as an initial segment
with no supremum.

27Well, or unless I forget to specify. Sorry.
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8. If we say that two formulas are “equivalent”, we mean modulo ed(U).

If you went through the previous section too quickly,28 recall that A ⊂+ U
implies that

1. every p(x) ∈ S<ω(A) is realised in U, and

2. if a ≡A b, then there is f ∈ Aut(U/A) such that f(a) = b.

Remark 4.7.2. By compactness and saturation, every infinite definable subset
of Un is not small.

Let us look at topological proof of a statement not involving topology.29

Proposition 4.7.3. Let φ(x) be an L(U)-formula. Then φ(x) is equivalent
to some L(A)-formula if and only if whenever a, b ∈ U|x| and a ≡A b then
⊨ φ(a) ↔ φ(b).

Proof. Left to right is obvious, so let us prove right to left.
Let π : Sx(U) → Sx(A) be the restriction function. Consider the clopen

subsets [φ(x)] and [¬φ(x)] of Sx(U). Since their union is Sx(U), and since π
is surjective, π([φ(x)]) ∪ π([¬φ(x)]) = Sx(A). Now, π is a continuous function
between compact Hausdorff spaces, hence it is closed. But our assumptions
and |A|+-saturation of U imply that π([φ(x)])∩π([¬φ(x)]) = ∅, hence π([φ(x)])
and π([¬φ(x)]) are closed sets which are the complement of each other, and are
therefore clopen. We conclude by Exercise 4.2.4.

Strong homogeneity tells us that types over A are the same as orbits over
A. But what about formulas?

Proposition 4.7.4. Let X ⊆ Un be a definable subset of U. Then X is fixed
setwise by every element of Aut(U/A) if and only if X is A-definable.

Proof. Right to left is obvious. For left to right we need to show that, if φ(x)
is a formula defining X, then φ(x) is equivalent to some L(A)-formula. If not,
by Proposition 4.7.3 there are a ≡A b with a ⊨ φ(x) and b ⊨ ¬φ(x). Let
f ∈ Aut(U/A) be such that f(a) = b. Then f does not fix X setwise, against
our assumptions.

In Section 4.3 we used that two elements were conjugated under Aut(M/A)
to show that they had the same type over A. Now that we work in a monster
U, by strong homogeneity we also have the converse, and we may freely confuse
types over small sets A with orbits of Aut(U/A). Let us a look at this in action
by using an “automorphism argument” to prove some statement which does not
involve automorphisms.

Definition 4.7.5. We say that a ∈ U|a| is

1. definable over A iff {a} is A-definable; in other words, iff there is an L(A)-
formula φ(x) such that ⊨ φ(a) and φ(x) has only one solution;

28. . . , or if you recently encountered an evil wizard,. . .
29The proposition above may also be proven with an argument similar to that we used for

Theorem 2.5.8. Compare the lengths of the two proofs.
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2. algebraic over A iff a belongs to a finite A-definable set; in other words, iff
there is an L(A)-formula φ(x) such that ⊨ φ(a) and φ(x) has only finitely
many solutions.

We denote by dcl(A) (respectively, acl(A)) the set of points of U1 definable
(respectively, algebraic) over A.

So dcl(A) is the union of all A-definable singletons (in U1) and acl(A) the
union of all finite A-definable sets (again, subsets of U1).

Remark 4.7.6. If φ(x) has exactly m solutions, then there is a sentence in
ed(U) saying this. So if b ∈ acl(A) and b ≡A c, then c ∈ acl(A). In particular:

1. if b ∈ acl(A), then tp(b/A) has only finitely many realisations in U (if
b ∈ dcl(A), then “finitely many” is actually “only one”), and they need to
be contained in every M with A ⊆M ⪯ U;

2. acl(A) is fixed by Aut(U/A) setwise (and, trivially, dcl(A) is fixed by
Aut(U/A) pointwise).

Remark 4.7.7. By strong homogeneity, a ∈ dcl(A) if and only if a is fixed by
Aut(U/A), and a ∈ acl(A) if and only if the orbit of a under Aut(U/A) is finite.

Here is the promised automorphism argument.

Proposition 4.7.8. The set acl(A) is the intersection of all models containing
A. More precisely, acl(A) equals the intersection of all M ≺+ U with M ⊇ A.

Proof. The inclusion ⊆ follows from Remark 4.7.6. Suppose b /∈ acl(A). Then
tp(b/A) has infinitely many realisations in U, and by compactness and saturation
they cannot all be contained in a fixed small model, so there is M ′ ≺+ U which
does not contain some b′ ≡A b. Let f ∈ Aut(U/A) be such that f(b) = b′. Then
M := f−1(M ′) does not contain b.

While we are here, let us also observe this.

Proposition 4.7.9. The operators dcl and acl are closure operators.

Proof. We prove this for acl, the proof for dcl is similar (and easier). Clearly,
acl is extensive, that is, A ⊆ acl(A), and monotone, that is, if A ⊆ B then
acl(A) ⊆ acl(B). We need to prove that acl is idempotent, that is, acl(acl(A)) =
acl(A). The inclusion ⊇ follows from extensivity and monotonicity. For the
other inclusion, we use Remark 4.7.7. Let a ∈ acl(acl(A)), as witnessed by
an L(A)-formula φ(x,w) and parameters b ∈ acl(A). The fact that φ(x, b) has
finitely many solutions is a property of tp(b/A), so if c ≡A b then φ(x, c) still has
finitely many solutions. Since b ∈ acl(A), there are only finitely many c ≡A b,
and it follows that the Aut(U/A)-orbit of a is contained in the finite definable
set
∨
c≡Ab

φ(x, c).

Warning: if φ(x) is an L(A)-formula with finitely many solutions satisfied
by b, then it is not in general true that all solutions of φ(x) will realise tp(b/A).
In the proof above, we only needed one inclusion. Anyway, for a careful choice
of φ(x), this is true: you can prove it as a warm up for the next chapter.

Exercise 4.7.10. Suppose b ∈ acl(A). Show that there is an L(A)-formula
φ(x) isolating tp(b/A), that is, such that in Sx(A) we have [φ(x)] = {tp(b/A)}.





Chapter 5

Realising few types

5.1 Isolated types
In the previous chapter, we built models realising many types. But what if

we want to build a model where a certain type, maybe even a partial one, is
not realised? Certain types must always be realised: think of the partial type
{x = x}, or of the complete1 type {x = 0} in ACFp. On the other hand, in
ACF0, say, the generic type over Q is not realised in Qalg. Why can this type
be omitted?

Definition 5.1.1. A model M omits a partial type π(x) iff there is no a ∈ M
such that M ⊨ π(a).

Let us begin to clarify the matter by answering Question 4.2.5. If p(x) ∈
Sx(A) is isolated, it means that there is φ(x) ∈ L(A) such that {p(x)} = [φ(x)].
In other words, any realisation of φ(x) automatically realises the whole of p(x).
This has the following consequence.

Proposition 5.1.2. If p(x) ∈ Sx(A) is isolated, then every model containing
A realises p.

Proof. If φ(x) isolates p(x), then in particular φ(x) is consistent, which means
that ⊨ ∃x φ(x). Every model containing A also contains the parameters appear-
ing in φ(x), so it must contain a witness a to that existential quantifier, hence
a ⊨ p(x).

So there is no hope to omit isolated types. What about the rest? We will
deal with this shortly, but first let us finish answering Question 4.2.5.

Corollary 5.1.3. If p(x) ∈ Sx(M) is isolated, then there is m ∈ M with
p(x) = {x = m}.

Proof. M is clearly a model containing M , and the conclusion follows easily
from the previous proposition.

We already said that realised types are always isolated, and over a model
isolated types are realised. You may wonder if this characterises models. The
answer is negative.

1As usual, up to deductive closure.
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Exercise 5.1.4. Find an example where all isolated types in Sx(A) are realised,
but A is not a model.

Nevertheless, we can characterise models in a slightly different fashion.

Proposition 5.1.5. For A ⊆ U, the following are equivalent.

1. The set of realised types is dense in S1(A).

2. A ⪯ U.

Proof. We already saw in point 9 of Remark 4.2.2 that one direction holds, even
for n-types, with n arbitrary. For the converse, we apply the Tarski–Vaught
test: saying that U ⊨ ∃x φ(x) means that [φ(x)] is nonempty; by assumption, in
Sx(A), the set [φ(x)] contains a realised type, that is, there is a ∈ A such that
U ⊨ φ(a).

5.2 Omitting types

If p(x) ∈ Sx(A) is not isolated, can we omit it? In general, the answer is no.
If you insist on T being complete, there is a slightly involved counterexample
which we will see later, Example 5.2.10. If you are happy to see a partial type
π(x) over ∅ in an incomplete theory T that cannot be omitted, even though
there is no φ(x) ∈ L(∅) with φ(x) ⊢ π(x), here is the standard example.

Example 5.2.1. Let L = {ci | i < ℵ1}∪ {dj | j < ω}, and let T say that the ci
are pairwise distinct. Then π(x) = {x ̸= dj | j < ω} is realised in every model,
but it is not implied by any φ(x).

Proof. The first part is clear. For the second part, suppose φ(x) ⊢ π(x). Since
φ(x) can only mention finitely many dj , there is some dj0 it does not mention.
It is then easy to construct M ⊨ T with M ⊨ φ(dj0), and we are done.

Nevertheless, if we are working over a countable language, then nonisolated
types over ∅ can be omitted. This follows from the Omitting Types Theorem,
proven below. What about countable L, but over uncountably many paramet-
ers? Again, Example 5.2.10 below shows that even ℵ1 parameters may be too
much.

Long story short, we need to assume that both L and A are countable. So
we may as well throw A into L, that is, pass to L(A), and just work over ∅.
Since we are already over the empty set, we may work in a bit more generality
and talk of omitting partial types in incomplete theories. Type spaces over ∅
still make sense, but now S0(∅) may have more than one point, and we are not
allowed to use U (its theory determines a completion!).2

Let us give a name to “there is a consistent φ(x) such that φ(x) ⊢ π(x)”. If
π(x) is complete, this already has a name: π(x) is isolated. In fact, even for
partial π(x), this already has a name:

Remark 5.2.2. There is some consistent φ(x) such that φ(x) ⊢ π(x) if and
only if the associated closed set [π(x)] of Sx(∅) has nonempty interior.

2Yes, I know, we just started using it. It will come back soon, I promise.
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Theorem 5.2.3 (Omitting Types Theorem). Let T be a possibly incomplete
theory in a countable L, and {Φn(xn) | n < ω} a family of partial types over ∅,
where each |xn| is finite. If every [Φn(x

n)] has empty interior, then there is a
countable M ⊨ T omitting every Φn(x

n).

The proof of this will be slightly intricate, and will need bookkeeping rather
than magic: omitting types is more difficult than realising them and, as we
saw, sometimes it is so difficult it cannot even be done. According to “a not
well-known model theorist” quoted in [Sac72], “Any fool can realise a type, but
it takes a model theorist to omit one.”

Proof. Let C be a countable set of fresh constants. Fix the following.

1. An enumeration (σi | i < ω) of all L(C)-sentences.

2. An enumeration with repetitions (ci | i < ω) of the set C<ω of all finite
tuples of constants from C, with the property that every element of C<ω
is listed infinitely many times (build it by using your favourite bijection
ω → ω2).

We start with T0 = T , and inductively build and increasing chain of theories
(Ti | i < ω) with the following properties.

(a) Each Ti \ T is finite; that is, at each stage we add only finitely many
sentences.3 This will be needed to keep the construction going.

(b) T ′ :=
⋃
i<ω Ti is complete.

(c) T ′ is a Henkin theory : for every L(C)-formula φ(y) with |y| = 1 there is
c ∈ C1 such that T ′ ⊢ (∃y φ(y)) → φ(c).

(d) For all n < ω and all c ∈ C |xn| there is φ(xn) ∈ Φn(x
n) such that T ′ ⊢

¬φ(c).

It is (lengthy but) easy to prove that a complete Henkin L(C)-theory T ′ has a
model M where every m ∈ M is the interpretation of a constant symbol in C:
you take as M the quotient of C by the equivalence relation “T ′ ⊢ c = c′”, use
completeness to decide the interpretations of the symbols of L, and then check
that everything is well-defined and works.4 Therefore, if we manage to carry
out the construction, we are done: by point (d), (the reduct to L of ) such an
M (which is clearly countable) will omit every Φn(x

n).
Before the construction, for each c ∈ C<ω, write down a list ℓ(c) of all Φn(xn)

with |xn| = |c|, of order type a natural number or ω. During the construction,
we will cross them out one by one.5 The i+1-th stage of the construction goes
as follows.

3Recall that the construction only has ω steps. Also, of course, here we do not take
deductive closures of our theories.

4If you have never seen this construction, you may want to do this as an exercise. Otherwise,
you can see the details being spelled out in [TZ12, Lemma 2.2.3], for instance.

5We will keep referring to ℓ(c) as ℓ(c) even after crossing out some elements, computer
science-style. If you prefer an extra index to a slight abuse of notation, add an index ℓk(c),
say that this “list” is an function with domain a subset of ω, and instead of saying that “d is
crossed out from the list” say that ℓk+1(c) := ℓk(c) ↾ (dom(ℓk) \ (ℓk(c))

−1({d})). But I think
this proof already has enough indices, so I have relegated k to this footnote.
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(i) Look at σi, from the fixed enumeration of all L(C)-sentences. Since in-
ductively Ti is consistent, the union of Ti with at least one between σi or
¬σi is still consistent; choose one between the two which is consistent with
Ti, and call it σ. This will be added to Ti+1 to ensure that T ′ is complete.

(ii) If σ is of the form ∃y φ(y), since by inductive assumption we only added
finitely many formulas to T , there is c ∈ C which we have not used so far.
Let T ′

i := Ti ∪ {σ} ∪ {(∃y φ(y)) → φ(c)}. If σ is not of that form, just set
T ′
i := Ti ∪ {σ}. This will ensure that T ′ is Henkin. Since c had not been

mentioned yet, T ′
i is easily seen to be consistent.

(iii) Look at ci from our enumeration with repetitions of C<ω. Look at the list
ℓ(ci), and let Φn(x

n) be the first one which we have not crossed out yet.
Again, inductively we only added finitely many formulas to T . Let ψ(c′) be
their conjunction, where c′ is the tuple of all constants in C we mentioned
so far, (including the constants in ci) so T ′

i = T ∪ {ψ(c′)}. Write c′ :=
(ci, c̃). Because [Φn(x

n)] has empty interior, we have T ∪ {∃z ψ(ci, z)} ̸⊢
Φn(c

i), and by Lemma 2.5.3 T ∪ ψ(c′) ̸⊢ Φn(c
i). Therefore, there must

be φ(xn) ∈ Φn(x
n) such that T ∪ {ψ(c′)} ∪ {¬φ(ci)} is consistent. Set

Ti+1 := T ′
i ∪ {¬φ(ci)}, and cross Φn(x

n) out of ℓ(ci). Note that Ti+1 \ Ti
has size at most 3, so inductively Ti+1 \ T is finite.

Fix c ∈ C<ω. Since c appears as ci for infinitely many i, and the list ℓ(c) is of
order type a natural number or ω, every Φn(x

n) with |xn| = |c| will eventually
get crossed out of ℓ(c), hence point (d) is taken care of. Congratulations, you
are now a model theorist!

By the way, the “countable” in the statement may have been added a pos-
teriori, without knowing anything about the proof, using Löwenheim–Skolem,
because of the following easy observation:

Remark 5.2.4. If N omits p and M ⪯ N , then M omits p.

Remark 5.2.5. What about the converse of the Omitting Types Theorem?
If T is complete, it holds: we have already shown in Proposition 5.1.2 that
isolated types cannot be omitted, and a similar proof shows that neither can
partial types with nonempty interior. On the other hand, if T is not complete,
∃x φ(x) may be true in some M ⊨ T and false in some N ⊨ T ; even if φ(x)
isolates a type, it will be omitted in N .

But what about omitting an arbitrary family of, say, nonisolated complete
types in a complete theory? This is too much to hope for:

Exercise 5.2.6. Find a complete theory T with infinite models such that no
element of S1(∅) is isolated.6

If a ∈ M ⊨ T , with T as above, then tp(a/∅) is clearly not omitted. But
ok, the set of types we tried to omit here was clearly too fat, namely, it was the
whole type space. Meagre sets can instead be omitted.

6If you want to do this exercise, do it now, since a solution is buried in the next few pages.
Hint: a solution is also buried in the previous ones.
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Corollary 5.2.7 (Omitting Types Theorem on steroids). Let T be a possibly
incomplete theory in a countable L. For every m ∈ ω, let Xm be a meagre
subset of Sm(∅). Then there is a countable M ⊨ T omitting every element of
every Xm.

Recall that X is meagre iff it is contained in a countable union of closed
sets, each with empty interior. Recall also that compact Hausdorff spaces are
in particular locally compact, and that the Baire Category Theorem holds for
locally compact Hausdorff spaces: meagre subsets of Sn(∅) have empty interior,
and no nonsense is happening here.

Proof. By assumption, for each n there are partial types Φm,n(xm,n) with empty
interior such thatXm ⊆

⋃
n<ω[Φm,n(x

m,n)]. If a modelM omits all Φm,n(xm,n),
then a fortiori M also omits all the elements of each Xm. Now choose your
favourite bijection ω2 → ω and apply the Omitting Types Theorem.

For a more topological proof, see [Poi00, Section 10.1]. But now it is time
for counterexamples.

Example 5.2.8. The converse of the Omitting Types Theorem on steroids is
false, even for complete theories. Namely, there are non-meagre sets that can be
omitted. In fact, even comeagre ones (that is, with meagre complement). For
example, consider T2<ω , and let Y ⊆ S1(∅) be the set of types corresponding to
eventually constant elements of 2ω. This is clearly countable, and no point of
this space is isolated, so Y is meagre. Its complement X := Y ∁ is by definition
comeagre. Since Y intersects every clopen set in infinitely many points (there
are infinitely many eventually constant functions with a given finite restriction!),
it is easy to see from the axioms of T2<ω that Y can be made into a model of
T2<ω omitting all types in X.

Example 5.2.9. We cannot omit partial types in infinitely many variables, not
even countably many. In DLO, let x = (xi | i < ω) and let Φ(x) := {xi+1 <
xi | i < ω}. Clearly, Φ(x) is not implied by any single formula, for example
because a single formula can only mention finitely many variables. Basically by
definition, M omits Φ(x) if and only if it is well-ordered. But of course no DLO
is well-ordered.

The counterexample below, from [Fuh62], is slightly involved, so I was about
to just cite it, but I am not aware of any source describing it in English.

Example 5.2.10. There is a complete T , in a language L with |L| = ℵ1,
containing a partial type over ∅ with empty interior that cannot be omitted.

Proof. Start with a language L0 with three sorts7 X,Y, F and a relation symbol
R of arity X × Y × F . Write an L0-theory saying the following.

(i) Each of X,Y, F is infinite.

(ii) For each f ∈ F , the formula R(x, y, f) defines the graph of a bijection
between X and Y .

7If you have skipped Section 0.3, this could be a good point to read it. Everything can be
done with one sort and predicates, but then you need to say every time that certain predicates
partition the universe, that relations are trivial outside of their intended domain, etc.
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(iii) For every f ∈ F , and every bijection γ : : X → Y which differs from
R(x, y, f) only in finitely many points, there is g ∈ F such that R(x, y, g)
is the graph of γ (of course you will need one axiom for every n, where n
is the size of the set where these functions differ).

Now do the following:

1. Fix a countable model M0 of the theory above.

2. Enlarge L0 to L1 by adding constants {ai | i < ω} naming all elements of
X(M0). Interpret these in the obvious way, that is, consider (M0)X(M0).
Call it M ′

0.

3. Take an elementary extension M1 ⪰ (M0)X(M0) such that |Y (M1)| = ℵ1.

4. Enlarge L1 to L by adding constants {bj | j < ℵ1} naming every element
of Y (M1).

5. Let M be the natural expansion of M1 to an L-structure (that is, M =
(M1)Y (M1)), and take as T the complete L-theory of M .

Working in M , consider π(x) := {x ̸= ai | i < ω}, where x is a variable of sort
X. This is a partial type over ∅ only using L1-formulas. Clearly, π(x) cannot be
omitted in any N ≡M , since F contains witnesses that X and Y are in bijection
and Y is uncountable. To conclude, we need to show that there is no consistent
L-formula implying it. Suppose there is. Recall that L is just L1(B), where
B = {bj | j < ℵ1}, and write such a formula as φ(x, b′), where b′ is a suitable
finite tuple of the bj with no repetitions and φ(x, y) is an L1-formula. Since
φ(x, b′) is consistent, it has a solution, and since φ(x, b′) ⊢ π(x), every solution
is different from each ai. Let c ∈ B|b′| be arbitrary. By staring long enough
at axiom (iii), you can convince yourself that the map sending b′ℓ 7→ cℓ extends
to an automorphism of M1 which fixes X(M1) pointwise.8 This implies that
M ⊨ ∀x φ(x, b′) ↔ φ(x, c). Since (bj | j < ℵ1) is a list of all elements of Y (M), it
is easily shown that M ⊨ ∀x φ(x, b′) ↔ ψ(x), where ψ(x) := ∃y (φ(x, y)∧ θ(y)),
for θ(y) the formula saying that the yi are pairwise distinct (as we chose the b′i to
be). Now, ψ(x) is an L1(∅)-formula, satisfied by some point of X but by no ai,
and implying the L1(∅)-partial type π(x). All this information never mentions
the bj , so it is written in Th(M1), and by elementarity also in Th((M0)X(M0)).
This is clearly nonsense, since in M0 every point of X is one of the ai.

All these counterexamples may make you think that in uncountable setting
you should really give up thinking about omitting types. You shouldn’t. There
is a version of the Omitting Types Theorem for uncountable L: a partial type
which cannot be implied by less than |L| formulas can be omitted, see [CK90,
Theorem 2.2.19]. You can show it an exercise by adapting the proof of the
“vanilla” Omitting Types Theorem.

5.3 Prime models
We go back to the usual setting of complete T with infinite models. We fix

a monster model U and work inside it.
8The automorphism is of M1, not of M ! In M , the bj are named, so automorphisms must

fix them.
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Definition 5.3.1. If M ⊨ T and A ⊆M , we call M prime over A iff it embeds
elementarily over A in every model containing A, that is, in every model of the
L(A)-theory Th(MA). We call M prime iff M is prime over ∅.

What can we say about prime models?

Remark 5.3.2. By Löwenheim–Skolem, if M is prime over A, then |M | ≤
|L|+ |A|.

In general, the bound may be strict.

Example 5.3.3. LetX be your favourite infinite set. EquipX its full structure,
that is, add a predicate symbol for every subset of every Xn, and make X into
a structure in this language in the obvious way. Clearly, X is a prime model of
its theory, but the language has cardinality 2|X|.

The Omitting Types Theorem allows us to say something else very quickly.

Definition 5.3.4. We call M atomic over A iff the only p(x) ∈ Sx(A) which
are realised in M are isolated. We say just atomic instead of atomic over ∅.

Proposition 5.3.5. If M is prime over A, and both L, A are countable, then
M is atomic over A.

Proof. Suppose that a ∈Mn is such that tp(a/A) is nonisolated. Since everything
is countable, by the Omitting Types Theorem there is a countable N omitting
tp(a/A). Good luck embedding M (elementarily) into N .

Of course, we may have given the definitions of primality and atomicity the
other way around, by defining first “prime” and “atomic”, and then introducing
parameters by adding them to the language. In particular, if A is countable, we
may pretend to be working over ∅. Nevertheless, keeping track of parameters is
important, since it allows us to state things like the following.

Proposition 5.3.6 (Monotonicity and transitivity of isolation). The type tp(ab/A)
is isolated if and only if tp(b/A) and tp(a/Ab) are isolated.

Proof. Left to right, suppose φ(x, y) isolates tp(ab/A). This means that whenever
ψ(x, y) is in the latter, then ⊨ ∀x, y (φ(x, y) → ψ(x, y)). This implies two
things. Firstly, that ⊨ ∀x φ(x, b) → ψ(x, b), and since ψ(x, y) ∈ tp(ab/A) is
arbitrary, this implies that φ(x, b) isolates tp(a/Ab). Secondly, in the special
case where ψ(x, y) is of the form θ(y), that is, it does not mention x, it implies
that ⊨ ∀y (∃x φ(x, y)) → θ(y). Therefore ∃x φ(x, y) isolates tp(b/A).

Right to left, observe that if φ(x, y) ∈ L(A) is such that φ(x, b) isolates
tp(a/Ab), then this is written in tp(b/A), in the form of formulas the likes
of ∀x (φ(x, y) → χ(x, y)). If additionally, as we are assuming, ψ(y) isolates
tp(b/A), then it follows easly that ψ(y) ∧ φ(x, y) isolates tp(ab/A).

Corollary 5.3.7. Suppose that M is atomic over A. Then, for every finite
tuple b ∈M , we also have that M is atomic over Ab.

Proof. Fix a ∈ Mn. By assumption, tp(ab/A) is isolated, and we conclude by
Proposition 5.3.6.

Theorem 5.3.8. Let L be countable.
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1. Up to isomorphism there is at most one atomic countable model of T .

2. Countable atomic models are ω-strongly homogeneous.

3. A countable model is atomic if and only if it is prime.

4. A model is prime if and only if it is atomic and countable.

Proof. Let M , N be countable atomic models. The empty function M → N
is elementary because T is complete, so we may fix enumerations of M , N of
order type ω and start to build an isomorphism by back-and-forth. Use the
notation fn : An → Bn for the partial elementary function built at stage n − 1
(surjective on Bn). In the “forth” part (and as usual, the “back” is symmetrical),
at stage n, say we are presented with a ∈ M . Look at tp(a/An). Since a
comes from the atomic model M , this type is isolated, say by φ(x,An), with
φ(x, y) ∈ L(∅). Now remember that An is a finite tuple, and observe that, as
observed in the previous proof, the fact that φ(x,An) isolates a complete type
over An is written in q(y) := tp(An/∅). Inductively An ≡ Bn, hence the type
obtained from tp(a/An) by replacing each element of An with the corresponding
element of Bn via fn is isolated. It must be therefore realised in N , and the
back-and-forth can continue, proving the first part.

For second part, suppose ai 7→ bi is partial elementary map M → M with
finite domain. Add constants ci to the language, and expand M to M0 by
interpreting ci as ai, and to M1 by interpreting ci as bi. By Corollary 5.3.7 M0

and M1 are still atomic, and we conclude by applying first part.
For the third part, we already know one implication; the converse is proven

observing that arguing as above but only going “forth” allows to embed a count-
able atomic model in an arbitrary one.

Finally, the fourth part is immediate from the third one and Remark 5.3.2.

Hence, in the countable case, prime models are unique, but we still haven’t
said anything about their existence. As you probably expect, we will end this
section by proving a big theorem showing that every complete countable theory
has a prime model. Just kidding, this is blatantly false, and you already know
a counterexample:

Remark 5.3.9. Since there are countable theories with no isolated types over
∅, atomic models, and a fortiori prime ones, need not always exist.

Which theories have prime models then, and over which sets? When are
they unique? We have already seen some partial answers, and will see more
below, but you should know that we are taking a peek at a rabbit hole that is
deeper than you probably expect. When everything is countable, anyway, we
already have the tools to prove a very satisfying topological characterisation.
Again, if we have countably many parameters we may (and will) throw them in
the language and work over ∅.

Theorem 5.3.10. Let L be countable. The following are equivalent.

1. T has a prime model.

2. T has an atomic model.
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3. For every n, the set of isolated n-types is dense in Sn(∅)

Proof. The first two statements are equivalent by Theorem 5.3.8, Löwenheim–
Skolem, and Remark 5.2.4. Suppose now that M is atomic, and let φ(x) ∈ L(∅)
be consistent. Since M is a model, there is a ∈ M |x| with ⊨ φ(a). But then
tp(a/∅) is isolated and belongs to [φ(x)].

Conversely, suppose that isolated types are dense. For n ∈ ω, consider the
set of L(∅)-formulas

Φn(x<n) := {¬φ(x<n) ∈ L(∅) | φ(x<n) isolates a complete n-type}

If we can find a model M omitting all Φn(x<n), then we are done: a tuple a ∈
Mn cannot satisfy Φn(x<n), hence by definition we must have ⊨ φ(a) for some
φ(x<n) isolating a complete type. Now, some of the Φn will be inconsistent, so
will be automatically omitted. If we show that all the other ones have empty
interior, then we can invoke the Omitting Types Theorem and conclude. So
suppose that for some n the closed set [Φn] ⊆ Sn(∅) has nonempty interior, that
is, there is ψ(x<n) ⊢ Φn(x<n). By hypothesis, [ψ(x<n)] contains an isolated
type, say isolated by φ(x<n), so in particular φ(x<n) ⊢ ψ(x<n). By definition
of Φn(x<n) ⊢ ¬φ(x<n) and by combining all of the above we get to φ(x<n) ⊢
¬φ(x<n), so [φ(x<n)] is empty and cannot contain a type, let alone isolate
it.

Even in the absence of countability (in particular, we cannot use the Omit-
ting Types Theorem) density of isolated types over every set is an assumption
strong enough to grant prime models.

Theorem 5.3.11. Suppose that, for every A, in S1(A), the isolated points are
dense. Then, for every A, there is a prime model over A.

Proof. Let µ := |A| + |L|. By counting isolating formulas, we see that S1(A)
contains at most µ isolated types; list them as (pi | i < µ), by possibly repeating
some of them if necessary. Inductively, define a chain (Ai | i < µ) as follows.

1. Start with A0 := A.

2. If Ai realises pi, let Ai+1 := Ai. Otherwise, consider the projection map
π : S1(Ai) → S1(A). Since pi is isolated, π−1({pi}) is open. By assump-
tion, it contains an isolated point, call it qi. Note that qi extends pi. Let
ai ⊨ qi, and set Ai+1 := Aiai.

3. At limit stages, take unions.

Set B0 :=
⋃
i<µAi.

Claim 5.3.12. If N ⊇ A, then there is B′
0 ⊆ N with B′

0 ≡A B0.9

Proof of the Claim. This is another “only forth” argument: we build an element-
ary map B0 → N by induction on i, the same i we used to build B0. The only
nontrivial case is when Ai+1 was obtained by adding ai to Ai. Inductively, we
may assume to have already embedded Ai into N , say as A′

i. Translate qi into
q′i ∈ S1(A

′
i) according to this embedding, note that it is still isolated, and take

a′i ∈ N realising it to continue the embedding.
claim

9Yes, we are looking at a type in infinitely many variables.
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Note that |B0| ≤ µ and iterate the construction, obtaining, for every j ∈ ω,
some Bj+1 realising all isolated types in S1(Bj) and such that whenever Bj ⊆ N ,
then Bj+1 can be embedded inN over Bj , in the same sense as above. Therefore,
M :=

⋃
j<ω Bj can be embedded over A in any N ⊇ A, and we only need to

show that M is a model. By Proposition 5.1.5, it is enough to show that the
realised points are dense in S1(M). So take φ(x) ∈ L(M). Since formulas may
only mention finitely many parameters, there is j ∈ ω such that φ(x) ∈ L(Bj).
By assumption, [φ(x)] ⊆ S1(Bj) contains an isolated type, which is realised in
Bj+1, say by b. Then {x = b} ∈ [φ(x)] ⊆ S1(M), and we are done.

So we better have criteria to know when the isolated types are dense. Some-
times, it is just a matter of counting.

Proposition 5.3.13. Let L be countable. If Sn(∅) is countable (possibly finite),
then the isolated n-types are dense.

This does not just have one topological proof, but two!

First proof. The union of countably many nonisolated points is meagre. By the
Baire Category Theorem for (locally) compact Hausdorff spaces, its complement
is dense.

Second proof. If the isolated n-types are not dense, there is a nonempty [φ(x)]
containing none. Inductively, partition [φ(x)] in two nonempty clopen sets,
which of course will still contain no isolated points. By iterating this, we build a
complete binary tree of height ω of clopen sets, ordered by (reverse?10) inclusion.
This tree has 2ℵ0 branches, and the intersection of each branch is nonempty by
compactness, hence Sn(∅) is uncountable.

Exercise 5.3.14. Prove that if L is countable, and Sn(∅) is uncountable, then
it must have size at least continuum.11

Of course, density of isolated types does not imply countability of type
spaces. For example, take your favourite countable T with an uncountable
type space, e.g. T2<ω , and fix a countable model M . Then ed(M) is a count-
able theory T ′, and types over ∅ in T ′ are, by definition, the same as types
over M in T ; since S1(∅) was uncountable in T , it is a fortiori uncountable in
T ′ (if you prefer, look at the surjective restriction map S1(M) → S1(∅)). But
since we named all elements of a model, in T ′ the isolated types are dense by
Proposition 5.1.5.

5.4 The number of countable models
Let us begin with an easy lemma.

Lemma 5.4.1. If L is countable, then every type over ∅ can be realised in some
countable model.

Proof. Given p(x) ∈ Sn(∅), let a ⊨ p(x). Use Löwenheim–Skolem to take a
countable M containing a.

10It depends on whether you like your trees to grow upwards or downwards.
11Hint: adapt the second proof, by showing that if [φ(x)] is uncountable then it can be

partitioned in two uncountable clopen sets.
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A remarkable consequence of the results in the previous section is that we
can prove that a countable theory has a prime model by just counting types
(isn’t that wonderful?). As you may expect, when for every n we can only
find finitely many n-types over ∅, instead of merely countably many, something
special happens. This was realised in 1959 by several12 people independently.

Theorem 5.4.2 (Ryll-Nardzewski–Svenonius–Engeler). Let L be countable.
The following are equivalent.

1. For every n, the space Sn(∅) is finite.

2. For every n, the space Sn(∅) is discrete.

3. For every n, every p ∈ Sn(∅) is isolated.

4. For every n, if |x| = n, there are only finitely many L(∅)-formulas φ(x)
up to equivalence modulo T .

5. For every n and every M ⊨ T , there are only finitely many ∅-definable
subsets of Mn.

6. Every M ⊨ T is atomic.

7. Every countable M ⊨ T is atomic.

8. There is M ⊨ T which is countable, saturated, and atomic.

9. T has a prime model, and it is saturated.

10. T has only one countable model up to isomorphism.

11. There is M ⊨ T which, for every n, realises only finitely many n-types.

12. There is a countable M ⊨ T such that Aut(M) is oligomorphic, that is,
for every n the diagonal action Aut(M) ↷Mn has finitely many orbits.

13. For every countable M ⊨ T , the permutation group Aut(M) is oligo-
morphic.

Proof. Finite Hausdorff spaces are discrete, every point is isolated if and only
if the space is discrete, and a compact discrete space is finite, which proves
1 ⇒ 2 ⇔ 3 ⇒ 1. Formulas over ∅ up to equivalence are the same as ∅-definable
sets, and if there are only finitely many, then a finite boolean combination of
them is enough to imply a complete type over ∅, showing 5 ⇔ 4 ⇒ 1. Now,
∅-definable sets are the same as clopen subsets of Sn(∅), so 1 ⇒ 5, since a finite
set has only finitely many subsets. If all types are isolated, all models have no
choice but to only realise isolated types, and if all models do so, in particular
so do the countable ones, so 3 ⇒ 6 ⇒ 7. By Lemma 5.4.1 every type over ∅ can
be realised in a countable model, so 7 ⇒ 3.

Below, we use that we have already proven the equivalences above. If for
every n there are finitely many n-types, Exercise 4.4.11, tells us that there is
a countable saturated model, so 7 ⇒ 8. Such a model realises all types over
∅, so 8 ⇒ 3. If we throw in Theorem 5.3.8, we also discover immediately that
8 ⇔ 9 and that 7 ⇒ 10. If T has only one countable model M , then it must

12Three, not four: “Ryll-Nardzewski” is a single surname.
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have at most countably many types, so by Proposition 5.3.13 the isolated types
are dense, and by Theorem 5.3.10 T has a prime model, which by 5.3.2 must
be M . Again by the fact that T has countably many models, and again by
Exercise 4.4.11, T has a countable saturated model, which must again be M , so
10 ⇒ 9.

Again, using the previously proven equivalences, if T has only one countable
model, then it must be saturated, hence ω-strongly homogeneous, so types over
∅ are the same as orbits over Aut(M). Since there are finitely many types, this
gives 10 ⇒ 13. Trivially, 13 ⇒ 12, and being in the same orbit implies having the
same type, so in an arbitrary model there are at most as many types as orbits,
hence 12 ⇒ 11. Finally, assume that M realises only finitely many n-types, say
p0(x), . . . , pk(x). Since Sn(∅) is Hausdorff, we can find φ0(x), . . . , φk(x) such
that [φi(x)] contains pi(x) but no pj(x) for j ̸= i. Clearly, φi(M) = pi(M).
Now, take an arbitrary ψ(x) ∈ L(∅). In any model, the set of its realisations is
a (possibly infinite) union of sets of realisations of complete types over ∅. In M
the only n-types are the pi, so

ψ(M) =
⋃
i≤k

pi(x)⊢ψ(x)

pi(M) =
⋃
i≤k

pi(x)⊢ψ(x)

φi(M)

Since M is a model, this implies that ψ(x) is equivalent to
∨

i≤k
pi(x)⊢ψ(x)

φi(x).

There are at most 2k+1 formulas of this form, and ψ(x) was arbitrary, and k does
not depend on ψ, so 11 ⇒ 4, and I leave to you the pleasant task of checking
that the directed graph on 13 vertices we built above is connected.

Remark 5.4.3. If you want a more succinct statement to remember, a common
choice is 1 ⇔ 10. The choice requiring the least number of definitions in order
to be stated is probably 4 ⇔ 10.

Take a moment to appreciate the different nature of the statements which we
have just proven to be equivalent: some of them are topological, some are dy-
namical, and some, of course, model-theoretic. Some conditions can be checked
on an arbitrary model, and some of them are just a matter of counting. On the
other hand, some tell us about the existence of special structures, and one is a
uniqueness statement. Something enjoying such a diverse array of characterisa-
tions clearly deserves a name. We take the opportunity to also give a name to
other things you have already seen (and will keep seeing later on).

Definition 5.4.4. Let κ be an infinite cardinal. A theory T is κ-categorical iff
it has at most one model of cardinality κ. We also say ω-categorical to mean
ℵ0-categorical.

Here we are assuming T complete, but recall that, by Exercise 0.4.17, if
κ ≥ |L| and T has no finite models, then κ-categoricity implies completeness.
Usually, when people talk of ω-categorical theories, they implicitly also mean
that L is countable. This is important, since the Ryll-Nardzewski theorem does
not generalise to uncountable languages.

Example 5.4.5. Let M be ω viewed as a structure in the language L with a
symbol < for the usual order and a unary predicate PX for every X ⊆ ω,13 and

13If you prefer, just take all subsets of all ωn.
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let T be its complete L-theory. Note that |L| = 2ℵ0 but, by construction, T has
a countable model, namely M . We prove below that every other model has size
at least 2ℵ0 . This tells us two things:

1. The assumption of countability of L is necessary in the Ryll-Nardzewski
theorem: in this theory, S1(∅) is essentially the same as the space βω of
ultrafilters over ω (if you prefer, the Stone–Čech compactification of ω
with the discrete topology), which notoriously has size 22

ℵ0 .

2. Löwenheim–Skolem does not generalise to arbitrary cardinalities: if you
assume ¬CH, this example also shows that below |L| there can be gaps in
the possible cardinalities of models.

Proof. Let {Ai | i < 2ℵ0} be an almost disjoint family of infinite subsets of
ω, that is, a family such that for all i ̸= j the intersection Ai ∩ Aj is finite.14
Observe that

1. If i ̸= j, because Ai ∩Aj is finite, it must have a maximum, call it aij .

2. Since every Ai is infinite, for every x there is y > x such that y ∈ Ai.

Note that these properties are written in T . Moreover, since we named every
subset of ω, in particular we named singletons, hence T says that there can be
no point between n and n + 1. Therefore, every N ̸= M must contain some
c > ω. By what we said above, for every i there must be d ∈ N with d > c and
N ⊨ PAi

(d). If j ̸= i, since d > c > ω, in particular d > aij , hence N ⊨ ¬PAj
(d).

So |N | ≥ 2ℵ0 .

Remark 5.4.6. Naming finitely many parameters preserves ω-categoricity. On
the other hand, naming even ℵ0 many does not. You can convince yourself of
both statements very quickly by counting types.

Remark 5.4.7. There is a powerful method to build ω-categorical theories (and
more), known as taking a Fraïssé limit. By now you have seen more than enough
to understand this construction, but for time reasons I (sadly) have to redirect
you to the literature, see for example [Hod93, Chapter 7]. Several theories we
have seen in this course are the theory of some Fraïssé limit: DLO, Trg, the
theory of infinite sets, the theory of κ generic equivalence relations for κ ≤ ℵ0,
and T ∗

feq are all examples.

As we saw above, countable (complete) theories with only one countable
model enjoy quite striking properties. Countable (complete) theories with only
two countable models enjoy an even more striking property: they do not exist.

Theorem 5.4.8 (Vaught’s never two). There is no complete countable first-
order theory with exactly two countable models up to isomorphism.

Proof. Suppose T is a counterexample. Inside two countable models, for every
n, there is only space to realise ℵ0 many n-types over ∅. By Lemma 5.4.1
every type over ∅ is realised in a countable model, so for every n we have
|Sn(∅)| ≤ ℵ0. By Exercise 4.4.11, there is a countable saturated M2 ⊨ T .

14For example, you can build such a family by putting ω in bijection with 2<ω and taking
the family 2ω of branches of this tree.
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Moreover, by Theorem 5.3.10 and Proposition 5.3.13, T has a prime model M0.
We now build a third model M1. Since T has more than one countable model,
by Theorem 5.4.2, for some n there is a nonisolated p(x) ∈ Sn(∅). If a is a
realisation, because a is a finite tuple, every Sm(a) is still countable15, so there
is M1 which is prime over a, that is, (M1a) is a prime model of Ta := Th(Ua).
In particular, M1 is countable. Since M1 realises p and M0 does not, we clearly
have M1 ̸∼=M0, so we need to show M2 ̸∼=M1. But if M1

∼=M2, then M1 would
be saturated. But ω-saturated models stay saturated after naming finitely many
constants, so (M1, a), is a saturated model of Ta. Because it is also a prime model
of Ta, by Theorem 5.4.2 Ta has finitely many n-types over ∅, that is, Sn(a) is
finite. Now take two different n-types q0, q1 over ∅ in T . These can be seen as a
partial types over ∅ in Ta, hence be completed to distinct q̂0, q̂1 ∈ Sn(a). Since
in T the space Sn(∅) is infinite, this is a contradiction.

Exercise 5.4.9. Find an incomplete T in a countable L with exactly two non-
isomorphic countable models.

Funnily enough, this characterises 2 among the positive natural numbers.

Exercise 5.4.10. Let L = {<} ∪ {ci | i < ω}, and let T be DLO ∪ {ci < ci+1 |
i < ω}.

1. Prove that T is complete and has quantifier elimination.

2. Prove that, up to isomorphism, the countable models of T are the expan-
sions of (Q, <) obtained as follows.

(a) For every i < ω, the constant ci is interpreted as i.

(b) For every i < ω, the constant ci is interpreted as −1/(i+ 1).

(c) The sequence (ci)i<ω is interpreted as an increasing sequence conver-
ging (in R) to an irrational number.

3. Which of these is prime? Which is saturated?

4. For n ≥ 4, let Ln := L ∪ {P0, . . . , Pn−3}, where every Pj is a 1-ary pre-
dicate. Let Tn be the union of T with the axioms saying that every Pj is
dense, that the Pj partition the domain, and that every ci is in P0. Prove
that Tn has exactly n countable models up to isomorphism.

Therefore, the number of countable models of a complete theory in a count-
able language can be any positive natural number except two. What about
infinite cardinals?

Exercise 5.4.11. Let T be a complete L-theory, with L countable. Prove that

1. Every such T has at most 2ℵ0 countable models up to isomorphism.

2. There is such a T with 2ℵ0 pairwise nonisomorphic countable models.

3. There is such a T with exactly ℵ0 pairwise nonisomorphic countable mod-
els.

15Uncountably many m-types over a would yield uncountably many |a|+m types over ∅.
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What about cardinals between ℵ0 and 2ℵ0 , of course when they exist, that
is, when CH fails? This has been open for more than half a century.

Conjecture 5.4.12 (Vaught’s conjecture). If a complete theory in a countable
language has uncountably many countable models, then it has continuum many.

By a theorem of Morley (not the one we will see later on in the course),
the only case to exclude is that of a countable complete theory with exactly
ℵ1 countable models (again, obviously, assuming ¬CH). As far as I know, the
conjecture is open,16 but it has been proven to hold in for special classes of
theories. There is also a more general version of the conjecture, known as the
topological Vaught conjecture, stated in terms of Polish groups acting on Polish
spaces.

5.5 Ehrenfeucht–Mostowski models
We saw in Theorem 5.3.11 that, if over every A the isolated types are dense,

then there is a prime model over every A, regardless of the size of L. This
theorem is very powerful: for example the theory DCF0 of differentially closed
fields of characteristic 0 satisfies its assumptions, and as a consequence every
differential field of characteristic 0 has a differential closure. We will not deal
with differential fields in this course, so I refer the interested reader to the
literature, see e.g. [Poi00, Section 6.2].

Nevertheless, the assumptions of Theorem 5.3.11 are quite strong, and at
any rate, it does not gives arbitrarily large models realising few types. The
main theorem of this section will do exactly that, with no restriction on |L|.
The idea is to start with a suitable sequence (ai)i∈I of points which “look all
the same”, and then to take some kind of model M “enveloping” this sequence.
Intuitively, if the tuples from (ai)i∈I all look the same, then M will realise few
types. On the way to the main theorem, we will also encounter a property
implying that over every A the isolated types are dense. But let us begin with
precise statements.

Notation 5.5.1. If (I,<) is a linear order, we denote an I-sequence of tuples
of the same length by aI := (ai)i∈I . If I is not specified, or clear from context,
we also just say “sequence” instead of “I-sequence”. If for example I = ω, we
also write a<ω, to make it clear that we are not referring to the ω-th element of
some aI indexed on, say, I = κ.

We put the index as a superscript (as in: ai) because each ai is a tuple, not
necessarily of length 1. So, for example, ai1 denotes the second element of the
i-th tuple in aI . In the literature it is also common to write ai for ai since, as
you will see, we will rarely have to look at the coordinates of ai.

Definition 5.5.2. LetA be a set of parameters. We say that aI isA-indiscernible,
or indiscernible over A, iff, for every n ∈ ω, if i0 < . . . < in and j0 < . . . < jn,
then

tp(ai0 , ai1 , . . . , ain/A) = tp(aj0 , aj1 , . . . , ajn/A)

We also say just indiscernible instead of “∅-indiscernible”.
16In fact, counterexamples have been announced, but their status is unclear.
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Remark 5.5.3. Almost by definition, an I-sequence is indiscernible over A if
and only if the type over A of ai0 , . . . , ain only depends on the order type of
i0, . . . , in inside I, that is, on qftpI(i0, . . . , in/∅).17

In the definition above, if I is finite then of course we only need to look at
the n < |I|. Or only at the n < |I| − 1, if you want. At any rate, indiscernible
sequences are typically interesting when I is infinite, usually with no maximum.
Some of the things below also make sense for finite I. Anyway, if you want,
assume that I is always an infinite linear order.

Example 5.5.4. In ACFp, let aI be a sequence of A-transcendental elements
which are algebraically independent over A. Then aI is I-indiscernible.

Non-Example 5.5.5. In ACF0, let aω be a sequence of elements with a0 /∈
{0, 1} and a1 = a0 · a0. Then aω is not ∅-indiscernible (hence, for all A it is not
A-indiscernible).

Proof. If it was, by indiscernibility we would have18 a2 = a0 · a0 and a0 · a0 =
a2 = a1 · a1 = a0 · a0 · a0 · a0. Since a0 ̸= 0, we must have a0 · a0 = 1. Since
a0 ̸= 1, we must have a0 = −1. Again by indiscernibility, aω is constantly −1.
From a1 = a0 · a0 we get −1 = (−1) · (−1), a contradiction.

Example 5.5.6. In DLO, a sequence (ai)i<ω, with |ai| = 1 is A-indiscernible if
and only if

1. all ai have the same cut in A (possibly degenerate, that is possibly they
are all equal to a fixed a ∈ A), and

2. the sequence is either

(a) constant,

(b) increasing, or

(c) decreasing.

Of course, the collection of types of finite pieces of an indiscernible sequence
deserves a name. We define this for arbitrary sequences; in general, it will not
be a complete type.

Definition 5.5.7. Let aI be an I-sequence19 of tuples of the same length. The
Ehrenfeucht–Mostowski type em(aI/A) of aI over A is the set of formulas

em(aI/A) := {φ(x0, . . . , xn) ∈ L(A) | n < ω, ∀i0 < . . . < in ∈ I,⊨ φ(ai0 , . . . , ain)}

So em(aI/A) is the set of those formulas over A which are true in all finite
pieces of aI provided they are enumerated increasingly.

Remark 5.5.8.
17“Why are we taking as I a linear order? What happens if we take a different structure?

And give a similar definition?” If I is a set with no structure, the answer to this will appear in
due course in this course. People have also equipped at I with different structures, see [Sco15].

18Superscripts denote indices in the sequence, and not multiplicative powers.
19Not necessarily indiscernible.



Ehrenfeucht–Mostowski models 81

1. If aI is arbitrary, then em(aI/A) may as well be empty (up to deductive
closure20). Example: take T the theory of infinite sets, let A be infinite,
I = |A|, and let aI be some enumeration of A where every point appears
infinitely often.

2. On the other hand, if aI is A-indiscernible and I is infinite, then em(aI/A)
is complete type in ω (tuples of) variables, namely, it coincides with
tp(a<ω/A). Note that this is a type in ω variables regardless of whether
I is ω or another infinite linear order. This is not a bug, but a feature: it
allows us to compare indiscernible sequences indexed over different linear
orders.

3. Not all elements of Sω(A) are the Ehrenfeucht–Mostowski types of some
A-indiscernible sequence (of tuples), see for instance Non-Example 5.5.5
above.

Sometimes, we have some infinite aI such that, for a fixed L(A)-formula
φ(x0, . . . , xn) and all i0 < . . . < in ∈ I, we have ⊨ φ(ai0 , . . . , ain), and we want
to produce an A-indiscernible J-sequence, with J an arbitrary infinite linear
order, with the analogous property. Note that φ(x0, . . . , xn) ∈ em(aI/A). So
we want an A-indiscernible bJ with em(bJ/A) ⊇ em(aI/A). The fact that these
always exist is the content of what [TZ12] calls the Standard Lemma, also known
in the literature as “Ramsey and compactness”, ominously telling us how it will
be proven.

Fact 5.5.9 (Ramsey’s theorem). Let k, r ∈ ω \ {0}. Denote by X [k] the set of
subsets of X of size k. If X is infinite, then for any function c : X [k] → r, there
is an infinite H ⊆ X such that c ↾ H [k] is constant.

Usually (and suggestively), c is called a colouring, and H a monochromatic
set (homogeneous is also used). Ramsey’s theorem can be proven in a number
of ways, for example by induction or by using the tensor product of ultrafilters,
but we will not see the proof here. If you have never seen this theorem before,
here is a typical easy application: every sequence of reals has a subsequence
which is either strictly decreasing, constant, or strictly increasing. To prove it,
you colour {m,n} with three colours, one for each sign of am − an, say where
m < n. Then you restrict your sequence to a monochromatic set.

Lemma 5.5.10 (Standard Lemma). Let I, J be infinite linear orders, with J
small, and A ⊂+ U. For any aI , there is an A-indiscernible bJ with em(bJ/A) ⊇
em(aI/A).

Proof. Let π(x<ω) := em(aI/A). Denote by π(xJ) the following set of formulas:
for every n, choose jn0 < . . . < jnn ∈ J , let π(x≤n) be the restriction of π(x<ω) to
the first n tuples of variables, and substitute yj

n
i for xi inside it; take the union of

all these as n ∈ ω varies.21 By saturation of U, it is enough to show consistency
of Φ(yJ) := π(yJ)∪Ψ(yJ), where Ψ(yJ) says that yJ is A-indiscernible. Namely:

Ψ(yJ) := {φ(yi0 , . . . , yin) ↔ φ(yj0 , . . . , yjn)

| n < ω,φ ∈ L(A), i0 < . . . < in ∈ J, j0 < . . . < jn ∈ J}
20That is, it may consist only of those φ(x) with ⊨ ∀x φ(x).
21If J was for example an infinite ordinal, we could have just said “take π(y<ω)”. But note

that J may not contain any copy of ω in general: for example, take as J the negative integers.
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By compactness, it is enough to show that every finite subset Φ0 of Φ(yJ) is con-
sistent. Such a finite subset will only be able to mention a finite subsequence y
of yJ , a finite subset Θ(y) of π(yJ), and, up to enlarging Φ0, there will be a finite
set of formulas ∆ such that Φ0(y) says that the increasing tuples from y cannot
be distinguished by formulas φ(zj0 , . . . , zjn) ∈ ∆ (they are ∆-indiscernible).
Let k be maximum such that there is some φ(zj0 , . . . , zjk−1) ∈ ∆. Let r := 2|∆|,
and colour the k-element subsets of the original sequence aI as follows: list each
k-element set increasingly, that is, as ai0 , . . . , aik−1 with i0 < . . . < ik−1; colour
it with the set of those φ ∈ ∆ such that ⊨ φ(ai0 , . . . , aik−1). By Ramsey’s The-
orem, there is an infinite I0 ⊆ I such that c ↾ aI0 is monochromatic, that is, aI0
is ∆-indiscernible. Since aI0 is a subsequence of aI , clearly it also satisfies Θ(y)
which, remember, was obtained from a finite piece of em(aI/A) by a change of
variables. Therefore, any subsequence of aI0 of the correct length will witness
that that Φ0(y) is consistent, and we are done.

Remark 5.5.11. The assumption that J is infinite is not important: if you
want a finite one, you can first build an infinite one and then trim it. On the
other hand, the assumption that I is infinite is crucial: otherwise, by starting
with I = (2, 4), we would violate Non-Example 5.5.5.22

Going back to the programme sketched at the start of our section, indiscern-
ible sequences are the promised sequences of “points that look all the same”.
Now we deal with the second ingredient, that is, the “enveloping” part.

Definition 5.5.12. A function f : Mn → M is definable iff its graph is a
definable set. We say A-definable iff we only allow parameters from A in a
formula defining the graph of f .

If f(x) is a definable function, say its graph is defined by φ(x, y), it is common
to write y = f(x) in place of φ(x, y). More generally, one usually abuses the
notation and pretends that f is an actual function symbol of L, by writing e.g.
ψ(f(x), z), which of course is, formally, an abbreviation for ∀y φ(x, y) → ψ(y, z).
Of course, for several purposes we may as well just add functions symbols to
the language.

Remark 5.5.13. If we expand the language to L′ by naming every ∅-definable
function by an actual function symbol, then dcl(A) in the sense of L is the same
as (the domain of) the structure generated by A in the sense of L′.

One may also consider functions f : Mn →Mk; trivially, their graph will be
definable if and only if each of the k components of f is definable. So they may
be identified with tuples of definable functions.

Definition 5.5.14. We say that that T has definable Skolem functions iff for
every formula φ(x, y) over ∅ with |x| = 1 there is an ∅-definable function f such
that

T ⊢ ∀y ((∃x φ(x, y)) → φ(f(y), y)) (5.1)
22This is more important than it may seem: the fact that certain formulas φ(x, y) display

certain patterns on some infinite set of tuples is a way to say that T is in a sense “wild”. Finite
restrictions of these patterns are usually easy to find even when T is the theory of infinite
sets.
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The fact that |x| = 1 is not a real restriction: if T has definable Skolem
functions, then you can easily prove by induction that (5.1) also holds when x
is a tuple, with f now a tuple of definable functions.

Having definable Skolem functions is clearly preserved by Morleyising, and
it is also easily shown that it is preserved by naming parameters. Before even
looking at examples, let us make an addition to our list of easy but important
facts. Note the similarity between the definition above and Henkin construc-
tions: after all, what is a function symbol, if not a “constant symbol which
depends on a tuple of arguments”? Since Henkin theories have models where all
elements are the interpretation of a constant, the following is not surprising.

Remark 5.5.15. If T has definable Skolem functions, then the isolated types
are dense in every Sn(A), hence T has prime models over every set. Even better,
for every A we have dcl(A) ⪯ U, as follows easily from the Tarski–Vaught test.

Non-Example 5.5.16. In ACF0, it is not very difficult to show that dcl(∅) is
isomorphic to Q, which is notoriously not algebraically closed. Therefore, ACF0

does not have definable Skolem functions.

Non-Example 5.5.17. DLO does not have definable Skolem functions, nor
does any of its expansions by constants.

Proof. Assume towards a contradiction that expanding by naming parameters
from A grants definable Skolem functions. Look at the formula ∃x x > y. Pick
any c > A, and let d := f(c). Let d′ > d be arbitrary. Clearly, tp(d′/Ac) =
tp(d/Ac), a contradiction, since d′ ̸⊨ x = f(c).

Example 5.5.18. We left our dear old friend R all alone in a corner since
page 20. By now it’s time to tell you that Th(R) is called DOAG, is the theory
of nontrivial divisible ordered abelian groups, and eliminates quantifiers in Loag,
see [vdD98a, Corollary 1.7.8]. If we add a constant for any nonzero point, say
positive, call it 1, then the resulting theory has definable Skolem functions23.
The idea is to argue by induction on the dimension, starting by taking things like
midpoints of intervals, or adding 1 to a to find a point in (a,+∞), see [vdD98a,
Proposition 6.1.2].

We can use Remark 5.5.15 to build a model M “around” an indiscernible
I-sequence in such a way that M has at least as many automorphism as (I,<).

Definition 5.5.19. Suppose that T has definable Skolem functions and aI is
an indiscernible with |ai| = 1. We call M := dcl(aI) the Ehrenfeucht–Mostowski
model with spine aI , or the Skolem hull of aI .

Proposition 5.5.20. If T has definable Skolem functions andM is a Ehrenfeucht–
Mostowski model with spine aI , then for every f ∈ Aut((I,<)) there is f̃ ∈
Aut(M) with f̃(ai) = af(i).

Proof. By definition, every b ∈ M is of the form g(ai0 , . . . , ain), for some ∅-
definable function g. Set f̃(b) := g(af(i0), . . . , af(in)). We need to check that f̃
is well-defined, because in general b may also be represented as h(aj0 , . . . , ajm),

23And even something stronger called definable choice, which, if you have seen the T eq

construction, is essentially definable Skolem functions for T eq.
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for a different ∅-definable h. Because aI is indiscernible, this is not really a
problem: since f ∈ Aut(I,<), we have

qftpI(i0, . . . , in, j0, . . . , jm) = qftpI(f(i0), . . . , f(in), f(j0), . . . , f(jm))

and by indiscernibility ⊨ g(ai0 , . . . , ain) = h(aj0 , . . . , ajm) if and only if

⊨ g(af(i0), . . . , af(in)) = h(af(j0), . . . , af(jm))

The argument above shows that f̃ preserves and reflects the formula g(x) =
h(y), where x and y suitable tuples of variables. A similar argument, replacing
g(x) = h(y) with formulas such as R(g0(x0), . . . , gℓ(xℓ)), shows that f̃ is indeed
an automorphism.

It turns out that we can expand a theory to one having definable Skolem
functions, but some care is needed. As having Skolem functions is preserved by
Morleyising, if T does not have definable Skolem functions and we want to add
them, then we must change the definable sets. In the case of DOAG, we got
away with just changing the ∅-definable ones. In the case of DLO, we proved
above that naming constants is not enough, which means that we also need to
change the class of U-definable ones.24

Proposition 5.5.21. For every, possibly incomplete, L-theory T , there are
L′ ⊇ L with |L′| = |L| and a possibly incomplete L′-theory T ′ ⊇ T with
definable Skolem functions such that every M ⊨ T can be expanded to M ′ ⊨ T ′.

The construction above25 is called skolemisation.

Proof. Let L0 := L, and inductively, for every Li(∅)-formula φ(x, y) with |x| = 1,
add an |y|-ary function symbol fφ to Li, call the resulting language Li+1, and let
Ti+1 be the union of Ti together with all axioms ∀y ((∃x φ(x, y)) → φ(fφ(y), y)),
for φ(x, y) as above. Let T ′ :=

⋃
i<ω Ti. Given M ⊨ T , we inductively expand

Mi to an Li+1-structure Mi+1 by setting fφ(b) to be an arbitrary witness to
∃x φ(x, b) if one exists, and as an arbitrary element otherwise. By repeating ω
times we obtain the required expansionM ′ ofM , and prove that T ′ (is consistent
and) has the required properties.

This construction allows us to build models of arbitrary theories with certain
properties by first passing to a skolemisation. For example, skolemising may be
used to deduce from Proposition 5.5.20 the following.

Corollary 5.5.22. For every theory T and every linear order (I,<) there is
M ⊨ T containing an indiscernible aI such that, for every f ∈ Aut((I,<)), there
is f̃ ∈ Aut(M) with f̃(ai) = af(i).

Proof. Apply Proposition 5.5.21 to T , obtaining L′ ⊇ L and T ′ ⊇ T with
definable Skolem functions. In a monster model of a completion of T ′, let aI be
L′-indiscernible, let M ′ be its Skolem hull, and let M :=M ′ ↾ L. The conclusion
follows from Proposition 5.5.20, by observing that

24Note that if some expansion by constants gives us definable Skolem functions, then |L|
constants will suffice: we only need finitely many constants for every formula over ∅.

25Or below, in the proof, if you prefer. Well, I wrote this in a footnote, which I guess makes
it “above” again (or “in the next page”, depending on the version of these notes).
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1. every L′-indiscernible sequence is L-indiscernible, and

2. every L′-automorphism is an L-automorphism.

Let me stress this again: taking a skolemisation is not a “mostly harmless”
expansion, like Morleyising26 or naming constants27, so we really need to take
the reduct to L: the properties of Th(M ′) and Th(M) can be very different. If
you prefer, skolemising M is a highly non-canonical construction; it depends on
several choices, and M ′ is not even determined up to elementary equivalence:
for example, if ⊨ ∀x, y φ(x, y) → ψ(x, y), we may have one M ′ where ∀y fφ(y) =
fψ(y) holds and one where it fails. So be aware that, if you skolemise something,
you are playing with fire.

Now, playing with fire may be dangerous, but the world is full of barbecues
and fire jugglers. We probably will not have the time to learn to use flaming
bolas (but see [She90, Section VIII.2]), but let us at least grill something.

Theorem 5.5.23. For every κ ≥ |L|, there is M ⊨ T with |M | = κ and such
that, for every A ⊆M , the model M realises at most |A|+ |L| types over A.

Note that since |L| is infinite by convention, by usual type-counting tricks28
it does not matter whether with “types” we mean “1-types” or “n-types for every
n”.

Proof. Use Proposition 5.5.21 to skolemise T to T ′ and work in a monster model
of a completion of T ′. Let aκ be an L′-indiscernible κ-sequence, and let M ′ be
the Skolem hull of aκ. Since |L| = |L′|, if we show that the conclusion holds for
the L′-structure M ′, then it will a fortiori hold for M :=M ′ ↾ L, because every
type in L(A) can be completed to a type in L′(A), hence there are at least as
many L′(A)-types as there are L(A)-types.

Therefore, we may assume that T has definable Skolem functions. Take as
M an Ehrenfeucht–Mostowski model with spine aκ indexed on κ. Let A ⊆M =
dcl(aκ). Because if b ∈ dcl(B) then there is a finite B0 ⊆ B with b ∈ dcl(B0),
there is A′ ⊆ aκ with A ⊆ dcl(A′) and |A′| ≤ |A|. Up to deductive closure, types
over B are the same as types over dcl(B), so it enough to prove the conclusion
when A is included in the spine. Assume this is the case.

Claim 5.5.24. For every n ∈ ω, there are at most |A|+ ℵ0 many n-types over
A which are realised in the spine.

Proof of the Claim. Since A is included in the spine, for some J ⊆ κ we may
write A = {aj | j ∈ J}. For fixed n, we need to count the possibilities for
tp(ai0 , . . . , ain−1/A), where i0, . . . , in−1 ∈ κ. By indiscernibility, this is determ-
ined by which inequalities hold between the different ik (finitely many choices),
and by the (possibly degenerate) cuts of the ik in J . Since κ is well-ordered, so is
J . But the right part of a cut in a well-ordered set must either be empty or have
a minimum, hence there are at most |J |·2+1 possibly degenerate cuts in J . It fol-
lows that there are at most |A|+ℵ0 possibilities for tp(ai0 , . . . , ain−1/A).

claim

26. . . , which anyway may change the notion of substructure,. . .
27. . . , which anyway may break things like ω-categoricity,. . .
28Cf. the proof of Proposition 4.4.5.
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By construction, every element of M is of the form f(ai0 , . . . , ain−1), for a
suitable ∅-definable function f and ai0 , . . . , ain−1 a finite tuple from the spine.
By indiscernibility, tp(f(ai0 , . . . , ain−1)/A) only depends on f , for which there
are at most |L| choices, and on tp(ai0 , . . . , ain−1/A), which by the Claim can
only be chosen in |A|+ ℵ0 ways, and the conclusion follows.

While we are on the theme of indiscernible sequences, let us also talk about
totally indiscernible sequences.

Definition 5.5.25. We call aI totally indiscernible over A, or an indiscernible
set over A iff every permutation of aI is indiscernible over A.

Equivalently, an I-sequence is indiscernible over A if and only if the type over
A of ai0 , . . . , ain only depends on the quantifier-free type qftp(I↾{=})(i0, . . . , in/∅),
where I is seen as a set with no extra structure (i.e. we forget the order on I).

Sometimes, the only totally indiscernible sequences are the constant ones.
This happens for example in DLO.

Definition 5.5.26. A partitioned formula φ(x; y) is formula φ(x, y) together
with an ordered partition of its free variables into two parts. We call the vari-
ables in the first part x object variables, those in the second part y parameter
variables.

The notation is usually abused and we just say that φ(x; y) is a formula.
Observe that a partitioned formula can be though of as a family of subsets of
U|x| parameterised (possibly with repetitions) by U|y|. In other words, φ(x; y)
induces a definable family of definable sets {φ(x; b) | b ∈ U|y|}.

Definition 5.5.27. A partitioned formula φ(x; y) has the order property (OP)
if and only if there are sequences (ai)i<ω in U|x| and (bj)j<ω in U|y| such that
⊨ φ(ai; bj) ⇐⇒ i < j. A theory has OP (or is OP) iff some partitioned formula
has OP. If T does not have OP, we say that T is (or has) NOP.

Note that such (ai)i<ω and (bj)j<ω are not guaranteed to exist in every
model. Nevertheless, if k < ω, then the existence of (ai)i<k and (bj)j<k with
similar properties is expressible by a sentence. Hence, whether φ(x; y) has OP
or not may be checked on an arbitrary model, provided that we check for every
k < ω, and not for ω directly. If you want to check for ω directly, you need to
do so on an ω-saturated model.

Remark 5.5.28. If there is a partitioned formula with OP, then there is one
over ∅: enlarge x or y, then append the needed parameters to each ai and bj .

Proposition 5.5.29. The following are equivalent.

1. T is NOP.

2. There are no φ(x; y) with |x| = |y| and (ck)k<ω in U|x| such that ⊨
φ(ck; ck

′
) ⇐⇒ k < k′.

3. For every n ∈ ω, every indiscernible sequence of n-tuples is totally indis-
cernible.
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Proof. The implication 1 ⇒ 2 is trivial, and for 2 ⇒ 1, if ψ(t;w) and (ai)i<ω,
(bj)j<ω witness OP, it is sufficient to take x = t0w0, y = t1w1, then set φ(x; y) =
φ(t0w0; t1w1) := ψ(t0;w1) and ck := akbk.

To prove 3 ⇒ 2, suppose there are such φ(x; y) and (ck)k<ω. By the Standard
Lemma, there is an indiscernible (dℓ)ℓ<ω such that em(c<ω/∅) ⊆ em(d<ω/∅).
By construction, ⊨ φ(d0; d1) ∧ ¬φ(d1; d0), hence d<ω is indiscernible but not
totally indiscernible.

Let us finish by proving 2 ⇒ 3. Let cI be indiscernible but not totally
indiscernible. By the Standard Lemma, we may assume I = ω. This means
that, for some bijection f : ω → ω and some formula ψ(x0, . . . , xn) over ∅ we
have

⊨ ψ(c0, . . . , cn) ∧ ¬ψ(cf(0), . . . , cf(n))
Since c<ω is indiscernible, by shifting cf(0), . . . , cf(n) backwards, we find σ ∈
Sn+1, that is, a permutation of {0, . . . , n}, such that

⊨ ψ(c0, . . . , cn) ∧ ¬ψ(cσ(0), . . . , cσ(n))

Claim 5.5.30. By changing ψ(x0, . . . , xn), we may assume that σ is a trans-
position of two consecutive elements.

Proof of the Claim. Every element of Sn+1 can be written as a product of trans-
positions permuting two consecutive elements.29 Write σ in this fashion, say as
σ = δℓ · . . . · δ0, and for i ≤ ℓ let σi := δi · . . . · δ0. By assumption, there exists i
such that

⊨ ψ(c0, . . . , cn) ∧ ¬ψ(cσi(0), . . . , cσi(n))

Let i be minimal with the property above. If i = 0, we are done. Otherwise,
just permute the variables of ψ according to σi−1.

claim

By the claim, we may assume that there is r < n such that

⊨ ψ(c0, . . . , cn) ∧ ¬ψ(c0, . . . , cr−1, cr+1, cr, cr+2, . . . , cn)

We prove that φ(x; y) := ψ(c0, . . . , cr−1, x, y, cr+2, . . . , cn) has OP, which is
enough by Remark 5.5.28. By the Standard Lemma, there is an indiscernible
Q-sequence dQ with the same Ehrenfeucht–Mostowski type as c<ω and, up to an
automorphism of U, we may assume that for i ∈ ω we have di = ci. To conclude,
just choose your favourite increasing sequence (jm)m<ω in (r−1, r+2)∩Q, and
observe that, by construction, φ(djm0 , djm1 ) ⇐⇒ m0 < m1.

Exercise 5.5.31. Prove the following.

1. The theory of infinite sets is NOP.

2. DLO has OP.

3. Trg has OP.

You may want to go through the theories introduced so far and try get a
feeling for which have OP and which do not. Don’t worry if you don’t see a
quick way to prove that a certain theory is NOP: will see soon that this property
has several characterisations.

29Start by moving σ(n) to the end, one place at a time, by permuting consecutive elements.
Then apply induction.





Chapter 6

Having few types

6.1 Counting types
We saw that, for countable theories, having few types over ∅ has very special

consequences. In this chapter we will see that, if we count types over arbitrary
sets, then there are “few” types —namely, the bare minimum— if and only if
there is a reason for this, if and only if there are several reasons for this. In
order to make type-counting easier, we introduce local type spaces.

Definition 6.1.1. Let φ(x; y) be a partitioned formula.

1. φ∗(y;x) is obtained from φ(x; y) by reversing the order of the partition:
the formula is the same, but y is the tuple of object variables.

2. An instance of φ(x; y) is a formula of the form φ(x; b).

3. Sφ(A) is the space of φ-types over A: maximal consistent sets of instances
of φ and ¬φ with parameters from A.

4. If κ ≥ |L|, we define

fT,φ(κ) := sup{|Sφ(M)| |M ⊨ T, |M | = κ}
fT (κ) := sup{|S1(M)| |M ⊨ T, |M | = κ}

Remark 6.1.2. By usual counting tricks, in the definition of fT , instead of
just S1, we may equivalently take all the Sn at once. On the other hand, the
supremum must be taken over all models of size κ. Some of them may simply
have not enough of the “right” parameters to make the size of type space grow.

As you probably expect, if φ(x; y) is a partitioned formula, then natural
restriction map Sx(A) → Sφ(A) is continuous. It is also possible to consider
finite sets ∆ of partitioned formulas, all with the same partition,1 and to talk
of ∆-types.2 In fact, Sx(A) may be written as the inverse limit of all the S∆(A)
for ∆ as above along these maps. But let’s actually start counting.

1Note that, if needed, one may always add extra parameter variables which are not neces-
sarily used in every formula of ∆.

2Although if you have at least 2 parameters, or 2 ∅-definable elements, you can code
boolean combinations of instances of formulas from finite set with boolean combinations of
instances of a single formula. The trick is adding parameters to do case distinctions, e.g.
“θ(x; yt) := (t = 0 ∧ φ(x; y)) ∨ (t = 1 ∧ ψ(x; y))”.

89
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Lemma 6.1.3. Let κ ≥ |L|. Then κ ≤ fT (κ) ≤ 2κ.

Proof. For the first inequality look at realised types. For the second one, note
that each type over A yields, injectively, a function L(A) → {0, 1}.

Quite remarkably, it will turn out that if there are many types over arbitrarily
large set, then the culprit must be some φ(x; y) with the order property: in one
direction, we will get a lower bound on the size of Sx(A) by looking at Sφ(A),
which is the reason we introduced it. Intuitively, the reason is that linear orders
may have many cuts, and each will give us a different type. To make this precise,
we introduce the following function on infinite cardinals.

Definition 6.1.4. If κ is an infinite cardinal, we define

dedκ := sup{λ | there is a linear order of size κ with λ cuts}

Remark 6.1.5.

1. Every cut L⊔R is determined by L, so there are no more cuts than subsets,
hence dedκ ≤ 2κ.

2. Notoriously, Q is dense in R, hence dedℵ0 = 2ℵ0 .

3. Since we may always append a copy of Q to an infinite linear order without
changing its cardinality, dedκ is always at least 2ℵ0 .

4. We may equivalently define dedκ by just looking at DLO’s, instead of all
linear orders. To see this, if (I,<) is a linear order of size κ, for every
pair a, b ∈ I ∪ {±∞} such that (a, b) = ∅, insert a copy of Q between
a and b, obtaining a DLO J ⊇ I. We are inserting at most κ · ℵ0 new
points, so |J | = κ. As for the number of cuts in J , note that we are at
most introducing 2ℵ0 new cuts in κ places, hence I and J have the same
number of cuts.

5. We may equivalently define dedκ as

sup{λ | there is a linear order of size λ with a dense subset of size κ}

In fact, if I has size κ and λ cuts, we may first replace each point of I with
a copy of Q, obtaining I ′ ⊨ DLO of the same size and the same number of
cuts, and then filling each cut with one element returns a linear order of
size λ in which I ′ is dense. Conversely, if J has size λ and I ⊆ J is dense
(of size κ), then different points of J have different cut in I.

Lemma 6.1.6. κ < dedκ.

Proof. Let µ be minimum with 2µ > κ. Look at the tree 2<µ with the lex-
icographic ordering, induced by the convention that 0 < undefined < 1. By
assumption |2<µ| ≤ κ. But every branch in 2<µ yields a different cut, and there
are 2µ branches.

Here are some facts on dedκ that we will neither prove nor need, but you
may find interesting. By [Mit72], if κ has uncountable cofinality, in a cardinal
preserving forcing extension dedκ < 2κ, and by [CKS16] it is consistent to
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have dedκ < (dedκ)ℵ0 for certain κ. Moreover, by [CS16], for any κ, we have
2κ ≤ ded(ded(ded(ded(κ)))).3

Another thing we will not prove is that, by [Kei76], if |L| = ℵ0, then fT (κ)
can only be one of these:

κ κ+ 2ℵ0 κℵ0 dedκ (dedκ)ℵ0 2κ

If you haven’t done this already, it is a good idea to go back through these notes,
e.g. to Section 4.3, and to compute cardinalities of S1(M) in different theories.
After which, I recommend you try to solve the following exercise.

Exercise 6.1.7. For each of the six functions above, find some T in a countable
L having that function as fT .

6.2 The order property
The order property OP, introduced in Definition 5.5.27, will play a crucial

role in the whole chapter. We defined it using ω, but it is easy to see that we
may produce similar patterns with other linear orders.

Remark 6.2.1. By compactness and saturation of U, if φ(x; y) has OP and I
is any small linear order then, for i ∈ I, there are ai ∈ U|x| and bi ∈ U|y| such
that ⊨ φ(ai; bj) ⇐⇒ i < j.

NOP (partitioned) formulas are closed under several constructions.

Lemma 6.2.2. Let φ(x; y) and ψ(x; z) be NOP, where y and z are allowed to
share variables. Then:

1. If y = uv and c ∈ U|v| then φ(x;uc) is NOP.

2. φ∗(y;x) is NOP.

3. Boolean combinations of φ,ψ, partitioned as θ(x; yz), are NOP.

Proof. The first part follows very easily from the definitions, and the second one
from applying Remark 6.2.1 to φ(x; y) with I the (negative) integers. The fact
that being NOP is preserved under taking negations is similarly proven, so it is
enough to show that θ(x; yz) := φ(x; y) ∨ ψ(x; z) is NOP. Suppose θ has OP,
witnessed by (ai)i<ω and (bici)i<ω such that ⊨ φ(ai; bj) ∨ ψ(ai; cj) ⇐⇒ i < j.
Colour {i, j} ∈ [ω]2, with i < j, white if ⊨ φ(ai; bj) and black if ⊨ ψ(ai; cj). By
Ramsey’s Theorem there is an infinite I ⊆ ω such that, for all i < j both in I,
the colour of {i, j} is always white or always black. In the first case φ has OP,
in the second case ψ does.

Proposition 6.2.3. If φ(x; y) has OP and κ ≥ |L|, then fφ,T (κ) ≥ dedκ. In
particular, if T has OP then fT (κ) ≥ dedκ.

Proof. Choose I ⊨ DLO of size κ, take (ai)i∈I , (bi)i∈I , given by Remark 6.2.1,
contained in some M ⊨ T of size κ. For each cut C = L ⊔R in I, define

ΦC(x) = {¬φ(x; bj) | j ∈ L} ∪ {φ(x; bj) | j ∈ R}
3According to [Che21], “[Shelah’s] other superpower is the ability to discover number 4

where it has absolutely no reason to be.”
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Since I ⊨ DLO, every finite subset of ΦC is realised by some ai. Therefore, ΦC
is consistent, hence can be completed to pC ∈ Sφ(M). But C 7→ pC is injective:
if j ∈ LC \ LC′ then pC and pC′ disagree on φ(x, bj). The “in particular” part
follows by completing to elements of Sx(M) and invoking Remark 6.1.2.

Hence, as promised, if φ has the order property, then there are many φ-
types. In fact, the converse is true, where “many” just means “more than the
bare minimum”. We will prove this by using the following combinatorial result.

Theorem 6.2.4 (Erdős–Makkai). Suppose B is infinite, and let F ⊆ P(B)
be a family of subsets of B of size |F| > |B|. For i ∈ ω, there are bi ∈ B and
Si ∈ F such that, either

1. for all i, j ∈ ω we have bi ∈ Sj ⇐⇒ j < i, or

2. for all i, j ∈ ω we have bi ∈ Sj ⇐⇒ i < j.

Proof. Since there are at most |B| pairs of finite subsets of B, we can build
F ′ ⊆ F with |F ′| = |B| satisfying:

for all finite B0, B1 ⊆ B, if there is S ∈ F with B0 ⊆ S and B1 ⊆ S∁, then
there is such an S in F ′.

Since there are at most |B| Boolean combinations of elements of F ′, there is
S∗ ∈ F which is not such a Boolean combination.

Build by induction (b′i)i<ω in S∗, (b′′i )i<ω in S∁
∗ , and (Si)i<ω in F ′ such that,

for all n ∈ ω,

(a) {b′0, . . . , b′n} ⊆ Sn,

(b) {b′′0 , . . . , b′′n} ⊆ S∁
n, and

(c) for all i < n we have b′n ∈ Si ⇐⇒ b′′n ∈ Si.

The base step is trivial. For the induction step:

Claim 6.2.5. There are b′n ∈ S∗ and b′′n ∈ S∁
∗ such that for all i < n we have

b′n ∈ Si ⇐⇒ b′′n ∈ Si.

Proof of the Claim. Suppose not, and fix b ∈ S∗. For every i < n, define Sbi to
be Si if b ∈ Si and S∁

i otherwise. Let Sb :=
⋂
i<n S

b
i . If there is c ∈ Sb ∩ S∁

∗ we
can take b′n := b and b′′n := c; since we are assuming these things do not exist,
we have Sb ⊆ S∗. Hence S∗ =

⋃
b∈S∗

Sb. But this union is finite, since there are
only 2n possibilities for Sb. So S∗ is a Boolean combination of the Si, against
choice of S∗.

claim

This gives us b′n, b′′n satisfying (c). By choice of F ′ there is Sn ∈ F ′ satis-
fying (a) and (b). By Ramsey’s Theorem, up to passing to an infinite I ⊆ ω,
either:

1. for all j < i we have b′i ∈ Sj , or

2. for all j < i we have b′i /∈ Sj .

In the first case, set bi := b′′i and obtain 1 from the conclusion. In the second
case obtain 2 by setting bi := b′i+1.
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Corollary 6.2.6. If |Sφ(B)| > |B| for some infinite B, then φ(x; y) has OP.

Proof. By Erdős–Makkai applied to the family of subsets of B

F := {{b ∈ B | φ(a, b)} | a ∈ U|x|}

which has the same size as Sφ(B) because whether ⊨ φ(a, b) only depends on
tpφ(a/B). Depending on cases 1 or 2 in the conclusion of Erdős–Makkai, we
get OP for either φ or φ∗, and conclude by Lemma 6.2.2.

Definition 6.2.7. Let κ be an infinite cardinal. A theory is κ-stable iff, for all
A with |A| = κ, we have |S1(A)| = κ. A theory is stable iff it is κ-stable for
some κ ≥ |L|.

Corollary 6.2.8. A theory is stable if and only if it is NOP.

Proof. Left to right is Proposition 6.2.3. As for right to left, by Corollary 6.2.6,
if T is NOP we have fφ,T (κ) = κ. But every p(x) ∈ Sx(A) is determined by the
collection, of its restrictions to instances of the various φ(x; y) ∈ L(∅), that is,
by the function mapping φ(x; y) 7→ p ↾ φ. Therefore, in a NOP theory we have
fT (κ) ≤ κ|L|. To conclude, choose your favourite κ ≥ |L| with the property
that κ|L| = κ, for example 2|L|.

For this reason, iff φ(x; y) is NOP, we will say that φ(x; y) is stable, and we
call φ(x; y) unstable iff it has OP.

6.3 Local ranks
As promised, we have shown that there are many types if and only if there

is a good reason for it. In fact, there are at least two more equivalently good
reasons to have many types, to which the rest of the chapter is devoted.

In this section, we look at a rank which will give us a “quantitative” version
of stability. The idea is the following. In the proof of Proposition 6.2.3, we
obtained many types by following the branches of a tree. For example, in DLO,
we can use instances of the formula φ(x; y) := x < y, which clearly has OP, to
build the tree in Figure 6.1. The children of each node partition their parent
into two classes,4 and we are able to complete branches to pairwise inconsistent
partial φ-types. The idea behind the rank we are about to introduce is to
measure the height of the tallest tree we can build this way.

Definition 6.3.1 (Shelah’s local 2-rank). Fix a partitioned formula φ(x; y).
We inductively define the rank of a small partial type5 θ(x) as follows.

• Rφ(θ(x)) ≥ 0 iff θ(x) is consistent, and Rφ(θ(x)) = −∞ otherwise.

• Rφ(θ(x)) ≥ n+ 1 iff there is b ∈ U|y| with

Rφ(θ(x) ∧ φ(x, b)) ≥ n and Rφ(θ(x) ∧ ¬φ(x, b)) ≥ n

• Rφ(θ(x)) = n iff Rφ(θ(x)) ≥ n and Rφ(θ(x)) ̸≥ n+ 1. Iff for all n ∈ ω we
have Rφ(θ(x)) ≥ n, we write Rφ(θ(x)) = ∞.

4By taking conjunctions. Of course x ≥ 1/4 does not imply x < 1/2.
5As usual, parameters are allowed.
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x = x

x ≥ 1
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x ≥ 1
4

x ≥ 3
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x ≥ 1
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Figure 6.1: A binary tree of instances of φ(x; y) := x < y and of its negation.

The following exercise, besides being a good way to get familiar with the
rank Rφ, is at the heart of the next section.

Exercise 6.3.2. If θ(x; y) is a formula, for all n ∈ ω, the set {y | Rφ(θ(x, y)) ≥
n} is definable.6

The fact that “Rφ gives us a quantitative version of stability” is made precise
in the statement below.

Proposition 6.3.3. φ(x; y) is stable if and only if Rφ(x = x) is finite.

Proof. If φ is unstable, use Remark 6.2.1 with I = [0, 1]. So both φ(x, b1/2) and
¬φ(x, b1/2) contain densely many ai. Keep splitting on the diadic rationals.

If Rφ(x = x) = ∞, then by compactness there is a tree of parameters
B = (bη | η ∈ 2<ω) such that for every η ∈ 2ω this set is consistent:

{φ(x; bη↾i) | η(i) = 0} ∪ {¬φ(x; bη↾i) | η(i) = 1}

Complete each to an element of Sφ(B), which therefore has size > |B|, then
invoke Corollary 6.2.6.

6.4 Definable types
Definition 6.4.1. Let φ(x; y) be a partitioned formula.

1. We say that p(x) ∈ Sφ(B) is A-definable iff there is ψ(y) ∈ L(A) such
that, for all b ∈ B,

φ(x; b) ∈ p ⇐⇒ ⊨ ψ(b)

2. We say that p(x) ∈ Sx(B) is A-definable iff every p ↾ φ is. We say that it
is definable iff it is B-definable.

6Hint: you just need to use induction and say that certain formulas are consistent.
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x = x

¬φ(x, b⟨⟩)

¬φ(x, b1)

¬φ(x, b11)φ(x, b11)

φ(x, b1)

¬φ(x, b10)φ(x, b10)

φ(x, b⟨⟩)

¬φ(x, b0)

¬φ(x, b01)φ(x, b01)

φ(x, b0)

¬φ(x, b00)φ(x, b00)

Figure 6.2: The same tree as in Figure 6.1, but with more general labels.

3. We say that φ-types are uniformly definable iff there is ψ(y; z) such that:
for every B with |B| ≥ 2, for every p ∈ Sφ(B), there is c ∈ B such that p
is defined by ψ(y; c).

Example 6.4.2. In DLO, examples of definable types are tp(+∞/Q) and
tp(0+/Q), while tp(

√
2/Q) is not definable.

Proposition 6.4.3. If φ(x; y) is stable, then φ-types are uniformly definable.

Proof. Let p ∈ Sφ(B). Define p0 = ∅ and, inductively, if there is pi+1 ⊆ p
obtained by adding only one formula to pi such that Rφ(pi+1) < Rφ(pi), choose
it. After at most Rφ(x = x) steps, we have to stop, say at pm. Because
Rφ(x = x) does not depend on p, modulo tricks (repeating parameters, case-
distinctions done with parameters,7 etc), such pm may be written as instances
of the same formula, uniformly across p. Use Exercise 6.3.2 to define

ψ(y) := “Rφ(pm(x) ∧ φ(x, y)) = Rφ(pm)”

Again, this ψ(y) has parameters which depend on p, but besides that it is
uniform in p. We show that ψ(y) defines p.

• If φ(x, b) ∈ p, then Rφ(pm(x) ∧ φ(x, b)) = Rφ(pm) by definition of pm.

• If ¬φ(x, b) ∈ p, then Rφ(pm(x) ∧ ¬φ(x, b)) = Rφ(pm(x)) again by defini-
tion of pm. But by definition of Rφ, then pm(x)∧φ(x, b) must have smaller
rank, otherwise Rφ(pm) would go up.

Let us put everything we know about stable formulas together.

Theorem 6.4.4. The following are equivalent for φ(x; y).

7This uses |B| ≥ 2; the trick is enlarging the tuple of parameter variables in order to write
things like (t = 0 ∧ (. . .)) ∨ (t = 1 ∧ (. . .)).
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(a) φ is NOP.

(b) Rφ(x = x) <∞.

(c) All φ-types are uniformly definable.

(d) All φ-types over models are definable.

(e) If M ⊨ T has size κ ≥ |L|, then |Sφ(M)| ≤ κ.

(f) There is κ ≥ |L| such that fφ,T (κ) < dedκ.

Proof. We already saw (a) ⇔ (b) and (f) ⇒ (a) ⇒ (c). But (c) ⇒ (d) is obvious
and (e) ⇒ (f) holds because κ < dedκ, so we are left with (d) ⇒ (e). Just
count defining formulas: there are at most κ+ |L| of them.

Before making a list of properties equivalent to stability of T , let us add an-
other one to the list. It says that “all externally definable subsets are definable”.

Definition 6.4.5. A set A is stably embedded iff, for all n ≥ 1 and all U-definable
sets X ⊆ Un, there is an A-definable Y such that X ∩An = Y ∩An.
Remark 6.4.6. Let X = φ(U, c) ⊆ Un. By spelling out definitions, we see that
there is an A-definable Y such that X ∩ An = Y ∩ An if and only if tpφ(c/A)
is definable. In particular, a theory is stable if and only if every set is stably
embedded.

Theorem 6.4.7. Let T be a complete theory. The following are equivalent.

1. T is NOP.

2. There are no (ci | i < ω) and φ with φ(ci, cj) ⇐⇒ i < j.

3. Every indiscernible sequence is totally indiscernible.

4. All types over models are definable.

5. Every A ⊆ U is stably embedded.

6. All formulas φ(x; y) with x a single variable are stable.

7. fT (κ) ≤ κ|L|.

8. ∃κ ≥ |L| fT (κ) = κ, that is, T is stable.

9. ∃κ ≥ |L| fT (κ) < dedκ.

Proof. We have already seen 1 ⇔ 2 ⇔ 3 in Proposition 5.5.29, while 1 ⇔ 4
follows from (a) ⇔ (d) in the previous theorem, and 1 ⇔ 5 is Remark 6.4.6.
Moreover, 1 ⇒ 6 is trivial, and 6 ⇒ 7 is due to the fact that by Remark 6.1.2
it does not matter if we count types in one or several variables. For 7 ⇒ 8 we
take κ = 2|L|. Finally, 8 ⇒ 9 because κ < dedκ, and 9 ⇒ 1 by (a) ⇔ (f) in the
previous theorem.

It is not enough to check definability of types on one model to get stability.
For example, all types over the ordered field R are uniformly definable [MS94],
but its theory is clearly unstable. Another instance of this phenomenon can be
found [Del89] in the field Qp. Anyway, this is also true for the reduct (R, <),
which you may prove as an exercise.

Exercise 6.4.8. In DLO, all φ-types over R are uniformly definable.



Chapter 7

Having very few models

7.1 Morley rank

Part of the idea behind Morley rank was hinted in Spoiler 4.3.11: the
“simplest” types we can find are the isolated ones, to which we want to assign
rank 0. Next, there are those types which are isolated amongst the nonisolated
one, which will have rank 1. Inductively, the types of rank n+1 are the isolated
ones amongst those of rank larger than n. In other words, we are looking at the
Cantor rank of the points of type space.

Anyway, Morley rank is not exactly this.1 The idea is that in Sx(A) there
may be types which are isolated “by mistake”, that is, because A does not have
“enough” parameters. For example, in ω-categorical countable theories, if A is
finite then every element of Sx(A) is isolated, yet we may have reasons to regard
some types over A as being, in a sense, “less” isolated than other types: for
instance, those realised in A will have a unique extension to any B ⊇ A, which
will still be isolated, while other types will have at least one extension in Sx(B)
which is not isolated (see Example 7.1.5). To fix this, the original approach
of Morley in [Mor65] was to look at preimages under all the restriction maps
Sx(B) → Sx(A), and only consider a point to be “really” isolated if all of its
extensions to B are isolated. Instead of doing this, we take advantage of the
fact that we are working in a monster model. In fact, we will first define Morley
rank for formulas, and obtain from it a definition for types.2

Definition 7.1.1. Let φ(x) ∈ L(U). Its Morley rank is either an ordinal, ∞,
or −∞, and is defined as follows.3

• rm(φ(x)) ≥ 0 iff φ(x) is consistent, and rm(φ(x)) = −∞ otherwise.

• rm(φ(x)) ≥ α + 1 iff there is a family {ψi(x) | i < ω} of pairwise incon-
sistent L(U)-formulas, each of which implies φ(x) and has rm(ψi(x)) ≥ α.

1Otherwise, we would have just called it “Cantor rank”, no?
2There are other possible ranks that one may put on type spaces, but not all of them make

sense on formulas.
3For some reason, Morley rank tends to be denoted by rm instead of mr. I suspect that

this is due to the abundance of literature on Morley rank written in French. If anyone has
more precise information, my email address is at page vi.
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• If λ is a limit ordinal, then rm(φ(x)) ≥ λ iff for all α < λ we have
rm(φ(x)) ≥ α.

• rm(φ(x)) = α iff rm(φ(x)) ≥ α and rm(φ(x)) ̸≥ α+ 1.

• Iff for all ordinals α we have rm(φ(x)) ≥ α, we write rm(φ(x)) = ∞.4

• Suppose that for some ordinal α we have rm(φ(x)) = α. We define the
Morley degree dm(φ(x)) as the maximum n ∈ ω such that there is a family
{ψi(x) | i < n} of pairwise inconsistent L(U)-formulas, each of which has
Morley rank α and implies φ(x).

• If p(x) ∈ Sx(A), its Morley rank is defined as

rm(p(x)) := min{rm(φ(x)) | φ(x) ∈ L(A), p(x) ⊢ φ(x)}

• Suppose that for some ordinal α we have rm(p(x)) = α. The Morley
degree of p(x) is defined as

dm(p(x)) := min{dm(φ(x)) | φ(x) ∈ L(A), p(x) ⊢ φ(x),rm(φ(x)) = α}

Note that, if p(x) ∈ Sx(A), in order to compute its Morley rank, we need to
look at formulas with parameters outside of A. All that is needed about U in
order for this to work is ω-saturation: that is, if M ⊇ A is ω-saturated, then we
may compute rm(p(x)) by replacing U by M in Definition 7.1.1.5 This follows
from the following exercises.

Exercise 7.1.2. Prove that, in the definition of rm(φ(x)) ≥ α + 1, instead of
requiring the existence of an infinite family of ψi, we may require the existence
of arbitrarily large finite families with the same properties.

Exercise 7.1.3. Let φ(x; y) ∈ L(∅). Prove that, if a, b ∈ U|y| and tp(a/∅) =
tp(b/∅), then rm(φ(x; a)) = rm(φ(x; b)) and dm(φ(x; a)) = dm(φ(x; b)). In
particular, if we change the parameters in a formula or type along an elementary
map, Morley rank and degree do not change.

The definition of Morley rank we gave above may seem a bit removed from
the introductory explanation in terms of isolated points. It is not. This is due to
the following exercise, together with the fact that finite subspaces of Hausdorff
spaces are discrete.

Exercise 7.1.4. If rm(φ(x)∨ψ(x)) ≥ α, then rm(φ(x)) ≥ α or rm(ψ(x)) ≥ α.

Example 7.1.5. Let T be the theory of a generic equivalence relation; we
looked at its types in Section 4.3.5. For every A, the realised types in S1(A)
have Morley rank 0, generic types of equivalence classes represented in A have
Morley rank 1, and the generic type over A has Morley rank 2. In this theory,
we can also see that Morley rank may be different from Cantor rank. It is easy
to see that T is ω-categorical, hence, if A is finite, then every point of S1(A) is
isolated, hence has Cantor rank 0.

4Some authors prefer to say that, in this case, rm(φ(x)) does not exist.
5It follows from this fact that, ifM is ω-saturated, then the Morley rank of every p ∈ Sx(M)

equals its Cantor rank, and that having no type of rank ∞ over any A is the same as every
Sx(A) not containing a perfect set.
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Example 7.1.6. Let T be the theory of an equivalence relation with exactly
n equivalence classes, all infinite. Then the formula x = x, with |x| = 1 (hence
the unique element of S1(∅)), has Morley rank 1 and Morley degree n.

Exercise 7.1.7. Let |x| = 1. For which cardinals κ, in the theory of κ generic
equivalence relations, rm(x = x) is an ordinal?

Exercise 7.1.8. Let |x| = 1. Compute rm(x = x) in T2ω .

Exercise 7.1.9. Show that, in DLO, we have rm(x = x) = ∞.

Proposition 7.1.10.

1. If q(x) ⊇ p(x), then rm(q(x)) ≤ rm(p(x)), and if equality holds and
rm(p(x)) is an ordinal then dm(q(x)) ≤ dm(p(x)).

2. Let p(x) ∈ Sx(A) and α an ordinal. If rm(p) = α, then there is a finite
A0 ⊆ A such that rm(p ↾ A0) = α.

3. If p(x) ∈ Sx(A) has ordinal Morley rank and B ⊇ A, then there is q(x) ∈
Sx(B) with q(x) ⊇ p(x) and rm(p(x)) = rm(q(x)).

Proof. The first point is immediate from the definition of Morley rank. For the
second one, if rm(p(x)) = α, then this is witnessed by a formula φ(x) ∈ L(A).
If A0 is the set of parameters appearing in φ(x), clearly rm(p ↾ A0) ≤ α. But
(p ↾ A0) ⊆ p, so we conclude by the previous point. The last point will be
proven once we show that this set of formulas is consistent

p(x) ∪ {¬φ(x) | φ(x) ∈ L(B),rm(φ(x)) < rm(p(x))}

If not, then by compactness there are ψ(x) ∈ p(x) and φi(x) ∈ L(B) with
rm(φi(x)) < rm(p(x)) such that ψ(x) ⊢

∨
i<n φi(x). But rm(ψ(x)) ≥ rm(p(x))

by definition, hence by Exercise 7.1.4 there is i < n such that rmφi(x) ≥
rm p(x), a contradiction.

Observe that, contrary to what happens in the first point of the proposition
above, if p(x) ∈ Sx(A), q(x, y) ∈ Sxy(A), and p(x) ⊆ q(x, y), then rm(q) ≥
rm(p). The point is that when we regard the formulas of p as formulas in (x, y),
we are working in a larger space, c.f. Remark 0.2.12.

Exercise 7.1.11. Let α be an ordinal. Then rm(φ(x)) = α if and only if the
set below is finite and nonempty.

{p(x) ∈ [φ(x)] ⊆ Sx(U) | rm(p(x)) ≥ α}

Moreover, if this is the case, then the cardinality of the set above equals dm(p).

Lemma 7.1.12. If the Morley rank of a formula, or type, is at least (|L| +
|S<ω(∅)|)+, then it is automatically ∞.

Proof. By Exercise 7.1.3, the number of possible ranks is at most |L|+ |S<ω(∅)|.
But the definition of Morley rank, together with a tiny bit of transfinite induc-
tion, shows that if α < β are ordinals and there is a formula of Morley rank β,
then there is one of Morley rank α. Therefore, there is no gap in the possible
ordinal Morley ranks, the conclusion for formulas follows, and so does that for
types.
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Here is a standard application of Morley rank; we will see some of its con-
sequences in Chapter 8.

Remark 7.1.13. Suppose that G is a definable group, that is, a definable set
together with definable functions · : G2 → G and −1 : G → G making it into a
group. If rm(G) is an ordinal, then G has the descending chain condition on
definable subgroups. In fact, if H < G has infinite index, by looking at the
cosets of H we realise that H must have lower Morley rank than G. Similarly,
if H has finite index, it must have lower Morley degree. An infinite descending
chain of proper subgroups would therefore yield an infinite descending sequence
of pairs (α, n), with α an ordinal and n ∈ ω, ordered lexicographically, which is
utter nonsense.

7.2 Totally transcendental theories and prime mod-
els

We will see in this section that theories where all types have ordinal Morley
rank are very stable, and have prime models over every set. So they clearly
have a right to a special name.

Definition 7.2.1. We call T totally transcendental iff there is no φ(x) with
rm(φ(x)) = ∞.

Equivalently, T is totally transcendental if and only if every type has ordinal
Morley rank.

Theorem 7.2.2. Let T be totally transcendental. The following hold.

1. T is κ-stable for every κ ≥ |L|.

2. If p(x) ∈ [φ(x)] is of minimal Morley rank amongst the points of [φ(x)],
then p(x) is isolated. In particular, over every A the isolated types are
dense, hence T has prime models over every set.

Proof. Fix p(x) ∈ Sx(A). By assumption, there are φ(x) ∈ p(x) and an ordinal α
such that rm(p(x)) = rm(φ(x)) = α. By Exercise 7.1.11, there are only finitely
many types in Sx(U) of rank α containing φ(x), hence, by taking restrictions,
there are only finitely many types in Sx(A) of rank α containing φ(x), say
p(x) = p0(x), . . . , pm(x). Finite subspaces of Hausdorff spaces are discrete, so
we can find ψp(x) which implies φ(x) and such that p(x) is the only element
of [ψp(x)] of rank α. By definition of rm(p), we must have rm(ψp(x)) = α.
By construction, using the fact that the types in [ψp] have rank at most α, the
map p(x) 7→ ψp(x) is injective, but ψp(x) is an L(A)-formula, which can only
be chosen in |L|+ |A| ways, proving the first part of the conclusion.

For the second one, let p(x) ∈ [φ(x)] have minimal Morley rank amongst the
points of [φ(x)] ⊆ Sx(A). Since T is totally transcendental, the Morley rank
of φ(x), hence also that of p(x), is an ordinal, so we may consider the formula
ψp(x) constructed above. Therefore, p(x) is the only element of [ψp(x)] of rank
α. Because α was the minimal rank of points of [φ(x)], and [ψp(x)] ⊆ [φ(x)], it
follows that [ψp(x)] isolates p(x), and we conclude by Theorem 5.3.11.
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Corollary 7.2.3. T is totally transcendental if and only if, whenever L0 ⊆ L
is countable, the restriction of T to L0 is ω-stable. In particular, if |L| = ℵ0,
the following are equivalent.

1. T is totally transcendental.

2. T is κ-stable for all κ.

3. T is ω-stable.

Proof. The only thing we still need to prove is right to left: since the Morley
rank of a formula can only go down if we pass to a reduct, Theorem 7.2.2 will
then supply us with left to right, and with the “in particular” statement.

By Lemma 7.1.12 there is an ordinal α such that

rm(φ(x)) ≥ α =⇒ rm(φ(x)) ≥ α+ 1 (7.1)

If T is not totally transcendental, then there is some φ(x) with rm(φ(x)) = ∞,
and (7.1) allows us to carry out the following construction. Because rm(φ(x)) ≥
α + 1, we can find φ0(x) and φ1(x), both of Morley rank ≥ α, both implying
φ(x), and with φ(x)0 ∧ φ1(x) inconsistent. But by (7.1), we can iterate this
construction, building a binary tree akin to that of Figure 6.2, except it will
be labelled with formulas which are not necessarily all instances of the same
partitioned formula. The set A of parameters appearing in these formulas is
clearly countable, and so is the sublanguage L0 ⊆ L consisting of the symbols
appearing in the tree. As all complete binary trees of infinite height worth their
salt, our tree has 2ℵ0 branches, which we may complete to pairwise distinct
elements of SL0

x (A), proving that T ↾ L0 is not ω-stable.

Definition 7.2.4. Let β be an ordinal, and (Ai)i<β be a chain of subsets
indexed on β, that is, if i < j < β then Ai ⊆ Aj . We call the chain continuous
iff, whenever λ < β is limit, we have Aλ :=

⋃
i<λAi.

Lemma 7.2.5. Let T be totally transcendental and (Ai)i<β be a chain.

1. Suppose that pi ∈ Sx(Ai), and that if i < j then pi ⊆ pj . Then, the Morley
rank and degree of pi are eventually constant. Moreover,

⋃
i<β pi(x) ∈

Sx(
⋃
i<β Ai) has Morley rank and degree equal to eventual rank and degree

of the pi.

2. If p0(x) ∈ Sx(A0) is isolated, then there are isolated pi ∈ Sx(Ai) such that
if i < j then pi ⊆ pj .

Proof. The first part is immediate from Proposition 7.1.10. For the second part,
we inductively build the sequence of the pi, ensuring that pi has minimal Morley
rank amongst the types that, for every j < i, restrict to pj , and show that such
a sequence works. If π : Sx(Ai+1) → Sx(Ai) is the natural projection, since
pi is isolated π−1({pi}) is open nonempty; we take as pi+1 a type of minimal
Morley rank in π−1({pi}), which is isolated by Theorem 7.2.2. For the limit
step, up to adding some extra Ai, we may assume our chain to be continuous.
Moreover, by the first part, up to trimming the sequence we may assume that
the Morley rank of the pi built so far is constantly α. Let pλ :=

⋃
i<λ pi, and

let π : Sx(Aλ) → Sx(Ai) be the natural projection. Again, each π−1({pi}) is
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open, and it contains pλ by definition, so by Theorem 7.2.2 it is enough to show
that pλ is of minimal Morley rank in π−1({pi}). If not, then there is some
nonempty [ψ(x)] ⊆ π−1({pi}) with rm(ψ(x)) < α. Let j be such that i < j < λ
and ψ(x) ∈ L(Aj). If πj : Sx(Aj) → Sx(Ai) is the natural projection, then,
regarding now [ψ(x)] as a subset of Sx(Aj), we have [ψ(x)] ⊆ π−1

j ({pi}). This
contradicts minimality of the Morley rank of pj .

Proposition 7.2.6. Let T be totally transcendental, and (Ai)i<β be a continu-
ous chain. Then there is a continuous chain (Mi)i<β of models of T such that
each Mi is prime over Ai.

Proof. We build Mi ⊇ Ai by induction on i, ensuring the following property:
for every i < j, and every model N , every elementary map AjMi → N can be
extended to an elementary map AjMi+1 → N . Using a “only forth” argument,
together with continuity of the chain (Mi)i<β , this ensures that each Mj is
indeed prime over Aj .

Start with a model M0 prime over A0, which exists by Theorem 7.2.2. If
we want continuity, we have no choice but to take unions at limit stages, so we
only need to take care successor steps.

List the isolated points of S1(Ai+1Mi) as (pk | k < µ), for a suitable cardinal
µ, and use Lemma 7.2.5 to find a chain (p0,ℓ | i < ℓ < β) starting with p0,i+1 =
p0 and made of isolated types p0,ℓ ∈ S1(AℓMi). We set q0 :=

⋃
ℓ<β p0,ℓ, choose

a0 ⊨ q0, and inductively build (ak | k < µ) such that

for every j with i < j < β the type tp(ak/AjMia<k) is isolated (7.2)

In order to do this, inductively, extend pk to an isolated p′k ∈ S1(Ai+1Mia<k),
similarly as in the proof of Theorem 5.3.11, then find qk obtained from p′k via
Lemma 7.2.5 similarly as q0 was obtained from p0, that is, as a union of a chain
of isolated types p′k,ℓ ∈ S1(AℓMia<k). Finally, choose ak ⊨ qk. Again as in the
proof of Theorem 5.3.11, we iterate this ω times, building (ak | k < µ ·ω) which
still satisfies (7.2), and such that Mi+1 := Mi{ak | k < µ · ω} is the required
model.

7.3 Countable ω-stable theories
The results in this section are the last technical steps towards proving Mor-

ley’s Theorem. Hence, from now on we will work in a countable L. By Corol-
lary 7.2.3, we may then say “ω-stable” instead of “totally transcendental”.

Theorem 7.3.1. Let L be countable and T be ω-stable. Suppose that A ⊆ C,
that κ := |C| is a regular uncountable cardinal, and that |A| < κ. Then C
contains a totally A-indiscernible nonconstant sequence of length κ.

Proof. Let F be the family of all pairs (B, p) such that

1. A ⊆ B ⊆ C,

2. |B| < κ,

3. p ∈ S1(B), and

4. p has κ realisations in C.
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By Corollary 7.2.3 |B| < κ implies |S1(B)| < κ, and since κ > |B| is regular
there must be κ elements of C with the same type over B, proving that F is
nonempty. Let (B0, p0) be an element of F such that the pair (rm(p0),dm(p0))
is minimal in the lexicographical order.

Claim 7.3.2. For every B with |B| < κ and B0 ⊆ B ⊆ C, there is a unique
pB ∈ S1(B) such that

• pB ⊇ p0, and

• (rm(pB),dm(pB)) = (rm(p0),dm(p0)).

Moreover this pB satisfies (B, pB) ∈ F .

Proof of the Claim. Let (r, n) := (rm(p0),dm(p0)). Consider the closed subset
[p0] ⊆ S1(B). Again by Corollary 7.2.3, it has size < κ, hence by regularity
of κ it must contain some pB which is realised κ times in C, so (B, pB) ∈ F .
By definition, we have pB ⊇ p0, and we are left to show that pB is the unique
p ∈ [p0] with (rm(p),dm(p)) = (r, n). Note that ≤ holds for every p ∈ [p0]
by Proposition 7.1.10, and in particular for pB . But (B, pB) ∈ F , hence by
minimality of (rm(p0),dm(p0)) we must have equality. Fix φ(x) ∈ p0(x) of
rank and degree (r, n), and suppose there is another p ̸= pB in [p0] with rank
and degree (r, n). Since p ̸= pB , there are L(B)-formulas separating them,
which, up to taking conjunctions, we may assume to imply φ(x) and to have
rank and degree (r, n). This implies that dm(φ(x)) ≥ 2n, a contradiction.

claim

Now build a κ-sequence aκ as follows. Start by choosing a0 ∈ C such that
a0 ⊨ p0. Inductively, define Bi := B0 ∪ {aj | j < i}, and set pi to be the type
pBi

given by the claim. Since (Bi, pi) ∈ F , there are κ realisations of pi in C;
set ai to be any such realisation not in B0a<i.

If we prove that aκ is B0-indiscernible, we are done: it will in particular be
A-indiscernible, and totally so by stability and Proposition 5.5.29. Hence we
prove by induction on n that if i0 < . . . < in and j0 < . . . < jn are ordinals in
κ, then ai0 , . . . , ain ≡B0

aj0 , . . . , ajn . All elements of aκ have the same 1-type,
namely p0, giving us the case n = 0 of the induction. Moreover, if i < j, since
pj ⊇ (pj ↾ Bi) ⊇ p0, we have that (pj ↾ Bi) still has rank and degree equal to
(r, n), by the “uniqueness” part in the claim it must equal pi; in other words,
pj ⊇ pi. Set B := B0ai0 , . . . , ain and B′ := B0aj0 , . . . , ajn . By construction,
ain+1

(respectively, ajn+1
) realises the unique pB (respectively, pB′) given by the

claim. By inductive hypothesis, the map f : B → B′ fixing B0 pointwise and
sending aiℓ to ajℓ is elementary. If we change the parameters in pB according
to f , by Exercise 7.1.3 we obtain a type over B′ of the same Morley rank and
degree, which still extends p0 because f ↾ B0 = idB0 ; by the Claim, this type
must be pB′ , and we are done.

Corollary 7.3.3. If we are in the assumptions of Theorem 7.3.1, except κ
is possibly not regular, then for every µ < κ the set C contains a totally A-
indiscernible nonconstant sequence of length µ.

Proof. Successor infinite cardinals are regular and cofinal in every singular car-
dinal.
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Corollary 7.3.4. Let L be countable and T be ω-stable. Suppose there is
N ⊨ T with |N | > ℵ0 which is not saturated. Then there are M ⪯ N with
|M | = ℵ0 and A ⊆M such that

1. M \A contains a (totally) A-indiscernible nonconstant sequence aω, and

2. some q(x) ∈ S1(A) is omitted in M .

Proof. If N is not saturated, there must be B ⊆ N with |B| < |N | and some
p(x) ∈ S1(B) omitted in N . Use Corollary 7.3.3 to get a B-indiscernible non-
constant sequence aω, indexed on ω, in N \B. By Löwenheim–Skolem there is a
countable M0 with aω ⊆M0 ⪯ N . Clearly, M0 still omits p(x), hence for every
m ∈M0 there is φm(x) ∈ p(x) such that m ⊨ ¬φm(x). If we collect all the para-
meters of the φm(x) in a (countable) subset A1 of B, then by construction no
m ∈ M0 realises p ↾ A1. Take a countable M1 ⪯ N with M1 ⊇ M0A1. Repeat
this construction ω times, obtaining chains (Mi)i<ω of models and (Ai)i<ω of
sets such that Ai ⊆ Mi ∩ B and Mi omits p ↾ Ai+1. Take M :=

⋃
i<ωMi and

A :=
⋃
i<ω Ai. By construction q(x) := p(x) ↾ A is omitted in M . Moreover,

aω ⊆ M0 ⊆ M ; since A ⊆ B, and aω is B-indiscernible, it is in particular
A-indiscernible, and by construction aω ∩A ⊆ aω ∩B = ∅.

Proposition 7.3.5. If |L| = ℵ0 and T is ω-stable, then for every κ > ℵ0 there
is an ℵ1-saturated model of size κ.

Proof. By Corollary 7.2.3 T is κ-stable. Hence we can start with any M0 of size
κ, and build a continuous elementary chain (Mi | i < ω1) such that each Mi+1

has size κ and realises all types over Mi. Then we just take the union of this
chain, and use regularity of ω1 to prove ℵ1-saturation.

7.4 Morley’s Theorem
We put the pieces together and prove that if |L| = ℵ0, then a theory is

κ-categorical for every uncountable κ if and only if it is κ-categorical for some
uncountable κ. Of course, the fact that we introduced Morley rank in this
chapter is not a coincidence.

Proposition 7.4.1. If |L| = ℵ0 < κ and T is κ-categorical, then T is ω-stable.

Proof. Otherwise there is a countable A such that S1(A) is uncountable, hence
we may find B ⊇ A of size ℵ1 whose elements have pairwise distinct types
over A. By Löwenheim–Skolem, there is N ⊇ B of size κ. On the other hand,
applying Theorem 5.5.23 to TA gives us an M ⊇ A of size κ which realises at
most ℵ0 types over A, and which cannot therefore be isomorphic to N .

Theorem 7.4.2. Suppose that |L| = ℵ0 and T is ω-stable. If there is an
uncountable model which is not saturated, then for every κ > ℵ0 there is a
model of size κ which is not ℵ1-saturated.

Proof. Let M , A, aω and q(x) ∈ S1(A) be given by Corollary 7.3.4. Using
the Standard Lemma and an automorphism in Aut(U/A), we may extend aω

to a (totally) A-indiscernible sequence aκ. For each i < κ, set Ai := Aa<i.
Clearly, the Ai form a continuous chain, hence by Proposition 7.2.6 there is a
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continuous chain (Mi)i<κ of models of T such that each Mi is prime over Ai.
Since Mκ :=

⋃
i<κMi has size κ, if we prove that Mκ omits q(x), which is over

the countable set A, then it cannot be ℵ1-saturated.
Of course, it is enough to prove by induction on i that every Mi omits q(x).

Recall that Mi is prime over Ai = Aa<i. For i < ω, since M ⊇ Aa<i omits
q, so does Mi, by primality. At limit stages the conclusion is obvious from the
inductive hypothesis, so we only need to show that if i ≥ ω and Mi omits q then
so does Mi+1. Since aκ is totally A-indiscernible, and i ≥ ω, we may extend idA
to an elementary map sending a≤i to a<i. This induces an embedding of Mi+1

into Mi, hence, if Mi+1 realises q(x), then so does Mi.

Theorem 7.4.3. Let L be countable and κ > ℵ0. If T is κ-categorical, then
every uncountable model of T is saturated. In particular, T is κ-categorical for
some uncountable κ if and only if T is κ-categorical for every uncountable κ.

Proof. By Proposition 7.4.1 T is ω-stable, hence if the conclusion fails, by The-
orem 7.4.2 there is model of size κ which is not ℵ1-saturated. By Proposi-
tion 7.3.5 T has an ℵ1-saturated model of size κ, contradicting κ-categoricity.
The “in particular” part is then immediate from Theorem 4.5.4.





Chapter 8

A taste of definable groups

Fix, as usual, a complete T and a monster U ⊨ T . As we saw in Re-
mark 7.1.13, a definable group is nothing but a definable set G, together with
definable functions · : G2 → G and −1 : G → G making it into a group. For
example, if T is the complete theory of a field K, then usual matrix groups such
as GLn, SLn, etc are definable groups.

In this chapter, we will develop some basics of the theory of definable groups
in ω-stable theories, and use these techniques to prove Macintyre’s Theorem,
that the only infinite totally transcendental fields are the algebraically closed
ones. In order to do this, we will need to develop some further model-theoretic
tools. But first, let us see what we can immediately harvest from the descending
chain condition.

8.1 Consequences of the descending chain condi-
tion

By Remark 7.1.13, if G is a definable group of ordinal Morley rank, then it
satisfies the dcc on definable subgroups. This has a lot of consequences.

Proposition 8.1.1. Let G be a definable group with the dcc on definable
subgroups. The following facts hold.

1. Every definable injective homomorphism G→ G is surjective.

2. If {Hi | i ∈ I} is a family of definable subgroups, then there is a finite
I0 ⊆ I such that

⋂
i∈I Hi =

⋂
i∈I0 Hi.

3. The centraliser of any (not necessarily definable) A ⊆ G(U) is definable.

Proof. 1. Any counterexample f : G → G yields a violation of the dcc by
considering G ⊋ f(G) ⊋ f2(G) ⊋ . . .

2. Otherwise there is an infinite sequence (in)n∈ω such that
⋂
j<nHij ⊋⋂

j<n+1Hij , again violating the dcc.

3. The centraliser of a single element a is definable by the formula x·a = a·x.
Apply the previous point to the family of centralisers of elements of A.

107
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This has an important consequence on stabilisers of types under a certain
natural action. Before stating it, let us introduce some commonly used notation.

Notation 8.1.2. If X is a definable set, say defined by φ(x), we write SX(A)
for the subspace [φ(x)] of Sx(A).

Definition 8.1.3. For p ∈ SG(M) and g ∈ G(M), we define g · p := {φ(x) ∈
L(M) | φ(g ·x) ∈ p(x)}. The stabiliser of p is Stab(p) := {g ∈ G(M) | g ·p = p}.

In other words, a ⊨ p if and only if g · a ⊨ g · p. Of course, this is the
left stabiliser, and everything we are going to say also goes through, mutatis
mutandis, for the right stabiliser, whose definition is left to the reader.

Remark 8.1.4. Recall that a type p(x) ∈ Sx(A) is definable iff for every φ(x; y)
the set {b ∈ A | φ(x; b) ∈ p(x)} equals the set of solutions in A of some
ψ(y) ∈ L(A). If A = M is a model,1 and ψ0(y), ψ1(y) ∈ L(M) are as above,
then ψ0 and ψ1 define the same subset of M |y|, and since M is a model this
implies ⊨ ∀y ψ0(y) ↔ ψ1(y).

Notation 8.1.5. If A = M is a model and p ∈ Sx(M) is a definable type, we
denote such a ψ(y) with (dpφ)(y).

Theorem 8.1.6. Let G be a definable group in a totally transcendental T . For
every p ∈ SG(M), the stabiliser Stab(p) is definable.

Proof. Define

Stabφ(p) :=
{
g ∈ G(M)

∣∣ ∀h ∈ G(M)
(
φ(h · x) ∈ p(x) ⇐⇒ φ(h · g · x) ∈ p(x)

)}
It is easy to show that Stab(p) =

⋂
φ(x)∈p(x) Stab

φ(p); therefore, by total tran-
scendence and Proposition 8.1.1, it is enough to show that every Stabφ(p) is a
definable subgroup. The proof that it is a subgroup is again easy2; as for defin-
ability, recall that totally transcendental theories are stable, hence the type p(x)
is definable. If ψ(x; y) is the formula φ(y ·x), consider (dpψ)(y); by definition, if
h ∈ G(M), then ⊨ dpψ(h) ⇐⇒ φ(h · x) ∈ p(x). Therefore, Stabφ(p) is defined
by the formula θ(y) := ∀z (dpψ(z) ↔ dpψ(z · y)).

8.2 Interpretability
Some constructions, e.g. projective space,3 are usually carried out by using

quotients. When considering “definable quotients”, we speak of interpretable
sets: a set is interpretable iff it is the quotient of a definable set by a definable
equivalence relation. We can also speak of interpretable structures.

Definition 8.2.1. Let M0 be an L0-structure and M1 be an L1-structure. We
say that M1 is interpretable in M0 iff there are

1. some n and some L0-definable X ⊆Mn
0

2. an L0-definable equivalence relation E on X
1Without this assumption, the conclusion is in general false.
2Hint: use that the definition requires something to happen for all h ∈ G(M).
3. . . which by the way, since we are talking about groups, is where elliptic curves live,. . .
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3. for every s ∈ L1, an L0-definable Xs in some Mn·ms
0 , for a suitable ms,4

such that every Xs is E-equivariant and X/E, with the L1-structure induced
by the Xs, is isomorphic to M1.

It is possible to lift this to the level of theories. It is also possible to define
a structure, called M eq, and best viewed as a structure in multi-sorted logic,
such that interpretability in M is the same as definability in M eq. But we do
not have much time left, so I will refer you to the literature for that, and leave
you with these two exercises we will need later.

Exercise 8.2.2. Let K be a field, and F an algebraic extension of K with
dim(F/K) finite. Then F is interpretable in K.

Exercise 8.2.3. If Th(M) is totally transcendental (resp. stable) and M inter-
prets N , then Th(N) is totally transcendental (resp. stable).

8.3 Some forking calculus in disguise
In a longer course, this chapter would have come only after another one

developing the theory of forking in stable theories. Given the name of this
chapter, forking will only be served as an appetiser, but you should be aware
that it is a crucial tool in the analysis of stable theories and its applications, that
it allows to define an independence relation, known as nonforking independence,
and that in this section you are learning something about it, although only in
special cases, and without even seeing its definition.5

Notation 8.3.1. Write rm(a/A) for rm(tp(a/A)).

Proposition 8.3.2. If a ∈ acl(Ab) then rm(ab/A) = rm(b/A).

Proof. The inequality ≥ is easy to prove, and does not even need the assumption
a ∈ acl(Ab). For the other inequality, let α := rm(b/A), and start by choosing
some φ(x, y) ∈ tpxy(ab/A) witnessing a ∈ acl(Ab). Up to adding conjuncts to
φ, we may further assume that

1. rm(∃x φ(x, y)) = α (just take a conjunction with a formula in y of rank
α from tp(b/A)), and

2. every φ(x, b′) has finitely many solutions (just take a conjunction with a
suitable ∃≤nt φ(t, y); this conjunction is still in tp(b/A), and it cannot
lower the Morley rank above, which is already minimum by definition of
Morley rank of a type).

We prove that rm(φ(x, y)) ≤ α. By Exercise 7.1.11, it is enough to show that
the following subset of Sxy(U) is finite

[φ(x, y)] ∩
⋂

rm(ψ(x,y))<α

[¬ψ(x, y)]

4It depends on whether s is a constant, function, or relation symbol, and on its arity. I have
not written precisely who ms is, but it should be clear if you read the rest of the definition.

5Ok, I guess I should at least say that in a totally transcendental theory, if A ⊆ B, then
q ∈ Sx(B) is a nonforking extension of p ∈ Sx(A) if and only if q ⊇ p and rm(q) = rm(p).
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We prove finiteness of the larger set

[Φ(x, y)] := [φ(x, y)] ∩
⋂

rm(ψ(y))<α

[¬ψ(y)]

Let [Ψ(y)] be6 the projection of [Φ(x, y)] to Sy(U), and note that [Ψ(y)] ⊆
[∃x φ(x, y)]. By definition of [Φ(x, y)], the set [Ψ(y)] ⊆ Sy(U) only contains
types of Morley rank at least α. Again by Exercise 7.1.11, the fact that
rm(∃x φ(x, y)) = α implies that [Ψ(y)] is finite. Moreover, since every φ(x, b′)
is finite, so is [Ψ(y)] ∩ [φ(x, y)] ⊆ Sxy(U). But this set contains [Φ(x, y)].

This has the following important consequence. Note that the case of defin-
able bijections is almost immediate from the definition of Morley rank.

Exercise 8.3.3. If X,Y are definable sets and f : X(U) → Y (U) is a definable
finite-to-one7 function, then rm(X) = rm(Y ).

By now you are probably convinced that a definable subset of M |x|, say a
∅-definable one, is not “really” a subset of M |x|, but rather the equivalence class
modulo ed(M) of a formula defining it; surely we can look at the set it defines
in M , but we may also look at the set it defines in elementary extensions (see
also Footnote 16 at page 11).

It turns out that something similar is true of definable types: after all, they
are defined through definable sets, so why can’t we just evaluate that definable
set in an elementary extension and see what happens? This allows us to get a
canonical extension to bigger parameter sets, defined as follows.

Definition 8.3.4. Let B ⊇ M , and let p ∈ Sx(M) be a definable type. We
define p | B as

(p | B)(x) := {φ(x; b) | φ(x; y) ∈ L, b ∈ B|y|, b ⊨ (dpφ)(y)}

Exercise 8.3.5. 1. Check that (p | B) ∈ Sx(B) and (p | B) ⊇ p.

2. Check that whether p ∈ Sx(M) is definable does not depend on whether
we work on T or in ed(M). In particular, in the definition of p | B, we
may equivalently take φ(x; y) ∈ L(M) instead of φ(x; y) ∈ L.

Proposition 8.3.6 (Forking symmetry over models). Suppose that T is stable
and p(x), q(y) ∈ S(M). If a ⊨ p(x) and b ⊨ q(y) |Ma, then a ⊨ p(y) |Mb.

Proof. Start with a0 := a ⊨ p(x) and b0 := b ⊨ (q | Ma)(y), and inductively
choose ai+1 ⊨ p | Ma≤ib≤i and bi+1 ⊨ q | Ma≤i+1b≤i. Note immediately that,
by construction, both b0 and b1 realise q |Ma0, hence for every φ(x, y) ∈ L(M)

⊨ φ(a0, b0) ⇐⇒ ⊨ φ(a0, b1) (8.1)

Claim 8.3.7. The sequence of |a|+ |b|-tuples (aibi)i<ω is M -indiscernible.
6Note that Ψ(y) is still a closed set. You can prove this syntactically, or by recalling that

continuous functions from a compact to an Hausdorff space are closed.
7You may wonder whether the size of the fibers needs to be uniformly bounded. That is

why I have written X(U) and not just X (compactness!).
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Proof of the Claim. By definition, for i < 2 ≤ n we have an ⊨ φ(x, aibi) ⇐⇒
⊨ (dpφ)(aibi). By (8.1) we have a0b0 ≡M a0b1. From this, the choice of b1,
and the fact that by construction a0 ≡M a1, it follows that a0b0 ≡M a1b1.
Hence ⊨ (dpφ)(a0b0) ⇐⇒ ⊨ (dpφ)(a1b1), so a0b0an ≡M a1b1an. By a similar
argument, a0b0anbn ≡M a1b1anbn. From here it is a matter of induction and
not getting the indices wrong.

claim

By the claim and stability, (aibi)i<ω is totally M -indiscernible, and in par-
ticular a0b0a1b1 ≡M a1b1a0b0. From this and the fact that, by construction,
a1 ⊨ p | Mb0, it follows that a0 ⊨ p | Mb1. By Exercise 8.3.5, for every
φ(x, y) ∈ L(M) we have ⊨ φ(a0, b1) ⇐⇒ ⊨ (dpφ)(b1), and because b1 and
b0 both realise q, and dpφ ∈ L(M), we have ⊨ (dpφ)(b1) ⇐⇒ ⊨ (dpφ)(b0).
Hence ⊨ φ(a0, b1) ⇐⇒ ⊨ (dpφ)(b0), which together with (8.1) gives us the
conclusion.

Exercise 8.3.8. Let M be ω-saturated. If p ∈ Sx(M) and B ⊇ M , then
rm(p | B) = rm(p).

Remark 8.3.9. In fact, in the previous exercise the saturation assumption is
not necessary. One can prove the conclusion just assuming that M is a model,
but the proof gets more involved/requires developing a bit more forking calculus.
For this reason, below we state a lot of things only for ω-saturated M (it will
anyway suffice for our purposes), but be aware that this assumption can be
dropped as soon as you know how to drop it from Exercise 8.3.8.

8.4 The connected component

Definition 8.4.1. Let G be a definable group. The connected component G0(U)
is the intersection of all U-definable subgroups of G(U) of finite index. We say
that G is connected iff G(U) = G0(U).

In general, there can be infinitely many finite index definable subgroups of
G, hence G0 is not guaranteed to be of finite index, nor to be definable.

Proposition 8.4.2. Let G be a definable group.

1. G0(U) is normal; in fact, it is definably characteristic, that is, it is fixed
setwise by every definable automorphism of G(U).

2. If G has the dcc on definable subgroups, then G0(U) has itself finite index,
and is ∅-definable.

Proof. Clearly, every definable automorphism (and in particular every conjug-
ation!) induces a permutation of the definable finite index subgroups of G(U);
since G0(U) is their intersection, it must be fixed setwise, proving the first part.
For the second part, Proposition 8.1.1 allows us to write G0(U) as a finite inter-
section of finite index, definable groups. This immediately tells us that G0(U)
is definable, and of finite index. To prove it is ∅-definable, by Proposition 4.7.4
we only need to show that every f ∈ Aut(U/∅) fixes G0(U) setwise. But every
such f , as in the case of definable automorphisms, induces a permutation of the
definable finite index subgroups of G(U), and we conclude as above.
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Remark 8.4.3. If G0(U) is ∅-definable, then G(U) = G0(U) if and only if
for some/all M ⊨ T we have G(M) = G0(M), where the latter denotes the
intersection of all M -definable finite index subgroups of G(M).

If T is totally transcendental, then by Theorem 8.1.6 stabilisers of types are
definable, and by the previous proposition so is G0. We may therefore compute
their Morley ranks and compare them. We will make use of the following fact.

Exercise 8.4.4. Let T be totally transcendental, and G a definable group.
Suppose that p ∈ SG(M) and ψ(x) defines Stab(p) in M . If N ≻M , then ψ(x)
also defines Stab(p | N).8

Proposition 8.4.5. Let T be totally transcendental and letM be ω-saturated.9
If p ∈ SG(M), then

1. Stab(p) ⊆ G0(M), and

2. rm(Stab(p)) ≤ rm(p).

From this proof, we occasionally drop the multiplication symbol, that is, we
write e.g. ab instead of a · b.10

Proof. Since G0 is definable and of finite index, every type over M must choose
one of its finitely many cosets. Hence, if φ(x) is a formula defining G0, there
must be b ∈ G(M) such that φ(b−1x) ∈ p(x). Fix a ∈ Stab(p), and note that
φ(b−1ax) ∈ p(x) by definition. Therefore, whenever c ∈ U is such that c ⊨ p, we
have that b−1ac and b−1c both belong to G0(U). Hence, so does (b−1c)−1b−1ac,
which equals c−1ac. But G0(U) is normal, hence a ∈ G0(U) ∩M = G0(M).

For the second point, suppose that ψ(x) defines Stab(p), and let q(x) ∈
[ψ(x)] ⊆ SG(M) be such that rm(q(x)) = rm(ψ(x)). Let a ⊨ p, then take
b ⊨ q |Ma.

Claim 8.4.6. rm(Stab(p)) ≤ rm(b · a/M).

Proof of the Claim. By choice of b and Exercise 8.3.8 , we have rm(Stab(p)) =
rm(b/M) = rm(b/Ma). Because Morley rank is preserved by definable bijec-
tions, such as x 7→ x · a, we have rm(b/Ma) = rm(b · a/Ma), and by Proposi-
tion 7.1.10 rm(b · a/Ma) ≤ rm(b · a/M).

claim

By Proposition 8.3.6, we also have a ⊨ p | Mb; since, by Exercise 8.4.4, ψ
still defines the stabiliser of p | N in any N ≻ M , and in particular in those N
containing b, we find that b stabilises tp(a/Mb), that is, tp(b·a/Mb) = tp(a/Mb).
In particular tp(b · a/M) = tp(a/M) = p, and we conclude by the claim.

8Hint: look at the proof of Theorem 8.1.6.
9See Remark 8.3.9.

10It should be clear from context whether ab is the product of two elements of a definable
group or the concatenation of two tuples.
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8.5 Generic types
Definition 8.5.1. Let T be totally transcendental, M ⊨ T , and G a definable
group. We call p ∈ SG(M) generic iff rm(p) = rm(G).

Proposition 8.5.2. Let T be totally transcendental, G a definable group, and
M ⊨ T be ω-saturated.11.

1. If p ∈ SG(M) is generic and g ∈ G(M), then g · p is also generic.

2. The following are equivalent.

(a) p ∈ SG(M) is generic.

(b) Stab(p) has finite index.

(c) Stab(p) = G0(M).

3. There is a unique generic p ∈ SG(M) if and only if G is connected.

Proof. 1. This follows from Proposition 8.3.2 and the fact that a ⊨ p if and
only if g · a ⊨ g · p.

2. If p is generic, by the previous point and the fact that there can be only
finitely many types of maximum Morley rank, the set {g ·p | g ∈ G(M)} is
finite, say equal to {g0 ·p, . . . , gn ·p}. Then the index of Stab(p) is at most
n+1, since if a ⊨ p and g ∈ G(M) there must be i ≤ n with g ·a ≡M gi ·a,
that is, with g−1gi ∈ Stab(p), proving (2a) ⇒ (2b).

For (2b) ⇒ (2c), if the subgroup Stab(p) has finite index, since it is
definable it must contain G0, but the other inclusion is always true by
Proposition 8.4.5.

Finally, (2c) ⇒ (2a) follows from Proposition 8.4.5 and the fact that, since
G0 has finite index, we have rm(G0) = rm(G).

3. By the first point, if p ∈ SG(M) is generic and g ∈ G(M), then so is g · p.
Hence, if there is a unique generic type, it is stabilised by the whole of G,
and since Stab(p) = G0 we have left to right.

Right to left, suppose that p, q ∈ SG(M) are generic types, and that
a ⊨ p and b ⊨ q | Ma. Take some N ≻ M with b ∈ N , and let
a1 ⊨ p | N . By Proposition 8.3.6, both a and a1 realise p | Mb, so
tp(a, b/M) = tp(a1, b/M). Now, p | N is still generic by Exercise 8.3.8,
and connectedness of G does not depend on M , so by the previous point
Stab(p | N) = G(N), and it follows that b · a1 ⊨ p | N , hence b · a1 ⊨ p.
From this and the fact that a, b ≡M a1, b it follows that b · a ⊨ p. If we
argue symmetrically, using right stabilisers instead of left stabilisers, we
also find out that b · a ⊨ q, hence p = q.

We will not prove (nor use) it, but you may like to know the following fact.

Fact 8.5.3. If G is a totally transcendental group, and X ⊆ G is definable and
generic, that is, of maximal Morley rank, then it is syndetic, that is, finitely
many translates of X cover G.

11Again, see Remark 8.3.9.
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8.6 Totally transcendental fields

We conclude the course by characterising the totally transcendental fields.
Extra structure is allowed, that is, the language may be larger than the language
of fields. We will need the following two facts from Galois theory.

Fact 8.6.1. Every perfect12 field with no proper Galois extension is algebraic-
ally closed.

Fact 8.6.2. Let F/K be a Galois extension of degree n.

1. If n = p = char(K) > 0, then there is a ∈ K such that the minimal
polynomial of F/K is Xp +X − a.

2. If K contains all n-th roots of unity, Char(K) is either 0 or coprime with
n, and Gal(F/K) is cyclic, then there is a ∈ K such that the minimal
polynomial of F/K is Xn − a.

Lemma 8.6.3. If K is an infinite totally transcendental field and n > 1, then
Kn = K, that is, the map x 7→ xn is surjective. If p = char(K) > 0, then so is
the map x 7→ xp + x.

Proof. Observe immediately that whether a field K satisfies the conclusion
or not is written in Th(K). Hence, it is enough to prove the conclusion for
whichever model of Th(K) we please, say U.

If a ̸= 0, then multiplication by a is a definable automorphism of the additive
group (K(U),+), hence by Proposition 8.4.2 it fixes K0(U) setwise. This implies
that K0(U) is an ideal, and since K(U) is a field it must be either {0} or K(U).
Since K0(U) has finite index and K(U) is infinite, it follows that the additive
group K(U) is connected. Therefore, by Proposition 8.5.2 there is a unique
type in SK(U) of Morley rank rm(K). Clearly, rm(K) = rm(K \ {0}), and the
unique generic type must entail x ̸= 0. Again by Proposition 8.5.2, it follows
that the multiplicative group (K×(U), ·) is also connected.

Fix an ω-saturated13 M ≺+ U, let p ∈ SK×(M) be the unique generic type,
and let a ⊨ p. Since an and a are interalgebraic over M , by Proposition 8.3.2
we also have an ⊨ p. Therefore, p(x) ⊢ x ∈ (K×)n. It follows that (K×)n has
maximal Morley rank. This is the image of x 7→ xn, an endomorphism of K×,
hence it is a subgroup of finite index, and since (K×, ·) is connected we have
Kn = K.

If p = char(K) > 0, then x 7→ xp + x is an endomorphism of (K,+), the
elements a and ap+a are interalgebraic over M , and we can argue as above.

Lemma 8.6.4. Let n > 1 and K be an infinite totally transcendental field. If,
for every m ≤ n, the field K contains all m-th roots of unity, then K has no
Galois extension of degree n.

Proof. Suppose that n is minimal such that there is some K as above which is
a counterexample, as witnessed by some Galois extension F ⊇ K of degree n. If
q is a prime dividing n, by basic group theory there is a subgroup of Gal(F/K)

12Recall that K is perfect iff either char(K) = 0 or x 7→ xcharK is surjective (equivalently,
an automorphism).

13I am once again asking for your support in looking at Remark 8.3.9.
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of degree q, and by [Lan02, Theorem VI.1.8] there is E such that K ⊆ E ⊆ F
and E ⊆ F is a Galois extension of degree q.

But then, by Exercise 8.2.2 and Exercise 8.2.3, E is still totally transcend-
ental; since, for every m ≤ n, the field K contains all m-th roots of unity, so
does E ⊇ K, and in particular this holds for every m ≤ q. Therefore, E is
another counterexample, and minimality of n yields E = K, hence q = n. By
Fact 8.6.2, depending on whether q = char(K) or not, the minimal polynomial
of F over K is of the form Xq + X − a or Xq − a. By Lemma 8.6.3, these
polynomials are reducible over K, a contradiction.

Theorem 8.6.5 (Macintyre). Every totally transcendental infinite field, pos-
sibly with extra structure, is algebraically closed.

Proof. Let K be infinite and totally transcendental. By Lemma 8.6.3, K is
perfect. If n is minimal such that ζ is a primitive n+1-th root of unity not in K,
then K(ζ) is a Galois extension of degree at most n, contradicting Lemma 8.6.4.
It follows that K contains all roots of unity, and again by Lemma 8.6.4 K has
no Galois extension, so we conclude by Fact 8.6.1.

Cherlin and Shelah have shown that, in fact, every superstable field is algeb-
raically closed, where a theory is superstable iff it is κ-stable for every sufficiently
large κ; we know by Theorem 7.2.2 that totally transcendental theories are su-
perstable, but the converse is false: if you go through your list of standard
examples, you should be able to find pretty soon a superstable theory which is
not ω-stable, and a stable theory which is not superstable.

You may wonder if the above can be generalised to stable fields. The answer
is negative: separably closed fields (with no extra structure) are always stable,
but they are not always algebraically closed, see [TZ12, Example 8.6.7]. It is
still unknown whether these are the only examples.

Conjecture 8.6.6 (Stable fields conjecture). Every infinite stable field is sep-
arably closed.

The conjecture is still open; Scanlon has recently suggested that a possible
counterexample could be the field C(t).

8.7 An alternate ending

Some weeks before writing this chapter, I held a poll among the attendees
of the course these notes grew out of, asking whether they preferred fields or
groups. You probably already guessed who won; had the outcome be different,
this chapter would have contained a proof of the following theorem. It also uses
the machinery of generic types, and you can read a proof in [Mar02, Section 7.2].

Theorem 8.7.1 (Reineke). Let G be an infinite totally transcendental group.

1. If G has no proper definable infinite subgroup, then G is abelian, and
either G is divisible (not necessarily torsion-free), or there is a prime p
such that every element has order p.

2. If rm(G) = 1, then G0 is abelian. In particular, G is abelian-by-finite.
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Finally, I should say that several proofs in this chapter are not as conceptual
as they could be14, since giving more enlightening ones would have required, as
I hinted some sections ago, the developing of more machinery than we would
have had time to go through, namely, stability theory and forking calculus.

If you are curious, luckily there is no shortage of literature about it. Some
common sources are [Bal88,Bue96,Pil83,Poi00,She90,TZ12]. Some applications
of stability theory are in [Bou98,MMP17,Pil96,Poi01,Wag97].

People have also applied ideas from stability theory to wider settings; see
for example [Cas11, Kim14, Sim15, vdD98b, Wag00]. This has resulted in the
developing of a wide array of dividing lines, classifying first-order theories ac-
cording to which combinatorial patterns they display (such as OP) and which
consequences follow from omitting them. A very nice map of most of them can
be found at http://forkinganddividing.com.

14And some statements are not optimal. Did I already mention Remark 8.3.9?

http://forkinganddividing.com
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