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Introduction Domination Abelian groups Valued fields Questions

Motivation and overview
T complete, U a κ(U)-monster, κ(U) > iω(|T |) strong limit of cofinality > |T |. Small = of size < κ(U).

a, b, . . . [resp. x, y, . . .] finite tuples of elements [resp. variables].

In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:
(to be precise, they use Inv(U); in ACVF they are equal, in general Ĩnv(U) is nicer)

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group)

Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ) ∼= (N,+)× (Pfin(X),∪)

In this talk:
1. Ĩnv(U): definition, examples and general facts.
2. Relative and absolute computations of Ĩnv(U) in henselian valued fields and

related structures.
3. Questions.
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Introduction Domination Abelian groups Valued fields Questions

Reminder: invariant types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p A-invariant := whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable (in which case ab � p⊗ q ⇐⇒ a � p, b � q, a |̂

U

b).
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Introduction Domination Abelian groups Valued fields Questions

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.
For T stable, p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂

U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|
y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.
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Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)
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Example (Random Graph, or a set with no structure (degenerate domination))
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.
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The domination monoid
Let Ĩnv(U) := Sinv

<ω(U)/ ∼D.

Fact
If ≥D is compatible with ⊗, then
• (Ĩnv(U),⊗,≤D) is a partially ordered monoid, the domination monoid;
• the neutral element (and minimum) is the (unique) class of realised types; and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).

Warning: there is a theory where ⊗ and ≥D are not compatible, and ∼D is not a
congruence with respect to ⊗. (see here )
The theory is supersimple and also shows that ≥D is not . in the forking sense.

There are some conditions ( here ) ensuring compatibility.
In certain concrete cases (e.g. ACVF) one shows compatibility directly, as a
corollary of a computation of Ĩnv(U). (more on this later)
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Examples
(In all of these ≥D and ⊗ are compatible)

T strongly minimal (see here )
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here )
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here )
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.
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T strongly minimal (see here )
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here )
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here )
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.
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Regular ordered abelian groups
from now on, joint work with M.Hils

In DOAG, by [HHM08], Ĩnv(U) ∼= Pfin({invariant convex subgroups of U}). This
can be “lifted” to Presburger Arithmetic along the map U→ U/Z. We can say more.

Recall that an oag is regular iff it eliminates quantifiers in
L = {+, 0,−, <, 1,≡n| n ∈ ω}. Equivalently, iff it has an Archimedean model.

Theorem (Hils, M.)
Let T be the theory of a regular oag. Let PT be the set of primes p such that U/pU
is infinite. Then (Ĩnv(U),⊗) is well-defined and there is an embedding

(Ĩnv(U),⊗,≥D) ↪→Pfin({invariant convex subgroups of U})×
bdd∏
PT

N

with image {(a, b) | b 6= 0 =⇒ a 6= ∅}.
The “hole” depends on the lack of an hyperimaginary sort for lim←−U/nU. This does
not seem to work in general (consider the Fraïssé limit of two linear orders).
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In DOAG, by [HHM08], Ĩnv(U) ∼= Pfin({invariant convex subgroups of U}). This
can be “lifted” to Presburger Arithmetic along the map U→ U/Z. We can say more.
Recall that an oag is regular iff it eliminates quantifiers in
L = {+, 0,−, <, 1,≡n| n ∈ ω}. Equivalently, iff it has an Archimedean model.

Theorem (Hils, M.)
Let T be the theory of a regular oag. Let PT be the set of primes p such that U/pU
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Pure short exact sequences of abelian groups
Consider a s.e.s. 0→ A→ B → C → 0 where A→ B is pure (e.g. C torsion-free).
A, C may carry extra structure (individually).

Fact ([ACGZ20])
Elimination of B-quantifiers by adding all A/nA and certain maps ρn : B → A/nA.

Theorem (Hils, M.)
Suppose every A/nA is finite.

• There is an isomorphism of posets Ĩnv(U) ∼= Ĩnv(A(U))× Ĩnv(C(U)).
• If ⊗ and ≥D are compatible in A(U) and C(U), then the same is true in U, and

the above is an isomorphism of monoids.
• “Every A/nA finite” may be dropped passing to Ĩnvω(U) plus sorts A/nA.
• More generally: for pure s.e.s. of L-abelian structures, even with A and C

expanded, we get Ĩnv|L|(AF (U))× Ĩnv|L|(C(U)). (AF = A plus certain imaginaries)



Introduction Domination Abelian groups Valued fields Questions

Pure short exact sequences of abelian groups
Consider a s.e.s. 0→ A→ B → C → 0 where A→ B is pure (e.g. C torsion-free).
A, C may carry extra structure (individually).

Fact ([ACGZ20])
Elimination of B-quantifiers by adding all A/nA and certain maps ρn : B → A/nA.

Theorem (Hils, M.)
Suppose every A/nA is finite.

• There is an isomorphism of posets Ĩnv(U) ∼= Ĩnv(A(U))× Ĩnv(C(U)).
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expanded, we get Ĩnv|L|(AF (U))× Ĩnv|L|(C(U)). (AF = A plus certain imaginaries)



Introduction Domination Abelian groups Valued fields Questions

Pure short exact sequences of abelian groups
Consider a s.e.s. 0→ A→ B → C → 0 where A→ B is pure (e.g. C torsion-free).
A, C may carry extra structure (individually).

Fact ([ACGZ20])
Elimination of B-quantifiers by adding all A/nA and certain maps ρn : B → A/nA.

Theorem (Hils, M.)
Suppose every A/nA is finite.
• There is an isomorphism of posets Ĩnv(U) ∼= Ĩnv(A(U))× Ĩnv(C(U)).
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Benign valued fields
Let K be an henselian valued field of characteristic (0, 0) or of characteristic (p, p)
algebraically maximal Kaplansky. Recall the leading term structure

RV := 1→ k× → K×/(1 + m)→ Γ→ 0

Theorem (Hils, M.)
• There is an isomorphism of posets Ĩnv(U) ∼= Ĩnv(RV(U)).
• If ⊗ and ≥D are compatible in RV(U), then the same is true in U, and the

above is an isomorphism of monoids.

• This is for finitary types (also works for ∗-types).
• It still works with arbitrary expansions of RV, e.g. angular components.

General technique to show transfer of compatibility from A(U) to U: find a family
of definable functions τ to A such that τp∗ p ∼D p and p⊗ q ∼D τp∗ p⊗ τ q∗ q.
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Putting things together
The s.e.s. RV is pure. Combining the results we obtain e.g.:

Theorem (Hils, M.)
Let U be a benign valued field, with residue field k eliminating imaginaries, or such
that every (k×)/(k×)n is finite. Then Ĩnv(U) ∼= Ĩnv(k(U))× Ĩnv(Γ(U)).

In the finitely ramified mixed characteristic case, similar results go through, but:
• RV needs to be replaced by the abelian structure RV∗, and
• in general, they only work for ∗-types (as opposed to finitary types).

Theorem (Hils, M.)
In the theory of Qp, we have Ĩnv(U) ∼= Ĩnv(Γ(U)) ∼= Pfin(X)
where X is the set of (nontrivial) invariant convex subgroups of Γ(U).
In the theory of the Witt vectors over Falg

p , we have
Ĩnvω(U) ∼= Ĩnvω(k(U))× Ĩnvω(Γ(U)) ∼= ω̂ ×P≤ω(X)
with ω̂ the set of countable cardinals with cardinal sum.
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Valued fields with operators
Theorem (Hils, M.)
• Let U be a monotone D-henselian differential valued fields with many

constants of residue characteristic 0, with an arbitrary expansion on RV.

Then

Ĩnvω(U) ∼= Ĩnvω(RV(U))

and compatibility of ⊗ with ≥D transfers.
• In the model companion,

Ĩnvω(U) ∼= Ĩnvω(k(U))× Ĩnvω(Γ(U))

and compatibility of ⊗ with ≥D holds.
• The reduction to RV also holds for σ-henselian valued difference fields of

residue characteristic 0. In the isometric and multiplicative (e.g. contractive)
cases, the reduction to k,Γ holds in the model companions.
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Where next?

• Non-regular oags?
• Polyregular oags may be dealt with by using the material on s.e.s.
• By Gurevich–Schmitt/Cluckers–Halupczok, oags eliminate quantifiers in a

language with certain sorts parameterising definable convex subgroups.
• These auxiliary sorts are coloured orders (orders with unary predicates).
• Coloured orders alone do not behave significantly differently from DLO.

(but there is interaction between the auxiliary sorts so possibly it’s not that easy)

• Adding imaginaries?
• Regular oags: the A/nA suffice. Pleasant side-effect: they fill “finitary holes”.
• [Vic21] allows to deal with polyregular oags.
• ACVF and RCVF: Ĩnv(U) does not change ([HHM08, EHM19]).
• In general, it may depend on which kind of resolutions are available.
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• These auxiliary sorts are coloured orders (orders with unary predicates).
• Coloured orders alone do not behave significantly differently from DLO.

(but there is interaction between the auxiliary sorts so possibly it’s not that easy)

• Adding imaginaries?
• Regular oags: the A/nA suffice. Pleasant side-effect: they fill “finitary holes”.
• [Vic21] allows to deal with polyregular oags.
• ACVF and RCVF: Ĩnv(U) does not change ([HHM08, EHM19]).
• In general, it may depend on which kind of resolutions are available.
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More open questions
1. Can one bound the size of a witness of p ≥D q in terms of the size of invariance

bases for p, q? (This would imply that for U ≺+ U1 the natural map Ĩnv(U)→ Ĩnv(U1) is injective.)

2. Can one do dynamics on (variants of) Ĩnv(U)?

3. Is (Ĩnv(U),⊗) well-defined under NIP? NIP2?
4. Commutativity under NIP?
5. Distality and idempotency (see here ).
6. Related: compute Ĩnv(U) in an infinitely ramified mixed characteristic residue

field with distal k and Γ (not distal by [ACGZ20]).
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2. Can one do dynamics on (variants of) Ĩnv(U)?
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More examples: Branches

Example
Let T be the theory in the language {Pσ | σ ∈ 2<ω} asserting that every point
belongs to every Pη�n for exactly one η ∈ 2ω. Then Ĩnv(U) ∼=

⊕
2ℵ0 N.

Basically, Ĩnv(U) here is counting how many new points are in a “branch”.
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More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes).
A set of generators for Ĩnv(U) looks like this:
• a single ∼D-class J0K for realised types
• if pa(x) := {E(x, a)} ∪ {x /∈ U}, then JpaK = JpbK if and only if � E(a, b);

corresponds to new points in an existing equivalence class
• a single ∼D-class JpgK, where pg := {¬E(x, a) | a ∈ U}; corresponds to new

equivalence classes.
The product adds new points/new classes. So, if U has κ equivalence classes,

Ĩnv(U) ∼= N⊕
⊕
κ

N
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More Examples: Cross-cutting Equivalence Relations
Tn := n generic equivalence relations Ei; intersection of classes of different Ei
always infinite. Here (Ĩnv(U),⊗) is generated by:
• a single ∼D-class J0K for realised types
• if pa(x) := {Ei(x, a) | i < n} ∪ {x /∈ U}, then JpaK = JpbK if and only if
�
∧
i<nEi(a, b); corresponds to new points in Ei-relation with a for all i

• For each i < n, a class JpiK saying x is in a new Ei class, but in existing
Ej-classes for j 6= i (does not matter which)

So
Ĩnv(U) ∼=

∏
i<n

N⊕
⊕
κ

N

Why
∏

instead of
⊕

? If we allow, say, ℵ0 equivalence relations, then

Ĩnv(U) ∼=
bdd∏
i<ℵ0

N⊕
⊕
κ

N

Back
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Other Notions
One can define a finer equivalence relation:

Definition
p ≡D q is defined as p ∼D q, but by asking the same r to work in both directions:
p ∪ r ` q and q ∪ r ` p.
Another notion classically studied is:

Definition
p ≥RK q iff every model realising p realises q.
This behaves best in totally transcendental theories (because of prime models). It
corresponds to p(x) ∪ {ϕ(x, y)} ` q(y).
But even there, modulo ∼RK it is not true that every type decomposes as a product
of ≥RK-minimal types (but in non-multidimensional totally transcendental theories
every type decomposes as a product of strongly regular types).
A classical example where ≥D differs from ≥RK: generic equivalence relation with a
bijection s such that ∀x E(x, s(x)). Back
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Hrushovski’s Counterexample

Example (Hrushovski)
In DLO plus a dense-codense predicate P , Inv(U) is not commutative.

Proof idea.
Let p(x) := {P (x)} ∪ {x > U} and q(y) := {¬P (x)} ∪ {y > U}. Then p, q do not
commute, even modulo ≡D (but they do modulo ∼D).
The predicate P forbids to “glue” variables. One will be “left behind”: e.g. if
r ` x0 < y0 < y1 < x1, knowing that y1 > U does not imply x0 > U.
In this case, for each cut C there are generators JpC,P K and JpC,¬P K, with relations
• JpC,P K⊗ JpC,P K = JpC,¬P K⊗ JpC,P K = JpC,P K
• (same relations swapping P and ¬P )
• JpC0,−K⊗ JpC1,−K = JpC1,−K⊗ JpC0,−K whenever C0 6= C1.
Back
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Stable Case

In a stable theory, ≤D, ∼D and ≡D can be expressed in terms of forking:

Definition
a .E b iff, for all c,

a |̂
E

c =⇒ b |̂
E

c

p .E q (p dominates q over E) iff there are a � p and b � q such that a .E b
p ./E q (p and q are domination equivalent) iff p .E q .E p, i.e. there are
a︸︷︷︸
�p

.E b︸︷︷︸
�q

.E c︸︷︷︸
�p

p
.
=E q (p and q are equidominant over E) iff there are a � p and b � q such that

a .E b .E a

These are well-behaved with non-forking extensions: we can drop E .
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Comparison

Proposition (T stable)
The previous definitions of ≤D= /, ∼D=./ and ≡D=

.
=.

Remark
The proof uses crucially stationarity of types over models.

In almost all examples we saw before, ∼D coincides with ≡D.

Exception: in DLO with a predicate, (Inv(U),⊗) is not commutative, while
(Ĩnv(U),⊗) is (in fact, it is the same as in DLO).

Fact
Even in the stable case, ∼D and ≡D are generally different.
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Classical Results

In the thin case (generalises superstable), this is classical:

Theorem (T thin)
Ĩnv(U) is a direct sum of copies of N.
If T is moreover superstable, (Ĩnv(U),⊗) is generated by {JpK | p regular}.

Superstability (even just thinness) implies that ≡D and ∼D coincide.

The behaviour of ≥D in general seems related to the existence of some kind of
prime models (in the stable case, “prime a-models” are the way to go).
Also, some suitable generalisation of the Omitting Types Theorem would help.

Back
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(Non-multi)Dimensionality

At least in the superstable case, independence of Ĩnv(U) on U already had a name:

Definition
T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) ∅.
If U0 ≺+ U1 one has a map e : Ĩnv(U0)→ Ĩnv(U1).

Proposition (T thin)
e surjective ⇐⇒ T dimensional.

Question
Is this true under stability? It boils down to the image of e being downward closed.
I suspect this should follow from classical results. Back
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Generically Stable Part

Proposition
q ≤D p definable/finitely satisfiable/generically stable =⇒ so is q.
As generically stable types commute with everything, in any theory the monoid
generated by their classes is well-defined. (Warning: p generically stable 6⇒ p⊗ p generically stable)

Hope
At least in special cases, get decompositions similar to Ĩnv(U) ∼=

g.s. part︷ ︸︸ ︷
Ĩnv(k)× Ĩnv(Γ).

Probably one should really work in T eq:

Example
In T = DLO+equivalence relation with (no finite classes and infinitely many) dense classes,
Ĩnv(U) grows when passing to T eq, which has more generically stable types.

Question
How can the generically stable part look like?
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Interaction with Weak Orthogonality
Definition
p(x) is weakly orthogonal to q(y) iff p ∪ q is complete.

Remark
Weakly orthogonal types commute.

Proposition
Weak orthogonality strongly negates domination: q ⊥w p0 ≥D p1 =⇒ q ⊥w p1.
In particular if q ⊥w p ≥D q then q is realised.

Question
Under which conditions if p 6⊥wq then they dominate a common nonzero class?
Known:
• Superstable (or thin) is enough. See here

• Fails in the Random Graph.
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Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider

pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

Back
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Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b} and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

( )pb+

|
c

f
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f
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Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A)

: for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
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Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||

Fact
⊗ is associative. It is commutative if and only if T is stable.
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Map of Sufficient Conditions

stability

weak
binarity

degenerate
domination

algebraic
domination

strict
stationary
domination

stationary
domination

(Ĩnv(U),⊗)
well-defined

algebraic
equidominance

strict
stationary

equidominance

stationary
equidominance

(Inv(U),⊗)
well-defined

Back
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Sufficient Conditions
Proposition
q0 ≥D q1 =⇒ p⊗ q0 ≥D p⊗ q1 is implied by any of the following:
• q1 algebraic over q0: every c � q1 is algebraic over some b � q0. E.g. q1 = f∗q0

for some definable function f . Reason: {c | (b, c) � r} does not grow with U.
• Or even weakly binary: tp(a/U) ∪ tp(b/U) ∪ tp(ab/M) � tp(ab/U): few

questions about a � p and c � q1.
• T is stable.

Any condition in the Proposition implies that if there is some r ∈ Syz(M)
witnessing q0(y) ≥D q1(z), then there is one such that, in addition, if
• b, c ∈ U1

+� U are such that (b, c) � q0 ∪ r,
• p ∈ Sinv(U,M) and a � p(x) | U1,
• r[p] := tpxyz(abc/M) ∪ {x = w}.

then p⊗ q0 ∪ r[p] ` p⊗ q1. We call this stationary domination.
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Dense Meet-trees and Expansions
Theorem (M.)
Let L0 = {<,u} and L = L0 ∪ {R(2)

j , P
(1)
j′ | j ∈ J, j

′ ∈ J ′}. Let T be a completion
in L of the theory of dense meet-trees with quantifier elimination and such that:

1. Rj(x, y)→ x ‖ y.
2. If x ‖ y, x u x′ > x u y, and y u y′ > x u y, then Rj(x, y)↔ Rj(x

′, y′).
Then T is weakly binary.

E.g.: L = L0 ∪ {R}, where R(x, y) induces a Random Graph on each set of open
cones above a point.

Theorem (M.)
In T as above with no unary predicates there is X = X(U) such that
Ĩnv(U) ∼= Pfin(X)×

⊕
g∈U Ĩnv(Og), where Og is the structure induced on the open

cones above g.
For pure dense meet-trees ∀g Og ∼= N. Back
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Appendix

Counterexamples

Theorem (M.)
There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither ∼D nor ≡D are congruences with respect to ⊗.
In the same theory, ≥D and domination in the sense of forking differ. More

Moreover, examples of theories where
1. Ĩnv(U) is not commutative (see here ),
2. p ⊥w q but p⊗ p 6⊥w q,
3. if p0 ≥D q and p1 ≥D q then q is realised, but p 6⊥w q (even under NIP),
4. Being generically NIP is not preserved by ≥D.
5. Ĩnv(U) 6= Ĩnv(Ueq),
6. ≥D is different from Fs

κ(U)-isolation à la Shelah.
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Appendix

A Counterexample
(with SOP and IP2)

Idea:

fiber over a 2-coloured

DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.
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Appendix

Another Counterexample
Ternary, supersimple, ω-categorical, can be tweaked to have degenerate algebraic closure

Replacing the densely coloured DLO with a random graph R2 yields a supersimple
counterexample of SU-rank 2; forking is a |̂

C

b ⇐⇒ (a ∩ b ⊆ C) ∧ (πa ∩ πb ⊆ πC).

R3(x0, x1, x2)→
∨
σ∈S3

(
R2(πxσ0, πxσ1) ∧R2(πxσ0, πxσ2) ∧ ¬R2(πxσ1, πxσ2)

(exactly two edges between πx0, πx1, πx2)

)
q0(y) := {¬R2(y, a) | a ∈ U}
q1(z) := {¬R2(πz, a) | a ∈ U}
r(y, z) := {y = πz} ∪ . . .
p(x) := {R2(πx, a) | a ∈ U}
∪ {¬R3(x, a, b) | a, b ∈ U}

U

• •••

•
y

•
z

•
x

Hypergraph
sort

Graph sort

q0 ∪ r ` q1: no hyperedges to decide. Same problem: p⊗ q0(x, y) 6≥D p⊗ q1(t, z).
Back



Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.
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In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
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Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪ . . ..

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)
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Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back to examples
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Weak orthogonality
Definition
p(x) is weakly orthogonal to q(y) iff p(x) ∪ q(y) is complete. Write p ⊥w q.
Why “weak”? Because in general it need not pass to invariant extensions.

Example
In any o-minimal T with 0 ∈ L, these two are ∅-invariant 1-types:

p(x) := tp(+∞/U) := {x > d |∈ U} q(y) := tp(0+/U) := {0 < y < d | d ∈ U, d > 0}

In DOAG, p ⊥w q, but in RCF p 6⊥w q. Reason: “dcl(p) ∩ q 6= ∅”: is x ≥ 1/y?

Fact
• (T o-minimal) If p, q ∈ Sinv

1 (U) \ U, then p 6⊥w q iff p ∼D q iff f∗p = q for some
U-definable bijection f .
• Since q ⊥w p0 ≥D p1 =⇒ q ⊥w p1, we may expand to (Ĩnv(U),≥D,⊥w).
• In particular if q ⊥w p ≥D q then q is realised.
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• In particular if q ⊥w p ≥D q then q is realised.



Appendix

Weak orthogonality
Definition
p(x) is weakly orthogonal to q(y) iff p(x) ∪ q(y) is complete. Write p ⊥w q.
Why “weak”? Because in general it need not pass to invariant extensions.

Example
In any o-minimal T with 0 ∈ L, these two are ∅-invariant 1-types:

p(x) := tp(+∞/U) := {x > d |∈ U} q(y) := tp(0+/U) := {0 < y < d | d ∈ U, d > 0}

In DOAG, p ⊥w q, but in RCF p 6⊥w q. Reason: “dcl(p) ∩ q 6= ∅”: is x ≥ 1/y?

Fact
• (T o-minimal) If p, q ∈ Sinv

1 (U) \ U, then p 6⊥w q iff p ∼D q iff f∗p = q for some
U-definable bijection f .
• Since q ⊥w p0 ≥D p1 =⇒ q ⊥w p1, we may expand to (Ĩnv(U),≥D,⊥w).
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Reduction to generation by 1-types

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then (Ĩnv(U),⊗) is well-defined,
and (Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D)

, for X any maximal set of pairwise
⊥w invariant 1-types and D(x, y) := x ∩ y = ∅.
Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Sufficient condition for 1: if c is a U-independent tuple, then⋃
f∈F |x|,1T

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T

}
` tpx(c/U) (†)

F |x|,1T := set of ∅-definable functions of T with domain U|x| and codomain U1.
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Applications
Theorem ([HHM08])
In DOAG, Ĩnv(U) ∼= Pfin({invariant convex subgroups}).

Here (†) holds by q.e. and the fact that e.g.

λ0c0 + µ0d0 ≤ λ1c1 + µ1d1 ⇐⇒ λ0c0 − λ1c1︸ ︷︷ ︸
λ0(·)−λ1(·)∈F2,1

T

≤ µ1d1 − µ0d0︸ ︷︷ ︸
∈UTheorem (M.)

In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).
“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement later .

Corollary
In RCVF, by [EHM19] Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}
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In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).

“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement later .

Corollary
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The Idempotency Lemma
Lemma (M., Idempotency Lemma, T o-minimal, M ≺+ N ≺+ U)
If b � p ∈ Sinv

1 (U,M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > U � RCF, then {b, b2, b3, . . .} is cofinal in dcl(Ub).

Corollary
If T is o-minimal and p ∈ Sinv

1 (U) then p(y)⊗ p(z) ∼D p(x).

Proof.
A small type is enough to say e.g. “x = z and y > p(dcl(Nz))”.
Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise,
there is d ∈ U such that b, f(b, d), f(f(b, d), d), . . . is an infinite N -independent
sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece
of the sequence. N is used to “copy” parameters of definable functions.

Back
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Appendix

A technical proposition
Let T be o-minimal. Let p(x) ∈ Sinv(U,M0), let c � p be U-independent.

1. There is a tuple b ∈ dcl(Uc) of maximal length among those satisfying a
product of nonrealised invariant 1-types.

2. Let b be as above, and let q := tp(b/U) = q0 ⊗ . . .⊗ qn, where qi ∈ Sinv
1 (U). Up

to replacing qi with q̃i ∼D qi, we may assume that either qi ⊥w qj or qi = qj .
Let b, q as above, qi ∈ Sinv(U,M) and M0 �M ≺+ N ≺+ N1 ≺+ U.

3. Up to replacing b with another b̃ � q, we may assume b ∈ dcl(Nc).
4. Let b, q be as above, r := tpxy(cb/N1), and Fm,1T (M) the set of T (M)-definable

functions with domain Um and codomain U1. Then p(x) ∪ r(x, y) ` q(y) and

q(y) ∪ r(x, y) ` πM (x) :=
⋃

f∈F |x|,1
T (M)

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T (M)

}

Using this and some valuation theory, in RCF, it can be shown that q ∪ r ` p.
“Almost converse”: (∃M ′ q ∪ tp(cb/M ′) ` p)⇒ (∃M ′ πM ′ ` p).

Back to o-minimal Back to questions



Appendix

A technical proposition
Let T be o-minimal. Let p(x) ∈ Sinv(U,M0), let c � p be U-independent.

1. There is a tuple b ∈ dcl(Uc) of maximal length among those satisfying a
product of nonrealised invariant 1-types.

2. Let b be as above, and let q := tp(b/U) = q0 ⊗ . . .⊗ qn, where qi ∈ Sinv
1 (U). Up

to replacing qi with q̃i ∼D qi, we may assume that either qi ⊥w qj or qi = qj .
Let b, q as above, qi ∈ Sinv(U,M) and M0 �M ≺+ N ≺+ N1 ≺+ U.

3. Up to replacing b with another b̃ � q, we may assume b ∈ dcl(Nc).
4. Let b, q be as above, r := tpxy(cb/N1), and Fm,1T (M) the set of T (M)-definable

functions with domain Um and codomain U1. Then p(x) ∪ r(x, y) ` q(y) and

q(y) ∪ r(x, y) ` πM (x) :=
⋃

f∈F |x|,1
T (M)

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T (M)

}
Using this and some valuation theory, in RCF, it can be shown that q ∪ r ` p.

“Almost converse”: (∃M ′ q ∪ tp(cb/M ′) ` p)⇒ (∃M ′ πM ′ ` p).
Back to o-minimal Back to questions



Appendix

A technical proposition
Let T be o-minimal. Let p(x) ∈ Sinv(U,M0), let c � p be U-independent.

1. There is a tuple b ∈ dcl(Uc) of maximal length among those satisfying a
product of nonrealised invariant 1-types.

2. Let b be as above, and let q := tp(b/U) = q0 ⊗ . . .⊗ qn, where qi ∈ Sinv
1 (U). Up

to replacing qi with q̃i ∼D qi, we may assume that either qi ⊥w qj or qi = qj .
Let b, q as above, qi ∈ Sinv(U,M) and M0 �M ≺+ N ≺+ N1 ≺+ U.

3. Up to replacing b with another b̃ � q, we may assume b ∈ dcl(Nc).
4. Let b, q be as above, r := tpxy(cb/N1), and Fm,1T (M) the set of T (M)-definable

functions with domain Um and codomain U1. Then p(x) ∪ r(x, y) ` q(y) and

q(y) ∪ r(x, y) ` πM (x) :=
⋃

f∈F |x|,1
T (M)

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T (M)

}
Using this and some valuation theory, in RCF, it can be shown that q ∪ r ` p.
“Almost converse”: (∃M ′ q ∪ tp(cb/M ′) ` p)⇒ (∃M ′ πM ′ ` p).

Back to o-minimal Back to questions



Appendix

Distality and idempotency

Recall the following definition of distal type:

Definition
p ∈ Sinv(U, A) is distal over A iff whenever I � p(ω) � Ab we have
(p � AI) ⊥w tp(b/AI).
By taking b = U and some syntactical manipulations, this implies that
p(ω) ∼D p(ω+1) (witnessed over A).

Question
Let p be distal (and T dp-minimal?). Is it true that we can replace I with a single
realisation of p, possibly after changing A?
A positive answer would imply that p ∼D p(2); recall that the latter holds for
1-types in o-minimal theories. Back



Appendix

Properties preserved by domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO) (but in stable T it preserves weight).

Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as p)

• Finite satisfiability (in some small set, not necessarily the same as p)

• Generic stability (over some small set, not necessarily the same as p)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).
• Strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).
• (Ĩnv

gs
(U),⊗,≤D) makes sense in any theory (can be trivial).

Back
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Appendix

The o-minimal case
More on the o-minimal case here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then (Ĩnv(U),⊗) is well-defined,
and (Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D)

, for X any maximal set of pairwise
⊥w invariant 1-types and D(x, y) := x ∩ y = ∅.
Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Theorem (M.)
In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).
Application to RCVF: by [EHM19] Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ).
So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}
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So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}



Appendix

The o-minimal case
More on the o-minimal case here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then (Ĩnv(U),⊗) is well-defined,
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In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).

Application to RCVF: by [EHM19] Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ).
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Appendix

Other general facts
Ĩnv(U) is not well-behaved with respect to reducts (e.g. DLO and infinite sets).

But it can be analysed “piece by piece” in a different sense:

Fact
Let D be a (fully) stably embedded definable set. Then Ĩnv(D(U)) embeds in
Ĩnv(U). The embedding preserves ≥D,⊥w, 6⊥w and, when it makes sense, ⊗.
Some further facts: (a.k.a.: a shameless ad for my thesis)

• ≥D is not Fs
κ-isolation. It is the semi-isolation version of that.

• ≥D can be be viewed as being induced by a “partial quaternary independence
relation”. This is uncharted territory, that I know of.
• If Ĩnv(U) does not depend on U then T is NIP. The converse is far from true,

conjecturally this should be equivalent to T being stable nonmultidimensional.
• One can define a category Inv(U) where morphisms are witnesses of

domination. If T is stable, ⊗ makes it a strict symmetric monoidal category.
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