Ultrafilters, congruences, and profinite groups

Rosario Mennuni

Università di Pisa
based on joint work with
M. Di Nasso, L. Luperi Baglini,
M. Pierobon, and M. Ragosta

Oberseminar mathematische Logik
Albert-Ludwigs-Universität Freiburg
$13^{\text {th }}$ June 2023

What is this about?

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)

What is this about?

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)
- which led to a notion with several characterisations

What is this about?

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)
- which led to a notion with several characterisations
- and was solved by looking at it from different viewpoints: density theory, nonstandard analysis, model theory,...

What is this about?

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)
- which led to a notion with several characterisations
- and was solved by looking at it from different viewpoints: density theory, nonstandard analysis, model theory,...
- In this talk, we mainly adopt the latter.

Definable types

Review of the basics
T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.

Definable types

Review of the basics
T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.

Example $M=(\mathbb{Q},<)$ and $q(y)=\{y>d: d \in M\}$.

Definable types

Review of the basics

T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$
\varphi(y, a, d) \in(q \mid A) \Longleftrightarrow a d \vDash d_{q} \varphi
$$

Example $M=(\mathbb{Q},<)$ and $q(y)=\{y>d: d \in M\}$.

Definable types

Review of the basics

T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$
\varphi(y, a, d) \in(q \mid A) \Longleftrightarrow a d \vDash d_{q} \varphi
$$

- For definable $p, q \in S(M)$, define $p(x) \otimes q(y)$ as

$$
(a, b) \vDash p(x) \otimes q(y) \Longleftrightarrow a \vDash p \text { and } b \vDash q \mid M a
$$

Example $M=(\mathbb{Q},<)$ and $q(y)=\{y>d: d \in M\}$.

Definable types

Review of the basics

T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$
\varphi(y, a, d) \in(q \mid A) \Longleftrightarrow a d \vDash d_{q} \varphi
$$

- For definable $p, q \in S(M)$, define $p(x) \otimes q(y)$ as

$$
(a, b) \vDash p(x) \otimes q(y) \Longleftrightarrow a \vDash p \text { and } b \vDash q \mid M a
$$

Example $M=(\mathbb{Q},<)$ and $q(y)=\{y>d: d \in M\}$. Then $q(x) \otimes q(y) \vdash x<y$

Definable types

Review of the basics

T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$
\varphi(y, a, d) \in(q \mid A) \Longleftrightarrow a d \vDash d_{q} \varphi
$$

- For definable $p, q \in S(M)$, define $p(x) \otimes q(y)$ as you may be used to "backwards" notation

$$
(a, b) \vDash p(x) \otimes q(y) \Longleftrightarrow a \vDash p \text { and } b \vDash q \mid M a
$$

Example $M=(\mathbb{Q},<)$ and $q(y)=\{y>d: d \in M\}$. Then $q(x) \otimes q(y) \vdash x<y$

Definable types

Review of the basics

T complete, work in a monster, $a, b, \ldots, x, y, \ldots$ finite tuples

- $q(y) \in S(M)$ is definable iff each $d_{q} \varphi:=\{d \in M: \varphi(y, d) \in q(y)\}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$
\varphi(y, a, d) \in(q \mid A) \Longleftrightarrow a d \vDash d_{q} \varphi
$$

- For definable $p, q \in S(M)$, define $p(x) \otimes q(y)$ as you may be used to "backwards" notation

$$
(a, b) \vDash p(x) \otimes q(y) \Longleftrightarrow a \vDash p \text { and } b \vDash q \mid M a
$$

Example $M=(\mathbb{Q},<)$ and $q(y)=\{y>d: d \in M\}$. Then $q(x) \otimes q(y) \vdash x<y$

- $p \otimes q$ is itself definable and \otimes is associative.

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T$ stable)

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T^{\text {stable) }}$
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T$ stable)
- Push \otimes forward along + , i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn't).

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T$ stable)
- Push \otimes forward along + , i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T$ stable)
- Push \otimes forward along + , i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T$ stable)
- Push \otimes forward along + , i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G / G^{00} and definable amenability...

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T$ stable)
- Push \otimes forward along + , i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G / G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T^{\text {stable) }}$
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn r).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G / G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with all possible (single-sorted) theories with a countabl(y infinit)e model.

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T^{\text {stable) }}$
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually doesn ${ }^{\wedge}$).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G / G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with all possible (singlesorted) theories with a countabl(y infinit)e model.
- Including your favourite (consistent) set theory (in a countable language).

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T^{\text {stable) }}$
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually dossnt).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G / G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with all possible (singlesorted) theories with a countabl(y infinit)e model.
- Including your favourite (consistent) set theory (in a countable langage).
- All of them together on the same set.

Compact right topological semigroups

- Suppose $(M,+, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_{1}(M)$ happen to be definable (happens over every $M \Leftrightarrow T^{\text {stable) }}$
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \Longleftrightarrow \exists(a, b) \vDash p \otimes q(a+b=c)$.
- Associativity survives; commutativity need not (and usually dossnt).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G / G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with all possible (singlesorted) theories with a countabl(y infinit)e model.
- Including your favourite (consistent) set theory (in a countable language).
- All of them together on the same set. So forget about tameness.

Into the wild

HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.

Into the wild

HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.

Into the wild

HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0<u=u \oplus u$.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0<u=u \oplus u$. Pick the colour $A \in u$.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0<u=u \oplus u$. Pick the colour $A \in u$. Since $u=u \oplus u$, there is $z_{0} \in A$ with $A \cap\left(A-z_{0}\right) \in u$.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0<u=u \oplus u$. Pick the colour $A \in u$. Since $u=u \oplus u$, there is $z_{0} \in A$ with $A \cap\left(A-z_{0}\right) \in u$. Again since $u=u \oplus u$, there is $z_{1} \in A \cap\left(A-z_{0}\right)$ with $A \cap\left(A-z_{0}\right) \cap\left(A-z_{1}\right) \cap\left(A-\left(z_{0}+z_{1}\right)\right) \in u$.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0<u=u \oplus u$. Pick the colour $A \in u$. Since $u=u \oplus u$, there is $z_{0} \in A$ with $A \cap\left(A-z_{0}\right) \in u$. Again since $u=u \oplus u$, there is $z_{1} \in A \cap\left(A-z_{0}\right)$ with $A \cap\left(A-z_{0}\right) \cap\left(A-z_{1}\right) \cap\left(A-\left(z_{0}+z_{1}\right)\right) \in u$. Repeat.

Into the wild
 HIC SVNT TENSORES

- Let M be \mathbb{Z} with the full structure: every subset of every \mathbb{Z}^{n} is \emptyset-definable.
- Over M, all types are \emptyset-definable. $S_{1}(M)=\beta \mathbb{Z}:=$ Space of ultrafilters over \mathbb{Z}.
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$-definable f either $f(b) \in \mathbb{Z}$ or $|a|<|f(b)|$.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q,(b, c) \vDash q \otimes r \Longrightarrow(a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
(note: historically \otimes, \oplus were first defined on ultrafilters)
- Spelling out \oplus, with + the usual sum, $A \in p \oplus q \Longleftrightarrow\{n: A-n \in q\} \in p$

A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

\forall finite colouring of \mathbb{Z}, there are $\left(z_{i}\right)_{i<\omega}$ s.t. all $z_{i_{0}}+\ldots+z_{i_{n}}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0<u=u \oplus u$. Pick the colour $A \in u$. Since $u=u \oplus u$, there is $z_{0} \in A$ with $A \cap\left(A-z_{0}\right) \in u$. Again since $u=u \oplus u$, there is $z_{1} \in A \cap\left(A-z_{0}\right)$ with $A \cap\left(A-z_{0}\right) \cap\left(A-z_{1}\right) \cap\left(A-\left(z_{0}+z_{1}\right)\right) \in u$. Repeat. \square Want finite products instead? Work in $(\beta \mathbb{Z}, \odot)$.

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the titile of this slide)

Definition (Šobot)
Write $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$.
(equivalently: $u \equiv_{w}^{\mathrm{s}} v$ iff $\{n: n \mathbb{Z} \in u \ominus v\} \in w$)

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)
Write $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$.
(equivalently: $u \equiv_{w}^{\mathrm{s}} v$ iff $\{n: n \mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_{w}^{s} is an equivalence relation compatible with \oplus, \odot.

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)
Write $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$.
(equivalently: $u \equiv_{w}^{\mathrm{s}} v$ iff $\{n: n \mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_{w}^{s} is an equivalence relation compatible with \oplus, \odot.
Similarly as commutativity is lost from + to \oplus, this relation may behave strangely.

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)
Write $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$.
(equivalently: $u \equiv_{w}^{\mathrm{s}} v$ iff $\{n: n \mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_{w}^{s} is an equivalence relation compatible with \oplus, \odot.
Similarly as commutativity is lost from + to \oplus, this relation may behave strangely.

Example

Let w be an infinite prime. Then $w \not \equiv_{w}^{\mathrm{s}} 0$.

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)
Write $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$.
(equivalently: $u \equiv_{w}^{\mathrm{s}} v$ iff $\{n: n \mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_{w}^{s} is an equivalence relation compatible with \oplus, \odot.
Similarly as commutativity is lost from + to \oplus, this relation may behave strangely.

Example

Let w be an infinite prime. Then $w \not \equiv_{w}^{\text {s }} 0$.
Maybe there is a better notion of congruence?

Weak congruence

Definition (Šobot)
$u \equiv{ }_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$.
(recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n \mathbb{Z}$) in w are also in $u \ominus v$.

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$.
(recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n \mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition)

$$
\text { (recall: } u \equiv_{w}^{\mathrm{s}} v \text { iff }\{n: n \mathbb{Z} \in u \ominus v\} \in w \text {) }
$$

- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$.

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n \mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff $\{n: n \mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$. But there's a deeper issue:

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n \mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition)

$$
\text { (recall: } u \equiv_{w}^{\mathrm{s}} v \text { iff }\{n: n \mathbb{Z} \in u \ominus v\} \in w \text {) }
$$

- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$. But there's a deeper issue:

Question (Šobot)
Is \equiv_{w} an equivalence relation for all w ?

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n \mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition)

$$
\text { (recall: } u \equiv_{w}^{\mathrm{s}} v \text { iff }\{n: n \mathbb{Z} \in u \ominus v\} \in w \text {) }
$$

- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$. But there's a deeper issue:

Question (Šobot)
Is \equiv_{w} an equivalence relation for all w ?
Answer (DLMPR) No.

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n z$) in w are also in $u \ominus v$. (this was actually the original definition)

$$
\text { (recall: } u \equiv_{w}^{\mathrm{s}} v \text { iff }\{n: n \mathbb{Z} \in u \ominus v\} \in w \text {) }
$$

- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$. But there's a deeper issue:

Question (Šobot)
Is \equiv_{w} an equivalence relation for all w ?
Answer (DLMPR) No.

- Failure of symmetry: there are u, v such that $u \ominus v$ is squarefree but $v \ominus u$ is not.

Weak congruence

Definition (Šobot)

$u \equiv_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n z$) in w are also in $u \ominus v$. (this was actually the original definition)

$$
\text { (recall: } u \equiv_{w}^{\mathrm{s}} v \text { iff }\{n: n \mathbb{Z} \in u \ominus v\} \in w \text {) }
$$

- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$. But there's a deeper issue:

Question (Šobot)
Is \equiv_{w} an equivalence relation for all w ?
Answer (DLMPR) No.

- Failure of symmetry: there are u, v such that $u \ominus v$ is squarefree but $v \ominus u$ is not.

Theorem (DLMPR) If $\mathrm{BD}(A)>0$ and A^{\complement} is thick, there are $u, v \in \beta \mathbb{Z} \backslash \mathbb{Z}$ such that $A \in u \oplus v$ and $A^{\complement} \in v \oplus u$.

Weak congruence

Definition (Šobot)

$u \equiv{ }_{w} v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid(a-b)$. (recall: $u \equiv_{w}^{\mathrm{s}} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid(a-b)$

- Equivalently, all |-upward-closed sets (=unions of $n \mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition)

$$
\text { (recall: } u \equiv_{w}^{\mathrm{s}} v \text { iff }\{n: n \mathbb{Z} \in u \ominus v\} \in w \text {) }
$$

- Clearly, $w \equiv_{w} 0$ always holds: take $d=a$. But there's a deeper issue:

Question (Šobot)
Is \equiv_{w} an equivalence relation for all w ?
Answer (DLMPR) No.

- Failure of symmetry: there are u, v such that $u \ominus v$ is squarefree but $v \ominus u$ is not.
- Failure of transitivity: take any infinite w containing all $n \mathbb{Z}+1$. Then $0 \equiv_{w} w \equiv_{w} 1$.

Theorem (DLMPR)

If $\mathrm{BD}(A)>0$ and A^{C} is thick, there are $u, v \in \beta \mathbb{Z} \backslash \mathbb{Z}$ such that $A \in u \oplus v$ and $A^{\complement} \in v \oplus u$.

Good congruence bases

Question
For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$.

Good congruence bases

Question
For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$. If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$.
If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.
It turns out this also necessary:
Theorem (DLMPR)
The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$:

1. $\forall d, d^{\prime} \vDash w \exists d^{\prime \prime} \vDash w d^{\prime \prime} \mid \operatorname{gcd}\left(d, d^{\prime}\right)$ (i.e. for 41 a monster, ($w(\mathbb{1} 1)$, | is downward directed, or filterec)
2. \equiv_{w} is transitive

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$. If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.
It turns out this also necessary:
Theorem (DLMPR)
The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$:

1. $\forall d, d^{\prime} \vDash w \exists d^{\prime \prime} \vDash w d^{\prime \prime} \mid \operatorname{gcd}\left(d, d^{\prime}\right)$ (i.e. for $\mathfrak{t l}$ a monster, (w(1), |) is downward directed, or filtered)
2. \equiv_{w} is transitive
3. \equiv_{w} is an equivalence relation (still open: can it be symmetric but not transitive?)

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$. If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.
It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$:

1. $\forall d, d^{\prime} \vDash w \exists d^{\prime \prime} \vDash w d^{\prime \prime} \mid \operatorname{gcd}\left(d, d^{\prime}\right)$ (i.e. for 4 L a monster, (w(I), |) is downward directed, or filterect)
2. \equiv_{w} is transitive
3. \equiv_{w} is an equivalence relation (still open: can it be symmetric but not transitive?)
4. $\equiv_{w}=\equiv_{w}^{\mathrm{s}}$

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$. If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.
It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$:

1. $\forall d, d^{\prime} \vDash w \exists d^{\prime \prime} \vDash w d^{\prime \prime} \mid \operatorname{gcd}\left(d, d^{\prime}\right)$ (i.e. for \mathfrak{L} a monster, $(w(\mathbb{1}), \mid)$ is downward directed, or filtered $)$
2. \equiv_{w} is transitive
3. \equiv_{w} is an equivalence relation (still open: can it be symmetric but not transitive?)
4. $\equiv_{w}=\equiv_{w}^{\mathrm{s}}$
5. $w(x) \otimes w(y) \vdash x \mid y($ (i.e $\{n: n \mathbb{Z} \in w\} \in w)$

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$.
If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.
It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$:

1. $\forall d, d^{\prime} \vDash w \exists d^{\prime \prime} \vDash w d^{\prime \prime} \mid \operatorname{gcd}\left(d, d^{\prime}\right)$ (i.e. for \mathfrak{L} a monster, (w(ㄴ), ,) is downward directed, or filtered)
2. \equiv_{w} is transitive
3. \equiv_{w} is an equivalence relation (still open: can it be symmetric but not transitive?)
4. $\equiv_{w}=\equiv_{w}^{\mathrm{s}}$
5. $w(x) \otimes w(y) \vdash x \mid y$ (i.e. $\{n: n \mathbb{Z} \in w\} \in w)$

Let's call such w self-divisible.

Good congruence bases

Question

For which w is \equiv_{w} an equivalence relation? Any $w \notin \mathbb{Z}$ at all?
Say $d \mid(a-b)$ and $d^{\prime} \mid(b-c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d^{\prime} \vDash w$.
If there is $d^{\prime \prime} \mid d, d^{\prime}$ with $d^{\prime \prime} \vDash w$, then \equiv_{w} is transitive.
It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$:

1. $\forall d, d^{\prime} \vDash w \exists d^{\prime \prime} \vDash w d^{\prime \prime} \mid \operatorname{gcd}\left(d, d^{\prime}\right)$ (i.e. for \mathfrak{L} a monster, ($w(\mathfrak{L l}$), |) is downward directed, or filtered)
2. \equiv_{w} is transitive
3. \equiv_{w} is an equivalence relation (still open: can it be symmetric but not transitive?)
4. $\equiv_{w}=\equiv_{w}^{\mathrm{s}}$
5. $w(x) \otimes w(y) \vdash x \mid y$ (i.e. $\{n: n \mathbb{Z} \in w\} \in w)$

Let's call such w self-divisible. (a previous name we used was division-filtered)

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes!
Recall w is self-divisible iff, equivalently:

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w$ is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$

Examples and non-examples

$\boldsymbol{\chi}$ Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes!
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
Recall w is self-divisible iff, equivalently:

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w$ is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes!
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)
Recall w is self-divisible iff, equivalently:

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w_{w}$ is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes!
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)
\checkmark Stuff divisible by every $n>0$
Recall w is self-divisible iff, equivalently:

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. \equiv_{w} is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes!
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)
\checkmark Stuff divisible by every $n>0$;
Recall w is self-divisible iff, equivalently:

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. \equiv_{w} is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes! Recall w is self-divisible iff, equivalently:
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w$ is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$
\checkmark Stuff divisible by every $n>0$;
e.g. all \oplus-idempotents and all \odot-minimals
$\checkmark \operatorname{tp}\left(p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} / \mathbb{Z}\right)$, with $p_{i} \in \mathbb{Z}$ primes and a_{i} infinite.

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes!
Recall w is self-divisible iff, equivalently:
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w$ is an equivalence relation
5. $\equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}$
\checkmark Stuff divisible by every $n>0$;
e.g. all \oplus-idempotents and all \odot-minimals
$\checkmark \operatorname{tp}\left(p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} / \mathbb{Z}\right)$, with $p_{i} \in \mathbb{Z}$ primes and a_{i} infinite.
X Infinite stuff divisible by only finitely many (finite) integers.

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes! Recall w is self-divisible iff, equivalently:
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. \equiv_{w} is an equivalence relation
\checkmark Stuff divisible by every $n>0$;

$$
\text { 5. } \equiv{ }_{w}=\equiv_{w}^{\mathrm{s}}
$$

e.g. all \oplus-idempotents and all \odot-minimals
$\checkmark \operatorname{tp}\left(p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} / \mathbb{Z}\right)$, with $p_{i} \in \mathbb{Z}$ primes and a_{i} infinite.
X Infinite stuff divisible by only finitely many (finite) integers.
\checkmark Stuff divisible by every power of cofinitely many (finite) primes.

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes! Recall w is self-divisible iff, equivalently:
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w_{w}$ is an equivalence relation
\checkmark Stuff divisible by every $n>0$;

$$
\text { 5. } \equiv w=\equiv_{w}^{\mathrm{s}}
$$ e.g. all \oplus-idempotents and all \odot-minimals

$\checkmark \operatorname{tp}\left(p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} / \mathbb{Z}\right)$, with $p_{i} \in \mathbb{Z}$ primes and a_{i} infinite.
X Infinite stuff divisible by only finitely many (finite) integers.
\checkmark Stuff divisible by every power of cofinitely many (finite) primes.

- For other supernatural numbers (functions $\mathbb{P} \rightarrow \omega+1$)(formal products $\varphi=\Pi_{p \in \mathbb{P}} p^{\varphi_{p}}$, if you prefer) there are both self-divisible w and non-self-divisible w with that divisibility.

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes! Recall w is self-divisible iff, equivalently:
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w$ is an equivalence relation
\checkmark Stuff divisible by every $n>0$;

$$
\text { 5. } \equiv w=\equiv_{w}^{\mathrm{s}}
$$ e.g. all \oplus-idempotents and all \odot-minimals

$\checkmark \operatorname{tp}\left(p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} / \mathbb{Z}\right)$, with $p_{i} \in \mathbb{Z}$ primes and a_{i} infinite.
X Infinite stuff divisible by only finitely many (finite) integers.
\checkmark Stuff divisible by every power of cofinitely many (finite) primes.

* For other supernatural numbers (functions $\mathbb{P} \rightarrow \omega+1$)(formal products $\varphi=\Pi_{p \in \mathbb{P}} p^{\varphi_{p}}$, if you prefer) there are both self-divisible w and non-self-divisible w with that divisibility.
\checkmark Self-divisibles are closed under \odot.

Examples and non-examples

\boldsymbol{X} Infinite primes: $w(x) \otimes w(y) \vdash|x|<|y|$ are primes! Recall w is self-divisible iff, equivalently:
\checkmark Factorials: $w(x) \otimes w(y) \vdash x<y$ are factorials!
\checkmark Powers of 2 ! (2 factorial, if you wish)

1. $w(x) \otimes w(y) \vdash x \mid y$
2. $\{n: n \mathbb{Z} \in w\} \in w$
3. $(w(\mathfrak{U}), \mid)$ is downward directed
4. $\equiv w$ is an equivalence relation
\checkmark Stuff divisible by every $n>0$;

$$
\text { 5. } \equiv_{w}=\equiv_{w}^{\mathrm{s}}
$$ e.g. all \oplus-idempotents and all \odot-minimals

$\checkmark \operatorname{tp}\left(p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}} / \mathbb{Z}\right)$, with $p_{i} \in \mathbb{Z}$ primes and a_{i} infinite.
X Infinite stuff divisible by only finitely many (finite) integers.
\checkmark Stuff divisible by every power of cofinitely many (finite) primes.

* For other supernatural numbers (functions $\mathbb{P} \rightarrow \omega+1$)(formal products $\varphi=\Pi_{p \in \mathbb{P}} p^{\varphi_{p}}$, if you prefer) there are both self-divisible w and non-self-divisible w with that divisibility.
\checkmark Self-divisibles are closed under \odot.
x But not under \oplus : let w be divisible by every $n>0$, take $w \oplus$.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} !

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?
Theorem (DLMPR)
w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?
Theorem (DLMPR)
w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?
Theorem (DLMPR)
w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot-idempotents; there are non-self-divisible ones.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?
Theorem (DLMPR)
w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite \mid-chain. E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ is always a (well-defined) group.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite \mid-chain.
E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{S}}$ is always a (well-defined) group.
- The $\equiv{ }_{w}^{\mathrm{s}}$-class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain.
E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{S}}$ is always a (well-defined) group.
- The \equiv_{w}^{s}-class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \geq 2} \mathbb{Z} / n \mathbb{Z}$. Quotient by w.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite \mid-chain.
E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{S}}$ is always a (well-defined) group.
- The $\equiv_{w}^{\text {s }}$-class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \geq 2} \mathbb{Z} / n \mathbb{Z}$. Quotient by w.

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite \mid-chain.
E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{S}}$ is always a (well-defined) group.
- The $\equiv_{w}^{\text {s }}$-class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \geq 2} \mathbb{Z} / n \mathbb{Z}$. Quotient by w.

Theorem (DLMPR)

w is self-divisible iff $\operatorname{ker} \sigma_{w}$ is
closed

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite \mid-chain.
E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ is always a (well-defined) group.
- The $\equiv_{w}^{\text {s }}$-class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \geq 2} \mathbb{Z} / n \mathbb{Z}$. Quotient by w.

Theorem (DLMPR)

w is self-divisible iff $\operatorname{ker} \sigma_{w}$ is closed iff $\beta \mathbb{Z} / \equiv_{w}^{\mathrm{s}}$ is profinite

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \backslash \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \backslash \mathbb{Z}$ iff every $A \in w$ contains an infinite \mid-chain.
E.g. all \odot-idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ is always a (well-defined) group.
- The \equiv_{w}^{s}-class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \geq 2} \mathbb{Z} / n \mathbb{Z}$. Quotient by w.

Theorem (DLMPR)

w is self-divisible iff $\operatorname{ker} \sigma_{w}$ is closed iff $\beta \mathbb{Z} / \equiv_{w}^{\mathrm{s}}$ is profinite iff $\beta \mathbb{Z} / \equiv_{w}^{\mathrm{s}} \cong \prod_{p \in \mathbb{P}} G_{p, w}$

$$
G_{p, w}= \begin{cases}\mathbb{Z} / p^{n} \mathbb{Z}, & \text { if } n=\max \left\{k: p^{k} \mathbb{Z} \in w\right\} \\ \mathbb{Z}_{p}, & \text { otherwise }\end{cases}
$$

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes. this also gives a kind of "weak transitivity"; to be explored

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes. this also gives a kind of "weak transitivity"; to be explored
- Drawbacks of $\equiv_{w}, \equiv_{w}^{\text {s }}$

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes. this also gives a kind of "weak transitivity"; to be explored
- Drawbacks of $\equiv_{w}, \equiv_{w}^{\mathrm{s}} \ldots$
- disappear iff $\equiv_{w}=\equiv_{w}^{\mathrm{S}}$

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes. this also gives a kind of "weak transitivity"; to be explored
- Drawbacks of $\equiv_{w}, \equiv_{w}^{\mathrm{s}} \ldots$
- disappear iff $\equiv_{w}=\equiv_{w}^{\mathrm{S}} \ldots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ profinite

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes. this also gives a kind of "weak transitivity"; to be explored
- Drawbacks of $\equiv_{w}, \equiv_{w}^{\mathrm{s}} \ldots$
- disappear iff $\equiv_{w}=\equiv_{w}^{\mathrm{S}} \ldots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ profinite, iff \rightarrow

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes.
this also gives a kind of "weak transitivity"; to be explored
- Drawbacks of $\equiv_{w}, \equiv_{w}^{\mathrm{s}} \ldots$
- disappear iff $\equiv_{w}=\equiv_{w}^{\mathrm{S}} \ldots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ profinite, iff \rightarrow

$$
D(w):=\{n: n \mathbb{Z} \in w\}
$$

$w \tilde{\mid} u:=u \equiv_{w} 0$
$Z_{w}:=\{u: w \tilde{\mid} u\}$
$\varphi_{w}:=$ associated supernatural number

Theorem 3.10. For every $w \in \beta \mathbb{Z} \backslash\{0\}$, the following are equivalent.
(1) The ultrafilter w is self-divisible.
(2) The relations \equiv_{w} and \equiv_{w}^{s} coincide.
(3) The relation \equiv_{w} is an equivalence relation.
(4) For every u, we have $w \tilde{\mid} u$ if and only if $D(w) \subseteq D(u)$.
(5) For every $a, b \models w$ there is $c \models w$ such that $c \mid \operatorname{gcd}(a, b)$.

Theorem 6.8. The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$.
(1) The ultrafilter w is self-divisible.
(2) For all $B \in w$ there is $A \in w$ such that for all $a, a^{\prime} \in A$ there is $b \in B$ with $b \mid \operatorname{gcd}\left(a, a^{\prime}\right)$.
(3) For all $B \in w$ there are $A \in w$ and $b \in B$ such that $A \subseteq b \mathbb{Z}$.
(4) For all $B \in w$ there is $b \in B$ such that $b \mathbb{Z} \in w$.
(5) For all $B \in w$ we have $\{b \in B: b \mathbb{Z} \in w\} \in w$.
(6) For all $k \in \mathbb{Z} \backslash\{0\}$ we have that $k w$ is self-divisible.
(7) There are $n \neq m$ such that $w^{\oplus n} \equiv_{w}^{\mathrm{s}} w^{\oplus m} \sqrt{6}^{6}$
(8) For all v, if $w \equiv_{v} 0$ then $w \equiv_{v}^{s} 0$.
(9) If $\mathbb{Z} \ni a \models w$, then $\left\{b \in{ }^{*} \mathbb{Z}: b \mid a\right\} \subseteq{ }^{*} D(w)$.
(10) Z_{w} is closed under \oplus and, whenever $v \in \mathrm{MAX}$, if $u \oplus v \oplus t \in Z_{w}$ then $u \oplus t \in Z_{w}$
(11) Z_{w} is closed under \oplus and $Z_{w}=\pi^{-1}\left(\underset{\sim}{\pi}\left(Z_{w}\right)\right)$.
(12) Z_{w} is closed under \oplus and whether $w \tilde{\mid} u$ only depends on the remainder classes of u modulo standard n.
(13) The kernel $\operatorname{ker}\left(\sigma_{w}\right)$ is closed in $\hat{\mathbb{Z}}$.
(14) $\beta \mathbb{Z} / \equiv_{w}^{\mathrm{s}}$ is a procyclic group with respect to the quotient topology. ${ }^{7}$
(15) $\beta \mathbb{Z} / \equiv_{w}^{s}$ is a profinite group with respect to some topology.
(16) We have $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}} \cong \prod_{p \in \mathbb{P}} G_{p}$, where $G_{p}=\mathbb{Z}_{p}$ if $\varphi_{w}(p)=\omega$, and $G_{p}=\mathbb{Z} / p^{\varphi_{w}(p)} \mathbb{Z}$ otherwise.

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on \otimes.
this also gives a kind of "weak transitivity"; to be explored
- Drawbacks of $\equiv_{w}, \equiv_{w}^{\mathrm{s}} \ldots$
- disappear iff $\equiv_{w}=\equiv_{w}^{\mathrm{S}} \ldots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}}$ profinite, iff \rightarrow $D(w):=\{n: n \mathbb{Z} \in w\}$
$w \tilde{\mid} u:=u \equiv_{w} 0$
$Z_{w}:=\{u: w \tilde{\mid} u\}$
$\varphi_{w}:=$ associated supernatural number

Theorem 3.10. For every $w \in \beta \mathbb{Z} \backslash\{0\}$, the following are equivalent.
(1) The ultrafilter w is self-divisible.
(2) The relations \equiv_{w} and \equiv_{w}^{s} coincide.
(3) The relation \equiv_{w} is an equivalence relation.
(4) For every u, we have $w \tilde{\mid} u$ if and only if $D(w) \subseteq D(u)$.
(5) For every $a, b \models w$ there is $c \models w$ such that $c \mid \operatorname{gcd}(a, b)$.

Theorem 6.8. The following are equivalent for $w \in \beta \mathbb{Z} \backslash\{0\}$.
(1) The ultrafilter w is self-divisible.
(2) For all $B \in w$ there is $A \in w$ such that for all $a, a^{\prime} \in A$ there is $b \in B$ with $b \mid \operatorname{gcd}\left(a, a^{\prime}\right)$.
(3) For all $B \in w$ there are $A \in w$ and $b \in B$ such that $A \subseteq b \mathbb{Z}$.
(4) For all $B \in w$ there is $b \in B$ such that $b \mathbb{Z} \in w$.
(5) For all $B \in w$ we have $\{b \in B: b \mathbb{Z} \in w\} \in w$.
(6) For all $k \in \mathbb{Z} \backslash\{0\}$ we have that $k w$ is self-divisible.
(7) There are $n \neq m$ such that $w^{\oplus n} \equiv_{w}^{\mathrm{s}} w^{\oplus m} \sqrt{6}^{6}$
(8) For all v, if $w \equiv_{v} 0$ then $w \equiv_{v}^{\mathrm{s}} 0$.
(9) If $\mathbb{Z} \ni a \models w$, then $\left\{b \in{ }^{*} \mathbb{Z}: b \mid a\right\} \subseteq{ }^{*} D(w)$.
(10) Z_{w} is closed under \oplus and, whenever $v \in \mathrm{MAX}$, if $u \oplus v \oplus t \in Z_{w}$ then $u \oplus t \in Z_{w}$
(11) Z_{w} is closed under \oplus and $Z_{w}=\pi^{-1}\left(\underset{\sim}{\pi}\left(Z_{w}\right)\right)$.
(12) Z_{w} is closed under \oplus and whether $w \tilde{\mid} u$ only depends on the remainder classes of u modulo standard n.
(13) The kernel $\operatorname{ker}\left(\sigma_{w}\right)$ is closed in $\hat{\mathbb{Z}}$.
(14) $\beta \mathbb{Z} / \equiv_{w}^{\mathrm{s}}$ is a procyclic group with respect to the quotient topology. ${ }^{7}$
(15) $\beta \mathbb{Z} / \equiv_{w}^{s}$ is a profinite group with respect to some topology.
(16) We have $(\beta \mathbb{Z}, \oplus) / \equiv_{w}^{\mathrm{s}} \cong \prod_{p \in \mathbb{P}} G_{p}$, where $G_{p}=\mathbb{Z}_{p}$ if $\varphi_{w}(p)=\omega$, and $G_{p}=\mathbb{Z} / p^{\varphi_{w}(p)} \mathbb{Z}$ otherwise.

