The domination monoid in henselian valued fields

Rosario Mennuni
joint work with Martin Hils

Wwu Münster

Agrume meeting
Colmar
$3^{\text {rd }}$ September 2021

Motivation and overview

T complete, \mathfrak{U} a $\kappa(\mathfrak{U})$-monster, $\kappa(\mathfrak{U})>\beth_{\omega}(|T|)$ strong limit of cofinality $>|T|$. Small $=$ of size $<\kappa(\mathfrak{U})$.
a, b, \ldots [resp. $x, y, \ldots]$ finite tuples of elements [resp. variables].

Motivation and overview

T complete, \mathfrak{U} a $\kappa(\mathfrak{U})$-monster, $\kappa(\mathfrak{U})>\beth_{\omega}(|T|)$ strong limit of cofinality $>|T|$. Small $=$ of size $<\kappa(\mathfrak{U})$.
a, b, \ldots [resp. x, y, \ldots] finite tuples of elements [resp. variables].
In [HHM08] to \mathfrak{U} is associated $(\operatorname{Inv}(\mathfrak{U}), \otimes):=\left(S^{\text {inv }}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$ and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In $\operatorname{ACVF}_{(k:=}$ residue field, $\Gamma:=$ value group)

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) \cong(\mathbb{N},+) \times\left(\mathscr{P}_{\operatorname{fin}}(X), \cup\right)
$$

Motivation and overview

T complete, \mathfrak{U} a $\kappa(\mathfrak{U})$-monster, $\kappa(\mathfrak{U})>\beth_{\omega}(|T|)$ strong limit of cofinality $>|T|$. Small $=$ of size $<\kappa(\mathfrak{U})$.
a, b, \ldots [resp. x, y, \ldots] finite tuples of elements [resp. variables].
In [HHM08] to \mathfrak{U} is associated $(\operatorname{Inv}(\mathfrak{U}), \otimes):=\left(S^{\text {inv }}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$ and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In $\operatorname{ACVF}_{(k:=}$ residue field, $\Gamma:=$ value group)

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) \cong(\mathbb{N},+) \times\left(\mathscr{P}_{\operatorname{fin}}(X), \cup\right)
$$

In this talk:

1. $\widetilde{\operatorname{Inv}}(\mathfrak{U})$: definition, examples and general facts.
2. Relative and absolute computations of $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ in henselian valued fields and related structures.
3. Questions.

Motivation and overview

T complete, \mathfrak{U} a $\kappa(\mathfrak{U})$-monster, $\kappa(\mathfrak{U})>\beth_{\omega}(|T|)$ strong limit of cofinality $>|T|$. Small $=$ of size $<\kappa(\mathfrak{U})$.
a, b, \ldots [resp. x, y, \ldots] finite tuples of elements [resp. variables].
In [HHM08] to \mathfrak{U} is associated $(\operatorname{Inv}(\mathfrak{U}), \otimes):=\left(S^{\text {inv }}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$ and the following AKE-type result is proven:
(to be precise, they use $\overline{\operatorname{Inv}}(\mathfrak{U})$; in ACVF they are equal, in general $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is nicer)
Theorem (Haskell, Hrushovski, Macpherson)
In ACVF ${ }_{(k:=}$ residue field, $\Gamma:=$ value group)

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) \cong(\mathbb{N},+) \times\left(\mathscr{P}_{\operatorname{fin}}(X), \cup\right)
$$

In this talk:

1. $\widetilde{\operatorname{Inv}}(\mathfrak{U})$: definition, examples and general facts.
2. Relative and absolute computations of $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ in henselian valued fields and related structures.
3. Questions.

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small)
$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small)
p A-invariant := whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small, $B \nsubseteq \mathfrak{U}$ arbitrary)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)

$$
p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}
$$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv{ }_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p
$$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small, $B \nsubseteq \mathfrak{U}$ arbitrary)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv{ }_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small, $B \nsubseteq \mathfrak{U}$ arbitrary)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant ff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ LO, A small)

$$
p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}_{A^{+}} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y)
$$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv{ }_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small, $B \nsubseteq \mathfrak{U}$ arbitrary)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant ff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ LO, A small)

$$
p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\left\{x>d \mid d \ngtr A{\underset{p}{A^{+}}} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y)\right.
$$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv \equiv_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small, $B \nsubseteq \mathfrak{U}$ arbitrary)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)

$$
p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\left\{x>d \mid d \ngtr A{\underset{p}{A^{+}}} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y) \vdash x<y\right.
$$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv \equiv_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Reminder: invariant types

Canonical extension and product

Definition ($p \in S(\mathfrak{U}), A \subseteq \mathfrak{U}$ small, $B \not \subset \mathfrak{U}$ arbitrary)

$p A$-invariant $:=$ whether $p(x) \vdash \varphi(x ; d)$ depends only on $\varphi(x ; w)$ and $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)

$$
\begin{aligned}
& p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\left\{x>d \mid d \ngtr A{\underset{p}{A^{+}}} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y) \vdash x<y\right.
\end{aligned}
$$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv{ }_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Fact

\otimes is associative. \otimes commutative $\Leftrightarrow T$ stable (in which case $a b \vDash p \otimes q \Longleftrightarrow a \vDash p, b \vDash q, a \underset{\mathfrak{u}}{\underset{1}{b}}$).

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{L})$; generalises Rudin-Keisler)
$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.
For T stable, $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{U}}{\downarrow} a \Longrightarrow d \underset{\mathfrak{U}}{\downarrow} b$.

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{L})$; generalises Rudin-Keisler)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:

$$
p, q \text { are } A \text {-invariant, } r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A) \text {, and } p(x) \cup r(x, y) \vdash q(y)
$$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.
For T stable, $p \geq \mathrm{D} q \Leftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{4}{\frac{1}{4}} a \Longrightarrow d \underset{4}{\frac{1}{4}} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U})$

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{L})$; generalises Rudin-Keisler)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:

$$
p, q \text { are } A \text {-invariant, } r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A) \text {, and } p(x) \cup r(x, y) \vdash q(y)
$$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.
For T stable, $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{u}}{\underset{1}{4} a} \Longrightarrow d \underset{\mathfrak{u}}{\underset{1}{~}} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \quad \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{L})$; generalises Rudin-Keisler)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:

$$
p, q \text { are } A \text {-invariant, } r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A) \text {, and } p(x) \cup r(x, y) \vdash q(y)
$$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.
For T stable, $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{u}}{\underset{1}{4} a} \Longrightarrow d \underset{\mathfrak{u}}{\underset{1}{~}} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$ ("glue x and y_{0} ", i.e. $r:=\left\{y_{0}=x\right\} \cup \ldots$)

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{U})$; generalises Rudin-Keisler)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:

$$
p, q \text { are } A \text {-invariant, } r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A) \text {, and } p(x) \cup r(x, y) \vdash q(y)
$$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.
For T stable, $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{u}}{\underset{1}{4} a} \Longrightarrow d \underset{\mathfrak{u}}{\underset{1}{2}} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$ ("glue x and y_{0} ", i.e. $r:=\left\{y_{0}=x\right\} \cup \ldots$)

Example (Random Graph)

$p \geq_{\mathrm{D}} q \Longleftrightarrow p \supseteq q$ after renaming/duplicating variables and ignoring realised ones.

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{U})$; generalises Rudin-Keisler)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:

$$
p, q \text { are } A \text {-invariant, } r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A) \text {, and } p(x) \cup r(x, y) \vdash q(y)
$$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.
For T stable, $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{u}}{\underset{1}{4} a} \Longrightarrow d \underset{\mathfrak{u}}{\underset{1}{2}} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$ ("glue x and y_{0} ", i.e. $r:=\left\{y_{0}=x\right\} \cup \ldots$)

Example (Random Graph, or a set with no structure (degenerate domination)) $p \geq_{\mathrm{D}} q \Longleftrightarrow p \supseteq q$ after renaming/duplicating variables and ignoring realised ones.

The domination monoid

Let $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$.
Fact
If \geq_{D} is compatible with \otimes, then

- $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right)$ is a partially ordered monoid, the domination monoid;
- the neutral element (and minimum) is the (unique) class of realised types; and
- nothing else is invertible ($p \otimes q$ realised $\Longrightarrow p, q$ both realised!).

The domination monoid

Let $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$.
Fact
If \geq_{D} is compatible with \otimes, then

- $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right)$ is a partially ordered monoid, the domination monoid;
- the neutral element (and minimum) is the (unique) class of realised types; and
- nothing else is invertible ($p \otimes q$ realised $\Longrightarrow p, q$ both realised!).

Warning: there is a theory where \otimes and \geq_{D} are not compatible, and \sim_{D} is not a congruence with respect to \otimes. (see here)

The theory is supersimple and also shows that \geq_{D} is not \triangleright in the forking sense.

The domination monoid

Let $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$.

Fact

If \geq_{D} is compatible with \otimes, then

- $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right)$ is a partially ordered monoid, the domination monoid;
- the neutral element (and minimum) is the (unique) class of realised types; and
- nothing else is invertible ($p \otimes q$ realised $\Longrightarrow p, q$ both realised!).

Warning: there is a theory where \otimes and \geq_{D} are not compatible, and \sim_{D} is not a congruence with respect to \otimes. (see hero)

The theory is supersimple and also shows that \geq_{D} is not \triangleright in the forking sense.
There are some conditions (here) ensuring compatibility.
In certain concrete cases (e.g. ACVF) one shows compatibility directly, as a corollary of a computation of $\operatorname{Inv}(\mathfrak{U})$. (more on this later)

Examples

(In all of these \geq_{D} and \otimes are compatible)

T strongly minimal (see here)
 $$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)
$$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$.

Examples
(In all of these \geq_{D} and \otimes are compatible)
T strongly minimal (see hate)

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq) .
$$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$.
T superstable (thin is enough)

Examples

$$
\text { (In all of these } \geq_{\mathrm{D}} \text { and } \otimes \text { are compatible) }
$$

T strongly minimal (see here)

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)
$$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$.
T superstable (thin is enough)
By classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some $\lambda=\lambda(\mathfrak{U})$.
DLO (see here)
$\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong\left(\mathscr{P}_{\text {fin }}(\{\right.$ invariant cuts $\left.\}), \cup, \subseteq\right)$.
Invariant cut $=$ small cofinality on exactly one side.

Examples

(In all of these \geq_{D} and \otimes are compatible)
T strongly minimal (see here)

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)
$$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$.
T superstable (thin is enough)
By classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some $\lambda=\lambda(\mathfrak{U})$.
DLO (see here)
$\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong\left(\mathscr{P}_{\text {fin }}(\{\right.$ invariant cuts $\left.\}), \cup, \subseteq\right)$.
Invariant cut $=$ small cofinality on exactly one side.
Random Graph (see here)
\sim_{D} is degenerate, $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ resembles $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$, e.g. it is noncommutative.

Regular ordered abelian groups

 can be "lifted" to Presburger Arithmetic along the map $\mathfrak{U} \rightarrow \mathfrak{U} / \mathbb{Z}$. We can say more.

Regular ordered abelian groups

from now on, joint work with M.Hils
 can be "lifted" to Presburger Arithmetic along the map $\mathfrak{U} \rightarrow \mathfrak{U} / \mathbb{Z}$. We can say more. Recall that an oag is regular iff it eliminates quantifiers in $L=\left\{+, 0,-,<, 1, \equiv_{n} \mid n \in \omega\right\}$. Equivalently, iff it has an Archimedean model.

Regular ordered abelian groups

from now on, joint work with M.Hils

 can be "lifted" to Presburger Arithmetic along the map $\mathfrak{U} \rightarrow \mathfrak{U} / \mathbb{Z}$. We can say more. Recall that an oag is regular iff it eliminates quantifiers in $L=\left\{+, 0,-,<, 1, \equiv_{n} \mid n \in \omega\right\}$. Equivalently, iff it has an Archimedean model. Theorem (Hils, M.)
Let T be the theory of a regular oag. Let \mathbb{P}_{T} be the set of primes p such that $\mathfrak{U} / p \mathfrak{U}$ is infinite. Then $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ is well-defined and there is an embedding

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}\right) \hookrightarrow \mathscr{P}_{\text {fin }}(\{\text { invariant convex subgroups of } \mathfrak{U}\}) \times \prod_{\mathbb{P}_{T}}^{\text {bdd }} \mathbb{N}
$$

with image $\{(a, b) \mid b \neq 0 \Longrightarrow a \neq \emptyset\}$.

Regular ordered abelian groups

from now on, joint work with M.Hils

 can be "lifted" to Presburger Arithmetic along the map $\mathfrak{U} \rightarrow \mathfrak{U} / \mathbb{Z}$. We can say more. Recall that an oag is regular iff it eliminates quantifiers in $L=\left\{+, 0,-,<, 1, \equiv_{n} \mid n \in \omega\right\}$. Equivalently, iff it has an Archimedean model. Theorem (Hils, M.)
Let T be the theory of a regular oag. Let \mathbb{P}_{T} be the set of primes p such that $\mathfrak{U} / p \mathfrak{U}$ is infinite. Then $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ is well-defined and there is an embedding

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}\right) \hookrightarrow \mathscr{P}_{\text {fin }}(\{\text { invariant convex subgroups of } \mathfrak{U}\}) \times \prod_{\mathbb{P}_{T}}^{\text {bdd }} \mathbb{N}
$$

with image $\{(a, b) \mid b \neq 0 \Longrightarrow a \neq \emptyset\}$.
The "hole" depends on the lack of an hyperimaginary sort for $\lim \mathfrak{U} / n \mathfrak{U}$.

Regular ordered abelian groups

from now on, joint work with M.Hils

 can be "lifted" to Presburger Arithmetic along the map $\mathfrak{U} \rightarrow \mathfrak{U} / \mathbb{Z}$. We can say more. Recall that an oag is regular iff it eliminates quantifiers in $L=\left\{+, 0,-,<, 1, \equiv_{n} \mid n \in \omega\right\}$. Equivalently, iff it has an Archimedean model. Theorem (Hils, M.)
Let T be the theory of a regular oag. Let \mathbb{P}_{T} be the set of primes p such that $\mathfrak{U} / p \mathfrak{U}$ is infinite. Then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined and there is an embedding

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}\right) \hookrightarrow \mathscr{P}_{\text {fin }}(\{\text { invariant convex subgroups of } \mathfrak{U}\}) \times \prod_{\mathbb{P}_{T}}^{\mathrm{bdd}} \mathbb{N}
$$

with image $\{(a, b) \mid b \neq 0 \Longrightarrow a \neq \emptyset\}$.
The "hole" depends on the lack of an hyperimaginary sort for $\lim _{\mathfrak{U}} / n \mathfrak{U}$. This does not seem to work in general (consider the Fraïssé limit of two linear orders).

Pure short exact sequences of abelian groups

Consider a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ where $A \rightarrow B$ is pure (e.g. C torsion-free). A, C may carry extra structure (individually).

Pure short exact sequences of abelian groups

Consider a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ where $A \rightarrow B$ is pure (e.g. C torsion-free). A, C may carry extra structure (individually).
Fact ([ACGZ20])
Elimination of B-quantifiers by adding all $A / n A$ and certain maps $\rho_{n}: B \rightarrow A / n A$.

Pure short exact sequences of abelian groups

Consider a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ where $A \rightarrow B$ is pure (e.g. C torsion-free). A, C may carry extra structure (individually).
Fact ([ACGZ20])
Elimination of B-quantifiers by adding all $A / n A$ and certain maps $\rho_{n}: B \rightarrow A / n A$.
Theorem (Hils, M.)
Suppose every $A / n A$ is finite.

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(A(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(C(\mathfrak{U}))$.

Pure short exact sequences of abelian groups

Consider a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ where $A \rightarrow B$ is pure (e.g. C torsion-free). A, C may carry extra structure (individually).

Fact ([ACGZ20])

Elimination of B-quantifiers by adding all $A / n A$ and certain maps $\rho_{n}: B \rightarrow A / n A$.
Theorem (Hils, M.)
Suppose every $A / n A$ is finite.

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(A(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(C(\mathfrak{U}))$.
- If \otimes and \geq_{D} are compatible in $A(\mathfrak{U})$ and $C(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.

Pure short exact sequences of abelian groups

Consider a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ where $A \rightarrow B$ is pure (e.g. C torsion-free). A, C may carry extra structure (individually).

Fact ([ACGZ20])

Elimination of B-quantifiers by adding all $A / n A$ and certain maps $\rho_{n}: B \rightarrow A / n A$.
Theorem (Hils, M.)
Suppose every $A / n A$ is finite.

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(A(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(C(\mathfrak{U}))$.
- If \otimes and \geq_{D} are compatible in $A(\mathfrak{U})$ and $C(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.
- "Every $A / n A$ finite" may be dropped passing to $\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U})$ plus sorts $A / n A$.

Pure short exact sequences of abelian groups

Consider a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ where $A \rightarrow B$ is pure (e.g. C torsion-free). A, C may carry extra structure (individually).

Fact ([ACGZ20])

Elimination of B-quantifiers by adding all $A / n A$ and certain maps $\rho_{n}: B \rightarrow A / n A$.

Theorem (Hils, M.)

Suppose every $A / n A$ is finite.

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(A(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(C(\mathfrak{U}))$.
- If \otimes and \geq_{D} are compatible in $A(\mathfrak{U})$ and $C(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.
- "Every $A / n A$ finite" may be dropped passing to $\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U})$ plus sorts $A / n A$.
- More generally: for pure s.e.s. of L-abelian structures, even with A and C expanded, we get $\widetilde{\operatorname{Inv}}_{|L|}\left(A_{\mathcal{F}}(\mathfrak{U})\right) \times \widehat{\operatorname{Inv}}_{|L|}(C(\mathfrak{U})) .\left(A_{\mathcal{F}}=A\right.$ plus certain imaginaries

Benign valued fields

Let K be an henselian valued field of characteristic $(0,0)$ or of characteristic (p, p) algebraically maximal Kaplansky. Recall the leading term structure

$$
\mathcal{R} \mathcal{V}:=1 \rightarrow k^{\times} \rightarrow K^{\times} /(1+\mathfrak{m}) \rightarrow \Gamma \rightarrow 0
$$

Benign valued fields

Let K be an henselian valued field of characteristic $(0,0)$ or of characteristic (p, p) algebraically maximal Kaplansky. Recall the leading term structure

$$
\mathcal{R} \mathcal{V}:=1 \rightarrow k^{\times} \rightarrow K^{\times} /(1+\mathfrak{m}) \rightarrow \Gamma \rightarrow 0
$$

Theorem (Hils, M.)

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\mathcal{R} \mathcal{V}(\mathfrak{U}))$.
- If \otimes and \geq_{D} are compatible in $\mathcal{R} \mathcal{V}(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.

Benign valued fields

Let K be an henselian valued field of characteristic $(0,0)$ or of characteristic (p, p) algebraically maximal Kaplansky. Recall the leading term structure

$$
\mathcal{R} \mathcal{V}:=1 \rightarrow k^{\times} \rightarrow K^{\times} /(1+\mathfrak{m}) \rightarrow \Gamma \rightarrow 0
$$

Theorem (Hils, M.)

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\mathcal{R} \mathcal{V}(\mathfrak{U}))$.
- If \otimes and $\geq_{\text {D }}$ are compatible in $\mathcal{R} \mathcal{V}(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.
- This is for finitary types (also works for *-types).

Benign valued fields

Let K be an henselian valued field of characteristic $(0,0)$ or of characteristic (p, p) algebraically maximal Kaplansky. Recall the leading term structure

$$
\mathcal{R} \mathcal{V}:=1 \rightarrow k^{\times} \rightarrow K^{\times} /(1+\mathfrak{m}) \rightarrow \Gamma \rightarrow 0
$$

Theorem (Hils, M.)

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\mathcal{R} \mathcal{V}(\mathfrak{U}))$.
- If \otimes and $\geq_{\text {D }}$ are compatible in $\mathcal{R} \mathcal{V}(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.
- This is for finitary types (also works for *-types).
- It still works with arbitrary expansions of $\mathcal{R} \mathcal{V}$, e.g. angular components.

Benign valued fields

Let K be an henselian valued field of characteristic $(0,0)$ or of characteristic (p, p) algebraically maximal Kaplansky. Recall the leading term structure

$$
\mathcal{R} \mathcal{V}:=1 \rightarrow k^{\times} \rightarrow K^{\times} /(1+\mathfrak{m}) \rightarrow \Gamma \rightarrow 0
$$

Theorem (Hils, M.)

- There is an isomorphism of posets $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\mathcal{R} \mathcal{V}(\mathfrak{U}))$.
- If \otimes and $\geq_{\text {D }}$ are compatible in $\mathcal{R} \mathcal{V}(\mathfrak{U})$, then the same is true in \mathfrak{U}, and the above is an isomorphism of monoids.
- This is for finitary types (also works for *-types).
- It still works with arbitrary expansions of $\mathcal{R} \mathcal{V}$, e.g. angular components.

General technique to show transfer of compatibility from $\mathcal{A}(\mathfrak{U})$ to \mathfrak{U} : find a family of definable functions τ to \mathcal{A} such that $\tau_{*}^{p} p \sim_{\mathrm{D}} p$ and $p \otimes q \sim_{\mathrm{D}} \tau_{*}^{p} p \otimes \tau_{*}^{q} q$.

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:
Theorem (Hils, M.)
Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such that every $\left(k^{\times}\right) /\left(k^{\times}\right)^{n}$ is finite. Then $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U}))$.

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:
Theorem (Hils, M.)
Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such that every $\left(k^{\times}\right) /\left(k^{\times}\right)^{n}$ is finite. Then $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U}))$.
In the finitely ramified mixed characteristic case, similar results go through, but:

- $\mathcal{R} \mathcal{V}$ needs to be replaced by the abelian structure $\mathcal{R} \mathcal{V}_{*}$

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:
Theorem (Hils, M.)
Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such that every $\left(k^{\times}\right) /\left(k^{\times}\right)^{n}$ is finite. Then $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U}))$.
In the finitely ramified mixed characteristic case, similar results go through, but:

- $\mathcal{R} \mathcal{V}$ needs to be replaced by the abelian structure $\mathcal{R} \mathcal{V}_{*}$, and
- in general, they only work for $*$-types (as opposed to finitary types).

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:
Theorem (Hils, M.)
Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such that every $\left(k^{\times}\right) /\left(k^{\times}\right)^{n}$ is finite. Then $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U}))$.
In the finitely ramified mixed characteristic case, similar results go through, but:

- $\mathcal{R} \mathcal{V}$ needs to be replaced by the abelian structure $\mathcal{R} \mathcal{V}_{*}$, and
- in general, they only work for $*$-types (as opposed to finitary types).

Theorem (Hils, M.)
In the theory of \mathbb{Q}_{p}, we have $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U})) \cong \mathscr{P}_{\text {fin }}(X)$

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:
Theorem (Hils, M.)
Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such that every $\left(k^{\times}\right) /\left(k^{\times}\right)^{n}$ is finite. Then $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U}))$.
In the finitely ramified mixed characteristic case, similar results go through, but:

- $\mathcal{R} \mathcal{V}$ needs to be replaced by the abelian structure $\mathcal{R} \mathcal{V}_{*}$, and
- in general, they only work for $*$-types (as opposed to finitary types).

Theorem (Hils, M.)
In the theory of \mathbb{Q}_{p}, we have $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U})) \cong \mathscr{P}_{\text {fin }}(X)$ where X is the set of (nontrivial) invariant convex subgroups of $\Gamma(\mathfrak{U})$.

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:

Theorem (Hils, M.)

Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such

In the finitely ramified mixed characteristic case, similar results go through, but:

- $\mathcal{R} \mathcal{V}$ needs to be replaced by the abelian structure $\mathcal{R} \mathcal{V}_{*}$, and
- in general, they only work for $*$-types (as opposed to finitary types).

Theorem (Hils, M.)
In the theory of \mathbb{Q}_{p}, we have $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U})) \cong \mathscr{P}_{\text {fin }}(X)$ where X is the set of (nontrivial) invariant convex subgroups of $\Gamma(\mathfrak{U})$. In the theory of the Witt vectors over $\mathbb{F}_{p}^{\text {alg }}$, we have $\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}_{\omega}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}_{\omega}(\Gamma(\mathfrak{U})) \cong \hat{\omega} \times \mathscr{P}_{\leq \omega}(X)$

Putting things together

The s.e.s. $\mathcal{R} \mathcal{V}$ is pure. Combining the results we obtain e.g.:

Theorem (Hils, M.)

Let \mathfrak{U} be a benign valued field, with residue field k eliminating imaginaries, or such

In the finitely ramified mixed characteristic case, similar results go through, but:

- $\mathcal{R} \mathcal{V}$ needs to be replaced by the abelian structure $\mathcal{R} \mathcal{V}_{*}$, and
- in general, they only work for $*$-types (as opposed to finitary types).

Theorem (Hils, M.)
In the theory of \mathbb{Q}_{p}, we have $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(\Gamma(\mathfrak{U})) \cong \mathscr{P}_{\text {fin }}(X)$ where X is the set of (nontrivial) invariant convex subgroups of $\Gamma(\mathfrak{U})$. In the theory of the Witt vectors over $\mathbb{F}_{p}^{\text {alg }}$, we have $\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}_{\omega}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}_{\omega}(\Gamma(\mathfrak{U})) \cong \hat{\omega} \times \mathscr{P}_{\leq \omega}(X)$ with $\hat{\omega}$ the set of countable cardinals with cardinal sum.

Valued fields with operators

Theorem (Hils, M.)

- Let \mathfrak{U} be a monotone D-henselian differential valued fields with many constants of residue characteristic 0 , with an arbitrary expansion on $\mathcal{R} \mathcal{V}$.

Valued fields with operators

Theorem (Hils, M.)

- Let \mathfrak{U} be a monotone D-henselian differential valued fields with many constants of residue characteristic 0 , with an arbitrary expansion on $\mathcal{R} \mathcal{V}$. Then

$$
\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}_{\omega}(\mathcal{R} \mathcal{V}(\mathfrak{U}))
$$

and compatibility of \otimes with \geq_{D} transfers.

Valued fields with operators

Theorem (Hils, M.)

- Let \mathfrak{U} be a monotone D-henselian differential valued fields with many constants of residue characteristic 0 , with an arbitrary expansion on $\mathcal{R} \mathcal{V}$. Then

$$
\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}_{\omega}}(\mathcal{R} \mathcal{V}(\mathfrak{U}))
$$

and compatibility of \otimes with $\geq_{\text {D }}$ transfers.

- In the model companion,

$$
\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}_{\omega}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}_{\omega}(\Gamma(\mathfrak{U}))
$$

and compatibility of \otimes with $\geq_{\text {D }}$ holds.

Valued fields with operators

Theorem (Hils, M.)

- Let \mathfrak{U} be a monotone D-henselian differential valued fields with many constants of residue characteristic 0 , with an arbitrary expansion on $\mathcal{R} \mathcal{V}$. Then

$$
\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}_{\omega}(\mathcal{R} \mathcal{V}(\mathfrak{U}))
$$

and compatibility of \otimes with \geq_{D} transfers.

- In the model companion,

$$
\widetilde{\operatorname{Inv}}_{\omega}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}_{\omega}(k(\mathfrak{U})) \times \widetilde{\operatorname{Inv}}_{\omega}(\Gamma(\mathfrak{U}))
$$

and compatibility of \otimes with $\geq_{\text {D }}$ holds.

- The reduction to $\mathcal{R} \mathcal{V}$ also holds for σ-henselian valued difference fields of residue characteristic 0 . In the isometric and multiplicative (e.g. contractive) cases, the reduction to k, Γ holds in the model companions.

Where next?

- Non-regular oags?
- Polyregular oags may be dealt with by using the material on s.e.s.
- By Gurevich-Schmitt/Cluckers-Halupczok, oags eliminate quantifiers in a language with certain sorts parameterising definable convex subgroups.
- These auxiliary sorts are coloured orders (orders with unary predicates).
- Coloured orders alone do not behave significantly differently from DLO. (but there is interaction between the auxiliary sorts so possibly it's not that easy)

Where next?

- Non-regular oags?
- Polyregular oags may be dealt with by using the material on s.e.s.
- By Gurevich-Schmitt/Cluckers-Halupczok, oags eliminate quantifiers in a language with certain sorts parameterising definable convex subgroups.
- These auxiliary sorts are coloured orders (orders with unary predicates).
- Coloured orders alone do not behave significantly differently from DLO. (but there is interaction between the auxiliary sorts so possibly it's not that easy)
- Adding imaginaries?
- Regular oags: the $A / n A$ suffice. Pleasant side-effect: they fill "finitary holes".
- [Vic21] allows to deal with polyregular oags.
- ACVF and RCVF: $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ does not change ([HHM08, EHM19]).
- In general, it may depend on which kind of resolutions are available.

More open questions

1. Can one bound the size of a witness of $p \geq_{\mathrm{D}} q$ in terms of the size of invariance bases for p, q ? (This would imply that for $\mathfrak{U} \prec^{+} \mathfrak{u}_{1}$ the natural map $\widetilde{\operatorname{Inv}(\mathfrak{L}) \rightarrow \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{1}\right) \text { is injective.) }}$
2. Can one do dynamics on (variants of) $\widetilde{\operatorname{Inv}}(\mathfrak{U})$?

More open questions

1. Can one bound the size of a witness of $p \geq_{\mathrm{D}} q$ in terms of the size of invariance bases for p, q ? (This would imply that for $\mathfrak{U} \prec^{+} \mathfrak{U}_{1}$ the natural map $\widetilde{\operatorname{Inv}(\mathfrak{l l}) \rightarrow \widetilde{\operatorname{Inv}}\left(\mathfrak{L}_{1}\right) \text { is injective.) }}$
2. Can one do dynamics on (variants of) $\widetilde{\operatorname{Inv}}(\mathfrak{U})$?
3. Is $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined under NIP? NIP $_{2}$?
4. Commutativity under NIP?

More open questions

1. Can one bound the size of a witness of $p \geq_{\mathrm{D}} q$ in terms of the size of invariance bases for p, q ? (This would imply that for $\mathfrak{U} \prec^{+} \mathfrak{u}_{1}$ the natural map $\widetilde{\operatorname{Inv}(\mathfrak{L}) \rightarrow \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{1}\right) \text { is injective.) }}$
2. Can one do dynamics on (variants of) $\widetilde{\operatorname{Inv}}(\mathfrak{U})$?
3. Is $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined under NIP? NIP $_{2}$?
4. Commutativity under NIP?
5. Distality and idempotency (see here).
6. Related: compute $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ in an infinitely ramified mixed characteristic residue field with distal k and Γ (not distal by [ACGZ20]).

More open questions

1. Can one bound the size of a witness of $p \geq_{\mathrm{D}} q$ in terms of the size of invariance bases for p, q ? (This would imply that for $\mathfrak{U} \prec^{+} \mathfrak{U}_{1}$ the natural map $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \rightarrow \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{1}\right)$ is injective.)
2. Can one do dynamics on (variants of) $\widetilde{\operatorname{Inv}}(\mathfrak{U})$?
3. Is $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined under NIP? NIP $_{2}$?
4. Commutativity under NIP?
5. Distality and idempotency (see here).
6. Related: compute $\widetilde{\operatorname{Inv}(\mathfrak{U}) \text { in an infinitely ramified mixed characteristic residue }}$ field with distal k and Γ (not distal by [ACGZ20]).

Slides
Thanks for listening!

Preprint

Bibliography

this is not a proper bibliography, it's just a list of the sources mentioned in these slides
[ACGZ20] M. Aschenbrenner, A. Chernikov, A. Gehret, and M. Ziegler
Distality in valued fields and related structures.
https://arxiv.org/abs/2008.09889, preprint, 2020.
[EHM19] C. Ealy, D. Haskell, and J. Maríková.
Residue field domination in real closed valued fields.
Notre Dame Journal of Formal Logic, 60(3):333-351, 2019.
[HHM08] D. Haskell, E. Hrushovski and D. Macpherson,
Stable Domination and Independence in Algebraically Closed Valued Fields.
Lecture Notes in Logic 30, Cambridge University Press 2008.
[HM21] M. Hils and R. Mennuni.
The domination monoid in henselian valued fields.
https://arxiv.org/abs/2108.13999, preprint, 2021.
[Men20] R. Mennuni.
Product of invariant types modulo domination-equivalence.
Archive for Mathematical Logic, 59:1-29, 2020.
[Vic21] M. Vicaría.
Elimination of imaginaries in ordered abelian groups with bounded regular rank.
https://arxiv.org/abs/2106.01500, preprint, 2021.

More examples: Branches

Example

Let T be the theory in the language $\left\{P_{\sigma} \mid \sigma \in 2^{<\omega}\right\}$ asserting that every point

Basically, $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ here is counting how many new points are in a "branch".

More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes).
A set of generators for $\widetilde{\operatorname{Inv}(\mathfrak{U}) \text { looks like this: }}$

- a single \sim_{D}-class $\llbracket 0 \rrbracket$ for realised types
- if $p_{a}(x):=\{E(x, a)\} \cup\{x \notin \mathfrak{U}\}$, then $\llbracket p_{a} \rrbracket=\llbracket p_{b} \rrbracket$ if and only if $\vDash E(a, b)$; corresponds to new points in an existing equivalence class
- a single \sim_{D}-class $\llbracket p_{g} \rrbracket$, where $p_{g}:=\{\neg E(x, a) \mid a \in \mathfrak{U}\}$; corresponds to new equivalence classes.
The product adds new points/new classes. So, if \mathfrak{U} has κ equivalence classes,

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \oplus \bigoplus_{\kappa} \mathbb{N}
$$

More Examples: Cross-cutting Equivalence Relations

$T_{n}:=n$ generic equivalence relations E_{i}; intersection of classes of different E_{i} always infinite. Here $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is generated by:

- a single \sim_{D}-class $\llbracket 0 \rrbracket$ for realised types
- if $p_{a}(x):=\left\{E_{i}(x, a) \mid i<n\right\} \cup\{x \notin \mathfrak{U}\}$, then $\llbracket p_{a} \rrbracket=\llbracket p_{b} \rrbracket$ if and only if $\vDash \bigwedge_{i<n} E_{i}(a, b)$; corresponds to new points in E_{i}-relation with a for all i
- For each $i<n$, a class $\llbracket p_{i} \rrbracket$ saying x is in a new E_{i} class, but in existing E_{j}-classes for $j \neq i$ (does not matter which)
So

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \prod_{i<n} \mathbb{N} \oplus \bigoplus_{\kappa} \mathbb{N}
$$

Why Π instead of \bigoplus ? If we allow, say, \aleph_{0} equivalence relations, then

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \prod_{i<\aleph_{0}}^{\mathrm{bdd}} \mathbb{N} \oplus \bigoplus_{\kappa} \mathbb{N}
$$

Other Notions

One can define a finer equivalence relation:

Definition

$p \equiv_{\mathrm{D}} q$ is defined as $p \sim_{\mathrm{D}} q$, but by asking the same r to work in both directions: $p \cup r \vdash q$ and $q \cup r \vdash p$.
Another notion classically studied is:

Definition

$p \geq_{\text {RK }} q$ iff every model realising p realises q.
This behaves best in totally transcendental theories (because of prime models). It corresponds to $p(x) \cup\{\varphi(x, y)\} \vdash q(y)$.
But even there, modulo $\sim_{R K}$ it is not true that every type decomposes as a product of $\geq_{\text {RK-minimal }}$ types (but in non-multidimensional totally transcendental theories every type decomposes as a product of strongly regular types).
A classical example where \geq_{D} differs from \geq_{RK} : generic equivalence relation with a bijection s such that $\forall x E(x, s(x))$.

Hrushovski's Counterexample

Example (Hrushovski)

In DLO plus a dense-codense predicate $P, \overline{\operatorname{Inv}}(\mathfrak{U})$ is not commutative.

Proof idea.

Let $p(x):=\{P(x)\} \cup\{x>\mathfrak{U}\}$ and $q(y):=\{\neg P(x)\} \cup\{y>\mathfrak{U}\}$. Then p, q do not commute, even modulo \equiv_{D} (but they do modulo \sim_{D}).
The predicate P forbids to "glue" variables. One will be "left behind": e.g. if $r \vdash x_{0}<y_{0}<y_{1}<x_{1}$, knowing that $y_{1}>\mathfrak{U}$ does not imply $x_{0}>\mathfrak{U}$.
In this case, for each cut C there are generators $\llbracket p_{C, P} \rrbracket$ and $\llbracket p_{C, \neg P} \rrbracket$, with relations

- $\llbracket p_{C, P} \rrbracket \otimes \llbracket p_{C, P} \rrbracket=\llbracket p_{C, \neg P} \rrbracket \otimes \llbracket p_{C, P} \rrbracket=\llbracket p_{C, P} \rrbracket$
- (same relations swapping P and $\neg P$)
- $\llbracket p_{C_{0},-} \rrbracket \otimes \llbracket p_{C_{1},-} \rrbracket=\llbracket p_{C_{1},-} \rrbracket \otimes \llbracket p_{C_{0},-} \rrbracket$ whenever $C_{0} \neq C_{1}$.

Stable Case

In a stable theory, $\leq_{\mathrm{D}}, \sim_{\mathrm{D}}$ and \equiv_{D} can be expressed in terms of forking:
Definition
$a \triangleright_{E} b$ iff, for all c,

$$
a \underset{E}{\downarrow} c \Longrightarrow b \underset{E}{\downarrow} c
$$

$p \triangleright_{E} q(p$ dominates q over $E)$ iff there are $a \vDash p$ and $b \vDash q$ such that $a \triangleright_{E} b$ $p \bowtie_{E} q$ (p and q are domination equivalent) iff $p \triangleright_{E} q \triangleright_{E} p$, i.e. there are

$p \dot{=}_{E} q(p$ and q are equidominant over $E)$ iff there are $a \vDash p$ and $b \vDash q$ such that $a \triangleright_{E} b \triangleright_{E} a$
These are well-behaved with non-forking extensions: we can drop ${ }_{E}$.

Comparison

Proposition (T stable)

The previous definitions of $\leq_{D}=\triangleleft, \sim_{D}=\bowtie$ and $\equiv_{D}=\doteq$.

Remark

The proof uses crucially stationarity of types over models.

In almost all examples we saw before, \sim_{D} coincides with \equiv_{D}.
Exception: in DLO with a predicate, $(\overline{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is not commutative, while $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is (in fact, it is the same as in DLO).

Fact

Even in the stable case, \sim_{D} and \equiv_{D} are generally different.

Classical Results

In the thin case (generalises superstable), this is classical:
Theorem (T thin)
$\operatorname{Inv}(\mathfrak{U})$ is a direct sum of copies of \mathbb{N}.
If T is moreover superstable, $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is generated by $\{\llbracket p \rrbracket \mid p$ regular $\}$.

Superstability (even just thinness) implies that \equiv_{D} and \sim_{D} coincide.

The behaviour of \geq_{D} in general seems related to the existence of some kind of prime models (in the stable case, "prime a-models" are the way to go).
Also, some suitable generalisation of the Omitting Types Theorem would help.

(Non-multi)Dimensionality

Definition

T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) \emptyset. If $\mathfrak{U}_{0} \prec^{+} \mathfrak{U}_{1}$ one has a map $\mathfrak{e}: \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{0}\right) \rightarrow \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{1}\right)$.

Proposition (T thin)
\mathfrak{e} surjective $\Longleftrightarrow T$ dimensional.

Question

Is this true under stability? It boils down to the image of \mathfrak{e} being downward closed. I suspect this should follow from classical results. © Back

Generically Stable Part

Proposition

$q \leq_{\mathrm{D}} p$ definable/finitely satisfiable/generically stable \Longrightarrow so is q.
As generically stable types commute with everything, in any theory the monoid generated by their classes is well-defined. (Warning: p generically stable $\nRightarrow p \otimes p$ generically stable)

Hope g.s. part

At least in special cases, get decompositions similar to $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma)$.
Probably one should really work in T^{eq} :

Example

In $T=$ DLO+equivalence relation with (no finite classes and infinitely many) dense classes, $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ grows when passing to T^{eq}, which has more generically stable types.

Question

How can the generically stable part look like?

Interaction with Weak Orthogonality

Definition

$p(x)$ is weakly orthogonal to $q(y)$ iff $p \cup q$ is complete.

Remark

Weakly orthogonal types commute.

Proposition

Weak orthogonality strongly negates domination: $q \perp^{\mathrm{w}} p_{0} \geq_{\mathrm{D}} p_{1} \Longrightarrow q \perp^{\mathrm{w}} p_{1}$. In particular if $q \perp^{\mathrm{w}} p \geq_{\mathrm{D}} q$ then q is realised.

Question

Under which conditions if $p \not \chi^{\mathrm{w}} q$ then they dominate a common nonzero class? Known:

- Superstable (or thin) is enough. See here
- Fails in the Random Graph.

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Example

$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Example

$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Example

$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$ and let $f \in \operatorname{Aut}(\mathfrak{U} / A)$ be such that $f(b)=c$.

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Example

$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$ and let $f \in \operatorname{Aut}(\mathfrak{U} / A)$ be such that $f(b)=c$. Then $f \cdot p_{b^{+}}=p_{c^{+}}$.

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$
Fact (B arbitrary, A small)
Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\operatorname{inv}}(\mathfrak{U} B, A)$

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\text {inv }}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$
Fact (B arbitrary, A small)
Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\operatorname{inv}}(\mathfrak{U} B, A)$: for tuples d from $\mathfrak{U} B$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\text {inv }}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$
Fact (B arbitrary, A small)
Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\operatorname{inv}}(\mathfrak{U} B, A)$: for tuples d from $\mathfrak{U} B$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Example ($T=\mathrm{DLO}, A$ small $)$
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$

Fact (B arbitrary, A small)

Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\text {inv }}(\mathfrak{U} B, A)$: for tuples d from $\mathfrak{U} B$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$

Fact (B arbitrary, A small)

Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\text {inv }}(\mathfrak{U} B, A)$: for tuples d from $\mathfrak{U} B$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Example ($T=$ LO, A small)
$p_{A+}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$

Fact (B arbitrary, A small)

Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\text {inv }}(\mathfrak{U} B, A)$: for tuples d from $\mathfrak{U} B$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Example ($T=$ DLO, A small)
$p_{A+}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A) \Longleftrightarrow$ whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$

Fact (B arbitrary, A small)

Every $p \in S_{x}^{\operatorname{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U} B) \in S_{x}^{\operatorname{inv}}(\mathfrak{U} B, A)$: for tuples d from $\mathfrak{U} B$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\} "="\left(p_{A^{+}} \mid \mathfrak{U} B\right)(x)($ now $d \in \mathfrak{U B})$

Product of Invariant Types

```
Definition ( \(p\) invariant)
\(\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)\)
```


Product of Invariant Types

Definition (p invariant)

$$
\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)
$$

Example

$$
\left(p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}\right) \underbrace{p_{A^{+}}}_{-|-|+|+|+|l| l} p_{A^{+}}(x) \otimes p_{A^{+}}(y)
$$

Product of Invariant Types

Definition (p invariant)

$$
\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)
$$

Example

Product of Invariant Types

Definition (p invariant)

$$
\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)
$$

Example

$$
\begin{aligned}
& \left(p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}\right) \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y)
\end{aligned}
$$

Product of Invariant Types

Definition (p invariant)

$$
\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)
$$

Example

$$
\left.\begin{array}{rl}
\left(p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}\right) \quad & p_{A^{+}}(x) \otimes p_{A^{+}}(y) \vdash x<y \\
p_{A^{+}}
\end{array}\right]
$$

Product of Invariant Types

Definition (p invariant)

$$
\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)
$$

Example

Fact

\otimes is associative. It is commutative if and only if T is stable.

Map of Sufficient Conditions

Sufficient Conditions

Proposition

$q_{0} \geq_{\mathrm{D}} q_{1} \Longrightarrow p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1}$ is implied by any of the following:

- q_{1} algebraic over q_{0} : every $c \vDash q_{1}$ is algebraic over some $b \vDash q_{0}$. E.g. $q_{1}=f_{*} q_{0}$ for some definable function f. Reason: $\{c \mid(b, c) \vDash r\}$ does not grow with \mathfrak{U}.
- Or even weakly binary: $\operatorname{tp}(a / \mathfrak{U}) \cup \operatorname{tp}(b / \mathfrak{U}) \cup \operatorname{tp}(a b / M) \vDash \operatorname{tp}(a b / \mathfrak{U})$: few questions about $a \vDash p$ and $c \vDash q_{1}$.
- T is stable.

Any condition in the Proposition implies that if there is some $r \in S_{y z}(M)$ witnessing $q_{0}(y) \geq_{\mathrm{D}} q_{1}(z)$, then there is one such that, in addition, if

- $b, c \in \mathfrak{U}_{1}{ }^{+} \succ \mathfrak{U}$ are such that $(b, c) \vDash q_{0} \cup r$,
- $p \in S^{\operatorname{inv}}(\mathfrak{U}, M)$ and $a \vDash p(x) \mid \mathfrak{U}_{1}$,
- $r[p]:=\operatorname{tp}_{x y z}(a b c / M) \cup\{x=w\}$.
then $p \otimes q_{0} \cup r[p] \vdash p \otimes q_{1}$. We call this stationary domination.

Dense Meet-trees and Expansions

Theorem (M.)
Let $L_{0}=\{<, \sqcap\}$ and $L=L_{0} \cup\left\{R_{j}^{(2)}, P_{j^{\prime}}^{(1)} \mid j \in J, j^{\prime} \in J^{\prime}\right\}$. Let T be a completion in L of the theory of dense meet-trees with quantifier elimination and such that:

1. $R_{j}(x, y) \rightarrow x \| y$.
2. If $x \| y, x \sqcap x^{\prime}>x \sqcap y$, and $y \sqcap y^{\prime}>x \sqcap y$, then $R_{j}(x, y) \leftrightarrow R_{j}\left(x^{\prime}, y^{\prime}\right)$.

Then T is weakly binary.

Dense Meet-trees and Expansions

Theorem (M.)
Let $L_{0}=\{<, \Pi\}$ and $L=L_{0} \cup\left\{R_{j}^{(2)}, P_{j^{\prime}}^{(1)} \mid j \in J, j^{\prime} \in J^{\prime}\right\}$. Let T be a completion in L of the theory of dense meet-trees with quantifier elimination and such that:

1. $R_{j}(x, y) \rightarrow x \| y$.
2. If $x \| y, x \sqcap x^{\prime}>x \sqcap y$, and $y \sqcap y^{\prime}>x \sqcap y$, then $R_{j}(x, y) \leftrightarrow R_{j}\left(x^{\prime}, y^{\prime}\right)$.

Then T is weakly binary.
E.g.: $L=L_{0} \cup\{R\}$, where $R(x, y)$ induces a Random Graph on each set of open cones above a point.

Dense Meet-trees and Expansions

Theorem (M.)

Let $L_{0}=\{<, \sqcap\}$ and $L=L_{0} \cup\left\{R_{j}^{(2)}, P_{j^{\prime}}^{(1)} \mid j \in J, j^{\prime} \in J^{\prime}\right\}$. Let T be a completion in L of the theory of dense meet-trees with quantifier elimination and such that:

1. $R_{j}(x, y) \rightarrow x \| y$.
2. If $x \| y, x \sqcap x^{\prime}>x \sqcap y$, and $y \sqcap y^{\prime}>x \sqcap y$, then $R_{j}(x, y) \leftrightarrow R_{j}\left(x^{\prime}, y^{\prime}\right)$.

Then T is weakly binary.
E.g.: $L=L_{0} \cup\{R\}$, where $R(x, y)$ induces a Random Graph on each set of open cones above a point.
Theorem (M.)
In T as above with no unary predicates there is $X=X(\mathfrak{U})$ such that $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\mathrm{fin}}(X) \times \bigoplus_{g \in \mathfrak{U}} \widetilde{\operatorname{Inv}}\left(O_{g}\right)$, where O_{g} is the structure induced on the open cones above g.

Dense Meet-trees and Expansions

Theorem (M.)

Let $L_{0}=\{<, \sqcap\}$ and $L=L_{0} \cup\left\{R_{j}^{(2)}, P_{j^{\prime}}^{(1)} \mid j \in J, j^{\prime} \in J^{\prime}\right\}$. Let T be a completion in L of the theory of dense meet-trees with quantifier elimination and such that:

1. $R_{j}(x, y) \rightarrow x \| y$.
2. If $x \| y, x \sqcap x^{\prime}>x \sqcap y$, and $y \sqcap y^{\prime}>x \sqcap y$, then $R_{j}(x, y) \leftrightarrow R_{j}\left(x^{\prime}, y^{\prime}\right)$.

Then T is weakly binary.
E.g.: $L=L_{0} \cup\{R\}$, where $R(x, y)$ induces a Random Graph on each set of open cones above a point.

Theorem (M.)
In T as above with no unary predicates there is $X=X(\mathfrak{U})$ such that $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\mathrm{fin}}(X) \times \bigoplus_{g \in \mathfrak{U}} \widetilde{\operatorname{Inv}}\left(O_{g}\right)$, where O_{g} is the structure induced on the open cones above g.
For pure dense meet-trees $\forall g O_{g} \cong \mathbb{N}$.

Counterexamples

Theorem (M.)

There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate algebraic closure in which neither \sim_{D} nor \equiv_{D} are congruences with respect to \otimes. In the same theory, \geq_{D} and domination in the sense of forking differ.

Counterexamples

Theorem (M.)

There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate algebraic closure in which neither \sim_{D} nor \equiv_{D} are congruences with respect to \otimes. In the same theory, \geq_{D} and domination in the sense of forking differ. Moreover, examples of theories where

1. $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is not commutative (see here),
2. $p \perp^{\mathrm{w}} q$ but $p \otimes p \not \perp^{\mathrm{W}} q$,
3. if $p_{0} \geq_{\mathrm{D}} q$ and $p_{1} \geq_{\mathrm{D}} q$ then q is realised, but $p \not$ n $^{\mathrm{N}} q$ (even under NIP),
4. Being generically NIP is not preserved by \geq_{D}.
5. $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \neq \widetilde{\operatorname{Inv}}\left(\mathfrak{U}^{\mathrm{eq}}\right)$,
6. \geq_{D} is different from $\mathrm{F}_{\kappa(\mathfrak{U})}^{\mathrm{s}}$-isolation à la Shelah.

A Counterexample

(with SOP and IP_{2})
Idea:
DLO

A Counterexample

(with SOP and IP_{2})
Idea:
2-coloured DLO

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on triples of fibers:

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
q_{0}(y):=" \neg G(y)<-\infty "
$$

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty "
\end{aligned}
$$

y

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
q_{0}(y) & :=" \neg G(y)<-\infty " \\
q_{1}(z) & :=" \neg G(\pi z)<-\infty " \\
r(y, z) & :=\{y=\pi z\} \cup \ldots
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide.

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
q_{0}(y):=" \neg G(y)<-\infty "
$$

$$
q_{1}(z):=" \neg G(\pi z)<-\infty "
$$

$$
r(y, z):=\{y=\pi z\} \cup \ldots
$$

$$
p(x):=" G(\pi x)<-\infty "
$$

$$
\cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide.

A Counterexample

Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
q_{0}(y):=" \neg G(y)<-\infty "
$$

$$
q_{1}(z):=" \neg G(\pi z)<-\infty "
$$

$$
r(y, z):=\{y=\pi z\} \cup \ldots
$$

$$
p(x):=" G(\pi x)<-\infty "
$$

$$
\cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide. But does $p \otimes q_{0}(x, y) \geq_{\mathrm{D}} p \otimes q_{1}(t, z)$?

A Counterexample

Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty " \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=" G(\pi x)<-\infty ", \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
\end{aligned}
$$

y
$q_{0} \cup r \vdash q_{1}$: no hyperedges to decide. But does $p \otimes q_{0}(x, y) \geq_{\mathrm{D}} p \otimes q_{1}(t, z)$? No: even with $x=t$ no small type can decide all hyperedges involving x and z !

A Counterexample

Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
q_{0}(y) & :=" \neg G(y)<-\infty " \\
q_{1}(z) & :=" \neg G(\pi z)<-\infty " \\
r(y, z) & :=\{y=\pi z\} \cup \ldots \\
p(x) & :=" G(\pi x)<-\infty ", \\
\cup\{ & \ddots,!?!
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}$: no hyperedges to decide. But does $p \otimes q_{0}(x, y) \geq_{\mathrm{D}} p \otimes q_{1}(t, z)$? No: even with $x=t$ no small type can decide all hyperedges involving x and z ! Supersimple version here. Also works for a number of variations of \sim_{D}.

Another Counterexample

Ternary, supersimple, ω-categorical, can be tweaked to have degenerate algebraic closure
Replacing the densely coloured DLO with a random graph R_{2} yields a supersimple counterexample of SU-rank 2; forking is $a \underset{C}{\downarrow} b \Longleftrightarrow(a \cap b \subseteq C) \wedge(\pi a \cap \pi b \subseteq \pi C)$.

$$
R_{3}\left(x_{0}, x_{1}, x_{2}\right) \rightarrow \bigvee_{\sigma \in S_{3}}\left(R_{2}\left(\pi x_{\sigma 0}, \pi x_{\sigma 1}\right) \wedge R_{2}\left(\pi x_{\sigma 0}, \pi x_{\sigma 2}\right) \wedge \neg R_{2}\left(\pi x_{\sigma 1}, \pi x_{\sigma 2}\right)\right)
$$

$$
\begin{aligned}
& q_{0}(y):=\left\{\neg R_{2}(y, a) \mid a \in \mathfrak{U}\right\} \\
& q_{1}(z):=\left\{\neg R_{2}(\pi z, a) \mid a \in \mathfrak{U}\right\} \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=\left\{R_{2}(\pi x, a) \mid a \in \mathfrak{U}\right\} \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide. Same problem: $p \otimes q_{0}(x, y) \not ¥_{\mathrm{D}} p \otimes q_{1}(t, z)$.

Strongly Minimal Theories

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by stability

Example

If T is strongly minimal, $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)

Strongly Minimal Theories

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by stability

Example

If T is strongly minimal, $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}(\mathbb{1})} \cong \mathbb{N} \leftrightarrow T$ is unidimensional, e.g. countable and $\mathbb{\aleph}_{1}$-categrical, or $T h(\mathbb{Z},+)$)
 $p\left(x_{1}, \ldots, x_{n}\right) \sim_{\mathrm{D}} q\left(y_{1}, \ldots, y_{m}\right) \Longleftrightarrow \operatorname{tr} \operatorname{deg}(x / \mathfrak{L})=\operatorname{tr} \operatorname{deg}(y / \mathfrak{U})$. Glue transcendence bases; recover the rest with one formula.

Strongly Minimal Theories

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by stability

Example

If T is strongly minimal, $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.

In this case, $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is basically "counting the dimension". E.g.: in ACF_{0} we have $p\left(x_{1}, \ldots, x_{n}\right) \sim_{\mathrm{D}} q\left(y_{1}, \ldots, y_{m}\right) \Longleftrightarrow \operatorname{tr} \operatorname{deg}(x / \mathfrak{U})=\operatorname{tr} \operatorname{deg}(y / \mathfrak{U})$.
Glue transcendence bases; recover the rest with one formula.
Taking products corresponds to adding dimensions: if $(a, b) \vDash p \otimes q$, then $\operatorname{dim}(a / \mathfrak{U} b)=\operatorname{dim}(a / \mathfrak{U})$, and in strongly minimal theories

$$
\operatorname{dim}(a b / \mathfrak{U})=\operatorname{dim}(b / \mathfrak{U})+\operatorname{dim}(a / \mathfrak{U} b)
$$

More generally, in superstable theories (or even thin theories), by classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some λ.

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
 $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- ($\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- ($\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- ($\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
 $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

$$
\square-\underset{y_{0}=x}{---|-----|-\cdots} y_{1}
$$

$\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is the free idempotent commutative monoid generated by the invariant cuts:

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong\left(\mathscr{P}_{\text {fin }}(\{\text { invariant cuts }\}), \cup \subseteq\right)
$$

Random Graph

$(\widetilde{\operatorname{Inv}(\mathfrak{L}), \otimes) \text { well-defined by binarity }}$
In the Random Graph, \sim_{D} is degenerate and $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ resembles closely $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$. For instance, it is not commutative:

Random Graph

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity
In the Random Graph, \sim_{D} is degenerate and $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ resembles closely $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$. For instance, it is not commutative:
Example (All types \emptyset-invariant)
These types do not commute, even modulo \sim_{D} :

$$
\begin{aligned}
& q(y):=\{E(y, b) \mid b \in \mathfrak{U}\} \\
& p(w):=\{\neg E(w, b) \mid b \in \mathfrak{U}\}
\end{aligned}
$$

Random Graph

$(\overline{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity
In the Random Graph, \sim_{D} is degenerate and $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ resembles closely $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$. For instance, it is not commutative:

Example (All types \emptyset-invariant)

These types do not commute, even modulo \sim_{D} :

$$
\begin{aligned}
& q(y):=\{E(y, b) \mid b \in \mathfrak{U}\} \\
& p(w):=\{\neg E(w, b) \mid b \in \mathfrak{U}\}
\end{aligned}
$$

Proof Idea.

As $p_{x} \otimes q_{y} \vdash \neg E(x, y)$ and $q_{z} \otimes p_{w} \vdash E(z, w)$, gluing cannot work. But in the random graph domination is degenerate and there is not much more one can do.

Weak orthogonality

Definition

$p(x)$ is weakly orthogonal to $q(y)$ iff $p(x) \cup q(y)$ is complete. Write $p \perp^{\mathrm{w}} q$.
Why "weak"? Because in general it need not pass to invariant extensions.

Weak orthogonality

Definition

$p(x)$ is weakly orthogonal to $q(y)$ iff $p(x) \cup q(y)$ is complete. Write $p \perp^{\mathrm{w}} q$.
Why "weak"? Because in general it need not pass to invariant extensions.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset-invariant 1 -types:
$p(x):=\operatorname{tp}(+\infty / \mathfrak{U}):=\{x>d \mid \in \mathfrak{U}\} \quad q(y):=\operatorname{tp}\left(0^{+} / \mathfrak{U}\right):=\{0<y<d \mid d \in \mathfrak{U}, d>0\}$
In DOAG, $p \perp^{\mathrm{w}} q$, but in RCF $p \not \not 一 ⿱^{\mathrm{w}} q$. Reason: " $\operatorname{dcl}(p) \cap q \neq \emptyset$ ": is $x \geq 1 / y$?

Weak orthogonality

Definition

$p(x)$ is weakly orthogonal to $q(y)$ iff $p(x) \cup q(y)$ is complete. Write $p \perp^{\mathrm{w}} q$.
Why "weak"? Because in general it need not pass to invariant extensions.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset-invariant 1 -types:
$p(x):=\operatorname{tp}(+\infty / \mathfrak{U}):=\{x>d \mid \in \mathfrak{U}\} \quad q(y):=\operatorname{tp}\left(0^{+} / \mathfrak{U}\right):=\{0<y<d \mid d \in \mathfrak{U}, d>0\}$
In DOAG, $p \perp^{\mathrm{w}} q$, but in RCF $p \not \not 一 ⿻^{\mathrm{W}} q$. Reason: " $\operatorname{dcl}(p) \cap q \neq \emptyset$ ": is $x \geq 1 / y$? Fact

- (T o-minimal) If $p, q \in S_{1}^{\text {inv }}(\mathfrak{U}) \backslash \mathfrak{U}$, then $p \not \ell^{\mathbb{W}} q$ iff $p \sim_{\mathrm{D}} q$ iff $f_{*} p=q$ for some \mathfrak{U}-definable bijection f.

Weak orthogonality

Definition

$p(x)$ is weakly orthogonal to $q(y)$ iff $p(x) \cup q(y)$ is complete. Write $p \perp^{\mathrm{w}} q$.
Why "weak"? Because in general it need not pass to invariant extensions.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset-invariant 1 -types:
$p(x):=\operatorname{tp}(+\infty / \mathfrak{U}):=\{x>d \mid \in \mathfrak{U}\} \quad q(y):=\operatorname{tp}\left(0^{+} / \mathfrak{U}\right):=\{0<y<d \mid d \in \mathfrak{U}, d>0\}$
In DOAG, $p \perp^{\mathrm{w}} q$, but in RCF $p \not \mathcal{L}^{\mathrm{N}} q$. Reason: " $\operatorname{dcl}(p) \cap q \neq \emptyset$ ": is $x \geq 1 / y$?

Fact

- (T o-minimal) If $p, q \in S_{1}^{\text {inv }}(\mathfrak{U}) \backslash \mathfrak{U}$, then $p \not \not 一 ⿻^{\mathbb{N}} q$ iff $p \sim_{\mathrm{D}} q$ iff $f_{*} p=q$ for some \mathfrak{U}-definable bijection f.
- Since $q \perp^{\mathrm{w}} p_{0} \geq_{\mathrm{D}} p_{1} \Longrightarrow q \perp^{\mathrm{w}} p_{1}$, we may expand to $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right)$.
- In particular if $q \perp^{\mathrm{w}} p \geq_{\mathrm{D}} q$ then q is realised.

Reduction to generation by 1-types

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1 -types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq \mathrm{D}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup, \supseteq, D\right)$

Reduction to generation by 1-types

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\overline{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{W}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types

Reduction to generation by 1-types

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\overline{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{W}}\right) \cong\left(\mathscr{P}_{\mathrm{fin}}(X), \cup, \supseteq, D\right)$, for X any maximal set of pairwise \perp^{W} invariant 1-types and $D(x, y):=x \cap y=\emptyset$.

Reduction to generation by 1-types

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1 -types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{W}}\right) \cong\left(\mathscr{P}_{\mathrm{fin}}(X), \cup \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types and $D(x, y):=x \cap y=\emptyset$.
Hence, given an o-minimal T, to conclude the study of $\widetilde{\operatorname{Inv}(\mathfrak{L}) \text { it is enough to: }}$

1. show that invariant types are equivalent to a product of 1-types, and 2. identify a nice set of representatives for $\not \mathfrak{f}^{\mathbb{N}}$-classes of invariant 1 -types.

Reduction to generation by 1－types

Theorem（M．，T o－minimal）
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1 －types，then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well－defined， and $\left(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{W}}\right) \cong\left(\mathscr{P}_{\mathrm{fin}}(X), \cup \supseteq, D\right)$ ，for X any maximal set of pairwise \perp^{w} invariant 1－types and $D(x, y):=x \cap y=\emptyset$ ．

1．show that invariant types are equivalent to a product of 1－types，and 2．identify a nice set of representatives for $\not \not 一 ⿱ 一 土^{\mathrm{W}}$－classes of invariant 1 －types． Sufficient condition for 1 ：if c is a \mathfrak{U}－independent tuple，then

$$
\bigcup_{f \in \mathcal{F}_{T}^{|x|, 1}} \operatorname{tp}_{w_{f}}(f(c) / \mathfrak{U}) \cup\left\{w_{f}=f(x) \mid f \in \mathcal{F}_{T}^{|x|, 1}\right\} \vdash \operatorname{tp}_{x}(c / \mathfrak{U})
$$

$\mathcal{F}_{T}^{|x|, 1}:=$ set of \emptyset－definable functions of T with domain $\mathfrak{U}^{|x|}$ and codomain \mathfrak{U}^{1}.

Applications

Theorem ([HHM08])
In DOAG, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subgroups $\})$.

Applications

Theorem ([HHM08])

In DOAG, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subgroups $\})$.
Here (\dagger) holds by q.e. and the fact that e.g.

$$
\lambda_{0} c_{0}+\mu_{0} d_{0} \leq \lambda_{1} c_{1}+\mu_{1} d_{1} \Longleftrightarrow \underbrace{\lambda_{0} c_{0}-\lambda_{1} c_{1}}_{\lambda_{0}(\cdot)-\lambda_{1}(\cdot) \in \mathcal{F}_{T}^{2,1}} \leq \underbrace{\mu_{1} d_{1}-\mu_{0} d_{0}}_{\in \mathfrak{U}}
$$

Applications

Theorem ([HHM08])

In DOAG, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subgroups $\})$.
Here (\dagger) holds by q.e. and the fact that e.g.

$$
\lambda_{0} c_{0}+\mu_{0} d_{0} \leq \lambda_{1} c_{1}+\mu_{1} d_{1} \Longleftrightarrow \underbrace{\lambda_{0} c_{0}-\lambda_{1} c_{1}}_{\lambda_{0}(\cdot)-\lambda_{1}(\cdot) \in \mathcal{F}_{T}^{2,1}} \leq \underbrace{\mu_{1} d_{1}-\mu_{0} d_{0}}_{\in \mathfrak{U}}
$$

Theorem (M.)
In RCF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subrings $\})$.

Applications

Theorem ([HHM08])

In DOAG, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subgroups $\})$.
Here (\dagger) holds by q.e. and the fact that e.g.

$$
\begin{aligned}
& \quad \lambda_{0} c_{0}+\mu_{0} d_{0} \leq \lambda_{1} c_{1}+\mu_{1} d_{1} \Longleftrightarrow \underbrace{\lambda_{0} c_{0}-\lambda_{1} c_{1}}_{\lambda_{0}(\cdot)-\lambda_{1}(\cdot) \in \mathcal{F}_{T}^{2,1}} \leq \underbrace{\mu_{1} d_{1}-\mu_{0} d_{0}}_{\in \mathfrak{U}} \\
& \text { Theorem (M.) }
\end{aligned}
$$

In RCF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subrings $\})$.
"Enough of (\dagger) " can be shown to hold using some valuation theory. Exact statement later.

Applications

Theorem ([HHM08])

In DOAG, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subgroups $\})$.
Here (\dagger) holds by q.e. and the fact that e.g.

> Theorem (M.)

$$
\Longleftrightarrow \underbrace{\lambda_{0} c_{0}-\lambda_{1} c_{1}}_{\lambda_{0}(\cdot)-\lambda_{1}(\cdot) \in \mathcal{F}_{T}^{2,1}} \leq \underbrace{\mu_{1} d_{1}-\mu_{0} d_{0}}_{\in \mathfrak{U}}
$$

In RCF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subrings $\})$.
"Enough of (\dagger) " can be shown to hold using some valuation theory.
Exact statement later.
Corollary
In RCVF, by [EHM19] $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma)$. So $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(X)$, where

$$
X=\{\text { invariant convex subrings of } k\} \sqcup\{\text { invariant convex subgroups of } \Gamma\}
$$

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^{+} N \prec^{+} \mathfrak{U}$)
If $b \vDash p \in S_{1}^{\text {inv }}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(N b))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{L} b))$.

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^{+} N \prec^{+} \mathfrak{U}$)
If $b \vDash p \in S_{1}^{\text {inv }}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(N b))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U} b))$.
Example
If $b>\mathfrak{U} \vDash \operatorname{RCF}$, then $\left\{b, b^{2}, b^{3}, \ldots\right\}$ is cofinal in $\operatorname{dcl}(\mathfrak{U l} b)$.

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^{+} N \prec^{+} \mathfrak{U}$)
If $b \vDash p \in S_{1}^{\operatorname{inv}}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(N b))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U} b))$.
Example
If $b>\mathfrak{U} \vDash \operatorname{RCF}$, then $\left\{b, b^{2}, b^{3}, \ldots\right\}$ is cofinal in $\operatorname{dcl}(\mathfrak{U} b)$.
Corollary
If T is o-minimal and $p \in S_{1}^{\operatorname{inv}}(\mathfrak{U})$ then $p(y) \otimes p(z) \sim_{\mathrm{D}} p(x)$.
Proof.
A small type is enough to say e.g. " $x=z$ and $y>p(\operatorname{dcl}(N z))$ ".

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^{+} N \prec^{+} \mathfrak{U}$)
If $b \vDash p \in S_{1}^{\text {inv }}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(N b))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U} b))$.

Example

If $b>\mathfrak{U} \vDash \operatorname{RCF}$, then $\left\{b, b^{2}, b^{3}, \ldots\right\}$ is cofinal in $\operatorname{dcl}(\mathfrak{U} b)$.

Corollary

If T is o-minimal and $p \in S_{1}^{\operatorname{inv}}(\mathfrak{U})$ then $p(y) \otimes p(z) \sim_{\mathrm{D}} p(x)$.

Proof.

A small type is enough to say e.g. " $x=z$ and $y>p(\operatorname{dcl}(N z))$ ".
Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise, there is $d \in \mathfrak{U}$ such that $b, f(b, d), f(f(b, d), d), \ldots$ is an infinite N-independent sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece of the sequence. N is used to "copy" parameters of definable functions.

A technical proposition

Let T be o-minimal. Let $p(x) \in S^{\operatorname{inv}}\left(\mathfrak{U}, M_{0}\right)$, let $c \vDash p$ be \mathfrak{U}-independent.

1. There is a tuple $b \in \operatorname{dcl}\left(\mathfrak{U}_{c}\right)$ of maximal length among those satisfying a product of nonrealised invariant 1-types.
2. Let b be as above, and let $q:=\operatorname{tp}(b / \mathfrak{U})=q_{0} \otimes \ldots \otimes q_{n}$, where $q_{i} \in S_{1}^{\operatorname{inv}}(\mathfrak{U})$. Up to replacing q_{i} with $\tilde{q}_{i} \sim_{\mathrm{D}} q_{i}$, we may assume that either $q_{i} \perp^{\mathrm{w}} q_{j}$ or $q_{i}=q_{j}$.
Let b, q as above, $q_{i} \in S^{\text {inv }}(\mathfrak{U}, M)$ and $M_{0} \preceq M \prec^{+} N \prec^{+} N_{1} \prec^{+} \mathfrak{U}$.
3. Up to replacing b with another $\tilde{b} \vDash q$, we may assume $b \in \operatorname{dcl}(N c)$.
4. Let b, q be as above, $r:=\operatorname{tp}_{x y}\left(c b / N_{1}\right)$, and $\mathcal{F}_{T(M)}^{m, 1}$ the set of $T(M)$-definable functions with domain \mathfrak{U}^{m} and codomain \mathfrak{U}^{1}. Then $p(x) \cup r(x, y) \vdash q(y)$ and

$$
q(y) \cup r(x, y) \vdash \pi_{M}(x):=\bigcup_{f \in \mathcal{F}_{T(M)}^{|x|, 1}} \operatorname{tp}_{w_{f}}(f(c) / \mathfrak{U}) \cup\left\{w_{f}=f(x) \mid f \in \mathcal{F}_{T(M)}^{|x|, 1}\right\}
$$

A technical proposition

Let T be o-minimal. Let $p(x) \in S^{\text {inv }}\left(\mathfrak{U}, M_{0}\right)$, let $c \vDash p$ be \mathfrak{U}-independent.

1. There is a tuple $b \in \operatorname{dcl}\left(\mathfrak{U}_{c}\right)$ of maximal length among those satisfying a product of nonrealised invariant 1-types.
2. Let b be as above, and let $q:=\operatorname{tp}(b / \mathfrak{U})=q_{0} \otimes \ldots \otimes q_{n}$, where $q_{i} \in S_{1}^{\text {inv }}(\mathfrak{U})$. Up to replacing q_{i} with $\tilde{q}_{i} \sim_{\mathrm{D}} q_{i}$, we may assume that either $q_{i} \perp^{\mathrm{w}} q_{j}$ or $q_{i}=q_{j}$.
Let b, q as above, $q_{i} \in S^{\text {inv }}(\mathfrak{U}, M)$ and $M_{0} \preceq M \prec^{+} N \prec^{+} N_{1} \prec^{+} \mathfrak{U}$.
3. Up to replacing b with another $\tilde{b} \vDash q$, we may assume $b \in \operatorname{dcl}(N c)$.
4. Let b, q be as above, $r:=\operatorname{tp}_{x y}\left(c b / N_{1}\right)$, and $\mathcal{F}_{T(M)}^{m, 1}$ the set of $T(M)$-definable functions with domain \mathfrak{U}^{m} and codomain \mathfrak{U}^{1}. Then $p(x) \cup r(x, y) \vdash q(y)$ and

$$
q(y) \cup r(x, y) \vdash \pi_{M}(x):=\bigcup_{\substack{|x|, 1 \\ f \in \mathcal{F}_{T(M)}^{\mid x(1)}}} \operatorname{tp}_{w_{f}}(f(c) / \mathfrak{U}) \cup\left\{w_{f}=f(x) \mid f \in \mathcal{F}_{T(M)}^{|x|, 1}\right\}
$$

Using this and some valuation theory, in RCF, it can be shown that $q \cup r \vdash p$.

A technical proposition

Let T be o-minimal. Let $p(x) \in S^{\operatorname{inv}}\left(\mathfrak{U}, M_{0}\right)$, let $c \vDash p$ be \mathfrak{U}-independent.

1. There is a tuple $b \in \operatorname{dcl}\left(\mathfrak{U}_{c}\right)$ of maximal length among those satisfying a product of nonrealised invariant 1-types.
2. Let b be as above, and let $q:=\operatorname{tp}(b / \mathfrak{U})=q_{0} \otimes \ldots \otimes q_{n}$, where $q_{i} \in S_{1}^{\operatorname{inv}}(\mathfrak{U})$. Up to replacing q_{i} with $\tilde{q}_{i} \sim_{\mathrm{D}} q_{i}$, we may assume that either $q_{i} \perp^{\mathrm{w}} q_{j}$ or $q_{i}=q_{j}$.
Let b, q as above, $q_{i} \in S^{\text {inv }}(\mathfrak{U}, M)$ and $M_{0} \preceq M \prec^{+} N \prec^{+} N_{1} \prec^{+} \mathfrak{U}$.
3. Up to replacing b with another $\tilde{b} \vDash q$, we may assume $b \in \operatorname{dcl}(N c)$.
4. Let b, q be as above, $r:=\operatorname{tp}_{x y}\left(c b / N_{1}\right)$, and $\mathcal{F}_{T(M)}^{m, 1}$ the set of $T(M)$-definable functions with domain \mathfrak{U}^{m} and codomain \mathfrak{U}^{1}. Then $p(x) \cup r(x, y) \vdash q(y)$ and

$$
q(y) \cup r(x, y) \vdash \pi_{M}(x):=\bigcup_{\substack{\left.|x|, 1 \\ f \in \mathcal{F}_{T(M)}^{\mid x(}\right)}} \operatorname{tp}_{w_{f}}(f(c) / \mathfrak{U}) \cup\left\{w_{f}=f(x) \mid f \in \mathcal{F}_{T(M)}^{|x|, 1}\right\}
$$

Using this and some valuation theory, in RCF, it can be shown that $q \cup r \vdash p$. "Almost converse": $\left(\exists M^{\prime} q \cup \operatorname{tp}\left(c b / M^{\prime}\right) \vdash p\right) \Rightarrow\left(\exists M^{\prime} \pi_{M^{\prime}} \vdash p\right)$.

[^0]
Distality and idempotency

Recall the following definition of distal type:

Definition

$p \in S^{\text {inv }}(\mathfrak{U}, A)$ is distal over A iff whenever $I \vDash p^{(\omega)} \upharpoonright A b$ we have
$(p \upharpoonright A I) \perp^{\mathrm{w}} \operatorname{tp}(b / A I)$.
By taking $b=\mathfrak{U}$ and some syntactical manipulations, this implies that $p^{(\omega)} \sim_{\mathrm{D}} p^{(\omega+1)}($ witnessed over $A)$.

Question

Let p be distal (and T dp-minimal?). Is it true that we can replace I with a single realisation of p, possibly after changing A ?
A positive answer would imply that $p \sim_{\mathrm{D}} p^{(2)}$; recall that the latter holds for 1 -types in o-minimal theories.

Properties preserved by domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO) (but in stable T it preserves weight).

Properties preserved by domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO) (but in stable T it preserves weight). Anyway:

Theorem (M.)

If $p \geq_{\mathrm{D}} q$ and p has any of the following properties, then so does q :

- Definability
- Finite satisfiability
- Generic stability
- Weak orthogonality to a fixed type

Properties preserved by domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO) (but in stable T it preserves weight). Anyway:

Theorem (M.)

If $p \geq_{\mathrm{D}} q$ and p has any of the following properties, then so does q :

- Definability (over some small set, not necessarily the same as p)
- Finite satisfiability (in some small set, not necessarily the same as p)
- Generic stability (over some small set, not necessarily the same as p)
- Weak orthogonality to a fixed type

Generic stability is particularly interesting:

- It is possible to have $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \neq \widetilde{\operatorname{Inv}}\left(\mathfrak{U}^{\mathrm{eq}}\right)$ (more g.s. types, e.g. DLO+dense eq. rel.).
- Strongly regular g.s. types are \leq_{D}-minimal (among the nonrealised ones).
- $\left(\widetilde{\operatorname{Inv}}^{\mathrm{gs}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right)$ makes sense in any theory (can be trivial).

The o-minimal case
 More on the o-minimal case here

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1 -types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup, \supseteq, D\right)$

The o-minimal case
 More on the o-minimal case here

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types

The o-minimal case
 More on the o-minimal case here

Theorem (M., T o-minimal)
If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1 -types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\overline{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup, \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types and $D(x, y):=x \cap y=\emptyset$.

The o-minimal case
 More on the o-minimal case here

Theorem (M., T o-minimal)

If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types and $D(x, y):=x \cap y=\emptyset$.

1. show that invariant types are equivalent to a product of 1-types, and 2. identify a nice set of representatives for $\mathfrak{f}^{\mathrm{N}}$-classes of invariant 1-types.

The o-minimal case
 More on the o-minimal case here

Theorem (M., T o-minimal)

If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types and $D(x, y):=x \cap y=\emptyset$.
Hence, given an o-minimal T, to conclude the study of $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and 2. identify a nice set of representatives for $\mathfrak{f}^{\mathrm{N}}$-classes of invariant 1-types.

Theorem (M.)
In RCF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subrings $\})$.

The o-minimal case
 More on the o-minimal case here

Theorem (M., T o-minimal)

If every $p \in S^{\operatorname{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is well-defined, and $\left(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \perp^{\mathrm{w}}\right) \cong\left(\mathscr{P}_{\text {fin }}(X), \cup \supseteq, D\right)$, for X any maximal set of pairwise \perp^{w} invariant 1-types and $D(x, y):=x \cap y=\emptyset$.
Hence, given an o-minimal T, to conclude the study of $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for $\not \mathscr{L}^{\mathrm{W}}$-classes of invariant 1-types.

Theorem (M.)
In RCF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(\{$ invariant convex subrings $\})$.
Application to RCVF: by [EHM19] $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma)$.
So $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text {fin }}(X)$, where

$$
X=\{\text { invariant convex subrings of } k\} \sqcup\{\text { invariant convex subgroups of } \Gamma\}
$$

Other general facts

$\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is not well-behaved with respect to reducts (e.g. DLO and infinite sets).

Other general facts

$\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is not well-behaved with respect to reducts (e.g. DLO and infinite sets). But it can be analysed "piece by piece" in a different sense:

Fact

Let D be a (fully) stably embedded definable set. Then $\widetilde{\operatorname{Inv}}(D(\mathfrak{U}))$ embeds in $\widetilde{\operatorname{Inv}}(\mathfrak{U})$. The embedding preserves $\geq_{\mathrm{D}}, \perp^{\mathrm{w}}, \not \nsim^{\mathrm{w}}$ and, when it makes sense, \otimes.

Other general facts

$\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is not well-behaved with respect to reducts (e.g. DLO and infinite sets). But it can be analysed "piece by piece" in a different sense:

Fact

Let D be a (fully) stably embedded definable set. Then $\widetilde{\operatorname{Inv}}(D(\mathfrak{U}))$ embeds in $\widetilde{\operatorname{Inv}}(\mathfrak{U})$. The embedding preserves $\geq_{\mathrm{D}}, \perp^{\mathrm{w}}, \not \ell^{\mathrm{w}}$ and, when it makes sense, \otimes.
Some further facts: (a.k.a.: a shameless ad for my thesis)

- \geq_{D} is $n o t \mathrm{~F}_{\kappa}^{\mathrm{s}}$-isolation. It is the semi-isolation version of that.
- \geq_{D} can be be viewed as being induced by a "partial quaternary independence relation". This is uncharted territory, that I know of.
- If $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ does not depend on \mathfrak{U} then T is NIP. The converse is far from true, conjecturally this should be equivalent to T being stable nonmultidimensional.
- One can define a category $\operatorname{Inv}(\mathfrak{U})$ where morphisms are witnesses of domination. If T is stable, \otimes makes it a strict symmetric monoidal category.

[^0]: 4 Back to o-minimal 4 Back to questions

