Filtered filters

Ultrafilters, congruences, and profinite groups

Rosario Mennuni Università di Pisa

based on joint work with M. Di Nasso, L. Luperi Baglini, M. Pierobon, and M. Ragosta

Oberseminar mathematische Logik Albert-Ludwigs-Universität Freiburg 13th June 2023

Filtered filters

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)

Filtered filters

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)
- which led to a notion with several characterisations

Filtered filters

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)
- which led to a notion with several characterisations
- and was solved by looking at it from different viewpoints: density theory, nonstandard analysis, model theory,...

Filtered filters

- A problem on ultrafilters
- (arising from their applications in Ramsey theory)
- which led to a notion with several characterisations
- and was solved by looking at it from different viewpoints: density theory, nonstandard analysis, model theory,...
- In this talk, we mainly adopt the latter.

Filtered filters

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

• $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{d \in M : \varphi(y, d) \in q(y)\}$ is M-definable.

Filtered filters

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

• $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{d \in M : \varphi(y, d) \in q(y)\}$ is M-definable.

Example
$$M = (\mathbb{Q}, <)$$
 and $q(y) = \{y > d : d \in M\}$.

Filtered filters

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

- $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{d \in M : \varphi(y, d) \in q(y)\}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

 $\varphi(y, a, d) \in (q \mid A) \iff ad \vDash d_q \varphi$

Example $M = (\mathbb{Q}, <)$ and $q(y) = \{y > d : d \in M\}$.

Filtered filters

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

- $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{ d \in M : \varphi(y, d) \in q(y) \}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

 $\varphi(y, a, d) \in (q \mid A) \iff ad \vDash d_q \varphi$

• For definable $p, q \in S(M)$, define $p(x) \otimes q(y)$ as

 $(a,b)\vDash p(x)\otimes q(y)\iff a\vDash p \text{ and }b\vDash q\mid Ma$

Example $M = (\mathbb{Q}, <)$ and $q(y) = \{y > d : d \in M\}$.

Filtered filters

_____<u>_</u>____

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

- $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{ d \in M : \varphi(y, d) \in q(y) \}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

 $\varphi(y, a, d) \in (q \mid A) \iff ad \vDash d_q \varphi$

• For definable $p, q \in S(M)$, define $p(x) \otimes q(y)$ as

$$(a,b) \vDash p(x) \otimes q(y) \iff a \vDash p \text{ and } b \vDash q \mid Ma$$

Example $M = (\mathbb{Q}, <)$ and $q(y) = \{y > d : d \in M\}$. Then $q(x) \otimes q(y) \vdash x < y$

Filtered filters

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

- $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{ d \in M : \varphi(y, d) \in q(y) \}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$\varphi(y, a, d) \in (q \mid A) \iff ad \vDash d_q \varphi$$

• For definable $p,q \in S(M),$ define $p(x) \otimes q(y)$ as 2 + 2p = 2

$$(a,b) \vDash p(x) \otimes q(y) \iff a \vDash p \text{ and } b \vDash q \mid Ma$$

Example $M = (\mathbb{Q}, <)$ and $q(y) = \{y > d : d \in M\}$. Then $q(x) \otimes q(y) \vdash x < y$

Filtered filters

Definable types Review of the basics

T complete, work in a monster, a,b,\ldots,x,y,\ldots finite tuples

- $q(y) \in S(M)$ is definable iff each $d_q \varphi := \{ d \in M : \varphi(y, d) \in q(y) \}$ is M-definable.
- If $A \supset M$, define $q \mid A$ as

$$\varphi(y, a, d) \in (q \mid A) \iff ad \vDash d_q \varphi$$

• For definable $p,q \in S(M)$, define $p(x) \otimes q(y)$ as 2 + 2p you may be used to "backwards" notation

$$(a,b) \vDash p(x) \otimes q(y) \iff a \vDash p \text{ and } b \vDash q \mid Ma$$

Example $M = (\mathbb{Q}, <)$ and $q(y) = \{y > d : d \in M\}$. Then $q(x) \otimes q(y) \vdash x < y$

 $------\frac{1}{a}----\frac{1}{b}---$

• $p \otimes q$ is itself definable and \otimes is associative.

Filtered filters

Compact right topological semigroups

• Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G/G^{00} and definable amenability...

Filtered filters

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G/G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.

Filtered filters

- Suppose $(M, +, \ldots)$ expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G/G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with *all* possible (single-sorted) theories with a countabl(y infinit)e model.

Filtered filters

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G/G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with *all* possible (single-sorted) theories with a countabl(y infinit)e model.
- Including your favourite (consistent) set theory (in a countable language).

Filtered filters

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G/G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with *all* possible (single-sorted) theories with a countabl(y infinit)e model.
- Including your favourite (consistent) set theory (in a countable language).
- All of them together on the same set.

Filtered filters

- Suppose (M, +, ...) expands a semigroup (commutative, as here, or not)
- Say all $p \in S_1(M)$ happen to be definable (happens over every $M \iff T$ stable)
- Push \otimes forward along +, i.e. define $c \vDash p \oplus q \iff \exists (a,b) \vDash p \otimes q \ (a+b=c).$
- Associativity survives; commutativity need not (and usually doesn't).
- Get compact Hausdorff right topological semigroup: each $(-) \oplus q$ is continuous.
- Ellis theory: dynamics, idempotents...
- Previous model-theoretic usage: definable topological dynamics, connections with G/G^{00} and definable amenability...
- ... usually in tame contexts, e.g. NIP.
- We will work with *all* possible (single-sorted) theories with a countabl(y infinit)e model.
- Including your favourite (consistent) set theory (in a countable language).
- All of them together on the same set. So forget about tameness.

• Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable.

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$

FALSE in general, e.g. random graph

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r$. FALSE in general, e.g. random graph
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$

- Let M be \mathbb{Z} with the *full* structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour.

- Let M be Z with the full structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0 < u = u \oplus u$.

- Let M be Z with the full structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0 < u = u \oplus u$. Pick the colour $A \in u$.

- Let M be Z with the full structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0 < u = u \oplus u$. Pick the colour $A \in u$. Since $u = u \oplus u$, there is $z_0 \in A$ with $A \cap (A - z_0) \in u$.
Into the wild HIC SVNT TENSORES

- Let M be Z with the full structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0 < u = u \oplus u$. Pick the colour $A \in u$. Since $u = u \oplus u$, there is $z_0 \in A$ with $A \cap (A - z_0) \in u$. Again since $u = u \oplus u$, there is $z_1 \in A \cap (A - z_0)$ with $A \cap (A - z_0) \cap (A - z_1) \cap (A - (z_0 + z_1)) \in u$.

Into the wild HIC SVNT TENSORES

- Let M be Z with the full structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0 < u = u \oplus u$. Pick the colour $A \in u$. Since $u = u \oplus u$, there is $z_0 \in A$ with $A \cap (A - z_0) \in u$. Again since $u = u \oplus u$, there is $z_1 \in A \cap (A - z_0)$ with $A \cap (A - z_0) \cap (A - z_1) \cap (A - (z_0 + z_1)) \in u$. Repeat. \Box

Into the wild HIC SVNT TENSORES

- Let M be Z with the full structure: every subset of every \mathbb{Z}^n is \emptyset -definable.
- Over M, all types are \emptyset -definable. $S_1(M) = \beta \mathbb{Z} \coloneqq$ Space of ultrafilters over \mathbb{Z} .
- Fact (Puritz): (a, b) tensor iff for $\forall \emptyset$ -definable f either $f(b) \in \mathbb{Z}$ or |a| < |f(b)|.
- Corollary: q nonrealised, $(a, b) \vDash p \otimes q, (b, c) \vDash q \otimes r \Longrightarrow (a, c) \vDash p \otimes r.$ FALSE in general, e.g. random graph (note: historically \otimes , \oplus were first defined on ultrafilters)
- Spelling out \oplus , with + the usual sum, $A \in p \oplus q \iff \{n : A n \in q\} \in p$ A typical application in Ramsey theory/additive combinatorics:

Theorem (Hindman)

 \forall finite colouring of \mathbb{Z} , there are $(z_i)_{i < \omega}$ s.t. all $z_{i_0} + \ldots + z_{i_n}$ have the same colour. Proof. Use Ellis theory to find $u \in \beta \mathbb{Z}$ with $0 < u = u \oplus u$. Pick the colour $A \in u$. Since $u = u \oplus u$, there is $z_0 \in A$ with $A \cap (A - z_0) \in u$. Again since $u = u \oplus u$, there is $z_1 \in A \cap (A - z_0)$ with $A \cap (A - z_0) \cap (A - z_1) \cap (A - (z_0 + z_1)) \in u$. Repeat. \Box Want finite products instead? Work in $(\beta \mathbb{Z}, \odot)$.

Filtered filters

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)

Write $u \equiv_w^{s} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$. (equivalently: $u \equiv_w^{s} v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)

Write $u \equiv_w^{s} v$ iff for some/all $(d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$. (equivalently: $u \equiv_w^{s} v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_w^s is an equivalence relation compatible with \oplus, \odot .

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)

Write $u \equiv_w^{s} v$ iff for some/all $(d, a, b) \models w \otimes u \otimes v$ we have $d \mid (a - b)$. (equivalently: $u \equiv_w^{s} v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_{w}^{s} is an equivalence relation compatible with \oplus, \odot .

Similarly as commutativity is lost from + to \oplus , this relation may behave strangely.

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)

Write $u \equiv_w^{s} v$ iff for some/all $(d, a, b) \models w \otimes u \otimes v$ we have $d \mid (a - b)$. (equivalently: $u \equiv_w^{s} v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_w^s is an equivalence relation compatible with \oplus, \odot .

Similarly as commutativity is lost from + to \oplus , this relation may behave strangely.

Example

Let w be an infinite prime. Then $w \not\equiv_w^s 0$.

Strong congruence

- Recap: $(\beta \mathbb{Z}, \oplus, \odot)$, applications in Ramsey theory/combinatorics.
- What's the next thing you do in arithmetic? (hint: look at the title of this slide)

Definition (Šobot)

Write $u \equiv_w^{s} v$ iff for some/all $(d, a, b) \models w \otimes u \otimes v$ we have $d \mid (a - b)$. (equivalently: $u \equiv_w^{s} v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)

Fact (Šobot)

Every \equiv_w^s is an equivalence relation compatible with \oplus, \odot .

Similarly as commutativity is lost from + to \oplus , this relation may behave strangely.

Example

Let w be an infinite prime. Then $w \not\equiv_w^s 0$.

Maybe there is a better notion of congruence?

 $\mathop{\mathsf{\check{S}obot's}}_{\scriptscriptstyle O \bullet} \mathsf{Congruences}$

Filtered filters

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

 $\mathop{\mathsf{\check{S}obot's}}_{\scriptscriptstyle O \bullet} \mathsf{Congruences}$

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

• Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all $|-\text{upward-closed sets } (=\text{unions of } n\mathbb{Z})$ in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a.

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a. But there's a deeper issue:

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a. But there's a deeper issue:

Question (Šobot)

Is \equiv_w an equivalence relation for all w?

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a. But there's a deeper issue:

Question (Šobot) Is \equiv_w an equivalence relation for all w? Answer (DLMPR) No.

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a. But there's a deeper issue:

Question (Šobot)

Is \equiv_w an equivalence relation for all w?

Answer (DLMPR) No.

• Failure of symmetry: there are u, v such that $u \ominus v$ is squarefree but $v \ominus u$ is not.

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a. But there's a deeper issue:

Question (Šobot)

Is \equiv_w an equivalence relation for all w?

Answer (DLMPR) No.

• Failure of symmetry: there are u, v such that $u \ominus v$ is squarefree but $v \ominus u$ is not.

Theorem (DLMPR) If BD(A) > 0 and A^{\complement} is thick, there are $u, v \in \beta \mathbb{Z} \setminus \mathbb{Z}$ such that $A \in u \oplus v$ and $A^{\complement} \in v \oplus u$.

Weak congruence

Definition (Šobot)

 $u \equiv_w v$ iff there are some $d \vDash w$ and $(a, b) \vDash u \otimes v$ such that $d \mid (a - b)$.

(recall: $u \equiv_w^s v$ iff for $some/all (d, a, b) \vDash w \otimes u \otimes v$ we have $d \mid (a - b)$

- Equivalently, all |-upward-closed sets (=unions of $n\mathbb{Z}$) in w are also in $u \ominus v$. (this was actually the original definition) (recall: $u \equiv_w^s v$ iff $\{n : n\mathbb{Z} \in u \ominus v\} \in w$)
- Clearly, $w \equiv_w 0$ always holds: take d = a. But there's a deeper issue:

Question (Šobot)

Is \equiv_w an equivalence relation for all w?

Answer (DLMPR) No.

- Failure of symmetry: there are u, v such that $u \ominus v$ is squarefree but $v \ominus u$ is not.
- Failure of transitivity: take any infinite w containing all $n\mathbb{Z} + 1$. Then $0 \equiv_w w \equiv_w 1$.

Theorem (DLMPR) If BD(A) > 0 and A^{\complement} is thick, there are $u, v \in \beta \mathbb{Z} \setminus \mathbb{Z}$ such that $A \in u \oplus v$ and $A^{\complement} \in v \oplus u$.

Filtered filters

Good congruence bases

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all? Say $d \mid (a-b)$ and $d' \mid (b-c)$, with $(a,b,c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all? Say $d \mid (a-b)$ and $d' \mid (b-c)$, with $(a,b,c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$. If there is $d'' \mid d, d'$ with $d'' \vDash w$, then \equiv_w is transitive.

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Say $d \mid (a - b)$ and $d' \mid (b - c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

If there is $d'' \mid d, d'$ with $d'' \vDash w$, then \equiv_w is transitive.

It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$:

1. $\forall d, d' \vDash w \exists d'' \vDash w d'' \mid \gcd(d, d')$ (i.e. for \mathfrak{U} a monster, $(w(\mathfrak{U}), |)$ is downward directed, or *filtered*)

2. \equiv_w is transitive

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Say $d \mid (a - b)$ and $d' \mid (b - c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

If there is $d'' \mid d, d'$ with $d'' \models w$, then \equiv_w is transitive.

It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$:

- 1. $\forall d, d' \vDash w \exists d'' \vDash w d'' \mid \gcd(d, d')$ (i.e. for \mathfrak{U} a monster, $(w(\mathfrak{U}), |)$ is downward directed, or *filtered*)
- 2. \equiv_w is transitive
- 3. \equiv_w is an equivalence relation (still open: can it be symmetric but not transitive?)

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Say $d \mid (a - b)$ and $d' \mid (b - c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

If there is $d'' \mid d, d'$ with $d'' \vDash w$, then \equiv_w is transitive.

It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$:

- 1. $\forall d, d' \vDash w \exists d'' \vDash w d'' \mid \gcd(d, d')$ (i.e. for \mathfrak{U} a monster, $(w(\mathfrak{U}), |)$ is downward directed, or *filtered*)
- 2. \equiv_w is transitive
- 3. \equiv_w is an equivalence relation (still open: can it be symmetric but not transitive?)

4.
$$\equiv_w \equiv \equiv_w^s$$

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Say $d \mid (a - b)$ and $d' \mid (b - c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

If there is $d'' \mid d, d'$ with $d'' \vDash w$, then \equiv_w is transitive.

It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$:

- 1. $\forall d, d' \vDash w \exists d'' \vDash w d'' \mid \gcd(d, d')$ (i.e. for \mathfrak{U} a monster, $(w(\mathfrak{U}), |)$ is downward directed, or *filtered*)
- 2. \equiv_w is transitive
- 3. \equiv_w is an equivalence relation (still open: can it be symmetric but not transitive?)

4.
$$\equiv_w \equiv \equiv_w^s$$

5. $w(x) \otimes w(y) \vdash x \mid y \text{ (i.e. } \{n : n\mathbb{Z} \in w\} \in w)$

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Say $d \mid (a - b)$ and $d' \mid (b - c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

If there is $d'' \mid d, d'$ with $d'' \vDash w$, then \equiv_w is transitive.

It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$:

- 1. $\forall d, d' \vDash w \exists d'' \vDash w d'' \mid \gcd(d, d')$ (i.e. for \mathfrak{U} a monster, $(w(\mathfrak{U}), |)$ is downward directed, or *filtered*)
- 2. \equiv_w is transitive
- 3. \equiv_w is an equivalence relation (still open: can it be symmetric but not transitive?)

4.
$$\equiv_w \equiv \equiv_w^s$$

5. $w(x) \otimes w(y) \vdash x \mid y \text{ (i.e. } \{n : n\mathbb{Z} \in w\} \in w)$

Let's call such w self-divisible.

Question

For which w is \equiv_w an equivalence relation? Any $w \notin \mathbb{Z}$ at all?

Say $d \mid (a - b)$ and $d' \mid (b - c)$, with $(a, b, c) \vDash p \otimes q \otimes r$ and $d, d' \vDash w$.

If there is $d'' \mid d, d'$ with $d'' \vDash w$, then \equiv_w is transitive.

It turns out this also necessary:

Theorem (DLMPR)

The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$:

- 1. $\forall d, d' \vDash w \exists d'' \vDash w d'' \mid \gcd(d, d')$ (i.e. for \mathfrak{U} a monster, $(w(\mathfrak{U}), |)$ is downward directed, or *filtered*)
- 2. \equiv_w is transitive
- 3. \equiv_w is an equivalence relation (still open: can it be symmetric but not transitive?)

4.
$$\equiv_w \equiv \equiv_w^s$$

5. $w(x) \otimes w(y) \vdash x \mid y \text{ (i.e. } \{n : n\mathbb{Z} \in w\} \in w)$

Let's call such w self-divisible. (a previous name we used was division-filtered)

Filtered filters

Examples and non-examples

✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

Filtered filters

Examples and non-examples

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

Filtered filters $0 \bullet 00$

Examples and non-examples

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

Filtered filters

Examples and non-examples

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals
- ✓ tp $(p_1^{a_1} \cdot \ldots \cdot p_n^{a_n} / \mathbb{Z})$, with $p_i \in \mathbb{Z}$ primes and a_i infinite.

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals
- ✓ tp $(p_1^{a_1} \cdot \ldots \cdot p_n^{a_n} / \mathbb{Z})$, with $p_i \in \mathbb{Z}$ primes and a_i infinite.
- ✗ Infinite stuff divisible by only finitely many (finite) integers.

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals
- ✓ tp $(p_1^{a_1} \cdot \ldots \cdot p_n^{a_n} / \mathbb{Z})$, with $p_i \in \mathbb{Z}$ primes and a_i infinite.
- ✗ Infinite stuff divisible by only finitely many (finite) integers.
- \checkmark Stuff divisible by every power of cofinitely many (finite) primes.

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals
- ✓ tp $(p_1^{a_1} \cdot \ldots \cdot p_n^{a_n} / \mathbb{Z})$, with $p_i \in \mathbb{Z}$ primes and a_i infinite.
- ✗ Infinite stuff divisible by only finitely many (finite) integers.
- \checkmark Stuff divisible by every power of cofinitely many (finite) primes.
- For other supernatural numbers (functions $\mathbb{P} \to \omega + 1$)(formal products $\varphi = \prod_{p \in \mathbb{P}} p^{\varphi_p}$, if you prefer) there are both self-divisible w and non-self-divisible w with that divisibility.

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$
Examples and non-examples

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals
- ✓ tp $(p_1^{a_1} \cdot \ldots \cdot p_n^{a_n} / \mathbb{Z})$, with $p_i \in \mathbb{Z}$ primes and a_i infinite.
- ✗ Infinite stuff divisible by only finitely many (finite) integers.
- \checkmark Stuff divisible by every power of cofinitely many (finite) primes.
- For other supernatural numbers (functions $\mathbb{P} \to \omega + 1$)(formal products $\varphi = \prod_{p \in \mathbb{P}} p^{\varphi_p}$, if you prefer) there are both self-divisible w and non-self-divisible w with that divisibility.
- \checkmark Self-divisibles are closed under $\odot.$

Recall w is self-divisible iff, equivalently:

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

Examples and non-examples

- ✗ Infinite primes: $w(x) \otimes w(y) \vdash |x| < |y|$ are primes!
- ✓ Factorials: $w(x) \otimes w(y) \vdash x < y$ are factorials!
- ✓ Powers of 2! (2 factorial, if you wish)
- ✓ Stuff divisible by every n > 0;
 e.g. all ⊕-idempotents and all ⊙-minimals
- ✓ tp $(p_1^{a_1} \cdot \ldots \cdot p_n^{a_n} / \mathbb{Z})$, with $p_i \in \mathbb{Z}$ primes and a_i infinite.
- ✗ Infinite stuff divisible by only finitely many (finite) integers.
- \checkmark Stuff divisible by every power of cofinitely many (finite) primes.
- For other supernatural numbers (functions $\mathbb{P} \to \omega + 1$)(formal products $\varphi = \prod_{p \in \mathbb{P}} p^{\varphi_p}$, if you prefer) there are both self-divisible w and non-self-divisible w with that divisibility.
- \checkmark Self-divisibles are closed under $\odot.$
- ✗ But not under ⊕: let w be divisible by every n > 0, take $w \oplus 1$.

Recall w is self-divisible iff, equivalently:

- 1. $w(x) \otimes w(y) \vdash x \mid y$
- 2. $\{n: n\mathbb{Z} \in w\} \in w$
- 3. $(w(\mathfrak{U}), |)$ is downward directed
- 4. \equiv_w is an equivalence relation
- 5. $\equiv_w \equiv \equiv_w^s$

Filtered filters

Topology and algebra

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} !

Filtered filters

Topology and algebra Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain.

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain.

E.g. all \odot -idempotents; there are non-self-divisible ones.

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain.

E.g. all \odot -idempotents; there are non-self-divisible ones.

• $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.

$$(\beta\mathbb{Z},\oplus)$$

$$\rho_{w} \downarrow$$

$$\beta\mathbb{Z}/\equiv_{w}^{s}$$

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot -idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.
- The \equiv_{w}^{s} -class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot -idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.
- The \equiv_w^{s} -class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \ge 2} \mathbb{Z}/n\mathbb{Z}$. Quotient by w.

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot -idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.
- The \equiv_w^{s} -class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \ge 2} \mathbb{Z}/n\mathbb{Z}$. Quotient by w.

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot -idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.
- The \equiv_w^{s} -class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \ge 2} \mathbb{Z}/n\mathbb{Z}$. Quotient by w.

Theorem (DLMPR)

w is self-divisible iff $\ker \sigma_w$ is closed

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot -idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.
- The \equiv_w^{s} -class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \ge 2} \mathbb{Z}/n\mathbb{Z}$. Quotient by w.

Theorem (DLMPR)

w is self-divisible iff ker σ_w is closed iff $\beta \mathbb{Z} / \equiv_w^s$ is profinite

Self-divisibles are dense in $\beta \mathbb{Z}$: they include \mathbb{Z} ! What about $\beta \mathbb{Z} \setminus \mathbb{Z}$?

Theorem (DLMPR)

w is in the closure of SD in $\beta \mathbb{Z} \setminus \mathbb{Z}$ iff every $A \in w$ contains an infinite |-chain. E.g. all \odot -idempotents; there are non-self-divisible ones.

- $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ is always a (well-defined) group.
- The \equiv_w^{s} -class of u only depends on $\pi(u) \in \hat{\mathbb{Z}}$.
- Think $\hat{\mathbb{Z}} \hookrightarrow \prod_{n \ge 2} \mathbb{Z}/n\mathbb{Z}$. Quotient by w.

Theorem (DLMPR)

 $w \text{ is self-divisible iff } \ker \sigma_w \text{ is} \\ \text{closed iff } \beta \mathbb{Z} / \equiv_w^s \text{ is profinite iff} \\ \beta \mathbb{Z} / \equiv_w^s \cong \prod_{p \in \mathbb{P}} G_{p,w} \end{cases} \quad G_{p,w} = \begin{cases} \mathbb{Z} / p^n \mathbb{Z}, & \text{if } n = \max\{k : p^k \mathbb{Z} \in w\} \\ \mathbb{Z}_p, & \text{otherwise.} \end{cases}$

Filtered filters

The full list

Summing up:

• Thinking about ultrafilters as definable types can be fruitful.

Filtered filters

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

Filtered filters

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

to be explored

• Drawbacks of \equiv_w, \equiv_w^s

Filtered filters

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

- Drawbacks of $\equiv_w, \equiv_{w}^{s} \dots$
- disappear iff $\equiv_w = \equiv_w^s$

Filtered filters

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

- Drawbacks of $\equiv_w, \equiv_{w}^{s} \dots$
- disappear iff $\equiv_w \equiv \equiv_w^s \dots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv^{\mathrm{s}}_{w}$ profinite

Filtered filters

The full list

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

- Drawbacks of $\equiv_w, \equiv_{w}^{s} \dots$
- disappear iff $\equiv_w = \equiv_w^s \dots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv^{s}_{w}$ profinite, iff \rightarrow

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

to be explored

- Drawbacks of $\equiv_w, \equiv_w^{\mathrm{s}} \dots$
- disappear iff $\equiv_w \equiv \equiv_w^s \dots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ profinite, iff $\rightarrow D(w) \coloneqq \{n : n\mathbb{Z} \in w\}$ $w \mid u \coloneqq u \equiv_w 0$ $Z_w \coloneqq \{u : w \mid u\}$

 $\varphi_w :=$ associated supernatural number

Šobot's Congruences

Filtered filters

The full list

Theorem 3.10. For every $w \in \beta \mathbb{Z} \setminus \{0\}$, the following are equivalent.

- (1) The ultrafilter w is self-divisible.
- (2) The relations \equiv_w and \equiv_w^s coincide.
- (3) The relation \equiv_w is an equivalence relation.
- (4) For every u, we have $w \mid u$ if and only if $D(w) \subseteq D(u)$.
- (5) For every $a, b \models w$ there is $c \models w$ such that $c \mid \gcd(a, b)$.

Theorem 6.8. The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$.

- (1) The ultrafilter w is self-divisible.
- (2) For all $B \in w$ there is $A \in w$ such that for all $a, a' \in A$ there is $b \in B$ with $b \mid gcd(a, a')$.
- (3) For all $B \in w$ there are $A \in w$ and $b \in B$ such that $A \subseteq b\mathbb{Z}$.
- (4) For all $B \in w$ there is $b \in B$ such that $b\mathbb{Z} \in w$.
- (5) For all $B \in w$ we have $\{b \in B : b\mathbb{Z} \in w\} \in w$.
- (6) For all $k \in \mathbb{Z} \setminus \{0\}$ we have that kw is self-divisible.
- (7) There are $n \neq m$ such that $w^{\oplus n} \equiv_w^s w^{\oplus m}$
- (8) For all v, if $w \equiv_v 0$ then $w \equiv_v^s 0$.
- (9) If $*\mathbb{Z} \ni a \models w$, then $\{b \in *\mathbb{Z} : b \mid a\} \subseteq *D(w)$.
- (10) Z_w is closed under \oplus and, whenever $v \in MAX$, if $u \oplus v \oplus t \in Z_w$ then $u \oplus t \in Z_w$
- (11) Z_w is closed under \oplus and $Z_w = \pi^{-1}(\pi(Z_w))$.
- (12) Z_w is closed under \oplus and whether $w \mid u$ only depends on the remainder classes of u modulo standard n.
- (13) The kernel ker(σ_w) is closed in $\hat{\mathbb{Z}}$.
- (14) $\beta \mathbb{Z} / \equiv_w^s$ is a procyclic group with respect to the quotient topology.
- (15) $\beta \mathbb{Z} / \equiv_w^s$ is a profinite group with respect to some topology.
- (16) We have $(\beta \mathbb{Z}, \oplus)/\equiv_w^s \cong \prod_{p \in \mathbb{P}} G_p$, where $G_p = \mathbb{Z}_p$ if $\varphi_w(p) = \omega$, and $G_p = \mathbb{Z}/p^{\varphi_w(p)}\mathbb{Z}$ otherwise.

Summing up:

- Thinking about ultrafilters as definable types can be fruitful.
- Peculiar to this setting: Puritz's Theorem on ⊗. this also gives a kind of "weak transitivity";

to be explored

- Drawbacks of $\equiv_w, \equiv_w^{\mathrm{s}} \dots$
- disappear iff $\equiv_w \equiv \equiv_w^s \dots$
- iff $(\beta \mathbb{Z}, \oplus) / \equiv_w^s$ profinite, iff $\rightarrow D(w) \coloneqq \{n : n\mathbb{Z} \in w\}$ $w \upharpoonright u \coloneqq u \equiv_w 0$ $Z_w \coloneqq \{u : w \upharpoonright u\}$

 $\varphi_w \coloneqq$ associated supernatural number

Šobot's Congruences

Filtered filters

The full list

Theorem 3.10. For every $w \in \beta \mathbb{Z} \setminus \{0\}$, the following are equivalent.

- (1) The ultrafilter w is self-divisible.
- (2) The relations \equiv_w and \equiv_w^s coincide.
- (3) The relation \equiv_w is an equivalence relation.
- (4) For every u, we have $w \mid u$ if and only if $D(w) \subseteq D(u)$.
- (5) For every $a, b \models w$ there is $c \models w$ such that $c \mid \gcd(a, b)$.

Theorem 6.8. The following are equivalent for $w \in \beta \mathbb{Z} \setminus \{0\}$.

- (1) The ultrafilter w is self-divisible.
- (2) For all $B \in w$ there is $A \in w$ such that for all $a, a' \in A$ there is $b \in B$ with $b \mid gcd(a, a')$.
- (3) For all $B \in w$ there are $A \in w$ and $b \in B$ such that $A \subseteq b\mathbb{Z}$.
- (4) For all $B \in w$ there is $b \in B$ such that $b\mathbb{Z} \in w$.
- (5) For all $B \in w$ we have $\{b \in B : b\mathbb{Z} \in w\} \in w$.
- (6) For all $k \in \mathbb{Z} \setminus \{0\}$ we have that kw is self-divisible.
- (7) There are $n \neq m$ such that $w^{\oplus n} \equiv^{s}_{w} w^{\oplus m}$
- (8) For all v, if $w \equiv_v 0$ then $w \equiv_v^s 0$.
- (9) If $*\mathbb{Z} \ni a \models w$, then $\{b \in *\mathbb{Z} : b \mid a\} \subseteq *D(w)$.
- (10) Z_w is closed under \oplus and, whenever $v \in MAX$, if $u \oplus v \oplus t \in Z_w$ then $u \oplus t \in Z_w$
- (11) Z_w is closed under \oplus and $Z_w = \pi^{-1}(\pi(Z_w))$.
- (12) Z_w is closed under \oplus and whether $w \mid u$ only depends on the remainder classes of u modulo standard n.
- (13) The kernel ker (σ_w) is closed in $\hat{\mathbb{Z}}$.
- (14) $\beta \mathbb{Z} / \equiv_w^s$ is a procyclic group with respect to the quotient topology 7
- (15) $\beta \mathbb{Z} / \equiv_w^s$ is a profinite group with respect to some topology.
- (16) We have $(\beta\mathbb{Z}, \oplus)/\equiv_w^s \cong \prod_{p\in\mathbb{P}} G_p$, where $G_p = \mathbb{Z}_p$ if $\varphi_w(p) = \omega$, and $G_p = \mathbb{Z}/p^{\varphi_w(p)}\mathbb{Z}$ otherwise.

2302.09983

all the ↑ ←glorious(?) details

