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Types and tensors Šobot’s Congruences Filtered filters

What is this about?

• A problem on ultrafilters
• (arising from their applications in Ramsey theory)

• which led to a notion with several characterisations
• and was solved by looking at it from different viewpoints:

density theory, nonstandard analysis, model theory,. . .
• In this talk, we mainly adopt the latter.
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Types and tensors Šobot’s Congruences Filtered filters

Definable types
Review of the basics

T complete, work in a monster, a, b, . . . , x, y, . . . finite tuples

• q(y) ∈ S(M) is definable iff each dqφ := {d ∈ M : φ(y, d) ∈ q(y)} is M -definable.

• If A ⊃ M , define q | A as

φ(y, a, d) ∈ (q | A) ⇐⇒ ad ⊨ dqφ

• For definable p, q ∈ S(M), define p(x)⊗ q(y) as

� you may be used to “backwards” notation

(a, b) ⊨ p(x)⊗ q(y) ⇐⇒ a ⊨ p and b ⊨ q | Ma

Example M = (Q, <) and q(y) = {y > d : d ∈ M}. Then q(x)⊗ q(y) ⊢ x < y

a
|

b
|

• p⊗ q is itself definable and ⊗ is associative.
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Compact right topological semigroups

• Suppose (M,+, . . .) expands a semigroup (commutative, as here, or not)

• Say all p ∈ S1(M) happen to be definable (happens over every M ⇐⇒ T stable)

• Push ⊗ forward along +, i.e. define c ⊨ p⊕ q ⇐⇒ ∃(a, b) ⊨ p⊗ q (a+ b = c).
• Associativity survives; commutativity need not (and usually doesn’t).
• Get compact Hausdorff right topological semigroup: each (−)⊕ q is continuous.
• Ellis theory: dynamics, idempotents. . .
• Previous model-theoretic usage: definable topological dynamics,

connections with G/G00 and definable amenability. . .
• . . . usually in tame contexts, e.g. NIP.
• We will work with all possible (single-sorted) theories with a countabl(y infinit)e model.
• Including your favourite (consistent) set theory (in a countable language).
• All of them together on the same set.

So forget about tameness.
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Into the wild
HIC SVNT TENSORES

• Let M be Z with the full structure: every subset of every Zn is ∅-definable.

• Over M , all types are ∅-definable.

S1(M) = βZ := Space of ultrafilters over Z.
• Fact (Puritz): (a, b) tensor iff for ∀ ∅-definable f either f(b) ∈ Z or |a| < |f(b)|.
• Corollary: q nonrealised, (a, b) ⊨ p⊗ q, (b, c) ⊨ q ⊗ r =⇒ (a, c) ⊨ p⊗ r.

FALSE in general, e.g. random graph (note: historically ⊗, ⊕ were first defined on ultrafilters)

• Spelling out ⊕, with + the usual sum, A ∈ p⊕ q ⇐⇒ {n : A− n ∈ q} ∈ p

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)
∀ finite colouring of Z, there are (zi)i<ω s.t. all zi0 + . . .+ zin have the same colour.
Proof. Use Ellis theory to find u ∈ βZ with 0 < u = u⊕ u. Pick the colour A ∈ u.
Since u = u⊕ u, there is z0 ∈ A with A∩ (A− z0) ∈ u. Again since u = u⊕ u, there
is z1 ∈ A ∩ (A− z0) with A ∩ (A− z0) ∩ (A− z1) ∩ (A− (z0 + z1)) ∈ u. Repeat.

Want finite products instead? Work in (βZ,⊙).
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Types and tensors Šobot’s Congruences Filtered filters

Strong congruence

• Recap: (βZ,⊕,⊙), applications in Ramsey theory/combinatorics.
• What’s the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)
Write u ≡s

w v iff for some/all (d, a, b) ⊨ w ⊗ u⊗ v we have d | (a− b).
(equivalently: u ≡s

w v iff {n : nZ ∈ u⊖ v} ∈ w)

Fact (Šobot)
Every ≡s

w is an equivalence relation compatible with ⊕,⊙.
Similarly as commutativity is lost from + to ⊕, this relation may behave strangely.

Example
Let w be an infinite prime. Then w ̸≡s

w 0.

Maybe there is a better notion of congruence?
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Weak congruence

Definition (Šobot)
u ≡w v iff there are some d ⊨ w and (a, b) ⊨ u⊗ v such that d | (a− b).
(recall: u ≡s

w v iff for some/all (d, a, b) ⊨ w ⊗ u⊗ v we have d | (a− b)

• Equivalently, all |-upward-closed sets (=unions of nZ) in w are also in u⊖ v.
(this was actually the original definition) (recall: u ≡s

w v iff {n : nZ ∈ u⊖ v} ∈ w)

• Clearly, w ≡w 0 always holds: take d = a. But there’s a deeper issue:

Question (Šobot)
Is ≡w an equivalence relation for all w?
Answer (DLMPR) No.
• Failure of symmetry: there are u, v such that

u⊖ v is squarefree but v ⊖ u is not.
• Failure of transitivity: take any infinite w

containing all nZ+ 1. Then 0 ≡w w ≡w 1.

Theorem (DLMPR)
If BD(A) > 0 and A∁ is thick,
there are u, v ∈ βZ \ Z such that
A ∈ u⊕ v and A∁ ∈ v ⊕ u.
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Good congruence bases
Question
For which w is ≡w an equivalence relation? Any w /∈ Z at all?

Say d | (a− b) and d′ | (b− c), with (a, b, c) ⊨ p⊗ q ⊗ r and d, d′ ⊨ w.
If there is d′′ | d, d′ with d′′ ⊨ w, then ≡w is transitive.
It turns out this also necessary:

Theorem (DLMPR)
The following are equivalent for w ∈ βZ \ {0}:
1. ∀d, d′ ⊨ w ∃d′′ ⊨ w d′′ | gcd(d, d′) (i.e. for U a monster, (w(U), |) is downward directed, or filtered)

2. ≡w is transitive
3. ≡w is an equivalence relation (still open: can it be symmetric but not transitive?)

4. ≡w = ≡s
w

5. w(x)⊗ w(y) ⊢ x | y (i.e. {n : nZ ∈ w} ∈ w)

Let’s call such w self-divisible.

(a previous name we used was division-filtered)
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Types and tensors Šobot’s Congruences Filtered filters

Examples and non-examples

✗ Infinite primes: w(x)⊗ w(y) ⊢ |x| < |y| are primes!

✓ Factorials: w(x)⊗ w(y) ⊢ x < y are factorials!
✓ Powers of 2! (2 factorial, if you wish)

✓ Stuff divisible by every n > 0

;
e.g. all ⊕-idempotents and all ⊙-minimals

✓ tp(pa11 · . . . · pann /Z), with pi ∈ Z primes and ai infinite.

Recall w is self-divisible iff, equivalently:
1. w(x)⊗ w(y) ⊢ x | y
2. {n : nZ ∈ w} ∈ w

3. (w(U), |) is downward directed

4. ≡w is an equivalence relation

5. ≡w = ≡s
w

✗ Infinite stuff divisible by only finitely many (finite) integers.
✓ Stuff divisible by every power of cofinitely many (finite) primes.
✗✓ For other supernatural numbers (functions P→ ω + 1)(formal products φ =

∏
p∈P pφp , if you prefer)

there are both self-divisible w and non-self-divisible w with that divisibility.
✓ Self-divisibles are closed under ⊙.
✗ But not under ⊕: let w be divisible by every n > 0, take w ⊕ 1.
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✓ Powers of 2! (2 factorial, if you wish)

✓ Stuff divisible by every n > 0;
e.g. all ⊕-idempotents and all ⊙-minimals

✓ tp(pa11 · . . . · pann /Z), with pi ∈ Z primes and ai infinite.

Recall w is self-divisible iff, equivalently:
1. w(x)⊗ w(y) ⊢ x | y
2. {n : nZ ∈ w} ∈ w

3. (w(U), |) is downward directed

4. ≡w is an equivalence relation

5. ≡w = ≡s
w

✗ Infinite stuff divisible by only finitely many (finite) integers.
✓ Stuff divisible by every power of cofinitely many (finite) primes.
✗✓ For other supernatural numbers (functions P→ ω + 1)(formal products φ =

∏
p∈P pφp , if you prefer)

there are both self-divisible w and non-self-divisible w with that divisibility.

✓ Self-divisibles are closed under ⊙.
✗ But not under ⊕: let w be divisible by every n > 0, take w ⊕ 1.



Types and tensors Šobot’s Congruences Filtered filters

Examples and non-examples

✗ Infinite primes: w(x)⊗ w(y) ⊢ |x| < |y| are primes!
✓ Factorials: w(x)⊗ w(y) ⊢ x < y are factorials!
✓ Powers of 2! (2 factorial, if you wish)

✓ Stuff divisible by every n > 0;
e.g. all ⊕-idempotents and all ⊙-minimals

✓ tp(pa11 · . . . · pann /Z), with pi ∈ Z primes and ai infinite.

Recall w is self-divisible iff, equivalently:
1. w(x)⊗ w(y) ⊢ x | y
2. {n : nZ ∈ w} ∈ w

3. (w(U), |) is downward directed

4. ≡w is an equivalence relation

5. ≡w = ≡s
w

✗ Infinite stuff divisible by only finitely many (finite) integers.
✓ Stuff divisible by every power of cofinitely many (finite) primes.
✗✓ For other supernatural numbers (functions P→ ω + 1)(formal products φ =

∏
p∈P pφp , if you prefer)

there are both self-divisible w and non-self-divisible w with that divisibility.
✓ Self-divisibles are closed under ⊙.

✗ But not under ⊕: let w be divisible by every n > 0, take w ⊕ 1.



Types and tensors Šobot’s Congruences Filtered filters

Examples and non-examples

✗ Infinite primes: w(x)⊗ w(y) ⊢ |x| < |y| are primes!
✓ Factorials: w(x)⊗ w(y) ⊢ x < y are factorials!
✓ Powers of 2! (2 factorial, if you wish)

✓ Stuff divisible by every n > 0;
e.g. all ⊕-idempotents and all ⊙-minimals

✓ tp(pa11 · . . . · pann /Z), with pi ∈ Z primes and ai infinite.

Recall w is self-divisible iff, equivalently:
1. w(x)⊗ w(y) ⊢ x | y
2. {n : nZ ∈ w} ∈ w

3. (w(U), |) is downward directed

4. ≡w is an equivalence relation

5. ≡w = ≡s
w

✗ Infinite stuff divisible by only finitely many (finite) integers.
✓ Stuff divisible by every power of cofinitely many (finite) primes.
✗✓ For other supernatural numbers (functions P→ ω + 1)(formal products φ =

∏
p∈P pφp , if you prefer)

there are both self-divisible w and non-self-divisible w with that divisibility.
✓ Self-divisibles are closed under ⊙.
✗ But not under ⊕: let w be divisible by every n > 0, take w ⊕ 1.



Types and tensors Šobot’s Congruences Filtered filters

Topology and algebra
Self-divisibles are dense in βZ: they include Z!

What about βZ \ Z?

Theorem (DLMPR)
w is in the closure of SD in βZ \ Z iff every A ∈ w contains an infinite |-chain.
E.g. all ⊙-idempotents; there are non-self-divisible ones.

• (βZ,⊕)/≡s
w is always a (well-defined) group.

• The ≡s
w-class of u only depends on π(u) ∈ Ẑ.

• Think Ẑ ↪→
∏

n≥2 Z/nZ. Quotient by w.

(βZ,⊕)

βZ/≡s
w

ρw

(Ẑ,+)
π

σw

Ẑ/w

ρw

∼=

Theorem (DLMPR)
w is self-divisible iff kerσw is
closed iff βZ/≡s

w is profinite iff
βZ/≡s

w
∼=

∏
p∈PGp,w

Gp,w =

{
Z/pnZ, if n = max{k : pkZ ∈ w}
Zp, otherwise.
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Ẑ/w

ρw

∼=

Theorem (DLMPR)
w is self-divisible iff kerσw is
closed iff βZ/≡s

w is profinite iff
βZ/≡s

w
∼=

∏
p∈PGp,w

Gp,w =

{
Z/pnZ, if n = max{k : pkZ ∈ w}
Zp, otherwise.



Types and tensors Šobot’s Congruences Filtered filters

Topology and algebra
Self-divisibles are dense in βZ: they include Z! What about βZ \ Z?

Theorem (DLMPR)
w is in the closure of SD in βZ \ Z iff every A ∈ w contains an infinite |-chain.
E.g. all ⊙-idempotents; there are non-self-divisible ones.

• (βZ,⊕)/≡s
w is always a (well-defined) group.

• The ≡s
w-class of u only depends on π(u) ∈ Ẑ.
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Types and tensors Šobot’s Congruences Filtered filters

The full list
Summing up:
• Thinking about ultrafilters as

definable types can be fruitful.

• Peculiar to this setting:
Puritz’s Theorem on ⊗.
this also gives a kind of “weak transitivity”;

to be explored

• Drawbacks of ≡w, ≡s
w. . .

• disappear iff ≡w = ≡s
w . . .

• iff (βZ,⊕)/≡s
w profinite, iff →

D(w) := {n : nZ ∈ w}

w |̃ u := u ≡w 0

Zw := {u : w |̃ u}
φw := associated supernatural number

Thanks for listening!
2302.09983

all the ↑
←glorious(?)

details
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