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Introduction

Abstract

A definable group G is a group which is definable in a first-order struc-
ture. Despite the name, it is not a single group, but a family of groups given
by interpreting the defining formulas in elementary extensions of the struc-
ture defining the group. For instance, algebraic groups are definable in the
complex field using first-order formulas. These include matrix groups and
abelian varieties such as elliptic curves. Among groups which are definable
with first-order formulas in the real field there are GL(n,R), SO(n,R), and
other Lie groups.

The two families of examples above are, in a sense, orthogonal. The
field C falls into the class of stable structures, which are, in a nutshell, the
ones that do not define an order relation on an infinite set. Stable theo-
ries have been a central and fruitful topic in the model theory of the past
decades (e.g. [Pil96,Bal88]), and there is a huge literature on stable groups
(for instance [Poi01, BN94]). Unfortunately, since stability is destroyed by
the presence of a total infinite order, the field structure on R lives outside this
realm, and more generally o-minimal structures, another important class in
which it is possible to provide a framework for tame geometry (see [vdD98]),
are not stable. Model theorists have therefore tried to generalize methods
from stability theory to broader contexts. One robust, simultaneous general-
ization of both stability and o-minimality is found in the class of dependent,
or nip theories. Nip structures can be roughly described as the ones that
do not code a membership relation on an infinite set; this viewpoint is inti-
mately connected to vc-dimension, a fundamental tool of statistical learning
theory. This thesis explores a problem, which we are now going to outline,
concerning the relation between two groups that can be attached to any
group definable in a nip structure.

In nip theories, to every definable group is associated a concrete compact
Hausdorff topological group called G/G00. As an example, it can be proven
that if G is a definably compact group definable over ∅ in a real closed field,
for instance SO(3,M) for M � R an hyperreal field, then G/G00 is exactly
G(R), and the projection to G/G00 behaves like a “standard part” map. If G

vii



viii Introduction

is not compact then this may not be true, as in the case of SL(n,M) where
G/G00 is trivial. In general (see [BOPP05]), for a group which is definable in
an o-minimal structure, G/G00 is a real Lie group. As a stable example, if G
is the additive group in the structure of the integers with sum (but without
product), then G/G00 is isomorphic to Ẑ = lim←−Z/nZ. All these isomor-
phisms preserve the topology, i.e. are isomorphisms of topological groups.
This canonical quotient is the first protagonist of the problem studied in the
thesis. In order to introduce the second one, some preliminary explanations
are needed.

An important concept in the study of stable groups is the one of a generic
type. Trying to find a well-behaved analogue in the unstable context, Newel-
ski noticed that a certain notion, namely that of a weak generic type, is well
understood when bringing topological dynamics into the picture∗. In topo-
logical dynamics one is often interested in G-flows, actions of a group G on
compact Hausdorff spaces by homeomorphisms; soon one turns the atten-
tion to the ones that have a dense orbit (G-ambits) and to the ones in which
all orbits are dense (minimal flows). A very special G-flow is the universal
G-ambit βG of ultrafilters on G: every G-ambit can be seen as a quotient of
βG, and its minimal subflows enjoy a similar universal property. A “tame”
counterpart of βG is the space SG(M) of types over a model M concentrat-
ing on G, i.e. the ultrafilters on definable subsets of G(M), and one could
develop a theory of tame topological dynamics ( [GPP14, Pil13]) and hope
for SG(M) to be universal with respect to definable G(M)-flows. Now, one
important tool in the study of a G-flow X is its enveloping semigroup E(X);
it turns out that βG ∼= E(βG) and this equips the former with a semigroup
structure. Once some technical obstacles are overcome, this construction
can be carried out for SG(M) too, or at least for a certain bigger type space
called Sext

G (M).
Applying the theory of enveloping semigroups to E(βG) ∼= βG produces

a certain family of sub-semigroups that are indeed groups, and furthermore
all in the same isomorphism class: this is the ideal group, or Ellis group
associated to the flow. Modulo the complications mentioned above, an Ellis
group can also be associated to SG(M). Even if this may depend on M ,
a comparison with G/G00 can be made, and indeed the latter is always a
quotient of the former, the projection π being the restriction of a certain
natural map SG(M) → G/G00. Since in stable groups a similar situation
arises replacing the Ellis group with the subspace of generic types of SG(M),
and in that case the relevant map is injective, the next question is: is this π
an isomorphism?

∗Briefly, in the dynamical context “generic” becomes “syndetic”, and “weak generic”
corresponds to “piecewise syndetic”.
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Even in tame context, this need not be the case: it was shown in [GPP15]
that the Ellis group of SL(2,R) is the group with two elements, but its G/G00

is trivial. A property that is not satisfied by SL(2,R) is amenability: there is
no finitely additive, left-translation-invariant probability measure defined on
P(SL(2,R)). Another group lacking amenability is SO(3,R); this is essen-
tially the Banach-Tarski paradox. The reasons behind the non-amenability of
these two groups are, however, different. If one searches for a left-translation-
invariant (finitely additive) measure defined not on the whole power-set, but
only on the Boolean algebra of definable subsets of SO(3,R), then such a
measure does exist, and we say that SO(3,R) is definably amenable. A sim-
ilar thing happens with free groups on at least two generators. This is due
to the fact that the non-measurable sets arising from the Banach-Tarski
paradox are very complicated, and certainly not definable in the first-order
structure of R, and so this kind of obstructions to amenability disappear
when we only want a measure on an algebra of “simple” sets. On the con-
trary, SL(2,R) is not even definably amenable, thus being more inherently
pathological under this point of view. In [CPS14] Pillay then proposed the
Ellis Group Conjecture. Several special cases were proven in the same paper
and, thereafter, the conjecture was proven true in [CSed] by Chernikov and
Simon, hence we state it as a Theorem.

Theorem ([CSed, Theorem 5.6]). If G is a definably amenable nip group,
the restriction of the natural map Sext

G (M) → G/G00 to any ideal group of
G is an isomorphism.

Remarkably, the model-theoretic techniques involved in stating, approach-
ing, and proving the conjecture are anything but peculiar to this particular
problem, and the main focus of this thesis is on the development and under-
standing of said techniques. This is reflected in the fact that we will deal
with Ellis semigroups only in the first chapter and in the closing section.

We start in Chapter 1 by studying enveloping semigroups, first in the
classical context ([Ell69]) and then in the definable one, without any kind
of tameness assumption ([New09,New12]). In Chapter 2 we introduce some
techniques, still without assuming anything on the underlying theory beyond
being first-order complete. In Chapter 3 we introduce dependent theories,
see how the previously introduced tools behave in this context, and explore
some constructions that heavily exploit the nip hypothesis. In Chapter 4
we bring in the last ingredient, i.e. definable amenability, see that under our
hypotheses it is preserved when passing to Shelah’s expansion, characterize
it in terms of f-generic types, and conclude by studying the proof of the Ellis
Group Conjecture.
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A Note on References

We often give references to results as in this example†.

Theorem ([CK90, Theorem 6.1.15 (Keisler-Shelah)]). Two L-structures are
elementarily equivalent if and only if they have isomorphic ultrapowers.

When we do this, we mean that a good place to start searching for an
account of the Theorem is Theorem 6.1.15 in [CK90], and that the Theorem
is sometimes called “Keisler-Shelah Theorem”. This does not necessarily
imply any of the following, nor it necessarily implies any of their negations.

• The Theorem first appeared in [CK90].

• The statement of the Theorem is exactly as in Theorem 6.1.15 in [CK90].

• The Theorem bears the name of “Keisler-Shelah Theorem” in [CK90].

• The proof we give is the same as in [CK90].

Prerequisites

We take for granted basic notions and results concerning groups, group
actions, topological spaces, ultrafilters. From Section 1.2 onwards we also
assume some knowledge of model theory, and from Section 2.4 we also assume
a little background in measure theory and probability. Also, the reader is
expected to be familiar with the basics of set theory, including cardinal
arithmetic and cofinality, and with a number of elementary facts such as
the triangle inequality. Some of the relevant definitions and theorems are
recalled in the Appendix.

Apart from this, the thesis is intended to be self-contained, the only
exception being that every once in a while stable theories are mentioned
in examples, comments, or to provide motivation. We do not assume any
knowledge of stable theories, and even those parts are written with this in
mind; in any case, they can safely be skipped.

Conventions and Notations

We now summarize some of the conventions, notations and abuses thereof
that will be applied throughout this thesis unless explicitly stated otherwise.

All theories and types will be supposed first-order with equality, consis-
tent and complete. Theories are moreover assumed to have infinite models.
The first order language in which we work will often be called L, and |L|
†We have intentionally chosen a theorem that will not appear later on in the thesis.



Conventions and Notations xi

refers to the cardinality of the set of its formulas. For instance, even if L = ∅,
we still have |L| = ℵ0. We usually work in an L-theory T .

Tuples of variables (sometimes infinite ones) are often treated as vari-
ables, e.g. we will write ϕ(x) instead of ϕ(x0, . . . , xn−1), ϕ(x̄), ϕ(~x), or the
like, unless it is necessary to focus the attention on particular coordinates.
Also, sometimes we write x̄ = (x0, . . . , xn−1) and each xi is a tuple or vari-
ables. The length of the tuple x will be written as |x|. Tuples of variables
are often denoted with lowercase letters from the end of the latin alphabet.

The same convention applies to tuples of parameters, apart from the
fact that they are generally denoted with lowercase letters that appear early
in the Latin alphabet; if such letters are uppercase, they generally denote
parameter sets.

Models, which are often calledM orN , with various sub and superscripts,
are notationally identified with their underlying set and |M | will denote its
cardinality. Even if |a| > 1 we will freely write a ∈ M instead of a ∈ M |a|.
The same applies to definable subsets, i.e. we will say that “ϕ(x) defines a
subset of M ” even if, strictly speaking, it defines a subset of M |x|.

If some variables in ϕ(x) are dummy, we may also mean that ϕ(x) defines
a subset of Mk for some k < |x|; anyway if this happens it should be clear
from context. Definable subsets are often identified with formulas, so we will
write things like ϕ(x) ⊆ A. Sometimes we simply say ϕ instead of ϕ(x), and
the same applies to types.

Formulas may contain parameters without prior notice; if we want to
emphasize that they do not, we will write something like ϕ(x) ∈ L. The set
of L-formulas with parameters from A is denoted L(A).

If a set is defined by an L(A)-formula we say it is A-definable; the Boolean
algebra of all A-definable sets in the variables x is called Defx(A). The
notation Sx(A) refers to its Stone space‡, which is identified with the space
of types in |x| variables with free variables x with parameters from A. If
ϕ(x) (resp. π(x)) is a formula (resp. partial type) with parameters from A,
the corresponding clopen (resp. closed) set will be denoted with [ϕ(x)] (resp.
[π(x)]).

S(A) denotes the space of types in any number of variables. Since we
allowed tuples to be infinite, strictly speaking this means that S(A) is a
proper class. In practice we write p ∈ S(A) when it is irrelevant to know
who the free variables in p are, but the concerned reader may assume S(A) to
be
⋃
n<ω Sx0,...,xn(A), or

⋃
α<κ S(xi)i<α(A) for some sufficiently large cardinal

κ. The same convention applies to Def(A).
As in [Sim15], the semicolon is used to emphasize a distinction between

“object variables” and “parameter variables” inside a formula; for instance, if
we write ϕ(x; y) we are probably about to find a parameter b and consider
ϕ(x; b) as a definable subset of M . Variables will also happen to “change
‡See Definition A.18.
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status”, for instance we will write something like ϕ(m; y). Sometimes we use
ϕ(x; b) ∈ L(A) as a shorthand for “ϕ(x; y) ∈ L and b ∈ A”.

The notation a ≡A b means tp(a/A) = tp(b/A). We denote Aut(M/A)
the group of automorphisms f of M that fix A point-wise, i.e. such that
∀a ∈ A f(a) = a. We denote the symmetric difference ¬(ϕ ↔ ψ) with
ϕ 4 ψ. If κ is a cardinal, κ+ is its successor. The “Standard Lemma” is
Lemma A.48.

The Monster Model is denoted U. A type over the monster will be called
a global type. See Section A.6 for monster conventions.



Chapter 1

Enveloping Semigroups and
Stone Spaces

In this chapter we present the problem whose solution will be the mo-
tivation of the present thesis. We will first study a topic from topological
dynamics, namely the construction of the enveloping semigroup of a G-flow,
due to Ellis. Subsequently we will see how Newelski adapted this construc-
tion to make it work in a first-order definable setting. At the end of the
chapter we will be able to state the aforementioned problem, namely the
Ellis Group Conjecture.

1.1 Classical Ellis Theory

This section is devoted to the exploration of the ideas of Ellis, as pre-
sented in [Ell69]. We will construct the enveloping semigroup of a compact
G-flow, study its basic properties, and establish the existence of the Ellis
group associated to the flow. Our exposition follows closely the original
one, with the following three notable exceptions. The first one concerns no-
tations and terminology, since we adopt conventions which differ from the
original ones; in particular we will write group actions on the left and speak
of flows instead of transformation groups. Furthermore, we will assume our
topological spaces to be compact; the basic definitions and results (or slight
variations of them) are still valid for locally compact Hausdorff spaces, but
since compactness is needed in order to define the enveloping semigroup we
prefer to assume it from the beginning; as a by-product, some proofs and
statements are simplified. Finally, in order to foreshadow the adaptation to
the definable context, we will use filters instead of nets; this facilitates the
translation process due to the fact that (ultra)filters have a natural definable
analogue, namely (complete) types. See Section A.3 for basic results on the
use of filters in topology.

1



2 Chapter 1. Enveloping Semigroups and Stone Spaces

G-Flows

Definition 1.1. Let (G, ·) be a group. A G-flow is a continuous action of
G on a compact Hausdorff space.

With the words “continuous action” on a topological space X we mean
that G is a topological group and the action is continuous as a map G×X →
X. Anyway, unless mentioned otherwise, we will put on G the discrete
topology; hence G will automatically be a topological group and a continuous
action will simply be a group homomorphism ϑ : G → Homeo(X,X). For
g ∈ G and p ∈ X, the image (ϑ(g))(p) of p under the homeomorphism
corresponding to g will be also denoted in one of the following ways

ϑg(p) = g · p = gp = αp(g)

We usually identify a G-flow with the underlying topological space X (e.g.
“a G-flow X”) whenever the action is unspecified or clear from context.

Example 1.2. Any homeomorphism f of a compact Hausdorff space X into
itself gives rise to a Z-flow on X with the action given by n · p = fn(p).

Definition 1.3. A morphism of G-flows is a continuous ϕ : X0 → X1 that
commutes with the action of g, i.e. such that for all p ∈ X0 and g ∈ G we
have ϕ(g · p) = g · ϕ(p).

Example 1.4. If (X0, f0) and (X1, f1) are two Z-flows as in Example 1.2, a
morphism X → Y is a continuous map ϕ : X → Y such that f1 ◦ϕ = ϕ ◦ f0.

Definition 1.5. A subflow of a G-flowX is a non-empty, closed, G-invariant
subset of X. In symbols, ∅ 6= G · Y ⊆ Y = Y ⊆ X.

Example 1.6. The orbit closure Gp of a point p ∈ X is a subflow of X: it
is obviously a closed subspace, and it is closed under the action of G because
each ϑg is a continuous map.

Definition 1.7. A minimal subflow is a subflow which is minimal under
inclusion.

Proposition 1.8. Minimal subflows exist.

Proof. Every descending chain of subflows is still G-invariant and has non-
empty intersection by compactness. Since X is itself a subflow, we can apply
Zorn’s Lemma to the family of subflows ordered by reverse inclusion and the
proposition follows.

Definition 1.9. A subset A ⊆ G will be called syndetic if there is a finite
F ⊆ G such that G = F ·A.
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If G is a topological group, not necessarily equipped with the discrete
topology, a more general notion of “syndetic” is obtained replacing “finite”
with “compact” in the previous definition. As we said before, our groups
carry the discrete topology unless mentioned otherwise, so for our purposes
the two definitions are equivalent.

Definition 1.10. A point p ∈ X is almost periodic iff, for each of its neigh-
bourhoods U , the set α−1

p (U) = {g ∈ G | gp ∈ U} is syndetic in G.

An etymological explanation of the diction “almost periodic”, together
with a motivation for the introduction of this notion, can be found at the
beginning of [Ell69, Chapter 2].

The following proposition is a special case of [Ell69, Proposition 2.5].

Proposition 1.11. A point p is almost periodic if and only if its orbit closure
is a minimal subflow.

Proof. ⇒ It is enough to show that, for every q ∈ Gp, we have p ∈ Gq.
Hence, given a compact1 neighbourhood U of p, we need to prove that Gq ∩
U 6= ∅. Since, by hypothesis, there are g0, . . . , gn−1 such that G =

⋃
i<n gi ·

α−1
p (U), we have

q ∈ Gp =
⋃
i<n

giα
−1
p (U) · p ⊆

⋃
i<n

giU =
⋃
i<n

giU

where the last equality follows from the fact that the compact subspaces of
an Hausdorff space are closed. This implies that g−1

i q ∈ U for some i < n.
⇐ If U is an open neighbourhood of p thenGp\GU is a closed, invariant,

and proper subset of Gp, hence it is empty and by compactness there are
finitely many gi ∈ G such that Gp ⊆ Gp ⊆

⋃
i<n giU . But this means that

for every g ∈ G there is i < n such that gp ∈ giU , i.e. g−1
i g ∈ α−1

p (U) and
thus G =

⋃
i<n giα

−1
p (U).

Example 1.12 ([New09, Example 1]). Consider the action of (Z,+) by shift
on the space 2Z with the usual product topology. If we think of elements of
2Z as infinite (on both sides) strings, then it is easy to see that the orbit of
any concatenation η of all finite strings2 is dense, and a proper subflow can
be found simply by considering one of the two constant strings. Hence η is
not almost periodic.

Remark 1.13. The previous equivalence need not be true if one is working
with a semigroup action. For instance, if we let (Z, ·) (or even (Z \ {0}, ·))
act on R/Z, then the equivalence class of 1/2 is almost periodic, but its
orbit (which is already closed) contains the fixed point corresponding to the
equivalence class of 0.

1See Proposition A.3.
2To obtain such an η fix a bijection f : Z → 2<ω and, starting with f(0), recursively

concatenate f(n) to the right and f(−n) to the left.
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The Enveloping Semigroup

Definition 1.14. If X is a G-flow, its enveloping semigroup E(X) is the
closure of {ϑg | g ∈ G} with respect to the product topology on XX .

We will now study the basic properties of E(X) and explain the “semi-
group” diction. First, we recall the notion of limit of a filter. Some basic
theorems and further definitions concerning filters and limits are collected in
Section A.3.

Definition 1.15. If F is a filter on a topological space Y , and ` ∈ Y , we
say that ` = limF iff every neighbourhood of ` is in F . If f : Z → Y is a
function3 from a set Z to Y and F is the pushforward f∗(F0) of a filter F0

on Z, we also write limz→F0 f(z) for limF .

Lemma 1.16. Every element of E(X) can be written as ϑU = limg→U ϑg
for a suitable (not necessarily unique) ultrafilter U on G. Conversely, for
every ultrafilter U on G, we have ϑU ∈ E(X).

Proof. If p ∈ E(X) each of its neighbourhoods U contains some ϑg by def-
inition. Then the family {{g ∈ G | ϑg ∈ U} | U a neighbourhood of p}
extends to an ultrafilter U , and limg→U ϑg = p by construction. The second
statement follows from the fact that E(X) is closed.

Notation 1.17. As usual, we will identify every g ∈ G with the correspond-
ing principal ultrafilter tg. Obviously ϑg = ϑtg , so no confusion arises. For
this reason, we will use the same notation to refer to the action of G on
E(X) and, after Proposition 1.22, to the semigroup operation on E(X).

Proposition 1.18. E(X) is aG-flow with the action given by g·ϑU = ϑg◦ϑU .

Proof. E(X) is a closed subspace ofXX , which is compact Hausdorff because
X is by Tychonoff’s theorem, hence it is compact Hausdorff itself. Set4

gU = g · U = (g · −)∗(U). It is easy to check that ϑg ◦ ϑU = ϑgU ∈ E(X).
Since ϑg is continuous and the topology on E(X) is induced by the product
topology on XX , i.e. the topology of point-wise convergence, it follows that
ϑg ◦ − : E(X) → E(X) is continuous, and it obviously has ϑg−1 ◦ − as an
inverse. Moreover (gh) · ϑU = ϑgh ◦ ϑU = ϑg ◦ ϑh ◦ ϑU = g · (h · ϑU ).

Recall the following definition:

Definition 1.19. If U ∈ βX and V ∈ βY , the tensor product U ⊗ V ∈
β(X × Y ) is defined as

U ∈ U ⊗ V ⇐⇒ {x ∈ X | {y ∈ Y | (x, y) ∈ U} ∈ V} ∈ U
3It may be useful to think of the special case where f is a sequence, i.e. a function

ω → Y .
4This g · − is the multiplication map G → G than sends h to gh. It is not the action

map of g on X.
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Definition 1.20. If U ,V ∈ βG, then U ·V is the pushforward of U⊗V under
the multiplication map G×G→ G, i.e.

U ∈ U · V ⇐⇒ {g ∈ G | {h ∈ G | gh ∈ U} ∈ V} ∈ U (1.1)

Lemma 1.21. The operation − · − : βG× βG→ βG is associative.

Proof. Being associative is inherited from the group product of G, as if we
try to check if U ∈ (U · V) · W and if U ∈ U · (V · W), in both cases we end
up checking if {g | {h | {` | g · h · ` ∈ U} ∈ W} ∈ V} ∈ U .

So this puts a semigroup operation on βG. This does not happen by
chance, and we will come back on said semigroup structure later on.

Proposition 1.22. E(X) is a semigroup with the operation of composition.
Namely, ϑU ◦ ϑV = ϑU·V .

Proof. By continuity of ϑg and the fact that we are using point-wise limits
we have ϑg ◦ limh→V ϑh = limh→V ϑg ◦ ϑh, hence

ϑU ◦ ϑV = lim
g→U

lim
h→V

ϑg ◦ ϑh = lim
g→U

lim
h→V

ϑg·h = lim
(g,h)→U⊗V

ϑg·h = lim
`→U·V

ϑ`

See Lemma A.31 for more details on the last two equalities.

Corollary 1.23. If ϑU0 = ϑU1 and ϑV0 = ϑV1 then ϑU0·V0 = ϑU1·V1

Proof. They both are equal to ϑU0 ◦ ϑV0 = ϑU1 ◦ ϑV1 .

The reader may be puzzled by the fact that we call E(X) the envelop-
ing semigroup instead of enveloping monoid : after all idX ∈ E(X). The
reason behind this is the following: we will soon be interested in certain
sub-semigroups of E(X) that will happen to be groups under composition
but with a group identity different from idX . Calling E(X) the “enveloping
monoid” would suggest that its substructures have to contain idX and ex-
clude the aforementioned groups. In more model-theoretic terms, we will be
interested in substructures of (E(X), ◦), which need not be substructures of
(E(X), ◦, idX).

Proposition 1.24. The map −◦ϑU : E(X)→ E(X) is continuous. If g ∈ G,
then also ϑg ◦ − : E(X)→ E(X) is continuous.

Proof. This follows easily from the fact that the topology on E(X) is the
one of point-wise convergence and the ϑg are continuous maps.

Remark 1.25. The maps ϑU ◦ − : E(X) → E(X) need not be continuous
in general. A moment’s thought reveals that this would be equivalent to the
ϑU : X → X being continuous, and this need not be true, since continuity is
not generally preserved under point-wise limits.
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Ellis Semigroups

The following definition encompasses the core properties of E(X).

Definition 1.26. An Ellis semigroup is a compact Hausdorff space equipped
with a semigroup operation which is continuous in the first coordinate, i.e.
for all p the map − · p is continuous.

The following result is essential to the development of the theory. Apart
from having a slightly stronger hypothesis5 it is essentially [Ell69, Lemma 2.9].

Theorem 1.27. Ellis semigroups always have idempotents.

Proof. Given an Ellis semigroup (E, ·), define the following family

C = {C ⊆ E | C = C 6= ∅, C · C ⊆ C}

Clearly E ∈ C and, by compactness, C satisfies the hypotheses of Zorn’s
Lemma when ordered by reverse inclusion, so it has a minimal element C̃.
Let x ∈ C̃. We will show that x = x2, and indeed C̃ = {x}.

Claim. C̃ · x ∈ C

Proof of the Claim. Since−·x is continuous, C̃ ·x is the image of a continuous
map from a compact space to an Hausdorff one, hence it is closed. Moreover

(C̃ · x) · (C̃ · x) = C̃ · (x · C̃) · x ⊆ C̃ · C̃ · x = (C̃ · C̃) · x ⊆ C̃ · x
claim

Since C̃ · x ⊆ C̃ · C̃ ⊆ C̃, by minimality C̃ · x = C̃. This proves that the
following set is non-empty:

D = {y ∈ C̃ | y · x = x} = (− · x)−1(x) ∩ C̃

Clearly D is a closed set. Moreover D ·D ⊆ D, because if y0, y1 ∈ D

(y0 · y1) · x = y0 · (y1 · x) = y0 · x = x

Hence D ∈ C and, since D ⊆ C̃ by definition, by minimality D = C̃. This
means that x ∈ D, i.e. x · x = x.

Definition 1.28. A left ideal of a semigroup (S, ·) is a non-empty I ⊆ S
which is left-absorbing, i.e. such that S · I ⊆ I. When we simply say that I
is an ideal we mean that I is a left ideal.

The interest in ideals lies, to begin with, in the following results.

Proposition 1.29 ([Ell69, Proposition 3.4]). In the enveloping semigroup
minimal subflows coincide with minimal ideals.

5Namely, in order for the present proof to be carried out, it suffices to require E to be
compact T1 and the map − · p to be continuous and closed.
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Proof. LetM be a minimal subflow of the G-flow E(X) and let p ∈M . Since
M is G-invariant Gp ⊆ M , and since M is closed E(X)p = Gp ⊆ M = M .
This proves that M is an ideal. If I ⊆ M is another, given p ∈ I we can
write

Gp = E(X)p ⊆ E(X)I ⊆ I ⊆M

Since M is a minimal subflow all the inclusions above are equalities, and M
is thus a minimal ideal.

If now I is a minimal ideal, then it is G-invariant because GI ⊆ E(X)I ⊆
I. For any p ∈ I, we have that E(X)p is clearly an ideal contained in I,
and by minimality E(X)p = I. This shows simultaneously that I is closed
(because − · p is continuous and E(X) is compact), and that I is minimal
as a subflow, since Gp = E(X)p = I and p ∈ I was arbitrary.

Anyway the existence of minimal ideals and the fact that they are closed
is not peculiar to envelopes, as the following to results show.

Proposition 1.30. Minimal ideals of an Ellis semigroup are closed.

Proof. As in the proof of Proposition 1.29, it suffices to write a minimal ideal
I of the semigroup E as I = Ep, where p is any element of I.

Proposition 1.31. Every ideal of an Ellis semigroup includes a minimal
ideal. In particular minimal ideals always exist.

Proof. Given an ideal I of E, apply Zorn’s Lemma to the family of closed
ideals J ⊆ I ordered by reverse inclusion, which is non-empty because for
all p ∈ I, by continuity, Ep belongs to the family.

The following theorem sums up some “working facts” concerning Ellis
semigroups. Its proof, despite its length, is elementary.

Theorem 1.32 ([Ell69, Propositions 3.5 and 3.6 (1)]). Let I be a minimal
ideal of an Ellis semigroup E. Then the following facts hold:

1. The set Idem(I) of idempotents of I is non-empty.

2. If p ∈ I and u ∈ Idem(I), then pu = p.

3. If u ∈ Idem(I), then uI is a subgroup of I with identity u.

4. {uI | u ∈ Idem(I)} is a partition of I.

5. If I, J are minimal ideals and u ∈ Idem(I), then there is a unique
v ∈ Idem(J) such that vu = u and uv = v.

Proof.

1. A minimal ideal, being closed, is an Ellis semigroup itself. It suffices
then to apply Theorem 1.27 to I.
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2. Since Iu is an ideal contained in I, by minimality they coincide, and
therefore there is q ∈ I such that p = qu. Then pu = quu = qu = p.

3. Writing uIuI = u(IuI) and observing that IuI is an ideal included in I
yields, by minimality, that uI is closed under the semigroup operation,
that trivially remains associative.

If up ∈ uI, a fortiori up ∈ I, so by point 2 u is a right identity for up.
On the other hand uup = up by idempotence, hence u is also a left
identity for all elements of uI.

We are left to find and inverse for q = up. Since Iq = I there is r ∈ I
such that rq = u. We claim that ur is an inverse for q in uI. Indeed,
multiplying on the left yields urq = uu = u, hence every element of uI
has a left inverse in uI. Applying the last statement to ur yields an
s ∈ uI such that sur = u. Then q = uq = surq = su = s. But then
u = sur = qur and ur is a right inverse of q.

4. Fix any p ∈ I. By minimality Ip = I, and this means that {q ∈ I |
qp = p} is non-empty. An easy check shows that it is a sub-semigroup
of I, and it is moreover closed since it can be written as I∩(−·p)−1(p).
Then Theorem 1.27 applies and yields u ∈ Idem(I) such that up = p,
witnessing p ∈ uI. This shows that I =

⋃
u∈Idem I uI, but we still

have to prove that this union is disjoint. Suppose u, v ∈ Idem(I) and
let p ∈ uI ∩ vI. Let q be the inverse of p in vI. Taking advantage
of point 2 and of the fact that up = p (because p ∈ uI) we have
u = uv = upq = pq = v.

5. Ju is an ideal and equals I by minimality. As in the previous point,
this allows us to apply Theorem 1.27 to {p ∈ J | pu = p} to find
v ∈ Idem(J) such that vu = u. Applying the same reasoning to v
yields w ∈ Idem(I) such that wv = v. Since w ∈ I, by point 2
wu = w. But then w = wu = wvu = vu = u. As for uniqueness: if
v, w ∈ Idem(J) both satisfy the thesis, then v = uv = wuv = wv = w,
where the last equality is again by point 2.

Remark 1.33. We have partitioned each minimal ideal in groups. Since
minimal ideals are disjoint6 we could wonder whether they partition E, i.e.
whether every point is contained in a minimal ideal. This is not true in
general, and it is easy to see that if E is the enveloping semigroup of a
G-flow it is equivalent to every point of E being almost periodic.

Definition 1.34. If E is an Ellis semigroup, an Ellis group or ideal group
of E is one of its subgroups of the form uI for I a minimal ideal and u ∈
Idem(I).

6If the intersection of two ideals is non-empty, it is still an ideal.
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Theorem 1.35. All the Ellis groups of an Ellis semigroup are isomorphic.

Proof. We show first that all the groups inside a given minimal ideal I are
isomorphic. Indeed consider the maps u0I

u1·−−−−→ u1I and u1I
u0·−−−−→ u0I.

• By point 2 of Theorem 1.32, for i ∈ {0, 1} and p, q ∈ u1−iI ⊆ I we
have uipuiq = uipq, so our maps are homomorphisms.

• For the same reason and the fact that the uiI are groups, if p ∈ uiI
we have uiu1−ip = uip = p. Hence the two maps are homomorphisms
and inverses of each other.

Now we show that, for I, J minimal ideals and u ∈ Idem(I), every uI has
a “twin” inside J . Let v be given by point 5 of Theorem 1.32. Then, if
p = vq ∈ vJ , we have pu = vqu = uvqu = upu ∈ uI. We can then consider
the map vJ −·u−−→ uI and, similarly, the map uI −·v−−→ vJ .

• Let p0, p1 ∈ vJ as witnessed by writing pi = vqi. Since uv = v,

p0up1u = p0uvq1u = p0vq1u = p0p1u

so this map is an homomorphism. Similarly for the other one.

• If p ∈ vJ we have puv = pv = p, and similarly if q ∈ uI we have
qvu = qu = q. Hence the two maps are inverses of each other.

Therefore, for all uI and wJ we can find an isomorphism composing the two
above: namely, if v is given by point 2 of Theorem 1.32 applied to u, the
map uI → wJ given by w ·− ·v is an isomorphism, with inverse v ·− ·u. The
skeptic reader may be convinced by the following (redundant) verification:

vwpvu = vwpu = vwp = vp = vup̃ = up̃ = p

wvquv = wvqv = wvq = wq = q

We are therefore authorized to speak of the Ellis group associated to an
Ellis semigroup.

Definition 1.36. The Ellis group (or the ideal group) of a G-flow X is the
Ellis group associated to E(X).

Another beautiful consequence of Theorem 1.32 is the following result.

Theorem 1.37 ([Ell69, Proposition 3.6 (3)7]). Minimal subflows of E(X)
are all isomorphic as G-flows.

Proof. Let I, J be two minimal subflows of E(X). By Proposition 1.29 they
are minimal ideals. Fix u ∈ Idem I and let v ∈ Idem J be given by point 5 of
Theorem 1.32. Then −·v : I → J and −·u : J → I are inverses of each other,
we already know that they are continuous, and the fact that they commute
with the action of G is trivial.

7Probably due to a misprint, in the first edition of [Ell69] (or at least in the copy
available in the library of the University of Pisa), the thesis of Proposition 3.6 has no
point (3) (but the proof does).
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The Universal G-Ambit

We now turn our attention to a very special G-flow: the space βG of
ultrafilters on G, with the action of G given by8 g · U = gU = (g · −)∗(U). If
the reader is familiar with Stone-Čech compactifications, she will probably
now expect βG to enjoy some universal property as a G-flow. This intuition
is correct, as explained in [Ell69, Chapter 7], of which the following paragraph
is intended to be a brief summary.

A G-ambit is a G-flow together with a distinguished point whose orbit is
dense. For instance, every enveloping semigroup E(X) is a G-ambit, since
the orbit closure of ϑe, where e is the identity of G, is the whole E(X) by
definition. The G-flow βG is a G-ambit too, since it can be easily checked
that the principal ultrafilter te on the group identity e has dense orbit. Thus,
if X is a G-ambit with distinguished point p, one shows using the properties
of the Stone-Čech compactification that the map sending tg to gp extends
uniquely to a surjective morphism of G-ambits (βG,te)→ (X, p). Thus βG
is the “largest” G-ambit, in the sense that each G-ambit is an homomorphic
image of βG. One then proves that every surjective morphism of G-ambits
X → βG is indeed an isomorphism, and exploits this fact to show that
E(βG) and βG are isomorphic, the isomorphism simply being evaluation in
te. That is not the end of the story: minimal subflows of βG, in addition to
being all isomorphic (by Theorem 1.37 and the previous isomorphism), share
a similar universal property among minimal G-flows. For a more thorough
discussion we refer the reader to [Ell69] and to the monograph [Aus88].

For our purposes it is better to write down the isomorphism between
βG and E(βG) explicitly, since it will shed light on the constructions of the
following section.

Lemma 1.38. Every f ∈ E(βG) is of the form U ·− for a suitable U ∈ βG.

Proof. By Lemma 1.16 there is U ∈ βG such that f = ϑU = limg→U ϑg.
We claim that such an U serves our purposes. In order to prove this, given
V ∈ βG, we have to show that U · V = f(V). For all U ⊆ G we have

{g | {h | gh ∈ U} ∈ V} = {g | g−1U ∈ V} = {g | U ∈ gV} = {g | U ∈ ϑg(V)}

Now it suffices to notice that the leftmost set belongs to U if and only if
U ∈ U · V, and the rightmost set belongs to U if and only if U ∈ f(V) =(

limg→U ϑg

)
(V) = limg→U ϑg(V).

Theorem 1.39 ( [Ell69, Corollary 7.12]). E(βG) and βG are isomorphic
G-flows.

8The leftmost dot is the symbol for the group action, the rightmost one is the symbol
for group multiplication in G. Due to the fact that, when one identifies g ∈ G with
tg ∈ βG then we have g · th = tg·h we feel that this rather standard abuse of notation is
justified.
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Proof. Consider the map ϑ : βG → E(βG) that sends U to9 ϑU = U · −.
Its inverse will be the map ϑ−1 : E(βG) → βG sending f to f(te), as it
is easy to check given the previous lemma, and it is not difficult to verify
that they commute with the action of G, so we only have to take care of
continuity issues. Since the map ϑ−1 is nothing else than a projection, it is
continuous by definition of product topology. If we show that it is also open
we are done, so we fix a basic open set of E(βG), which must be of the form
{f | ∀i < n f(Vi) ∈ [Vi]} = {f | ∀i < n Vi ∈ f(Vi)} and we want to check
that {U | ∀i < n Vi ∈ U · Vi} is open in βG. This is obvious since it can be
written as

⋂
i<n[{g | g−1Vi ∈ Vi}].

Corollary 1.40. (βG, ·) is an Ellis semigroup.

Proof. We could check continuity in the first coordinate directly, but it suf-
fices to observe that by Proposition 1.22 the operation U · V is precisely the
image of the composition in E(βG) under the identification given by the
previous theorem.

While the previous constructions and ideas are central to the present
thesis, we need to concentrate our efforts on their definable counterparts,
and are therefore forced to omit a large number of their consequences and
related notions such as the concepts of distal or proximal systems. Nonethe-
less the study of enveloping semigroups has been very fruitful in topological
dynamics. The interested reader can find more on these topics in — for
instance — [Ell69,Gla07a,Gla07b,AAG08].

Even if we start with a semigroup S instead of a group G some of the con-
structions presented above still work, and endow βS with an Ellis semigroup
structure. This fact has found applications in additive combinatorics and
Ramsey theory, for instance giving an extremely elegant proof of Hindman’s
Theorem that exploits minimal ideals and idempotents of (βN,+), or proving
in a similar fashion the classical result of Van der Waerden on monochro-
matic arithmetic progressions. For an account, see [HS98]. The interaction
between dynamics, algebra and combinatorics is also studied in [Bla93].

1.2 Newelski’s Set-Up

In [New09] Newelski “imported” topological dynamics into model theory
in order to generalize the concept of generic type from stable group theory
(see [Poi01, Pil96]) to an arbitrary first-order theory and, using coheirs, he
was able to adapt Ellis theory to the definable case. The study of “definable
Ellis theory” was then continued in [New12], where the topic was approached

9This is not an abuse of notation: with the current action ϑU is precisely the same as
the one defined in Lemma 1.16; the skeptic reader will probably agree after writing down
the definitions.
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from the different angle of externally definable subsets. As we shall soon see
these are nothing but two sides of the same coin, the former being more
convenient to handle when dealing with computations, the latter probably
providing a more conceptually clear framework. Our exposition will be closer
to [New12] at the beginning of the section and closer to [New09] at the end.

From now on we assume the reader to be familiar with basics of model
theory; some of the more frequently used facts are collected in Section A.5.
Conventions and notations are recalled in the Introduction.

Definable Groups

Definition 1.41. Fix an L-theory T and work modulo T . A definable group
is given by

• a formula ϕ defining a non-empty subset G,

• a definable function − · − : G×G→ G, and

• a definable function −−1 : G→ G

such that G equipped with · and −1 satisfies the group axioms. If G can be
defined with formulas in L(A), we will say that G is A-definable or definable
over A.

Remark 1.42. A definable group in a theory T can be thought of as the
functor that associates to every modelM of T the interpretation G(M) of G
in M , the morphisms being elementary immersions on the left and injective
group homomorphisms on the right.

Example 1.43. In theories of fields (e.g. ACF0 = Th(C) or RCF = Th(R))
matrix groups such as GL(n,−), SL(n,−), O(n,−), or SO(n,−), are defin-
able groups, since they (and matrix multiplication and inverse) are defined
by polynomial equations.

Notation 1.44. ϕ(x · y) means10 ∃z x · y = z ∧ ϕ(z). Similarly for ϕ(x−1).

Definable Types and Externally Definable Sets

Fix an L-theory T , a model M and an ∅-definable group G, and let
SG(M) be the space of types that concentrate on G, i.e. the closed subset of
the space of types with parameters from M in the right number of variables
that contain the formula defining G. The key observation is that, since types
with parameters fromM can be seen as ultrafilters on the Boolean algebra11

10Remember that a function is definable iff its graph is definable (by definition), hence
x · y = z is a shorthand for the formula defining the graph.

11See Remark A.38.
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of theM -definable subsets of12 U, we can hope that the machinery developed
in the previous section still works when we replace βG with SG(M).

To begin with, SG(M) carries a natural G(M)-flow structure given by
g · p(x) = gp(x) = p(g−1 · x), where ϕ(x) ∈ gp(x) iff g−1ϕ(x) := ϕ(g · x) ∈
p(x). We could then expect SG(M) to carry some of the universal properties
enjoyed by βG inside the realm of “definable G-flows”. We can for instance
start by asking ourselves the more precise question: is E(SG(M)) isomorphic
to SG(M), if possible with “the same” isomorphisms as before? To provide
an answer, some tools will be required; before diving into definitions and
lemmas, we explain where the need for them comes from.

In order to hope for the question above to have a positive answer, it is
necessary for us to be able to equip SG(M) with an Ellis semigroup structure,
since an isomorphism with E(SG(M)) will inevitably provide one. We can
then try to “copy and paste” the semigroup operation of Definition 1.20,
replace sets with formulas, ultrafilters with types, G with G(M) and then
try to make sense of the resulting string. Let us have a look at it:

ϕ(x) ∈ p(x) · q(x) ⇐⇒ {g ∈ G(M) | {h ∈ G(M) |� ϕ(gh)} ∈ q(x)} ∈ p(x)

The string of symbols above, strictly speaking, does not have any meaning,
since types are sets of formulas and it is not clear what it means for a subset
of G(M) to belong to q(x). Anyway, looking at a type as an ultrafilter on a
Boolean algebra of definable sets eliminates this issue. In other words, the
string begins to make more sense if we rewrite it like this:

ϕ(x) ∈ p(x) · q(x) ⇐⇒ {g ∈ G(M) | ϕ(g · x) ∈ q(x)}︸ ︷︷ ︸
?

∈ p(x) (1.2)

We have eliminated a problem, but we still have to deal with the set ? . Let
us begin by giving it a name.

Definition 1.45. For q ∈ SG(M) and ϕ(x) ∈ L(M) we define

δqϕ = {g ∈ G(M) | ϕ(g · x) ∈ q(x)}

Here an obstruction shows up: if p was an ultrafilter on the whole pow-
erset of G(M), asking wheter δqϕ ∈ p would be a legitimate question, and
if the answer is “no” then p would contain (δqϕ){=δq¬ϕ and p · q would be
a complete type. But p only cares about M -definable subsets of G(M). In
other words, the problem is that δqϕ need not be M -definable. The following
definition is then natural:

12Or, if the reader prefers, the Boolean algebra of L(M)-formulas modulo equivalence
in the elementary diagram of M .
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Definition 1.46. A type p ∈ Sx(M) is A-definable iff for all ϕ(x; y) ∈ L
the set dp(x)ϕ(x; y) = {b ∈ M | ϕ(x; b) ∈ p} is A-definable. We say that p
is definable iff it is A-definable for some A ⊆ M , equivalently iff it is M -
definable. The set dpϕ is called the defining schema of p evaluated in ϕ, and,
if p is definable, is often identified with a formula ψ(y) defining it.

If, for some reason, we happen to know than all types in SG(M) are
definable, then (1.2) makes sense and defines an element of SG(M): if
ϕ(x; b) ∈ L(M) all we need to do is to apply definability of p to the for-
mulas ψ(x; y, z) = ϕ(y · x; z) and then set

δp(x)ϕ =
(
dp(x)ψ(x; y, z) ∧ z = b

)
∈ L(M)

This allows us to give the following definition:

Definition 1.47. Suppose that all types over M are definable. We define
p · q ∈ SG(M) as

ϕ ∈ p · q ⇐⇒ δqϕ ∈ p

As the reader may expect, it is not always the case that all types in
Sx(M) are definable13. In order to deal with this, the following observation
is now crucial:

Remark 1.48. If p is realized in M by a certain m, then it is very easy to
find an L(M)-formula for dpϕ: since ϕ(x; b) ∈ p if and only if m � ϕ(x; b),
we can set14 dp(x)ϕ(x; y) = ϕ(m; y).

Observe that the fact that p is realized in M is only needed in order for
ϕ(m, y) to be an L(M)-formula. In fact, if a ∈ U is a realization of p, then
b ∈ dp(x)ϕ(x; y) ⇐⇒ b ∈M ∧ b � ϕ(a; y), but the parameter a lives outside
M . We are then led to explore the following concept:

Definition 1.49. Let M be a small model. A subset of M is externally
definable iff it can be written as M ∩ ϕ(x; b) = ϕ(M ; b) = {a ∈ M | U �
ϕ(a; b)} for some ϕ(x; b) ∈ L(U).

We will soon make the connection between defining schemata and exter-
nally definable subsets precise and show that the previous definition does
not depend on U. Before that, let us see a couple of examples.

13The fact that this happens for all M � T is equivalent to the stability of T : see [Pil83,
Corollary 1.21]. It can happen that all types over a certain model are definable but the
theory is not stable; for instance this happens in R � RCF, because of Theorem 1.52,
o-minimality, and Dedekind completeness. See [vdD86] for the result and [MS94] for
generalizations.

14Notice how variables are now “changing status”, as we think of x as a parameter
variable and y as an object variable.
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Example 1.50. In (Q, <) � DLO, the set {x ∈ Q | x <
√

2} is not de-
finable, as can be easily shown by quantifier elimination, and this implies15

that tp(
√

2/Q) is not Q-definable. Anyway it is externally definable by the
formula x <

√
2, or by the formula x < b for any b ∈ U with b ≡Q

√
2.

One could wonder whether all subsets are externally definable. As the
presence of Definition 1.49 may hint, the answer is in general no:

Example 1.51. By quantifier elimination, Z is not even externally definable
in (Q, <).

Theorem 1.52. Let A ⊆ M . Then all externally definable subsets of M
are A-definable if and only if all p ∈ S(M) are A-definable.

Proof. The main point is the trivial observation that {b ∈ M | ϕ(x; b) ∈
tp(a/M)} is defined by ϕ(a; y), and it is exactly dtp(a/M)ϕ. We feel free to
spell out some details.
⇒ Let p ∈ Sx(M) and ϕ(x; y) ∈ L; we want to find an L(A) formula

dpϕ defining the set X = {b ∈ M | ϕ(x; b) ∈ p}. Fix a realization a � p.
Then obviously X = ϕ(a;M). By hypothesis there is an L(A)-formula ψ(y)
such that ϕ(a;M) = X = ψ(M), and setting dpϕ = ψ proves that p is
A-definable.
⇐ Let X = ϕ(a; y), for some a ∈ U and ϕ(x; y) ∈ L. If p = tp(a/M),

by hypothesis there is a formula dpϕ ∈ L(A) such that for all b ∈ M we
have ϕ(x; b) ∈ p if and only if � (dpϕ)(b). But this means exactly ϕ(a;M) =
(dpϕ)(M).

Notation 1.53. A ⊂+ N means that A ⊆ N and N is |A|+-saturated and
|A|+-strongly homogeneous16. If A = M is a model we also write M ≺+ N
with the same17 meaning.

Definition 1.54. We say that N �M codes all externally definable subsets
of M iff for each externally definable X ⊆ M there is ψ(x) in L(N) such
that ψ(M) = X.

Proposition 1.55. IfM ≺+ N thenN already codes all externally definable
subsets of M , i.e. every externally definable subset of M has an external
definition with parameters in N .

Proof. If ϕ(x; b) externally defines a subset ofM and b ≡M c, then ϕ(M ; b) =
ϕ(M ; c) by definition. By saturation, such a c can be found in N .

15Or “is due to the fact”, depending on viewpoints. See Theorem 1.52.
16Often we will only need saturation, but for the sake of precision it is better to fix

notations once and for all.
17Recall that, by monster conventions as fixed in Section A.6, all inclusions between

models are automatically elementary embeddings.
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Corollary 1.56. Whether a subset is externally definable or not does not
depend on U.

We could then be tempted to “make externally definable sets definable
by fiat”, i.e. to use the following construction:

Definition 1.57. Suppose thatN �M codes all externally definable subsets
of M , and let Lext = L ∪ {Rϕ(x;b)(x) | ϕ(x; b) ∈ L(N)}. Shelah’s expansion
M ext is the expansion of M to an Lext-structure obtained by interpreting
each Rϕ(x;b)(x) as ϕ(M ; b).

Some authors use the notation MSh instead. The model N is not ex-
plicitly mentioned in the notation M ext for the following reason: although,
strictly speaking, even the language Lext depends on N , if N0, N1 � M
both code all externally definable subsets of M and Lext

0 , Lext
1 are the corre-

sponding languages, thenM ext
0 is the same structure ofM ext

1 up to replacing
every Rϕ(x;b)(x) ∈ Lext

0 with Rϕ(x;c)(x) ∈ Lext
1 for a suitable ϕ(x; c) ∈ L(N1).

Thus, by Proposition 1.55, one may simply assume N to be the monster U;
in any case, for most calculations we will need to fix such an N .

The fact that, if ϕ ∈ L(M), then dpϕ ∈ Lext, suggests that in order
to have a semigroup structure we may better work with SG(M ext) instead
of SG(M); in practice there is still another issue to be addressed, and it is
precisely the same issue that we wanted to solve by passing to SG(M ext),
i.e. we want dpϕ ∈ Lext even for p an Lext-type and ϕ an Lext-formula. In
other words, now that the language has been expanded, all the L-externally
definable subsets have become definable, but new Lext-externally definable
subsets may arise: there may be Lextext-definable sets that are not Lext-
definable. Let us see why.

We could try to show, by induction on formulas, that every externally
definable subset ofM ext is already definable. Nor conjunction, since Rϕ∧ψ ≡
Rϕ ∧ Rψ, nor negation, since R¬ϕ ≡ ¬Rϕ, present problems and, most
important, Rϕ(x;y)(x; b) = Rϕ(x;b)(x). A difficulty shows up when dealing
with quantifiers. For instance, if n ∈ N \M , then M ext 6� ∃x Rx=n(x) but
M � R∃x x=n, so a naïve approach will not work. Let us take a closer look.

Unraveling definitions we discover that, if b ∈M , and N is used to define
Lext we have, inside M ext,

b � ∃x Rϕ(x;y)(x; y)⇔ ∃m ∈M b � Rϕ(x;y)(m; y)⇔ ∃m ∈M N � ϕ(m; b)

b � R∃x ϕ(x;y)(y)⇐=====⇒ N � ∃x ϕ(x; b)⇐=====⇒ ∃n ∈ N N � ϕ(n; b)

Thus ∃x Rϕ(x;y)(x; y) and R∃x ϕ(x;y)(y) may define different subsets of M ,
the first one always being included in the second one. If the reverse inclusion
always holds, thenM ext eliminates quantifiers, and our plan to use SG(M ext)
instead of SG(M) can be carried out. Unfortunately, this is not always the
case. We will see in Theorem 3.56 that nonetheless, if we are working in a
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nip theory, then Th(M ext) will indeed have quantifier elimination. For the
moment we do not assume nip (also because we did not even define what it
means yet) and employ the solution adopted in [New12].

External Types

Since in dealing with DefG(M ext) we had problems with quantifiers, we
turn our attention to another Boolean algebra.

Definition 1.58. DefqfG(M ext) is the Boolean algebra of subsets of M ext

which are definable with a quantifier-free formula. Its Stone space will be
denoted with Sqf

G (M ext). The Boolean algebra of externally definable subsets
of M will be denoted by DefextG (M), and its Stone space with Sext

G (M). We
put on both Stone spaces a G(M)-flow structure in the following way

g · p(x) 3 ϕ(x) ⇐⇒ p(x) 3 g−1 · ϕ(x)

Lemma 1.59. DefqfG(M ext) is isomorphic to DefextG (M), and Sqf
G (M ext) and

Sext
G (M) are isomorphic G(M)-flows.

Proof. The isomorphism of Boolean algebras and the homeomorphism be-
tween the corresponding Stone spaces is simply due to the fact that R− com-
mutes with connectives; the G(M)-flow structure is trivially preserved.

Permanent Assumption 1.60. From now on we will use Lemma 1.59
tacitly and identify externally definable subsets of M and quantifier-free
definable subsets of M ext.

The importance of the following lemma should, at this point, be very clear.

Lemma 1.61 ([New12, Lemma 1.2]). If p ∈ Sext
G (M) and ϕ(x; b) ∈ DefextG (M),

then δpϕ ∈ DefextG (M).

Proof. Let a � p in N0
+� N , where N is used to code externally definable

subsets of M . For all g ∈ G(M) we have

g � δp(x)ϕ(x; b) ⇐⇒ ϕ(g · x; b) ∈ p
⇐⇒ N0 � ϕ(g · a; b) ⇐⇒ g ∈ ϕ(z · a; b) ∩G(M)

This shows that δpϕ is externally definable18.

Remark 1.62. The careful reader may have noticed that ϕ(g · x) is not
a quantifier-free formula, even if ϕ(x) is, because it is a shorthand for
∃z ψ(g, x, z) ∧ ϕ(z), where ψ defines the group product. So, if she is think-
ing in terms of quantifier-free M ext-types, she may wonder what it means

18But notice that a may be outside N , so we may have to replace ϕ(z · a; b) with a
different formula if we want an external definition in L(N).
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for ϕ(g · x) to be an element of p. We are going now to explain this abuse
of notation. If x ranges in G(M) such a z as above always exists (and is
unique) in G(M). Hence, we have

M ext � ∀x
(
∃z Rψ(g,x,z)∧ϕ(z)(x, z)↔ R∃z ψ(g,x,z)∧ϕ(z)(x)

)
Since R∃z ψ(g,x,z)∧ϕ(z)(x) is a quantifier free formula we can substitute it in
place of ϕ(g · x) and meaningfully ask whether it belongs to p ∈ Sqf

G (M).

Proposition 1.63 ([New12, Lemma 1.3]). δp commutes with Boolean oper-
ations and left multiplication by elements of G(M).

Proof. It is very easy to check the first statement. As for the second one,

g � δp(hϕ)⇔ hϕ ∈ gp⇔ ϕ ∈ h−1gp⇔ h−1g � δpϕ⇔ g � hδpϕ

We are now ready to formally define our semigroup operation on Sqf
G (M ext).

Definition 1.64. Let p, q ∈ Sqf
G (M ext). We define p · q ∈ Sqf

G (M ext) as

ϕ ∈ p · q ⇐⇒ δqϕ ∈ p

Lemma 1.65 ([New12, Lemma 1.4]). δq·r = δq ◦ δr. Moreover the operation
· is associative.

Proof. Fix g ∈ G(M) and, using Proposition 1.63, calculate

g � δq·rϕ⇔ g−1ϕ ∈ q · r ⇔ δr(g
−1ϕ) ∈ q ⇔ g−1δrϕ ∈ q ⇔ g � δq(δrϕ)

and the “moreover” part follows:

ϕ ∈ (p · q) · r ⇔ δrϕ ∈ p · q ⇔ δq(δrϕ) ∈ p⇔ δq·rϕ ∈ p⇔ ϕ ∈ p · (q · r)

We abuse the notation a little more to make the parallelism with the
previous section apparent.

Proposition 1.66 ([New12, Lemma 1.5]). Let ϑp(q) = p · q. Then

1. ϑp = limg→p ϑg

2. ϑ− : Sqf
G (M ext) → E(Sqf

G (M ext)) is an isomorphism of semigroups and
of G-flows.

3. For all q ∈ Sqf
G (M ext) the map − · q is continuous.

Proof.
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1. Notice that p is not an ultrafilter on the whole P(G(M)); anyway our
limit exists because

ϑp(q) ∈ [ϕ]⇔ ϕ ∈ ϑp(q)⇔ δqϕ ∈ p⇔ {g ∈ G(M) | ϕ ∈ gq = ϑg(q)} ∈ p

Since this happens for all ϕ and q, if we think of p as a filter on
P(G(M)) this says precisely that limg→p ϑg = ϑp.

2. The only thing that prevents us from recycling the proofs of Theo-
rem 1.39 and Corollary 1.40 is the fact that it uses Lemma 1.38, which
in turn depends on Lemma 1.16. In other words, we only need to
show that ϑ− is surjective, i.e. that for all U ∈ βG, there is some
p ∈ Sqf

G (M ext) such that limg→U ϑg = limg→p ϑg. Unpackaging def-
initions we find that taking p = U � DefqfG(M ext) works, the key
point being the fact that all the dqϕ are still externally definable by
Lemma 1.61.

3. We have to check that (−·q)−1[ϕ] is open. This is the set of the p such
that ϕ ∈ p · q, that coincides with [dqϕ] by definition, which is open
again by Lemma 1.61.

We have therefore shown that Sqf
G (M ext) is isomorphic to its own enve-

lope, and described the image of the composition under this isomorphism,
which endows Sqf

G (M ext) with and Ellis semigroup structure.

Heirs and Coheirs

Since in dealing with types it is often useful to realize them, we want to
describe the realizations of p · q in terms of the ones of p and q. In order to
do this we need some more model-theoretic tools.

Definition 1.67. Let A ⊆ B. A type p with parameters from B is finitely
satisfiable in A iff for all ϕ(x) ∈ p there is a ∈ A such that � ϕ(a). The
space of all such types in variables x is denoted Sfs

x (B,A).

Proposition 1.68. Sfs
x (B,A) is a closed subspace of Sx(B).

Proof. A type is finitely satisfiable in A if and only if it omits all formulas
that have no point in A, i.e. if and only if it belongs to the closed subset⋂
ϕ(A)=∅[¬ϕ(x)].

Of course if A = B = M is a model then Sfs
x (M,M) = Sx(M). It is

not true that all types over A are finitely satisfiable in A: take A = ∅, for
example. We now give a name to finitely satisfiable extensions.

Definition 1.69. Let A ⊆ B and p ∈ Sx(A). A coheir of p over B is any
q ∈ Sfs

x (B,A) such that q � A = p. In other words, it is an extension of p to
a type with parameters in B that is finitely satisfiable in A.
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Proposition 1.70. If p ∈ Sfs
x (B,A) and C ⊇ B, then p can be extended to

an element of Sfs
x (C,A). In particular this always holds when B = A = M

is a model.

Proof. Since for ϕ ∈ p the set ϕ(A) is never empty, we can extend {ϕ(A) |
ϕ ∈ p} to an ultrafilter U ∈ βA. Then, given any C ⊇ B, define a type
qU ∈ Sfs

x (C,A) by ϕ(x; b) ∈ qU ⇐⇒ ϕ(A; b) ∈ U .

As the “co” in “coheir” may hint, there is a notion called heir, and the
two are — in a sense — dual.

Definition 1.71. If A ⊆ B, p ∈ Sx(A) and q ∈ Sx(B), we say that q is an
heir of p iff for all ϕ(x; y) ∈ L and b ∈ B, if ϕ(x; b) ∈ q there is a ∈ A such
that ϕ(x; a) ∈ p.

Proposition 1.72 (Heir-coheir duality). tp(a/Ab) is an heir of tp(a/A) if
and only if tp(b/Aa) is a coheir of tp(b/A)

Proof. ⇒ Let ϕ(x; y) ∈ L(A) and suppose that � ϕ(a; b). By the “heir”
hypothesis there is c ∈ A such that � ϕ(a; c), and this shows that ϕ(a; y) is
finitely satisfiable in A.
⇐ Dually, let ϕ(x; y) ∈ L(A) and suppose that � ϕ(a; b). By the

“coheir” hypothesis ϕ(a; y) is finitely satisfiable in A, and this shows that
there is c ∈ A such that � ϕ(a; c).

Example 1.73. Let p be the type at +∞ over some M � RCF and let
a � p. It can be easily checked that if b realizes an heir of p over Ma, then
“b � a”, meaning that b is bigger than any point in the definable closure
of a, i.e. of any polynomial in a, and if b realises a coheir of p over Ma
then b � a. Notice that if we replace RCF with an o-minimal expansion
of hers, then the definable closure of a will be bigger; for instance, if we
consider Th(Rexp) (which is o-minimal by [Wil96]) b will be bigger than
any exponential polynomial involving a. In this special case “being an heir”
captures the notion of being “more infinite”. Similarly, if we repeat the
construction with p = tp(0+/M), it will capture the notion of being “more
infinitesimal”.

The following fact will not be used, but it is sufficiently standard to be
worth mentioning.

Fact 1.74 ([Pil83, Proposition 1.17]). A type in Sx(M) is definable if and
only if for all A ⊇M it has exactly one heir in Sx(A).

For the moment we put heirs aside, but we will need them in later chap-
ters. Back to coheirs, we now explain why speaking of coheirs over a suffi-
ciently big model is essentially the same as speaking of external types.
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Theorem 1.75. Suppose19 that N codes all externally definable subsets of
M . Then every element of Sfs

x (N,M) has a unique M -finitely satisfiable
global extension. In other words, the restriction Sfs

x (U,M) → Sfs
x (N,M) is

injective (hence an homeomorphism).

Proof. One extension exists by Proposition 1.70. Let p 6= q ∈ Sfs
x (U,M), as

witnessed by ϕ ∈ p, ¬ϕ ∈ q. By hypothesis both ϕ and ¬ϕ have points in
M , so they correspond to X, X{, both non-empty and externally definable
by some ψ,¬ψ ∈ L(N) by hypothesis. If we prove that ψ ∈ p and similarly
¬ψ ∈ q we are done, so suppose ¬ψ ∈ p. Then ¬ψ ∧ ϕ is in p and so should
have a point in M , but such a point would inhabit X{ ∩X.

Corollary 1.76. If all externally definable subsets of M are definable in M
(e.g. we are working in an M ext that eliminates quantifiers, or in R), then
types over M have unique coheirs over arbitrary sets of parameters.

Proof. Even if we want to extend a type to a parameter set that lives outside
U, it suffices to apply Theorem 1.75 to a suitable bigger monster Ũ and then
take a restriction.

Proposition 1.77. Suppose that N codes all externally definable subsets
of M . Then Sext

x (M) is homeomorphic to Sfs
x (N,M).

Proof. It is enough to send p ∈ Sfs
x (N,M) to {ϕ(M) | ϕ ∈ p}. In the other

direction, send q ∈ Sext
x (M) to {ϕ(x) ∈ L(N) | ϕ(M) ∈ q}.

Remark 1.78. If we define a G(M)-flow structure on Sfs
G(N,M) in the

obvious way, i.e. ϕ ∈ gp ⇐⇒ g−1ϕ ∈ p, then the previous homeomorphism
is also an isomorphism of G-flow. Hence we will freely identify Sext

G (M) with
Sfs
G(N,M).

We can now understand realizations of p · q.

Theorem 1.79 ( [New09, Lemma 4.1 (1)20]). Suppose that N codes all
externally definable subsets of M and work in Sfs

G(N,M). Then p · q =
tp(a · b/N) where b realizes q and a realizes the unique M -finitely satisfiable
extension of p to Nb.

Proof. Denote said unique extension with p |chM Nb. Given ϕ(x) ∈ p · q we
want to show that � ϕ(a · b). Let ψ(x) ∈ L(N) be any formula such that
ψ(x) ∩M = δqϕ.

Claim.
(
ψ(x)↔ ϕ(x · b)

)
∈ p |chM Nb.

19For example N +�M , by Proposition 1.55, or we could “be lucky”, have all externals
already M -definable and take N = M .

20Mutatis mutandis.
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Proof of the Claim. If this is not the case, then by M -finite satisfiability the
equivalence above fails for at least one g ∈ G(M). But for such a g we have

g � ψ(x) ⇐⇒ g ∈ δqϕ ⇐⇒ ϕ(x) ∈ gq †⇐=⇒ ϕ(g · x)︸ ︷︷ ︸
=g−1ϕ(x)

∈ q ⇐⇒ � ϕ(g · b)

where the equivalence † is proven via the isomorphism with Sext
G (M) exploit-

ing the fact that, being an isomorphism of G(M)-flows, it commutes with
multiplication by g ∈ G(M).

claim

Since p |chM Nb is an extension of p and ψ ∈ p by definition of p · q, it
then follows from the Claim that ϕ(x · b) ∈ p |chM Nb, and this is equivalent
to a � ϕ(x · b).

A natural question would now be to try to understand what happens if
we change our model, i.e. to compare Sext

G (M) and Sext
G (N) and the relative

Ellis groups when M � N . This task is quite hard, and some results can
be found in [New12]. Anyway, we will see as a corollary of the main result
studied in this thesis that under further hypotheses the Ellis group does not
depend on the model.

The Conjecture

We now have two groups attached to a couple (G,M): one is the inter-
pretation G(M) of G in M , the second is the Ellis group associated to the
G(M)-flow Sext

G (M). There is a third construction that has been extensively
studied and goes under the name of G/G00.

Definition 1.80. Let κ be the saturation of U and |A| < κ. The A-type-
connected component G00

A is defined as the intersection of all subgroups of
G(U) which are type-definable with parameters in A and of bounded index,
i.e. such that [G(U) : G00

A (U)] < κ.

Definition 1.81. We say that G00 exists iff for all small A it happens that
G00
A = G00

∅ , and in this case we define G00 to be G00
∅ .

We will later see (Proposition 2.54) that if M is a small model the pro-
jection to the quotient G(U) → G(U)/G00

M (U) factors through a surjective
π : SG(M) → G/G00

M , and that G00
M is normal (Proposition 2.56). This im-

plies the following.

Remark 1.82. G/G00
M does not depend on U, since SG(M) does not: to

know what coset of G00
M (U) one g ∈ G(U) belongs to it is sufficient to know

its type over M , and using saturation it is easy to define an isomorphism
between G/G00

M (U0) and G/G00
M (U1).
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This enables us to compare the Ellis group associated to (G,M) with
G/G00

M , for the following reason. Since, by Remark 1.78, we can identify
Sext
G (M) with Sfs

G(U,M) ⊆ SG(U,M), it makes sense to fix an Ellis group uI
inside it and consider the restriction π � uI.

Theorem 1.83 ([New09, Proposition 4.4], [CPS14, Remark 5.4]). The re-
striction π : uI → G/G00

M is a surjective group homomorphism.

Proof. By Theorem 1.79, if p, q ∈ Sfs
G(U,M), b � q and a � p |chM Ub,

π(p · q) = π(tp(a · b)/U) = (a · b)G00
M = (aG00

M ) · (bG00
M ) = π(p) · π(q)

so π : Sfs
G(U,M)→ G/G00

M is an homomorphism of semigroups. In particular
its restriction to uI is an homomorphism of groups. To show it is surjective,
fix gG00

M ∈ G/G00
M and let p = tp(g/M). Since I is an ideal and u ∈ I we

have that pu ∈ I, and so upu ∈ uI. Since π is an homomorphism and u is
the identity of uI we have that π(upu) = π(u)π(p)π(u) = π(p) = gG00

M .

A question arises: is π � uI an isomorphism? The answer is no, as a
counterexample, namely SL(2,R), was found in [GPP15]. One could then
try to impose restrictions on T , but the fact that there is already a coun-
terexample in an o-minimal theory suggests that this may not be dependent
solely on the tameness of T .

We can now state the conjecture, formulated by Pillay in [CPS14], around
which this thesis is built.

Conjecture 1.84 (Ellis Group Conjecture). If G is a definably amenable
group and T is nip, then π � uI is an isomorphism.

We have yet to explain what a nip theory is and what it means for a
group to be definably amenable. After some preliminary model-theoretic
study in Chapter 2, we will define nip theories in Chapter 3, and verify that
in this context all the relevant concepts are preserved when passing to M ext.
In Chapter 4 we will turn our attention to definably amenable groups and
examine how, after special cases were shown to hold in [New12,Pil13,CPS14],
Chernikov and Simon proved in [CSed] that the Ellis Group Conjecture is
true.

Topological dynamics relies vitally on notions such as the ones of contin-
uous map, compactification, flow. In [GPP14] definable analogues of such
notions were introduced, in order to develop a theory of “tame topological
dynamics”. See also [Pil13] for further results.





Chapter 2

Model-Theoretic Tools

In our study of nip theories and definably amenable groups we will often
use invariant types, forking, and Keisler measures. Under the nip hypothe-
sis measures will behave significantly better, while forking will have strong
characterizations in terms of invariance; nonetheless they can be legitimately
considered (and used!) without assuming it. For this reason, we will inves-
tigate these concepts before even defining nip. This will have the additional
advantage of making clear what facts depend on the nip and what do not.
References for this chapter are [Sim15,TZ12].

2.1 Invariant Types

As we saw in the previous chapter, if types have a “privileged” extension
to any bigger set of parameters, this can be used to define operations on
them in terms of their realizations. For instance, Theorem 1.79 is due to
the ability of extending p in a way that “takes into account” a particular
realization b of q. In that case, “privileged” meant “finitely satisfiable in M ”
which is another way of saying “a coheir of it restriction toM ”. As the reader
may expect, one could employ heirs in a similar fashion, and since we want
a “canonical” extension, Fact 1.74 suggests to start with definable types. In
fact, this is probably one of their most essential features (cf. [Las76]).

Definition 2.1. Let p ∈ Sx(M) be definable, and let B ⊇M . Define p | B ∈
Sx(B) in the following way: if ϕ(x; y) ∈ L and b ∈ B, then ϕ(x; b) ∈ p | B if
and only if b � dp(x)ϕ(x; y)

In other words, since for all a ∈ M whether ϕ(x; a) ∈ p or not depends
only on whether a � dpϕ holds, we define an extension of p to B imposing
the same “rule” to hold for all b ∈ B. Then we can try to generalize this con-
struction from definable types to types for which a reasonable “rule” exists.
In other words, we could try to relax the hypotheses on dpϕ; the main point
of invariant types is to allow dpϕ to be any subset of the type space. Let us
begin giving explicit definitions.
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Generalizing Definable Types

Definition 2.2. Let p ∈ Sx(B) and let A ⊆ B. We say that p is A-invariant
iff, for all ϕ(x; y) ∈ L, if b, c ∈ B and b ≡A c, then ϕ(x; b)↔ ϕ(x; c) ∈ p. The
subspace of A-invariant types in Sx(B) is denoted Sinv

x (B,A). If p ∈ Sx(U)
we say that p is invariant iff there is some small A such that p is A-invariant.
We denote the space of such types with Sinv

x (U).

In other words, p(x) ∈ Sx(B) is A-invariant iff for every ϕ(x; y) ∈ L and
b ∈ B whether ϕ(x; b) ∈ p or not depends only on tp(b/A), thus it makes
sense to lift {b ∈ B | ϕ(x; b) ∈ p} to a subset of Sy(A). We will often use
tacitly the following two lemmas:

Lemma 2.3. If A ⊆ B ⊆ C and p ∈ Sx(C) is A-invariant, then it is B-
invariant.

Proof. If b ≡B c, a fortiori b ≡A c.

Lemma 2.4. If p, q ∈ Sinv
x (U), then there is a small model M such that

p, q ∈ Sinv
x (U,M).

Proof. If p is Ap-invariant and q is Aq-invariant, by Lemma 2.3 if suffices to
take A = Ap ∪Aq and consider any small M ⊇ A.

Proposition 2.5. Sinv
x (B,A) is closed in Sx(B).

Proof. By definition, Sinv
x (B,A) =

⋂
b≡Ac

ϕ(x;y)∈L

[ϕ(x; b)↔ ϕ(x; c)].

Lemma 2.6. If A ⊂+ M , then p ∈ Sinv
x (M,A) if and only if p is fixed by

all elements of Aut(M/A).

Proof. By definition, ϕ(x; f(b)) ∈ f(p) iff ϕ(x; b) ∈ p, and since A ⊂+ M we
have b ≡A c ⇐⇒ ∃f ∈ Aut(M/A) f(b) = c.

Remark 2.7. If we want to speak of A-invariant partial types, some atten-
tion is needed. if one says that π(x) is invariant under Aut(U/A), then it
means that if ϕ(x; b) ∈ π(x) then for all a ≡A b in the monster ϕ(x; a) ∈
π(x); saying that if a ≡A b then π(x) cannot contain both ϕ(x; a) and
¬ϕ(x; b) is clearly weaker, since π(x), being partial, could contain neither
ϕ(x; a) nor ¬ϕ(x; a). For instance, saying that p ∈ Sx(M) is A-invariant
means that p is fixed by elements of Aut(M/A), but if we regard p as a
global partial type this is weaker than being fixed by elements of Aut(U/A).
We can avoid these subtleties by writing p(x) ` ϕ(x; a)↔ ϕ(x; b) instead of
ϕ(x; a)↔ ϕ(x; b) ∈ p, because then p(x) = f(p) ` ϕ(x; f(a))↔ ϕ(x; f(b)).

Invariant types are a common generalization of definable and of finitely
satisfiable ones:
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Proposition 2.8. A-finitely satisfiable types are A-invariant.

Proof. Suppose that ϕ(x; b)4ϕ(x; c) ∈ p ∈ Sfs
x (B;A). By finite satisfiability

there is a ∈ A such that � ϕ(a; b)4 ϕ(a; c), hence b 6≡A c

Corollary 2.9. Let M ⊆ B. Every type in Sx(M) has an extension in
Sinv
x (B,M).

Proof. Every type has one in Sfs
x (B,M) by Proposition 1.70, and by Propo-

sition 2.8 Sfs
x (B,M) ⊆ Sinv

x (B,M).

Anyway the inclusion may be strict:

Example 2.10. In DLO we have that tp(+∞/U) is ∅-definable, hence, by
the following proposition, ∅-invariant, but it is not finitely satisfiable in any
small set.

Proposition 2.11. A-definable types are A-invariant.

Proof. If b ≡A c, since every dpϕ is in L(A), we have � dpϕ(b)↔ dpϕ(c).

Hence p(x) is A-definable iff not only it makes sense to lift {b ∈ B |
ϕ(x; b) ∈ p} to a subset of Sy(A), but such a set is clopen, since can be
written as [dpϕ] because dpϕ ∈ L(A).

Definition 2.12. In analogy to the case of definable types, if p ∈ Sx(B) is
A-invariant, we define

dp(x)ϕ(x; y) = {q ∈ Sy(A) | ∃b ∈ B b � q ∧ ϕ(x; b) ∈ p}

Remark 2.13. These objects behave best if1, for all n, all types in Sn(A)
are realized in B: in this case Sy(A) = dpϕ∪ dp¬ϕ. Otherwise, if there is no
b � q in B, the union dpϕ ∪ dp¬ϕ does not contain q.

The following proposition says that, under suitable hypotheses2, Defini-
tion 2.1 can be generalized to invariant types.

Theorem 2.14 ([Sim15, discussion at page 19]). Let A ⊆ M and suppose
that3, for all n, all types in Sn(A) are realized in M . Let p ∈ Sinv

x (M,A)
and C ⊇M . Then

p | C = {ϕ(x; b) | ϕ(x; y) ∈ L, b ∈ C, tp(b/A) ∈ dpϕ}

is the unique extension of p to an element of Sinv(C,A).

Proof. We have quite a number of things to check about p | C:
1. . . and some books only define them when. . .
2To know what happens if we try to remove them see Remark 2.16.
3For instance A ⊂+ M , e.g. M = U and A is small.
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Well-definedness Asking if tp(b/A) ∈ dpϕ makes sense by A-invariance.

Consistency In order to have both ϕ(x; b) and ¬ϕ(x; b) in p | C it is neces-
sary to have b0, b1 ∈ M , both realizing tp(b/A), such that ϕ(x; b0) ∧
¬ϕ(x; b1) ∈ p. Since p is invariant this cannot happen.

Completeness By Remark 2.13 either tp(b/A) ∈ dpϕ or tp(b/A) ∈ dp¬ϕ.

Invariance p | C is A-invariant by definition.

Uniqueness Since we already proved that p | C is a complete type, if p0, p1

are both candidates to be p | C then there is ϕ(x; b) such that ϕ(x; b) ∈
p0 and ¬ϕ(x; b) ∈ p1. But then tp(b/A) ∈ dpϕ ∩ dp¬ϕ = ∅.

Corollary 2.15 (Cf. Theorem 1.75). Under the same hypotheses, the re-
striction Sinv

x (B,A)→ Sinv
x (M,A) is an homeomorphism.

Remark 2.16. If M omits some q ∈ Sy(A), the construction of Theo-
rem 2.14 only yields a partial type (cf. Remark 2.13). Hence in this case p
may have more than one A-invariant extension.

Since we defined a global type to be invariant iff it is A-invariant for some
small A, we will better check that this construction does not depend on A,
in order to apply it to invariant types tout-court.

Proposition 2.17. If p ∈ Sx(U) is invariant over two small sets A0 and A1

and C ⊇ U, then p |A0 C = p |A1 C.

Proof. Fix any c ∈ C. If b ∈ U is any realization of tp(c/A0 ∪ A1) we have
both c ≡A0 b and c ≡A1 b. Hence

ϕ(x; c) ∈ p |A0 C ⇐⇒ ϕ(x; b) ∈ p ⇐⇒ ϕ(x; c) ∈ p |A1 C

The previous results allows us to think of global invariant types as the
“truly global” ones, since as long as there is a defining schema dp : {ϕ(x; y) |
ϕ ∈ L} → Sy(M) of p ∈ Sinv

x (U,M), the monster U does not even matter:
even if we replace it with a larger Ũ +� U, the schema dp will “carry” p to
Sinv
x (Ũ). Notice that by Lemma 2.3 we may also see dpϕ as a subset of Sx(U).

Example 2.18. Let us see what an element of Sinv
1 (U) looks like in an o-

minimal theory. Realized types are always invariant over a small model con-
taining the realization. By o-minimality, non-realized types in one variable
correspond to non-realized cuts, i.e. a type p(x) ∈ S1(U)\U is determined by
A = {a ∈ U | x > a ∈ p} and B = {b ∈ U | x < b ∈ p}. Then p is invariant if
and only if at least one between the cofinality of A and the coinitiality of B
is small.
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Proof. If one between A and B is empty, then p is a type at ∞, and so it is
∅-definable, hence ∅-invariant. Suppose that A,B 6= ∅ and there is a small
increasing sequence (ai)i∈I which is cofinal in A. If M ⊇ (ai)i∈I is a small
model, then p is M -invariant because it is finitely satisfiable in M . The
symmetric argument works for B.

Now suppose that neither the cofinality of A nor the coinitiality of B are
small, but for some small M we have p ∈ Sinv

1 (U,M). Notice that A < B
and that since p is complete there can be no point between A and B. Then,
by cofinality reasons, we can find a ∈ A and b ∈ B such that no point of M
lies between a and b, and this implies a ≡M b and contradicts M -invariance
of p.

Hence in this case if a type in dimension 1 fails to be invariant it is because
the information it contains relies critically on monster-many parameters, and
the monster “does not know” how to extend it canonically to larger models.
In a sense, the information contained in an invariant type is small enough
“to let U communicate it”.

Remark 2.19. If M ≺+ N and p ∈ Sfs
x (N,M) we have defined two “canon-

ical extensions” of p to a type with parameters in B ⊇ N : the one from
Theorem 1.75 and the one from Theorem 2.14. The two extensions are in-
deed the same: since p |chM B is finitely satisfiable in M , it is in particular
M -invariant. Thus, by Theorem 2.14, it coincides with p | B, since the latter
is the unique M -invariant extension of p to B.

Corollary 2.20. If p ∈ Sinv(U) is finitely satisfiable in a small M , the same
is true for p | C.

Proof. p | C = p |chM C and the latter is finitely satisfiable in M . Alterna-
tively and withouth mentioning |chM , let ϕ(x; c) ∈ p | C and find b ∈ U such
that b ≡M c and ϕ(x; b) ∈ p. Then let m ∈ M be such that � ϕ(m; b) and,
since b ≡M c, we have � ϕ(m; c).

Example 2.21. Take a small M � DLO and let p = tp(M+/U) ∈ Sfs
x (U,M)

be “the type of a point just to the right of M ”, i.e. the unique complete type
extending

{x > a | ∃m ∈M a < m} ∪ {x < b | ∀m ∈M m < b}

Let c � p. Then, as c > M , (x < c) ∈ p | Uc.

Lemma 2.22. If C ⊇ U and p ∈ Sinv
x (U), then p | C is an heir of p.

Proof. Let M be a small model such that p is M -invariant and suppose that
ϕ(x; c) ∈ p | C. By saturation there is b ∈ U such that b ≡M c, and by
definition ϕ(x; b) ∈ p.
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Products

Definition 2.23. Let p ∈ Sinv
x (U) and q ∈ Sy(U). Let b � q and a � p | Ub.

We define p(x)⊗ q(y) as tp(a, b/U)

If we want to avoid realizing global types (because realizations will gen-
erally live outside the monster), we can use one of the following three char-
acterizations of ⊗.

Lemma 2.24. Let p ∈ Sinv
x (U, A) and q ∈ Sy(U). Then ϕ(x, y) ∈ p(x)⊗q(y)

if and only if (q(y) � A) ∈ dpϕ.

Proof. Let (a, b) � p(x)⊗q(y). By definition ϕ(x, y) ∈ p(x)⊗q(y) if and only
if ϕ(x, b) ∈ p | Ub, if and only if tp(b/A) ∈ dpϕ. But tp(b/A) = q � A.

Lemma 2.25. Suppose that p ∈ Sinv
x (U, A), q ∈ Sy(U), B ⊇ A is a small

set and ϕ(x, y) ∈ L(B). Then ϕ(x, y) ∈ p⊗ q if and only if for all b � q � B
living in U we have ϕ(x, b) ∈ p.

Proof. Let c be the parameters from B \A appearing in ϕ(x, y) = ϕ(x, y; c)
and let b̃ � q. Since p is A-invariant, it is a fortiori B-invariant, so ϕ(x, y; c) ∈
p⊗ q if and only if for all b ≡B b̃ living in U we have ϕ(x, b; c) ∈ p.

Corollary 2.26. Suppose that p ∈ Sinv
x (U, A), q ∈ Sy(U) and B ⊇ A is a

small set. Then (a, b) � p⊗ q � B if and only if b � q � B and a � p � Bb.

Proof. This is just a restatement of Lemma 2.25: if (a, b) � p ⊗ q � B
then b � q � B and, if ϕ(x, y) is an L(B) formula, then by the lemma
a � ϕ(x, b) ⇐⇒ ϕ(x, y) ∈ p⊗ q ⇐⇒ ϕ(x, b) ∈ p � Bb. Conversely, suppose
b � q and a � p � Bb. If ϕ(x, y) ∈ p⊗ q, then by the lemma ϕ(x, b) ∈ p, and
so a � ϕ(x, b).

Lemma 2.27. If both p(x) and q(y) are invariant, then p(x)⊗ q(y) is too.

Proof. Let p and q be M -invariant, and fix Ũ +� U such that Ũ 3 (a, b) �
p⊗q. Let f ∈ Aut(U/M) and extend it to Aut(Ũ/M) by strong homogeneity.
We have f(p ⊗ q) = f(tp(a, b/U)) = tp((f(a), f(b))/U), so if we show that
(f(a), f(b)) � p⊗ q we are done. Fix ϕ(x, y) ∈ p⊗ q. Since q is M -invariant,
we have tp(f(b)/U) = f(q) = q ∈ dpϕ. Hence, a � p | Uf(b). Since p | Uf(b)
is still M -invariant, f(a) � f(p | Uf(b)) = p | Uf(b). This shows that
(f(a), f(b)) � p⊗ f(q) = p⊗ q.

Proposition 2.28. ⊗ is associative.

Proof. Suppose that p(x), q(y) and r(z) are A-invariant global types, and let
c � r, b � q | Uc, and a � p | Ubc. Then tp(a, b, c/U) = p(x)⊗(q(y)⊗r(z)) by
definition, so it suffices to check that (a, b) � p(x)⊗ q(y) | Uc. This is easy:
ϕ(x, y, c) ∈ p(x)⊗q(y) | Uc if and only if there is some d ≡A c in U such that
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ϕ(x, y, d) ∈ p⊗q. Since b � q, this happens if and only if ϕ(x, b, d) ∈ p | Ub, if
and only if � ϕ(a, b, d) because a � p | Ubc ⊇ p | Ub. By the previous lemma
tp(a, b, c/U) is A-invariant, so tp(a, b/U) is too4. But then, since d ≡A c, we
have ϕ(x, y, c) ∈ tp(a, b) | Uc.

Lemma 2.29. The product of M -finitely satisfiable global types is M -
satisfiable.

Proof. If ϕ(x; y) ∈ p(x)⊗ q(x), let b � q. Then ϕ(x; b) ∈ p | Ub by definition.
Since p is finitely satisfiable inM , the same is true of p | Ub by Corollary 2.20.
But if m ∈ M is such that � ϕ(m, b), then ϕ(m, y) ∈ tp(b/U) = q, which is
finitely satisfiable in M , hence we find n ∈M such that � ϕ(m,n).

Remark 2.30. ⊗ on (invariant) types is analogous to ⊗ on ultrafilters (cf.
Definition 1.19), except it is written backwards: compare with Theorem 1.79,
where the product · was defined in a way “compatible with ultrafilters”, i.e.
backwards with respect to the product on invariant types.

Remark 2.31. It is not true that if p and q are both invariant then (a, b) �
p(x)⊗q(y) if and only if a � p(x) and b � q | Ua; in other words, Theorem 1.79
does not generalize. This is due to the fact that in general p(x) ⊗ q(y) 6=
q(y)⊗ p(x).

An attempt to adapt the proof of Theorem 1.79 in a straightforward way will
fail because dqϕ5 need not be clopen, i.e. q need not be definable: in other
words there is no analogue of the ψ in that proof. Indeed it can be proven6

that if there is a small M such that one between p and q is M -definable
and the other is finitely satisfiable in M , then p(x) ⊗ q(y) = q(y) ⊗ p(x).
Here definability is a key issue, and any attempt to adapt Theorem 1.79
without further hypotheses is bound to fail, as this would prove p(x)⊗q(y) =
q(y)⊗p(x), and this is generally false: for instance if p is as in Example 2.21,
then x < y ∈ p(x)⊗ p(y) and y < x ∈ p(y)⊗ p(x).

In fact, in ordered structures the only chance that a type has to commute
with itself it is that x = y ∈ p(x)⊗p(y), and it is easy to see that this implies
that p is a realized type: otherwise it would contain all the formulas x 6= u
for u ∈ U, so p(x)⊗ p(y) contains x 6= y, and since there is an order it must
then choose between x < y and y < x. Clearly p(y) ⊗ p(x) will make the
opposite choice.

Global types that happen to be simultaneouslyM -finitely satisfiable and
M -definable for a small M , and hence commute with themselves, are of a
very special kind. They go under the name of generically stable, and the
interested reader can consult [Sim15, Chapter 2].

4Just ignore formulas in the third free variable.
5It is dqϕ, and not dpϕ, because as we said the product is backwards.
6We will not do it just because it will not be needed later, but the argument is similar

to the proof of Theorem 1.79. See [Sim15, Lemma 2.23].
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We end this section with a concept that will be exploited in the next one.

Definition 2.32. Let p ∈ Sinv
x (U). Set p(1)(x0) = p(x0) and define in-

ductively p(n+1)(x0, . . . , xn) = p(xn) ⊗ p(n)(x0, . . . , xn−1). We then define
p(ω) =

⋃
n<ω p

(n).

Proposition 2.33. Let p ∈ Sinv
x (U). Then any (bi)i<ω � p(ω) � A is

A-indiscernible. In particular em((bi)i<ω/A) = p(ω) � A is a complete
Ehrenfeucht-Mostowski type.

Proof. For all i0 < . . . < in both tp(bi0 , . . . , bin/A) and tp(b0, . . . , bn/A) are
equal to p(n+1) � A.

Definition 2.34. Let p ∈ Sinv
x (U). A Morley sequence of p over A is any7

A-indiscernible sequence (bi)i∈I such that em((bi)i∈I/A) = p(ω) � A.

2.2 Lascar Strong Types

In this section we study a generalization of types that, in turn, will yield
a generalization of invariant types. Moreover, this will enable us to prove
the basic properties of G00

M .

Bounded Invariant Equivalence Relations

We begin with the following observation: ifM is a small model and a ≡M
b, it is not necessarily the case that there is an M -indiscernible sequence
starting with a, b, . . .

Example 2.35. LetM � RCF, let a � tp(+∞/M) and set b = a+1. Clearly
b � tp(+∞/M), but if a, b, c, . . . is the beginning of an M -indiscernible
sequence, applying indiscernibility to (a, b) and (b, c) with respect to the
formula x1 = x0 + 1 we find that c = b+ 1 = a+ 2. Applying it to (a, b) and
(a, c) yields c = a+ 1.

So we cannot ask this much. Anyway, in Proposition 2.37 we will show
that we can ask a slightly weaker thing. First we will need a lemma.

Lemma 2.36. The binary relation “b, c is the start of an A-indiscernible
sequence” is symmetric.

Proof. By the Standard Lemma any A-indiscernible (ai)i<ω such that a0 = b
and a1 = c can be extended to an A-indiscernible (ai)i∈Z. It is then sufficient
to reverse it8 and cut it before c to have an indiscernible sequence starting
with c, b.

7Notice that it can be indexed on any total order I, not necessarily ω.
8The reversed sequence will still be A-indiscernible, but may have a different

Ehrenfeucht-Mostowski type.
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Proposition 2.37. LetM be a small model and suppose that a ≡M b. Then
there is c such that both a, c and c, b start an M -indiscernible sequence.

Proof. Since M is a model, by Proposition 1.70 there is p ∈ Sfs(U,M) which
is a coheir of tp(a/M) = tp(b/M). Take as (ai)i<ω any Morley sequence
of p over Mab, which exists because p is M -invariant. To check that the
concatenation a a (ai)i<ω is M -indiscernible it is sufficient to show that
for all i1 < . . . < in we have tp(a, ai1 , . . . ain/M) = p(n) � M , and since
(ai)i<ω is Ma-indiscernible it suffices to check this for tp(a, a1, . . . an/M),
i.e. to show that for all ϕ(x0, . . . , xn) ∈ L(M) we have � ϕ(a, a1, . . . an) ↔
ϕ(a0, a1, . . . an). First of all notice that, by hypothesis, tp(a0/M) = p �M =
tp(a/M), so for n = 0 the thesis is true. For n > 0, if ϕ is a counterexample,

ϕ(a, x1, . . . , xn)4 ϕ(x0, x1, . . . , xn) ∈ tp(a0, a1, . . . , an/Ma) = p(n) �Ma

So in particular this is a formula in p(n). Let ã0 � p(x0). By definition and
associativity of ⊗ we then have

ϕ(a, x1, . . . , xn)4 ϕ(ã0, x1, . . . , xn) ∈ p(n−1) | Uã0

Since p is finitely satisfiable in M , this is also true of p(n−1) by Lemma 2.29,
and then of p(n−1) | Uã0 by Corollary 2.20. Thus we find m1, . . . ,mn ∈ M
such that

� ϕ(a,m1, . . . ,mn)4 ϕ(ã0,m1, . . . ,mn)

But since ã0 ≡Ma a0, the formula above is still valid with a0 in place of ã0,
and this contradicts a ≡M a0.

Now apply the same argument to b a (ai)i<ω, set c = a0 and apply the
previous lemma to b, c.

The fact we just proved will be useful in order to investigate the following
concepts, which will in turn be involved in the study of G00:

Definition 2.38. Let α be an ordinal. An equivalence relation E on α-tuples
of U is called

A-invariant iff for all a0b0 ≡A a1b1 we have E(a0, b0) ⇐⇒ E(a1, b1);

Type-definable over A iff it can be defined with a partial type over A;

Bounded iff it has a small number of equivalence classes, i.e. iff U is |Uα/E|+-
saturated and |Uα/E|+-strongly homogeneous.

Proposition 2.39 ([Sim15, Proposition 5.1]). Let A ⊆ U be small. For an
A-invariant equivalence relation on Uα the following are equivalent:

1. E is bounded.
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2. For all A-indiscernible (ai)i<ω with |a0| = α and all i, j < ω, E(ai, aj)
holds.

3. For all models M ⊇ A and all a ≡M b, E(a, b) holds.

4. |Uα/E| ≤ 2|A|+|T |+|α|

Proof.

1⇒ 2 Let (ai)i<ω be a counterexample. Since it is A-indiscernible and E
is A-invariant, then for all i < j we have ¬E(ai, aj). By the Standard
Lemma we can extend (ai)i<ω to a (ai)i<κ for an arbitrarily large κ,
thus violating boundedness of E.

2⇒ 3 By Proposition 2.37 and transitivity of E.

3⇒ 4 By Löwenheim-Skolem, take |M | = |A|+ |T |.

4⇒ 1 We even have an explicit bound.

Definition 2.40. Suppose that a and b are two α-tuples and that for all
A-invariant, bounded equivalence relations E on Uα we have E(a, b). Then
we say that a and b are Lascar-equivalent over A, and write Lstp(a/A) =
Lstp(b/A) or a ≡LstpA b. Equivalence classes of Lstp(−/A) are called Lascar
strong types over A.

Theorem 2.41 ( [Sim15, Lemma 5.3]). Fix an ordinal α. Then Lascar-
equivalence over A on α-tuples has the following characterizations:

1. It is the finest bounded A-invariant equivalence relation on α-tuples.

2. It is the transitive closure of ΘA(a, b), the relation “a, b is the start of
an A-indiscernible sequence”.

3. It is the transitive closure of ΠA(a, b), the relation “there is M ⊇ A
such that a ≡M b”.

Proof.

1. By definition, ≡LstpA is the intersection of all A-invariant bounded
equivalence relations. It follows immediately that it is A-invariant
and, by characterization 2 of Proposition 2.39, it is bounded.

2. We already showed in Lemma 2.36 that ΘA is symmetric. Its transi-
tive closure Θ∗A is A-invariant because if a0c0, ci−1ci, cnb0 all start
some A-indiscernible sequence (dik)k<ω and f ∈ Aut(U/A) is such
that f(a0b0) = a1b1, then a1f(c0), f(ci−1)f(ci), f(cn)b1 start the A-
indiscernible sequences (f(dik))k<ω. Moreover Θ∗A is bounded because
it satisfies characterization 2 of Proposition 2.39, hence a ≡LstpA b ⇒
Θ∗A(a, b). Again by characterization 2 of Proposition 2.39, ΘA(a, b)⇒
a ≡LstpA b, and now it suffices to take transitive closures.
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3. Let us show that the transitive closure Π∗A of ΠA is still A-invariant:
indeed Π∗A(a0, b0) holds if and only if there is n ∈ ω, some (ci | i < n)
and some (Mi ⊇ A | i < n + 1), such that a0 ≡M0 c0, ci−1 ≡Mi

ci and cn−1 ≡Mn b0. If a0b0 ≡A a1b1, let f ∈ Aut(U/A) be such
that f(a0b0) = a1b1. Then a1 ≡f(M0) f(c0), f(ci−1) ≡f(Mi) f(ci)
and f(cn−1) ≡f(Mn) b1. Moreover Π∗A is bounded because it satisfies
characterization 3 of Proposition 2.39, hence a ≡LstpA b ⇒ Π∗A(a, b).
Again by characterization 3 of Proposition 2.39, ΠA(a, b)⇒ a ≡LstpA b,
and now it suffices to take transitive closures.

Remark 2.42. Despite the fact that their transitive closures coincide, Ex-
ample 2.35 shows that, even if M is a model, ΘM 6= ΠM .

These characterizations have a number of consequences, the first one
being the following generalization of Proposition 2.37:

Corollary 2.43. Let A be a small set and suppose that a ≡LstpA b. Then
there is (ci | i < n + 1) such that a, c0, ci−1ci and cn, b all start an A-
indiscernible sequence.

Remark 2.44. Clearly having the same LstpA-type implies having the same
A-type. If A = M is a model, the converse also holds by Theorem 2.41.

The relation ≡A has an “algebraic” counterpart in a subgroup of Aut(U),
namely Aut(U/A). Another corollary of Theorem 2.41 is that there is such
a subgroup for ≡LstpA too:

Definition 2.45. The subgroup of Aut(U) generated by
⋃
M⊇A Aut(U/M)

is called Autf(U/A).

Corollary 2.46 ([Sim15, Lemma 5.7]). a ≡LstpA b if and only if there is
f ∈ Autf(U/A) such that f(a) = b.

Proof. ⇒ By Theorem 2.41 there is some (ci | i < n) and some (Mi ⊇
A | i < n + 1), such that a ≡M0 c0, ci−1 ≡Mi ci and cn−1 ≡Mn b. Let
fi ∈ Aut(U/Mi) be such that f0(a) = c0, fi(ci−1) = ci and fn(cn−1) = b and
set f = fn ◦ . . . ◦ f0.
⇐ Write f = fn◦. . .◦f0, with fi ∈ Aut(U/Mi), and let f (i) = fi◦. . .◦f0.

Then a ≡M0 f (0)(a), f (i−1)(a) ≡Mi f
i(a), and f (n−1)(a) ≡Mn f (n)(a) =

f(a) = b. Now apply Theorem 2.41.

As ≡A gives rise to the notion of A-invariant types, ≡LstpA , being finer
than ≡A, gives rise to a weaker notion, that we will call LstpA-invariance.

Definition 2.47. We call a global type LstpA-invariant iff it is fixed by
Autf(U/A).

The reader may have expected a definition similar in spirit to Defini-
tion 2.2. As the following characterization shows, she was right:
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Proposition 2.48 ([Sim15, p. 70]). Let p ∈ S(U). The following are equiv-
alent:

1. For all f ∈ Autf(U/A) we have f(p) = p.

2. For all ϕ(x; y) ∈ L and a ≡LstpA b we have ϕ(x; a)↔ ϕ(x; b) ∈ p.

3. Every time d � p and (ai)i<ω is A-indiscernible, then it is also Ad-
indiscernible.

Proof.
1⇒ 2 If a ≡LstpA b by Corollary 2.46 there is f ∈ Autf(U/A) such

that f(a) = b. Then ϕ(x; a) ∈ p ⇐⇒ ϕ(x; b) = ϕ(x; f(a)) ∈ f(p) = p.
2⇒ 1 Fix f ∈ Autf(U/A) and let ϕ(x; y) ∈ L and b ∈ U be such that

ϕ(x; b) ∈ p. If b = f(a), by Corollary 2.46 a ≡LstpA b, so ϕ(x; a) ∈ p. It
follows that ϕ(x; b) = ϕ(x; f(a)) ∈ f(p).

2⇒ 3 Let ı̄ = i0 < . . . < in and ̄ = j0 < . . . < jn and suppose,
up to comparing with some in, jn < k0 < . . . < kn, that in < j0. Then
aı̄ā obviously start an A-indiscernible sequence and they are hence LstpA-
equivalent. This implies that d � ϕ(x; aı̄) ↔ ϕ(x; ā) ∈ p, so (ai)i<ω is
Ad-indiscernible.

3⇒ 2 Suppose that ϕ(x; y) ∈ L(A) and � ϕ(d; a) 4 ϕ(d; b). Let
(ci | i < n + 1) be given by Corollary 2.43 and consider the A-indiscernible
sequences starting with cici+1, where c−1 = a and cn+1 = b. By hypothesis
there must be some −1 ≤ i ≤ n such that � ϕ(d; ci)4 ϕ(d; ci+1), because
otherwise we would have � ϕ(d; a) ↔ ϕ(d; b). This contradicts the i-th
sequence being Ad-indiscernible.

Remark 2.49. In Remark 2.44 we noticed that having the same Lascar
strong type over A implies having the same type over A. Contravariantly,
an A-invariant type is LstpA-invariant.

Remark 2.50. Even if an LstpA-invariant type need not be A-invariant, it
will be M -invariant for all models M ⊇ A, because by definition Aut(M) ⊆
Autf(A).

Remark 2.51. The point raised in Remark 2.7 is clearly still valid if we
want to speak of partial LstpA-invariant types, replacing Aut with Autf.
This time too, the simplest thing is to write p ` instead of ∈ p.

The Type-Connected Component

Notation 2.52. Until the end of Section 2.2, G will be an ∅-definable group.
We sometimes identify G with G(U), and G00

A with G00
A (U).

Lemma 2.53. If H is an A-type-definable subgroup of G of bounded index,
then y−1x ∈ H is an A-invariant, bounded equivalence relation.
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Proof. If a0b0 ≡A a1b1 then tp(b−1
0 a0/A) = tp(b−1

1 a1/A), and since H is
A-type-definable this implies b−1

0 a0 ∈ H ⇐⇒ b−1
1 a1 ∈ H. Boundedness

follows from the fact that the equivalence classes under examination are
exactly the cosets of H, which are bounded in number by hypothesis.

Proposition 2.54. IfM ⊇ A is a small model, the projection to the quotient
G(U)→ G(U)/G00

A (U) factors through SG(M).

Proof. For every A-type-definableH ⊇ G00
A of bounded index, if a ≡M b then

b−1a ∈ H by the equivalence of boundedness with point 3 of Proposition 2.39.
Since G00

A is defined as the intersection of all such H, the G00
A -coset of g ∈

G(U) is decided by tp(g/M).

Proposition 2.55. G00
A has bounded index.

Proof. Since Proposition 2.54 is true regardless of the choice of M ⊇ A,
another application of Proposition 2.39 yields that y−1x ∈ G00

A is a bounded
equivalence relation.

Proposition 2.56. If M is a small model, G00
M is normal.

Proof. Since conjugating a subgroup does not change its index, it suffices
to show that the family of bounded index M -type-definable subgroups of G
is stable under conjugacy. This is true because, even if g ∈ G(U) \ G(M),
by Proposition 2.54 gG00

Mg
−1 only depends on tp(g/M), and this allows to

define it with a type over M .

The Logic Topology

Definition 2.57. Let M +⊃ A and let π : SG(M) → G/G00
A be the map

given by Proposition 2.54. The M -logic topology on G/G00
A is defined by

declaring C closed iff π−1(C) is closed.

In other words, abusing the notation in denoting with π both the pro-
jection G → G/G00

A and the map SG(M) → G/G00
A from Proposition 2.54,

C ⊆ G00
A (U) is closed iff π−1(C) ⊆ G(U) is type-definable over M .

Remark 2.58. π : SG(M) → G/G00
A is continuous by definition, and it is

surjective inasmuch it lifts a surjective map.

Theorem 2.59 ([Sim15, Lemmas 8.9 and 8.10]). G/G00
A is a compact Haus-

dorff topological group when endowed with the M -logic topology.

Proof. By the previous remark, G/G00
A is a continuous image of a compact

space, hence it is compact. To prove Hausdorffness, let g, h ∈ G(U) have
different G00

A -cosets. Up realizing in M +⊃ A their types over some M0 ⊇
A such that |M0| = |A|, we may assume without loss of generality that
g, h ∈ M . For all x, y ∈ G(U) we have �

(
(g−1x ∈ G00

A ) ∧ (h−1y ∈ G00
A )
)
→
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(y−1x /∈ G00
A ) and, since G00

A is type-definable over A, compactness yields
ϕ(x; y) ∈ L(A) such that � y−1x ∈ G00

A → ϕ(x; y) and � ϕ(x; g)∧ϕ(y;h)→
y−1x /∈ G00

A . Then Ug = {xG00
A |� ϕ(x; g)} and Uh = {yG00

A |� ϕ(y;h)}
witness separation of gG00

A and hG00
A and are L(M)-open. Hence G00

A is a
compact Hausdorff topological space. The fact that it is a topological group
follows from the fact that the group operation and inverse are ∅-definable:
if ψ(x, y, z) ∈ L defines the function f(x, y) = x · y−1 = z, then for all
ϕ(z) ∈ L(M) we have f−1([ϕ(z)]) = [∃z ψ(x, y, z) ∧ ϕ(z)].

Corollary 2.60. There is only one logic topology on G/G00
A .

Proof. Two compact Hausdorff topologies are either incomparable or identi-
cal, because as soon as the identity is continuous it is automatically closed.
If M ≺ N they are comparable, and by amalgamation this suffices.

This authorizes us to speak of the logic topology.

2.3 Forking

In the previous section the notion of an A-invariant type was weakened to
that of an LstpA-invariant one. We now pursue a further weakening, namely
A-non-forking.

Dividing

Definition 2.61. Let k ∈ ω. A set of formulas is k-inconsistent iff all of its
subsets of size k are inconsistent.

Definition 2.62 ([TZ12, Definition 7.1.2]). Let ϕ(x; b) be an L(U)-formula
and A ⊆ U. We say that ϕ divides over A with respect to k iff there are
infinitely many realizations (bi)i<ω of tp(b/A) such that {ϕ(x; bi) | i < ω}
is k-inconsistent. If we simply say that ϕ(x; b) divides over A we mean that
this happens for some k. A-dividing is the same thing as dividing over A.

Remark 2.63. In the previous definition it makes no difference if ϕ(x; y) ∈ L
or ϕ(x; y) ∈ L(A): if b contains parameters from A they will not change in
any bi ≡A b, therefore we may safely hide them.

In other words a formula divides over A if there is a k ∈ ω such that
the set it defines is “small enough” that we can find infinitely many “A-
indiscernible copies” of it and arrange them in a way that no k of them
intersect.

Example 2.64 ( [TZ12, p. 108]). Here is a formula in DLO that divides
over ∅. Let b = (c0, c1) and consider ϕ(x; b) = c0 < x < c1. Extend
c0, c1 to a strictly increasing sequence (ci)i<ω and set bi = (c2i, c2i+1). Then
{ϕ(x; bi) | i < ω} = {c2i < x < c2i+1 | i < ω} is 2-inconsistent. A non-
example of dividing formula is x > b.



2.3. Forking 39

Remark 2.65. If A ⊆ B and ϕ divides over B, it also divides over A, since
the type of a tuple over B decides its type over A.

We would like to be able to treat dividing as a “notion of smallness”, in
some suitable sense; for example we could hope for A-dividing formulas to
form an ideal, i.e. for their negation to form a filter. In this direction, the
following lemma seems (deceptively, as we will see) promising.

Lemma 2.66 ([Sim15, Lemma 5.13]). If � ϕ(x; b) → ψ(x; c) and ψ divides
over A with respect to k, then ϕ does too.

Proof. Let (ci)i<ω witness that ϕ divides over A. Fix, for all i ∈ ω, some
fi ∈ Aut(U/A) such that fi(c) = ci, and then set bi = fi(b). Then clearly
bi ≡A b and � ϕ(x; bi) → ψ(x; ci). Then any {ϕ(x; bij ) | j < k} implies
{ϕ(x; cij ) | j < k}, which is inconsistent by hypothesis.

In addition to providing “downward closure” of dividing, the previous
lemma also implies that this notion is stable under equivalence.

Corollary 2.67. If ϕ(x; b) defines the same set as ψ(x; c) then ϕ divides
over A if and only if ψ does.

The following proposition provides an equivalent definition of dividing.

Proposition 2.68 ([TZ12, Lemma 7.1.4]). ϕ(x; b) divides over A if and only
if it we can choose the witnessing sequence (bi)i<ω to be A-indiscernible and
to start with b0 = b.

Proof. If (bi)i<ω is not A-indiscernible, apply the Standard Lemma to find
(b̃i)i<ω that is and such that em(b̃i)i<ω ⊇ em(bi)i<ω. Notice that the latter
object knows about k-inconsistency of {ϕ(x; yi) | i < ω}. To complete the
proof, just find f ∈ Aut(U/A) such that f(b̃0) = b and consider (f(b̃i))i<ω.
The other implication is trivial.

Permanent Assumption 2.69. Proposition 2.68 will be used without men-
tion throughout the rest of the present thesis.

Definition 2.70. A partial type π(x) divides over A iff it implies a formula
that divides over A.

Proposition 2.71 ( [Sim15, Proposition 5.14 (1)]). Consistent partial A-
types do not A-divide.

Proof. Saying that π(x) ` ϕ(x; b) means that there is ψ(x) ∈ L(A), a con-
junction of formulas from π(x), such that � ∀x ψ(x) → ϕ(x; b). Since
ψ ∈ L(A), the same remains true replacing b with any bi ≡A b. This means
that for all A-indiscernible (bi)i<ω starting with b = b0, for all i we have
π(x) ` ϕ(x; bi). Therefore {ϕ(x; bi) | i < ω} being inconsistent would con-
tradict consistency of π(x).
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Lemma 2.72 ([Sim15, Lemma 5.17]). Let π(x) be a partial type over Ab.
Then π does not A-divide if and only if for every A-indiscernible (bi)i<ω
starting with b there is a � π such that (bi)i<ω is Aa-indiscernible.

Proof. ⇒ Hiding parameters coming from A, write π(x) = π(x; b). Since π
does not divide,

⋃
i<ω π(x; bi) must be consistent, hence have a realization ã.

By the Standard Lemma, let (b̃i)i<ω be an Aã-indiscernible sequence such
that em((b̃i)i<ω/Aã) ⊇ em((bi)i<ω/Aã). Since the restriction of the latter
to A is complete (because (bi)i<ω is A-indiscernible) there is f ∈ Aut(U/A)
such that f(b̃i) = bi. It is then sufficient to take a = f(ã).
⇐ By Lemma 2.66 and compactness it suffices to show that no finite

conjunction ϕ(x; b) of formulas in π divides. If (bi)i<ω is a candidate to
witness dividing, let a be given by the hypotheses. Then � ϕ(a; b), and by
Aa-indiscernibility also � ϕ(a; bi). Hence {ϕ(x; bi) | i < ω} is consistent.

Forking

Unfortunately, it is not generally true that A-dividing formulas form an
ideal. The remedy for this is the obvious one, i.e. to consider the ideal
generated, which by Lemma 2.66 amounts to nothing else that allowing dis-
junctions. We state the definition directly for types.

Definition 2.73. A partial type forks over A iff it implies a disjunction∨
j<n ϕj(x; bj) such that each ϕj(x; bj) divides over A. Saying that a partial

type “is A-non-forking” means that it does not fork over A. If we say that a
formula ϕ forks over A, we mean that {ϕ} forks over A.

Remark 2.74. A-non-forking types form a closed subset of Sx(U), since by
compactness if a type forks over A then a finite subset of it already does,
and this yields an open subset consisting of types forking over A.

Remark 2.75. If A ⊆ B and a type divides over B, it also divides over A.

For an example of a type that forks but does not divide see [Sim15,
Example 5.15]. Here is a first case where forking collapses onto diving:

Proposition 2.76 ( [Sim15, Proposition 5.14 (3)]). If A ⊂+ M and p ∈
S(M), then p forks over A if and only if p divides over A. As a special case,
for global types9 forking over a small A is the same as A-dividing.

Proof. Let10 p(x) `
∨
i<n ϕi(x; b). Since the ϕi(x; b) need not be L(M)-

formulas, we cannot take for granted that one of them belongs to p; in other
words, even if p is complete as a type over M , it is partial when regarded as
a global type. This is where saturation enters the picture.

9If we speak of global types, the (bi)i<ω may live outside U.
10Since, for instance, it does not matter if we call ϕ(x; a, b, c, d, e, f, g) the formula x = a,

up to adding unused parameters to ϕi(x, bi) we can fix the same b for all ϕi.
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By compactness there is some finite C ⊆ M such that p(x) � C `∨
i<n ϕi(x; b). By saturation, find inside M some b̃ ≡C∪A b. Then p(x) �

C `
∨
i<n ϕi(x; b̃), because b̃ ≡C b. Since we are now dealing with a disjunc-

tion of L(M)-formulas, there is i such that ϕi(x; b̃) ∈ p(x), and this formula
divides over A because b̃ ≡A b.

Considering non-forking types instead of non-dividing ones pays off in
the following way:

Proposition 2.77 ([Sim15, Proposition 5.14 (4)]). If π(x) is a partial type
over B ⊇ A, then π does not fork over A if and only if it can be extended to
a p ∈ Sx(B) that does not fork over A.

Proof. Since, by compactness and Lemma 2.66, it suffices to check formulas
in L(B), such a p exists if an only if this set of formulas is consistent:

π(x) ∪ {¬ϕ(x; b) | ϕ(x; b) ∈ L(B) forks over A}

If it is not, then by compactness there are finitely many A-forking ϕi such
that π(x)∧

∧
i<n ¬ϕi(x; b) ` ⊥, or in other words π(x) `

∨
i<n ϕi(x; b). Since

forking is closed under disjunctions, π(x) forks over A. The other implication
is trivial.

Proposition 2.78 ([Sim15, Proposition 5.14 (6)]). Let A be small. If p ∈
Sx(U) is LstpA-invariant, then it is A-non-forking.

Proof. Since A is small it is sufficient to prove non-dividing. Suppose p(x) `
ϕ(x; b) and (bi)i<ω is an A-indiscernible sequence starting with b. Clearly11

any two bi, bj start an indiscernible sequence, hence by Theorem 2.41 they
have the same Lascar strong type over A. Then, by Proposition 2.48, p(x) `
ϕ(x; bi) for all i < ω, so {ϕ(x; bi) | i < ω} cannot be inconsistent because p
is not.

Corollary 2.79. Global M -invariant types do not fork over M .

Proof. By the previous proposition and Remark 2.50.

Back to Example 2.18, types at ∞ are ∅-invariant, hence for all small M
they do not fork over M : indeed, in this case they do not even fork over ∅:
it is sufficient to check dividing and it is easy to see that half-lines cannot
divide.

The type p(x) = tp(Q+/U) is finitely satisfiable in12 Z, hence Z-invariant;
let us see how it fails to divide over Z. Take a formula in p(x), without loss
of generality of the form a < x < b. We must have b > Z, and there ought

11Just discard some elements from (bi)i<ω and apply Lemma 2.36 if needed.
12Obviously, Z is not a model of DLO. If the reader prefers, she can substitute Z with

Q in the whole example.
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to be some point of Z, say 17, such that a < 17. Then, for any indiscernible
(aibi)i<ω, we have that each bi must still be greater than Z, and ai must still
be less than 17. Then 17 witnesses that a < x < b does not divide.

On the other hand, a non-invariant global type in one variable must
divide over any small model M : as we saw in Example 2.18 we can find
a < b such that [a, b] ∩M = ∅, and then the formula a < x < b divides over
M . To see this, consider the “hole in M ” where a and b lie, i.e.

H = {u ∈ U |∀m ∈M m < a→ m < u}∩{u ∈ U |∀m ∈M m > b→ m > u}

By definition, any aibi ∈ H such that ai < bi realizes tp(ab/M). It suffices
then to find ℵ0 pairwise disjoint segments (ai, bi) inside H.

Lemma 2.80. Suppose that A ⊆ B and tp(a/B) does not fork over A.
Then there is a small model M +⊃ B such that tp(a/M) does not fork over
A.

Proof. Since tp(a/B) does not fork over A, by Proposition 2.77 it has a
global A-non-forking extension; let q be its restriction to a small M0

+⊃ B.
Clearly q does not fork over A and q � B = tp(a/B). Let a0 � q and take
f ∈ Aut(U/B) such that f(a0) = a. If we set M = f(M0), then since q =
tp(a0/M0) does not fork over A, neither f(q) = tp(f(a0)/f(M0)) = tp(a/M)
does.

Independence

Notation 2.81. a |̂ A b is a shorthand for “tp(a/Ab) is A-non-forking”.

Lemma 2.82 ([Sim15, Lemma 5.18]). |̂ is left-transitive, i.e. if A ⊆ B,
a |̂ A B, and b |̂ Aa Ba, then ab |̂ A B.

Proof. By Lemma 2.80 there is M̃ +⊃ B such that tp(a/M̃) does not fork
over B. Since tp(b/Ba) does not fork over Aa, it has a global Aa-non-
forking extension q. If b̃ � q � M̃a then there is f ∈ Aut(U/Ba) such
that f(b̃) = b, and setting M = f(M̃) we have that tp(b/Ma) does not
fork over Aa and that tp(a/M) does not fork over A. By Proposition 2.76
it is sufficient to show that tp(a, b/M) does not A-divide. Suppose that
ϕ(x, y; c) ∈ L(M) and (ci)i<ω witnesses A-dividing. Since c ∈ M , and
tp(a/M) does not fork over A, by Lemma 2.72 there is f ∈ Aut(U/Ac) such
that (ci)i<ω is Af(a)-indiscernible. Since tp(b/Ma) does not fork over Aa,
then tp(f(b)/Acf(a)) does not fork over Af(a), and as a special case it does
not Af(a)-divide. Again by Lemma 2.72 we can find g ∈ Aut(U/Af(a)c)
such that (ci)i<ω is Ag(f(a))g(f(b))-indiscernible13. Since � ϕ(a, b; c) and
f(c) = c = g(c), this implies that � ϕ(g(f(a)), g(f(b)); ci), so {ϕ(x, y; ci) |
i < ω} is consistent.

13Of course g(f(a)) = f(a), however we feel that writing g(f(a)) improves readability.
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Corollary 2.83 ([Sim15, Corollary 5.20]). If p(x), q(y) ∈ Sinv(U) are A-non-
forking, then p(x)⊗ q(x) is too.

Proof. If p(x) ⊗ q(x) forks over A, then there is a small B ⊇ A such that
p(x)⊗ q(x) � B does. Up to enlarging B, we may assume p, q ∈ Sinv(U, B).
Then, if b � q � B and a � p � Bb, by Corollary 2.26 tp(a, b/B) = p⊗ q � B.
Since nor p nor q fork over A, neither their restrictions do, therefore b |̂ A B
and a |̂ A Bb, and a fortiori a |̂ Ab Bb. Thus, by left-transitivity, tp(a, b/B)
does not fork over A.

Lemma 2.84. If (cj)j<ω is a Morley sequence of p ∈ Sinv
x (U, A) over A, then

for all j ∈ ω, we have14 c>j |̂ A cj .

Proof. Since cutting off the first j − 1 elements of (cj)j<ω still results in a
Morley sequence of p over A we can assume j = 0. By compactness it is
enough to set c̄ = (c1, . . . , ck) and check that tp(c̄/Ac0) does not fork over A.
Since p is A-invariant, by Corollary 2.26 we have tp(c̄/Ac0) = p(k−1) � Ac0.
Since A-invariance implies A-non-forking and these notions are preserved
under products, tp(c̄/Ac0) does not fork over A.

We now prove some technical results that will be needed later.

Lemma 2.85. Let b |̂ A c and let (cj)j<ω be a Morley sequence of p over
A with c0 = c. Then there is (dj)j<ω, a Morley sequence of p over A with
d0 = c, such that (cj)j<ω ≡LstpA (dj)j<ω and b |̂ A (dj)j<ω.

Proof. By Lemma 2.80 there is M ⊇ Ac such that tp(b/M) does not fork
over A. Let N ⊇M(cj)j<ω be a small model and let q ∈ S(N) be an A-non-
forking extension of tp(b/M). Let b̃ � q. Since tp(b̃/A(cj)j<ω) is implied by
q it cannot fork over A. Now let f ∈ Aut(U/M) be such that f(b̃) = b and
set dj = f(cj). Since c ∈M , we have d0 = c. Moreover (cj)j<ω ≡M (dj)j<ω
and A ⊆ M ; this implies that (cj)j<ω ≡LstpA (dj)j<ω and that (dj)j<ω is
still a Morley sequence of p over A. To complete the proof, notice that
tp(b/A(dj)j<ω) = tp(f(b̃)/A(f(cj))j<ω) = tp(b̃/A(cj)j<ω), so it does not
fork over A.

Definition 2.86. An extension base is a set A such that no type in S(A)
forks over A.

Proposition 2.87. Models are extension bases.

Proof. Suppose Sx(M) 3 p(x) `
∨
i<n ϕi(x; c), each ϕi dividing over M and

ϕi(x; y) ∈ L(M). By compactness, there is an L(M)-formula ψ(x) ∈ p(x)
such that � ψ(x) →

∨
i<n ϕi(x; c). Since p is a type over M , and M is a

model, there is m ∈ M such that � ψ(m) and — say — � ϕ0(m; c). Then
no M -indiscernible (cj)j<ω starting with c can witness dividing since, for all
j ∈ ω, by M -indiscernibility � ϕ0(m; cj)↔ ϕ0(m; c0).

14c>j means {ck | k > j}.
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The fact that forking formulas can be thought as the “small” ones can
sometimes mean more than simply forming an ideal. For instance, in ω-stable
theories, where Morley rank is defined (see for example [Mar02, Chapter 6]),
the forking extensions of a type are exactly the ones with smaller Morley
rank.

Forking was born in the study of, and behaves best in, stable theories.
The symmetry in the symbol |̂ is probably due to the fact that, in stable
theories, a |̂

A b ⇐⇒ b |̂ A a. This is not true in general, and for
instance it fails in DLO as [Sim15, Example 5.24] shows. A class where |̂
behave nicely in this respect is the one of simple theories, treated for example
in [Cas11,Wag00,TZ12]. DLO is not simple, but the random graph is. The
relation |̂ is sometimes called forking independence.

2.4 Keisler Measures

Ultrafilters on X can be seen as finitely additive probability measures,
defined on the whole P(X), that are only allowed to take values in {0, 1}.
Similarly, types in Sx(A) are {0, 1}-valued finitely additive measures, defined
on the Boolean algebra15 Defx(A). From this viewpoint, measures are noth-
ing but “fuzzy” types, i.e. “types with values in the real interval [0, 1]”. As
we will see, simply replacing braces with brackets gives rise to a very rich
topic, especially in the nip context. The purpose of this section is to give
definitions and collect some basic results that hold without any hypothesis
on T .

Measures on Definable Sets

Definition 2.88. Let A ⊆ U. A Keisler measure over A is a finitely additive
probability measure µ : Defx(A)→ [0, 1].

Notation 2.89. Variables will be often specified near to the measure, i.e. if
µ : Defx(A)→ [0, 1] we will often write “µ(x) is a measure over A”. Another
notation that will be used is µx, and it means the same thing as µ(x). The
space of all Keisler measures over A in variables x is denoted Mx(A). If
B ⊆ A we will write µx � B for µx � Defx(B). Clearly, if |x| = |y|, there is
a canonical isomorphism between Defx(A) and Defy(A), and it induces an
homeomorphism between Mx(A) and My(A); if we have a measure µ(x) (or
µx), we will denote µ(y) (or µy) its image under the previous identification.

Proposition 2.90. Mx(A) is a closed subset of [0, 1]Defx(A), hence it is
compact Hausdorff.

Proof. Keisler measures over A are those [0, 1]-valued functions that satisfy
µ(x = x) = 1, µ(¬ϕ(x)) = 1−µ(ϕ(x)) and µ(ϕ(x)∧ψ(x))+µ(ϕ(x)∨ψ(x)) =

15Since we are only talking of finite additivity, it is not necessary to work on a σ-algebra.
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µ(ϕ(x)) + µ(ψ(x)) for all ϕ,ψ ∈ L(A). These three conditions are closed in
the product topology.

Example 2.91 ([Sim15, Example 7.2]). To every p ∈ Sx(A) we can associate
an element of Mx(A), still denoted p, setting p(ϕ(x)) = 1 if ϕ(x) ∈ p and
p(ϕ(x)) = 0 if ¬ϕ(x) ∈ p.

Before any other example we notice that the type space embeds nicely in
the space of measures and explain the ambivalent nature of Keisler measures.

Proposition 2.92. Sx(A) is closed in Mx(A), and the usual topology on
Sx(A) coincides with the topology it inherits as a subspace of Mx(A). In
other words the inclusion map Sx(A) ↪→Mx(A) is an homeomorphism with
its image.

Proof. All point-wise limits of functions with values in {0, 1} still have values
in {0, 1}, and it is easy to see that a point-wise limit of types is still a type.
Moreover, if p ∈ Sx(A), then saying ϕ ∈ p, p(ϕ) = 1 or p(ϕ) > 1/2 makes no
difference. This shows that every [ϕ] can be seen as an open subset in the
product topology, and if a compact Hausdorff topology is finer than another
compact Hausdorff one, then they are equal, since as soon as the identity is
continuous it is automatically closed.

Regular Measures on Types

Now, Defx(A) need not be a σ-algebra, since the intersection of infinitely
many definable sets need not be definable. Anyway, such a thing is precisely
the same as a partial type. We are therefore led to see Defx(A) as the Boolean
algebra of the clopen sets of Sx(A) and try to extend Keisler measures to real
σ-additive measures defined on all the Borel subsets of the type space. Such
an extension will be unique if we impose a constraint, namely regularity.

Definition 2.93. Let X be a topological space. A measure µ on the Borel
σ-algebra of X is regular iff for all Borel B ⊆ X

sup
C⊆B

C compact

µ(C) = inf
U⊇B
U open

µ(U)

Theorem 2.94 ([Sim15, p. 99]). Each finitely additive probability measure
on definable sets extends to a unique regular Borel σ-additive probability
measure on types.

Proof. Let µ ∈ Mx(A), and identify Defx(A) with the Boolean algebra of
clopen subsets of Sx(A). Thus µ([ϕ]) = µ(ϕ). We first extend µ to open
sets approximating from the inside, and to closed sets approximating from
the outside, i.e. if U is open and C is closed we set

µ(U) = sup
[ϕ]⊆U

ϕ(x)∈L(A)

µ(ϕ(x)) µ(C) = inf
[ϕ]⊇C

ϕ(x)∈L(A)

µ(ϕ(x))
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Claim. If B is closed or open, then

sup
C⊆B

C closed

µ(C) = inf
U⊇B
U open

µ(U) = µ(B) (2.1)

Proof of the Claim. Up to considering B{, it is sufficient to show it for B
open. If C ⊆ B is closed and B =

⋃
i∈I [ϕi], then by compactness there is a

finite F ⊆ I such that C ⊆
⋃
i∈F [ϕi] =

[∧
i∈F ϕi

]
⊆ B. This shows that

sup
C⊆B

C closed

µ(C) = sup
[ϕ]⊆B

ϕ(x)∈L(A)

µ(ϕ(x)) = µ(B) = inf
U⊇B
U open

µ(U)
claim

Now we want to show that if U is open and C ⊆ U is closed, then
µ(U \ C) = µ(U) − µ(C). Notice that µ is sub-additive on open sets by
definition, and by the Claim for all ε > 0 there is an open V ⊇ C such that
µ(V ) ≤ µ(C) + ε. By subadditivity

µ(U) ≤ µ(U ∪ V ) ≤ µ(U \ C) + µ(V ) ≤ µ(U \ C) + µ(C) + ε

Since ε was arbitrary we have µ(U) ≤ µ(U \ C) + µ(C). As for the other
inequality, applying the Claim again yields

µ(C) + µ(U \ C) = µ(C) + sup
D0⊆U\C
D0 closed

µ(D0) ≤ sup
D⊆U

D closed

µ(D) = µ(U)

Where the inequality is due to the fact that each C ∪D0 counts as a D.
Now, if there has to be any hope of extending µ to a regular measure on

the the Borel σ-algebra of Sx(A), then the first equality in (2.1) must hold
for all Borel B. If we manage to prove this, then we can take (2.1) as the
definition of µ on Borel sets, and uniqueness will come for free. All we have
to do, then, is to prove that the family of subsets of Sx(A) satisfying the
first equality in (2.1) is a σ-algebra. Notice that stability under complement
is trivial. Countable unions will require some calculations.

Let B =
⋃
i<ω Bn, where each Bn satisfies (2.1), and fix ε > 0. If we find

an open U and a closed C such that C ⊆ B ⊆ U and µ(U)−µ(C) < ε we are
done. By hypothesis, for all n ∈ ω we can choose a closed Cn and an open
Un such that Cn ⊆ Bn ⊆ Un and µ(Un \ Cn) < ε/2n+2. Let Vn =

⋃
k<n Uk,

U =
⋃
n∈ω Un and C =

⋃
n∈ω Cn. By compactness, if [ϕ] ⊆ U , then [ϕ] ⊆ Vn

for some n, and this implies that µ(U) = limn→∞ µ(Vn). Hence there is some
N ∈ ω such that for all n > N we have µ(U)− µ(Vn) < ε/2. Therefore

µ(U)− µ(C) = lim
n→∞

µ(Vn)− µ(C) < µ(VN )− µ(C) +
ε

2
≤ µ(VN \ C) +

ε

2

≤
∑
n<N

µ(Un \ C) +
ε

2
≤
∑
n<N

µ(Un \ Cn) +
ε

2
=
(∑
n<N

µ(Un)− µ(Cn)
)

+
ε

2

< ε
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Notice that, given a regular Borel probability µ on Sx(A), one can recover
a finitely additive probability on Defx(A) simply restricting µ to clopen sets,
and the unique regular extension of this measure to Sx(A) will obviously be
µ. We therefore blur the distinction between the two concepts:

Notation 2.95. A Keisler measure µx will be seen simultaneously as a
finitely additive probability measure on Defx(A) and as a σ-additive, regular
probability measure on the Borel subsets of Sx(A). When we say measure
we mean Keisler measure, unless specified otherwise. A measure µx will be
called global if it is a measure on Sx(U).

Example 2.96 ( [Sim15, Example 7.2]). A little calculation shows that
Mx(A) is convex, i.e. the average of measures is still a measure. For in-
stance given, for i < n, some pi ∈ Sx(A) and some ai ∈ [0, 1] such that∑

i<n ai = 1, we can define the measure
∑

i<n aipi(x). Of course this need
not be a type, i.e. Sx(A) is not convex. For instance, in DLO, the mea-
sure 1

3p−∞(x) + 2
3p+∞(x), gives measure 1/3 (resp. 2/3) to left(resp. right)-

unbounded, right(resp. left)-bounded definable subsets, 0 to the bounded
ones, and 1 to definable subsets which are unbounded on both sides.

Example 2.97 ([Sim15, Example 7.2]). In RCF, any Borel probability mea-
sure P on R corresponds to a Keisler measure on Sx(U) given by µ(ϕ(x)) =
P (ϕ(R)).

Example 2.98 ( [Sim15, Example 7.2]). Each finite structure16 can be
equipped with the normalized counting measure. If U ∈ βω and (Mn)n<ω is
a sequence of finite L-structures and µn is such a measure relative to Mn,
then µ(ϕ(x; [bn]U )) = limn→U µn(ϕ(x; bn)) is a measure over the ultraprod-
uct

∏
UMn.

Support and Properties of Measures

Definition 2.99. If µ ∈Mx(A), its support S(µ) consists of the p ∈ Sx(A)
such that if ϕ ∈ p then µ(ϕ) > 0. If p ∈ S(µ) we also say that p is weakly
random for µ.

In other words, thinking of µ as a measure on Sx(A), its support is made
of the points that have no measure zero neighbourhood.

Remark 2.100. S(µ) is a closed set, since it can be written as
⋂
µ(ϕ)=0[¬ϕ].

Lemma 2.101. If µ(ϕ(x)) > 0, then there is p ∈ S(µ) such that ϕ ∈ p. In
particular, µ(S(µ)) = 1.

Proof. All we have to do is to find some p ∈ [ϕ] ∩
⋂
µ(ψ)=0[¬ψ], and this

is non-empty by compactness and finite additivity. The second statement
follows, since then µ((S(µ)){) = sup[ψ]⊆(S(µ)){ µ(ψ) = supµ(ψ)=0 0 = 0.

16Of course, in this case we drop the hypothesis that its theory has infinite models.
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Lemma 2.102. Let B be a Borel subset of Sx(U). Then the space MB
x (U)

of measures such that S(µ) ⊆ B is homeomorphic to the space M(B) of
measures on B.

Proof. Define f : MB
x (U) → M(B) as fµ(X ∩ B) = µ(X)/µ(B). A closer

look shows that this is simply µ(X), since µ(B) ≥ µ(S(µ)) = 1. This does
not depend on X, i.e. if X ∩ B = Y ∩ B then fµ(X ∩ B) = fµ(Y ∩ B),
because µ(X ∩B{) ≤ µ(B{) ≤ µ((S(µ)){) = 0, and similarly µ(Y ∩B{) = 0.
Moreover, as an obvious consequence of the fact that fµ(X ∩ B) = µ(X),
for all open U ⊆ [0, 1], we have fµ(X ∩ B) ∈ U ⇐⇒ µ(X) ∈ U , and this
implies that f is continuous and open. We are left to show bijectivity, but an
inverse of f is easily found: define g : M(B)→MB

x (U) as gν(X) = ν(X∩B),
where gν ∈MB

x (U) because S(gν) ⊆ B by definition.

As we will see in the following chapter, under nip a lot of theorems about
types generalize to theorem about measures. For the time being, we will just
settle on definitions and first results.

Definition 2.103. Let A be a small subset of U and µ ∈Mx(U). We call µ

Non-forking over A iff for all ϕ(x; b) ∈ L(U) if µ(ϕ(x; b)) > 0 then ϕ(x; b)
does not fork over A.

Strongly LstpA-invariant iff for all a ≡LstpAb we have µ(ϕ(x; a)4ϕ(x; b))=0.

LstpA-invariant iff for all a ≡LstpA b we have µ(ϕ(x; a)) = µ(ϕ(x; b)).

Strongly A-invariant iff for all a ≡A b we have µ(ϕ(x; a)4 ϕ(x; b)) = 0.

A-invariant iff for all a ≡A b we have µ(ϕ(x; a)) = µ(ϕ(x; b)).

Finitely satisfiable in A iff for all ϕ(x; b) ∈ L(U) if µ(ϕ(x; b)) > 0 then
ϕ(x; b) has a point in A.

If we do not mention A, it means that the property holds for some small A.

Notice that invariance can be “translated” in two different ways. Needless
to say, strong invariance implies invariance, and the distinction does not exist
if µ is a type. One of the advantages of the “strongly” definitions is that they
correspond to properties of S(µ):

Proposition 2.104. Let X be one property among “Non-forking over A”,
“Strongly LstpA-invariant”, “Strongly A-invariant” and “Finitely satisfiable
in A”. Let SXx (U, A) (resp. MX

x (U, A)) be the closed subspace of types (resp.
measures) that are X. Then the following facts hold:

1. µ isX if and only if every p ∈ S(µ) isX. In other words, µ ∈MX
x (U, A)

if and only if S(µ) ⊆ SXx (U, A).
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2. Each property in the list implies the previous one.

3. MX
x (U, A) is homeomorphic to the space of measures17 on SXx (U, A).

Proof. All such properties are expressed by saying that µ must give measure
zero to certain formulas, and this proves the first statement. The second one
follows because we already know that those implications are true at the level
of types, and the third one is a special case of Lemma 2.102.

Generalizing definability is slightly trickier. For the moment, we just give
the definition, and we will come back on it later.

Definition 2.105. Given µ ∈ Minv
x (U, A), C ⊆ [0, 1] and ϕ(x; y) in L,

let dCµxϕ(x; y) = {tp(b/A) | µ(ϕ(x; b)) ∈ C}, which is well-defined by A-
invariance. We say that µ is definable over A iff for all closed C ⊆ [0, 1] and
ϕ(x; y) ∈ L, the set dCµϕ is closed in Sy(A). We say that µ is Borel-definable
over A iff for all closed C ⊆ [0, 1] and ϕ(x; y) ∈ L, the set dCµϕ is Borel in
Sy(A).

Extending Measures

When seen as measures on Defx(A), Keisler measures are only required
to be finitely additive. This enables us to extend them to bigger Boolean
algebras with great ease:

Proposition 2.106 ([Sim15, Lemma 7.3]). Every finitely additive proba-
bility measure defined on a sub-Boolean-algebra of Defx(A) extends to a
Keisler measure over A.

Proof. Let µ : Ω → [0, 1] be such. Extending it to Defx(A) amounts to
finding a point in the following closed subset of Mx(A)⋂

X∈Ω

{f ∈Mx(A) | f(X) = µ(X)}

and by compactness we only have to define an extension f on each finite
sub-Boolean-algebra B of Defx(A). Write B = 〈ψ0, . . . , ψn−1〉, where the
ψi are the atoms of B. Clearly it is sufficient to define f on the ψi, but we
must make sure that f will be compatible with µ. Let ϕ0, . . . , ϕm−1 be the
atoms of the Boolean algebra Ω ∩ B. Since this is a sub-Boolean-algebra of
B, for each j < m there is a subset Sj ⊆ n such that ϕj =

∨
i∈Sj ψi. Since

ψi0 ∧ ψi1 = ⊥ for all i0 6= i1 by definition of atom, all we need to find is
a finitely additive f satisfying

∑
i∈Sj f(ψi) = µ(ϕj), and the only possible

obstruction is some ψi being an element of Sj for several different j < m .
Actually this cannot happen: since for each j0 6= j1 we have ϕj0 ∧ ϕj1 = ⊥
(because the ϕj are atoms too), then Sj0 ∩ Sj1 = ∅.

17Recall that with “measure” we mean “regular measure”.



50 Chapter 2. Model-Theoretic Tools

While Proposition 2.106 will be a very useful technical result, there is
another, more elegant way of finding extensions of measures.

Definition 2.107. Let µ ∈Mx(M). Let [0, 1] be standard real interval, <
the usual relation on it, and + the addition modulo 1. For all ϕ(x; y) ∈ L
define fϕ : M → [0, 1] as fϕ(b) = µ(ϕ(x; b)). Put all these together in a
structure

M̃µ = (M, [0, 1], <,+, {fϕ | ϕ(x; y) ∈ L})

If [0, 1]∗ � [0, 1] an easy analysis of the types over [0, 1] yields a standard part
map st : [0, 1]∗ → [0, 1] such that st(u) is the unique real such that |u−st(u)|
is infinitesimal. It is then easy to check the following fact.

Fact 2.108 ([Sim15, p. 101]). For all Ñ � M̃µ there is an extension ν ∈
Mx(Ñ � L) of µ defined by ν(ϕ(x; b)) = st(fϕ(b)).

An even cleaner way of implementing this idea would be to define M̃µ not
as a first-order structure, but as a structure in continuous logic (see [BBHU08,
BU10,BP10]), in order to have the interval [0, 1] built inside the logical appa-
ratus. Continuous logic is also a convenient framework to “realize” measures
over a model of a theory T considering the randomization of T , which is
essentially a theory whose models are made of random variables with values
in models of T . See [BK09].

Now that we can extend measures we may ask ourselves how such exten-
sions can behave. For instance, suppose that µ ∈ Mx(M), ϕ(x; b) ∈ L(U),
and we have some ψ(x) ∈ L(M) such that � ϕ(x; b)→ ψ(x). Then, clearly,
any ν extending µ must take into account µ(ψ(x)) as an upper bound for
ν(ϕ(x; b)). The following result tells us that this is the only constraint, i.e.
we can find such a ν with a prescribed value for ν(ϕ(x; b)), as long as this
values makes sense. We first give a definition.

Definition 2.109. If B is Borel and µ(B) > 0, the localization of µ at B is
defined as µB(ϕ(x)) = µ([ϕ(x)] ∩B)/µ(B).

Proposition 2.110 ([Sim15, Lemma 7.4]). Let µ ∈ Mx(M) and ϕ(x; b) ∈
L(U). Define

r0 = sup
ψ(x)∈L(M)
�ψ(x)→ϕ(x;b)

µ(ψ(x)) r1 = inf
ψ(x)∈L(M)
�ϕ(x;b)→ψ(x)

µ(ψ(x))

Then for all r ∈ [r0, r1] there is ν ∈ Mx(U) such that ν � M = µ and
ν(ϕ(x; b)) = r.

Proof. If we find such a ν0 for r = r0 and a ν1 for r = r1, then by convexity
we can set ν = r1−r

r1−r0 ν1 + r−r0
r1−r0 ν2 and be done. Moreover, up to applying

the result to ¬ϕ(x; b), we only have to show it for r1. By Proposition 2.106



2.4. Keisler Measures 51

it suffices to define ν1 on the Boolean algebra Ω generated by Defx(M) and
[ϕ(x; b)]. If r1 = 0, then there is exactly one ν1 defined on Ω such that
ν1 � Defx(M) = µ and ν1(ϕ(x; b)) = 0, and if r1 = 1 we can apply the case
r1 = 0 to ¬ϕ. Therefore we have proven the proposition in these two special
cases. Suppose now that 0 < r1 < 1, and consider the closed set

C =
⋂

ψ(x)∈L(M)
�ϕ(x;b)→ψ(x)

[ψ(x)]

We can apply to the localization µC one of the already proven special cases
and get ν2 such that ν2 � Defx(M) = µC and ν2(ϕ(x; b)) = 1. Similarly,
we find ν3 such that ν3 � Defx(M) = µC{ and ν3(ϕ(x; b)) = 0. Setting
ν = r1ν2 + (1− r1)ν3 completes the proof.

Of course, having unique extensions to all bigger models is a property
that deserves a name:

Definition 2.111. We say that µ ∈ Mx(M) is smooth iff for all N � M
it has a unique extension in Mx(N). If M0 ≺ M and µ � M0 is already
smooth, we say that µ is smooth over M0.

Remark 2.112. If we regard a type p ∈ Sx(M) as a measure, then it is
smooth if and only if it is already realized in M : if a 6= b are different
realizations of p, then we have one extension containing x = a and another
containing x = b, but if p has only one realization, then it is algebraic and
must be already realized in M .

Proposition 2.110 can be used to characterize smooth measures.

Proposition 2.113 ( [Sim15, Lemma 7.8]). A measure µ ∈ Mx(M) is
smooth if and only if the following holds. For all ϕ(x; y) ∈ L and ε > 0
there are n ∈ ω and, for i < n, some L(M)-formulas ψi(y), θ0

i (x) and θ1
i (x)

such that

1. Sy(M) =
⊔
i<n[ψi(y)],

2. for all i < n if � ψi(b) then � θ0
i (x)→ ϕ(x; b)→ θ1

i (x),

3. for all i < n we have µ(θ1
i (x))− µ(θ0

i (x)) < ε.

Proof. ⇐ Let ν extend µ. We will show that for all b ∈ U and ϕ(x; y) ∈ L
there is only one possible value for ν(ϕ(x; b)). Given ε > 0, apply the
hypotheses and find the unique i such that � ψ(b). Then we must have
ν(ϕ(x; b)) ∈ (µ(θ0

i (x)), µ(θ1
i (x))), and this interval has length smaller than

ε. Clearly the intersection of such intervals as ε → 0 contains exactly one
point.
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⇒ For a fixed b, the existence of some θ0 and θ1 that work is due to
Proposition 2.110, since if there were none it would mean that we have an
interval of length at least ε where to choose values for extending of µ to
ϕ(x; b). Then tpy(b/M) proves ∀x θ0(x) → ϕ(x; y) → θ1(x), and by com-
pactness there is ψ(y) ∈ tpy(b/M) already implying it. Using compactness
again, we can cover Sy(M) with finitely many ψi, and up to replacing [ψi]

with
[
ψi ∧ ¬

∨
j 6=i ψj

]
and discarding the empty ones we get a partition.

Approximation of Smooth Measures

Using the previous characterization it is possible to approximate smooth
measures with averages of types.

Notation 2.114. We write Av(µ0, . . . , µn−1;B) for 1
n

∑
k<n µk(B). Simi-

larly Av(a0, . . . , an−1;B) denotes |{i < n |� ai ∈ B}|/n. In other words, it
is Av(µ0, . . . , µn−1;B) where µi = tp(ai/U).

Proposition 2.115 ([HPS13, Corollary 2.6]). Let µ ∈ Mx(U) be smooth
over a small M . For all B0, . . . , Bm−1 Borel subsets of Sx(M), ϕ(x; y) ∈ L
and ε > 0 there are a0, . . . , an−1 ∈ U such that for all i < n we have
tp(ai/U) ∈ S(µ) and for all b ∈ U and j < m

|µ(Bj ∩ ϕ(x; b))−Av(a0, . . . , an−1;Bj ∩ ϕ(x; b))| ≤ ε

Proof. Proposition 2.113 applied to µ � M , ϕ(x; y) and ε/8 gives us ` ∈
ω and, for h < `, some ψh(y), θ0

h(x), θ1
h(x) ∈ L(M) that we can use to

approximate µ(ϕ(x; b)).

Claim. There are some n and, for i < n, some pi ∈ S(µ � M) ⊆ Sx(M)
such that for all h < `, j < m and k ∈ {0, 1}

|µ(Bj ∩ θkh(x))−Av(p0, . . . , pn−1;Bj ∩ θkh(x))| ≤ ε

4
.

Proof of the Claim. By Proposition A.35 we can find some probability space
(Ω,Σ, P ) and a sequence of independent measurable functions {Yi : Ω →
S(µ �M) | i < ω}, all with law µ, i.e. such that (Yi)

∗(P ) = µ. Letting χ(B)
denote the characteristic function of B, define

Ỹ h,j,k
i = χ

(
Bj ∩ θkh(x)

)
◦ Yi : Ω→ [0, 1] Zh,j,kN =

∑
i<N

Ỹ h,j,k
i

Notice that, denoting with E the expected value and using Lemma 2.101,

E(Zh,j,kN ) = N ·E(Ỹ h,j,k
0 ) = N ·µ(Bj ∩ θkh(x)∩S(µ �M)) = N ·µ(Bj ∩ θkh(x))
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and in particular Ỹ h,j,k
i ∈ L1. By a version of the Law of the Large Numbers,

namely Theorem A.36, for all h, j, k the sequence (Zh,j,kN − E(Zh,j,kN ))/N
converges in probability to 0. Hence, if we denote

Ah,j,kN = {ρ ∈ Ω | Zh,j,kN (ρ)/N − µ(Bj ∩ θkh(x)) > ε/4}

then there is Nh,j,k such that for all n > Nh,j,k we have P (Ah,j,kn ) < 1/2m`.
Let n = maxh,j,kNh,j,k and A =

⋃
h,j,k A

h,j,k
n . Then

P (A) ≤
∑
h<`
j<m
k<2

P (Ah,j,kn ) ≤
∑
h<`
j<m
k<2

P (Ah,j,kNh,j,k
) <

∑
h<`
j<m
k<2

1

2m`
= 1

Therefore A{ has positive probability, hence it is non-empty. Let ρ ∈ A{

and, for i < n, set pi = Yi(ρ); then, for all h, j, k, we have

Zh,j,kN (ρ)

N
=

1

N

∑
i<N

χ
(
Bj ∩ θkh(x)

)
◦ Yi(ρ) = Av(p0, . . . , pn−1;Bj ∩ θkh(x))

which is no further than ε/4 from µ(Bj ∩ θkh(x)) by construction.
claim

Let the pi ∈ Sx(M) be given by the Claim and, since M is small, realize
them with suitable ai ∈ U, which we may suppose without loss of generality18

to be such that tp(ai/U) ∈ S(µ); then set ν(B) = Av(a0, . . . , an−1;B). Now
let b ∈ U and j < m, and let h < ` be the unique one such that b � ψh(y).
By choice of h, for all j < m we have

|µ(Bj ∩ ϕ(x; b))− µ(Bj ∩ θ0
h(x))| ≤ |µ(θ1

h(x))− µ(θ0
h(x))| ≤ ε

8

Hence, using the Claim and denoting ϕ(x; b) and θkh(x) with ϕ and θkh,

|ν(Bj ∩ ϕ)− ν(Bj ∩ θ0
h)| ≤ |ν(Bj ∩ θ1

h)− ν(Bj ∩ θ0
h)|

≤ |ν(Bj ∩ θ1
h)− µ(Bj ∩ θ1

h)|+ |µ(Bj ∩ θ1
h)− µ(Bj ∩ θ0

h)|

+ |µ(Bj ∩ θ0
h)− ν(Bj ∩ θ0

h)| ≤ ε

4
+
ε

8
+
ε

4
=

5

8
ε

Therefore, using the Claim once again,

|ν(Bj∩ϕ)−µ(Bj∩ϕ)| ≤ |ν(Bj∩ϕ)−ν(Bj∩θ0
h)|+ |ν(Bj∩θ0

h)−µ(Bj∩θ0
h)|

+ |µ(Bj ∩ θ0
h)− µ(Bj ∩ ϕ)| ≤ 5

8
ε+

ε

4
+
ε

8
= ε

The name “smooth” comes from the fact that one can define a notion of
border of a formula and smooth measures will be exactly the ones that give
measure zero to all borders. See [ABss].

18Since pi ∈ S(µ �M), if we regard it as a closed subset of Sx(U) it meets S(µ).
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Measures and Forking

We conclude by showing that non-dividing can be witnessed by a mea-
sure, a fact that will prove itself to be very useful.

Proposition 2.116 ([Sim15, Lemma 7.5]). Let (bi)i<ω ∈M be indiscernible,
ϕ(x; y) ∈ L and µ ∈Mx(M). If there is r > 0 such that µ(ϕ(x; bi)) ≥ r for
all i ∈ ω, then {ϕ(x; bi) | i < ω} is consistent.

Proof. Consider (bi)i<ω inside M̃µ. Applying the Standard Lemma we can
find some L(M̃µ)-indiscernible (ci)i<ω that still satisfies the hypotheses and
extends the Ehrenfeucht-Mostowski type of (bi)i<ω over L(M), therefore it
is enough to prove the consistency of π(x) = {ϕ(x; ci) | i < ω}. By L(M̃µ)-
indiscernibility if i0 < . . . < in−1 and j0 < . . . < jn−1 we have

µ
(∧
k<n

ϕ(x; cik)
)

= µ
(∧
k<n

ϕ(x; cjk)
)

If π is `-inconsistent, then for n = ` the quantity above is zero. Let `0 be
the maximum n such that π(x) is not n-inconsistent, and for m ∈ ω define
ψm(x) =

∧
k<`0

ϕ(x; cm`0+k). Since µ(ϕ(x; ci)) ≥ r > 0 by hypothesis,
`0 > 0, and thus for m0 6= m1 we have ψm0 6= ψm1 . Then maximality of `0
implies that µ(ψm0(x) ∧ ψm1(x)) = 0. This yields µ

(∨
m<C ψm

)
= Cµ(ψ0)

and, since by construction µ(ψm) > 0, taking C > 1/µ(ψ0) contradicts
µ(x = x) = 1.

Corollary 2.117. If A is small and µ ∈ Mx(U) is LstpA-invariant, then µ
is A-non-forking.

Proof. Since A is small it is sufficient to prove that if µ(ϕ(x; b)) > 0 then
ϕ(x; b) does not divide over A. Let (bi)i<ω be A-indiscernible. By LstpA-
invariance, for all i < ω we have µ(ϕ(x; b)) = µ(ϕ(x; bi)), and by Proposi-
tion 2.116 {ϕ(x; bi) | i < ω} is consistent.



Chapter 3

NIP Theories

We are now going to introduce the nip hypothesis and see how it influ-
ences invariant types and measures. Thereafter we study honest definitions,
a powerful tool that will allow us to prove that, if M is nip, then M ext elim-
inates quantifiers and inherits dependency from M . We also show how the
nip guarantees the existence of G00 (see Definition 1.81) and its preservation
when passing to M ext, and conclude with the existence of invariant heirs.
The references are mainly [Sim15,CS13,HPP08,CPS14].

3.1 The Independence Property

This section is devoted to definitions and fundamental results.

VC-Dimension

Definition 3.1. A family S ⊆ P(X) of parts of X shatters a subset A of
X iff P(A) = {A ∩ S | S ∈ S}.

In other words, S shatters A if the whole power-set of A can be obtained
“looking at A through members of S”.

Example 3.2 ([Sim15, Example 2.4]). Any subset A of a totally ordered
set O shattered by the family of closed right half-lines {x ≥ b | b ∈ O} has
at most one point: if a0 < a1 are in A, then {a0} cannot be written as the
intersection of A with a right half-line.

Example 3.3. The power-set of X trivially shatters any A ⊆ X.

Example 3.4. The family of all bounded regions delimited by a Jordan
curve in R2 shatters any finite subset of R2.

Example 3.5. Let S be the family of rectangles in R2 whose sides are
parallel to the axes, i.e. the family of the S ⊆ R2 of the form

(x0, x1) ∈ S ⇐⇒ a0 ≤ x0 ≤ b0 ∧ a1 ≤ x1 ≤ b1

55
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Figure 3.1: A Jordan curve and a rectangle isolating subsets of points.
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where ai < bi ∈ R. Then S shatters the set of vertexes of the ‖·‖1-ball, i.e.
{(1, 0), (0, 1), (−1, 0), (0,−1)}.

Definition 3.6. The vc-dimension of a family S ⊆ P(X) is either the
maximum n ∈ ω such that S shatters a subset of X of cardinality n, or ∞
if S shatters finite sets of arbitrarily large cardinality.

Remark 3.7. If S shatters a set A of cardinality n, then it automatically
shatters all the subsets of A, hence it shatters a set of cardinality m for all
m ≤ n.

Example 3.8. The family of Example 3.5 has vc-dimension 4. We have
already exhibited a 4-element set shattered by S, and by the previous remark
it suffices to show that S shatters no 5-element one. Let |A| = 5 and fix a 4-
element subset B of A consisting of one point minimizing x0, one maximizing
it, one minimizing x1 and one maximizing it; in other words the first one
has no points of A strictly to the left, the second one has none strictly to
the right, etc. This set cannot be written as A ∩ S for any rectangle S with
horizontal sides, because A∩ S will inevitably contain the point in A \B or
miss some point of B.

Dependent Formulas

A formula can be thought as a uniformly definable family of definable
subsets of a model as follows. We partition its free variables in “set variables”,
which are intended to range over points of the definable set, and “parameter
variables”, which are intended to code members of the family. For instance
we can describe the family S of Example 3.5 with the partitioned formula

ϕ(x; y) = ϕ(x0, x1; y0, y1, y2, y3) = (y0 ≤ x0 ≤ y1) ∧ (y2 ≤ x1 ≤ y3)

In other words, we can associate to ϕ(x; y) the family Φ = {ϕ(x; b) | b ∈ U},
and investigate its vc-dimension. The nip formulas will be1 the ones where

1The compactness argument is easy, but for the sake of clarity and at the risk of proving
the obvious we will take Definition 3.9 as the “official” definition of nip formula and prove
the equivalence mentioned in this paragraph in Lemma 3.12.
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this vc-dimension is finite. Since, by compactness and saturation, Φ shatters
arbitrarily large sets if and only if it shatters and infinite subset of U, we
give the definition this way:

Definition 3.9. The partitioned formula ϕ(x; y) has the independence prop-
erty, or ip, iff there are two infinite sets A = {ai | i ∈ I} ⊆ U|x| and
B = {bX | X ∈P(I)} ⊆ U|y| such that � ϕ(ai; bX) ⇐⇒ i ∈ X. A formula
has nip iff it does not have the independence property.

Obviously enough, nip stands for No Independence Property/Not the
Independence Property. We also say that the formula is nip, or dependent.

Remark 3.10. The word “partitioned” is highlighted in the previous defi-
nition because this does depend on where the semicolon is. For instance, if
ϕ(x; y) has ip, and we re-baptize it ψ(x, y, z) = ϕ(x, y), then ψ(x; y, z) has
ip, but ψ(x, y; z) does not.

Lemma 3.11. If {ϕ(x; b) | b ∈ U} ⊆ P(U) has infinite vc-dimension and
I is an infinite set with small size2 with respect to U, then there are two
infinite sets A = {ai | i ∈ I} ⊆ U|x| and B = {bX | X ∈ P(I)} ⊆ U|y| such
that � ϕ(ai; bX) ⇐⇒ i ∈ X.

Proof. Saying that {ϕ(x; b) | b ∈ U} has infinite vc-dimension means that,
for all n ∈ ω, there is an n-element set An = {ãni | i < n} and some
Bn = {b̃nX | X ∈ P(n)} such that U � ϕ(ãni ; b̃nX) if and only if i ∈ X.
Take a small M ≺ U containing

⋃
n∈ω An ∪ Bn, then let {ci | i ∈ I} and

{dX | X ∈ P(I)} be two new sets of constants. Then the union of the
elementary diagram of M with the theory below is finitely satisfiable:

{ϕ(ci; dX) | i ∈ I,X ∈P(I), i ∈ X}∪{¬ϕ(ci; dX) | i ∈ I,X ∈P(I), i /∈ X}

By compactness it has a model, and by Löwenheim-Skolem and the fact
that I is small we can suppose it has small cardinality, so we can embed its
L(M)-reduct into U. Then taking as ai and bX the interpretations of ci and
dX ends the proof.

Lemma 3.12. ϕ(x; y) has nip if and only if {ϕ(x; b) | b ∈ U} ⊆ P(U) has
finite vc-dimension.

Proof. ⇒ Apply Lemma 3.11 with your favourite infinite small I.
⇐ If ϕ(x; y) had ip as witnessed by A = {ai | i ∈ I} and B = {bX | X ∈

P(I)} by some infinite I, then {ϕ(x; b) | b ∈ U} would shatter the infinite set
A, and hence all of its finite subsets, thus having infinite vc-dimension.

2Recall (see Section A.6) that this also means that P(I) has small size.
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Notation 3.13. The opposite formula of ϕ(x; y) is the same formula as ϕ,
but the y are now considered the “set variables” and the x the “parameter”
ones. Since we usually write set variables on the left of the semicolon and pa-
rameter variables on the right, we will use the notation ϕopp(y;x) = ϕ(x; y).

Despite Remark 3.10, being nip does not depend on which side of the
semicolon variables are:

Proposition 3.14 ([Sim15, Lemma 2.5]). A partitioned formula is nip if
and only if its opposite formula is.

Proof. If ϕ(x; y) has ip, by Lemma 3.12 and Lemma 3.11 we can find inside
U two subsets A = {aX | X ∈ P(ω)} and B = {bF | F ∈ P(P(ω))} such
that U � ϕ(aX ; bF ) if and only if X ∈ F . Let ti be the principal ultrafilter
on i, i.e. {X ∈ P(ω) | i ∈ X}. Then ϕopp(y;x) shatters the infinite set
{ti | i ∈ ω} ⊆ B, because for all i ∈ ω and X ∈P(ω)

i ∈ X ⇐⇒ X ∈ ti ⇐⇒ � ϕ(aX ; bti) ⇐⇒ � ϕopp(bti ; aX)

The vc-dimension of ϕopp need not equal the one of ϕ, but some bounds
can be proven; see for instance [Sim15, Lemma 6.3]. For the purposes of this
thesis, the only relevant bound will be <∞, and we just said that this holds
for ϕ if and only if it holds for ϕopp.

Permanent Assumption 3.15. Henceforth Lemma 3.11, Lemma 3.12 and
Proposition 3.14 will be used even without explicit mention.

Let us see some examples of formulas with or without nip.

Example 3.16. We saw that the family of Example 3.5 has vc-dimension
4, hence any formula defining it has nip.

Example 3.17 ([Sim15, Example 2.4]). In the random graph, the formula
ϕ(x; y) = E(x, y) shatters arbitrarily large finite sets, as it follows easily
from the random graph axioms.

Example 3.18 ([Sim15, Example 2.4]). In Th(N), the formula ϕ(x; y) = x |
y, i.e. “x divides y”, shatters any finite set of prime numbers {pi | i < n}: to
isolate {pi | i ∈ X} just take as y the product

∏
i∈X pi.

Example 3.19 ([New09, Example 1]). Let η ∈ 2Z be a concatenation of all
finite strings over {0, 1} as in Example 1.12. Expand the structure (Z,+)

adding a predicate P (1)
σ for all finite {0, 1}-strings σ, true for n iff3 the string

η(0−n), η(1−n), . . . , η(|σ|− 1−n) coincides with σ. Then if σ is the string
“1”, the formula ϕ(x; y) = Pσ(x+ y) has ip.

3In other words, Pσ(n) is true if, after n right shifts s of η, we look at
s(n)η(0), . . . , s(n)η(|σ| − 1) and read σ.
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For instance, we can shatter a 3-element set in the following way: find
a0, a1, a2 such that shifting by them produces the following configurations,
where the y-th column4 carries at row i the value of η(ai + y)

a0 : . . . 0 1 0 0 0 1 1 1 . . .
a1 : . . . 0 0 1 0 1 0 1 1 . . .
a2 : . . . 0 0 0 1 1 1 0 1 . . .

and in order to select, say, {a0, a2}, one considers Pσ(x + 5). The matrix
above basically codes P(3) and should hint that this trick can be generalized
to shatter an arbitrarily large finite set.

The following characterization will be of fundamental importance, and
actually some authors take it as the definition of nip.

Theorem 3.20 ([Sim15, Lemma 2.7]). A partitioned formula ϕ(x; y) ∈ L(A)
has ip if and only if there are an A-indiscernible sequence (ai)i<ω and a b in
U such that ϕ(ai; b) is true for all and only the even i, i.e.

U � ϕ(ai; b) ⇐⇒ ∃j ∈ ω i = 2j

Proof. ⇒ Let (ãi)i<ω be shattered by ϕ, and by the Standard Lemma let
(ai)i<ω be an A-indiscernible sequence realizing its Ehrenfeucht-Mostowski
type overA. Then the partial type π(x) = {ϕ(a2i; y) | i ∈ ω}∪{¬ϕ(a2i+1; y) |
i ∈ ω} is consistent, since for all n ∈ ω the formula ∃y

∧
i<n ϕ(x2i; y) ∧

¬ϕ(x2i+1; y) is in em(ãi)i<ω ⊆ em(ai)i<ω. Any b � π(x) satisfies the thesis.
⇐ Let X ∈P(ω) be infinite, and fix an increasing bijection τ from X

to the evens. Since τ is increasing, by A-indiscernibility {ai 7→ aτ(i) | i < ω}
extends to an f ∈ Aut(U/A). Then we have

i ∈ X ⇐⇒ � ϕ(f(ai); b) ⇐⇒ � ϕ(f−1(f(ai)); f
−1(b)) ⇐⇒ � ϕ(ai; f

−1(b))

Now fix n ∈ ω. Since the family of infinite subsets of ω shatters n, we
can use the previous construction to shatter a suitable n-element subset of
{ai | i < ω}.

Definition 3.21. Let ϕ(x; y) be a partitioned L(A)-formula, (ai)i∈I an A-
indiscernible sequence and b ∈ U. The number of alternations of ϕ(x; b)
on (ai)i∈I is either the maximum n such that there are i0 < . . . < in such
that for all k < n we have � ϕ(aik)4 ϕ(aik+1

), or ∞ if there are arbitrarily
large such n; we denote it with alt(ϕ(x; b), (ai)i∈I). The alternation rank of
ϕ(x; y) is

alt(ϕ(x; y)) = sup
b∈U

(ai)i∈I A-indiscernible,ai∈U

alt(ϕ(x; b), (ai)i∈I)

4The leftmost column corresponds to y = 0.
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Corollary 3.22 ([Sim15, Proposition 2.8]). The formula ϕ(x; y) ∈ L(A) is
nip if and only if alt(ϕ(x; y)) is finite, if and only if for all A-indiscernible
(ai)i∈I and b ∈ U there is an end segment of I where ϕ(ai; b) is either always
true or always false.

Proof. Immediate from Theorem 3.20.

Permanent Assumption 3.23. Henceforth we add Theorem 3.20 and
Corollary 3.22 to the list of results that will be used without explicit mention.

Lemma 3.24 ([Sim15, Lemma 2.9]). In all theories, nip formulas are closed
under Boolean combinations.

Proof. Closure under negation is obvious. If both ϕ(x; y) and ψ(x; y) are
nip L(A)-formulas, take any A-indiscernible (ai)i∈I and any b ∈ U. Then
for some iϕ ∈ I, for all i ≥ iϕ the truth value of ϕ(ai; b) is constant, and so
is, for some iψ ∈ I, the truth value of ψ(ai; b) for all i ≥ iψ. Then the same
happens with ϕ ∧ ψ setting iϕ∧ψ = max{iϕ, iψ}.

Dependent Theories

Definition 3.25. A theory is nip iff all of its formulas are nip. As structure
is nip iff its theory is.

Example 3.26. Stable theories are nip.

Proof. One of the equivalent definitions of instability (see for instance [Sim15,
Proposition 2.55]) is the existence of some ϕ(x; y), some (ai)i<ω and some
(bj)j<ω such that � ϕ(ai; bj) ⇐⇒ i < y. If ϕ(x; y) has ip as witnessed by
(ai)i<ω and (bX)X∈P(ω), it suffices to set bj = b{i∈ω|i<j} to witness instabil-
ity.

Remark 3.27. Outside some special cases such as I = ω, Corollary 3.22 does
not imply that {i ∈ I |� ϕ(ai; b)} is either finite or cofinite, but it does imply
that it is a finite union of intervals5. For instance, we could have I = R and
{i ∈ I |� ϕ(ai; b)} = (−∞, π)∪{5}∪ [7, 8). Indeed, {i ∈ I |� ϕ(ai; b)} always
being finite or cofinite is equivalent to stability. This can be easily shown
exploiting Corollary 3.22 and the fact that6 a theory is stable if and only if
every permutation of an A-indiscernible sequence is still A-indiscernible.

Lemma 3.28. The nip is preserved under adding parameters and taking
reducts. In other words, if M is a model of a nip theory and A ⊆ M , then
also ThL(A)(M) is nip, and if L0 ⊆ L then ThL0(M) is nip.

5Possibly of length 0, i.e. points count as intervals.
6It follows easily from the definition of stability mentioned in the proof of Example 3.26,

anyway see [Sim15, Lemma 2.59].
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Proof. If ϕ(x; y) = ψ(x, y, ca) is an L(A)-formula in ThL(A)(M) with ip,
where ψ(x, y, z) ∈ L and ca is a tuple of constant symbols corresponding to
the tuple a ∈ A, then ψ(x; y, z) has ip in ThL(M). The second statement is
trivial.

We are now going to prove that whether a theory is nip or not is already
decided in dimension one. We first need a lemma.

Lemma 3.29. Suppose that all formulas ϕ(x; y) with |x| = 1 are nip. Then
for all ∅-indiscernible (ai | i < |T |+) and b ∈ U1 there is α < |T |+ such that
(ai | α < i < |T |+) is {b}-indiscernible.

Proof. If not, then for all α < |T |+ there are δα(x0, . . . , xk(α)−1; y) and two
increasing sequences of indexes α < ı̄(α) < |T |+ and α < ̄(α) < |T |+ with
|̄ı(α)| = |̄(α)| = k(α) such that � δα(aı̄(α); b)∧¬δα(ā(α); b). By pigeonhole,
since successor cardinals are regular, up to discarding co-|T |+-many α we
may assume that δ(α) and k(α) do not depend on α and call them δ and k.
This allows us to find recursively, for h < ω, some ¯̀

h with |¯̀h| = k such that
δ(a¯̀

h
; b) holds if and only if h is even, against the fact that δopp(y; x̄) should

be nip because |y| = 1.

Proposition 3.30 ([Sim15, Proposition 2.11]). If all formulas in T of the
form ϕ(x; y) with |x| = 1 are nip, then T is nip.

Proof. Fix ϕ(x; y) = ϕ(x0, . . . , xm−1; y0, . . . , yn−1), an ∅-indiscernible se-
quence (ai)i<|T |+ , and b = (b0, . . . , bn−1). By the previous lemma there
is α0 such that cutting away the first α0 elements of (ai)i<|T |+ returns a
{b0}-indiscernible sequence. This is equivalent to the fact that ((ai, b0) |
α0 < i < |T |+) is ∅-indiscernible. Applying this reasoning another n − 1
times returns an α such that ((ai, b) | α < i < |T |+) is ∅-indiscernible, and
therefore the truth value of ϕ(ai; b) is constant for i > α.

This shows that no indiscernible sequence indexed on |T |+ can contradict
nip, so we are left to show the same thing replacing |T |+ with an arbitrary
total order I. Up to reversing I and/or eliminating maxima, we may suppose
that I has infinite cofinality. We can reduce to the previous case either by
compactness, if cof(I) < |T |+, or by extracting a suitable sub-sequence of
length |T |+ if cof(I) ≥ |T |+.

This is very useful when investigating the dependency of a theory. Here
is an example.

Corollary 3.31 ([Sim15, Example 2.12]). O-minimal theories are nip.

Proof. By Proposition 3.30 and Lemma 3.24 we only need to check families
of closed right half-lines, and we already did in Example 3.2.

Theorem 3.32. If M is nip, then so is M eq.
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Proof (Adapted from [TZ12, Lemma 8.4.8 (3)]). Let ϕ(x; y) be a formula in
T eq with the ip, with x of sort U|x|/Ex and y of sort U|y|/Ey, for suitable
equivalence relations Ex and Ey. Then there are {ai | i ∈ ω} and {bX |
X ∈ P(ω)} from U such that � ϕ(πEx(ai);πEy(bX)) ⇐⇒ i ∈ X. By
Proposition A.51 the Leq-formula ϕ(πEx(x̃);πEy(ỹ)) is equivalent to some
L-formula ψ(x̃; ỹ), that will hence have ip.

3.2 Invariant Types

Borel-Definability

Even if invariant types need not be definable, i.e. dpϕ need not be clopen,
we will now see that, in nip theories, it cannot be too complicated either.

Lemma 3.33 ([HP11, Claim in Proposition 2.6]). Let p ∈ Sinv(U, A), b ∈ U
and suppose that ϕ(x; y) ∈ L is nip. Then ϕ(x; b) ∈ p if and only if there is
n ≤ alt(ϕ(x; y)) such that the following two facts hold.

1. There is (ai)i<n � p(n) � A such that �
∧
i<n−1 ϕ(ai; b)4ϕ(ai+1; b) and

� ϕ(an−1; b).

2. There is no (ãi)i<n+1 � p(n+1) � A such that �
∧
i<n ϕ(ãi; b)4ϕ(ãi+1; b).

Proof. ⇒ Let (cj | j < ω) � p(ω) � A realize the maximum number of
alternations of truth values for ϕ(x; b) among Morley sequences of p over A.
Call this number n and notice that it is at most alt(ϕ(x; y)). By maximality
of n, point 2 holds. To show that point 1 holds, let j0 < . . . < jn−1 be such
that � ϕ(cji ; b)4 ϕ(cji+1; b) and set ai = cji , so we only have to show that
� ϕ(cjn−1 ; b). Let cω � p � A ∪ {ci | i < ω} ∪ {b}. Since ϕ(x; b) ∈ p, then by
Corollary 2.26 � ϕ(cω; b); hence � ¬ϕ(cjn−1 ; b) would contradict maximality
of n.
⇐ If ϕ(x; b) is not in p, then ¬ϕ(x; b) is, so we can apply the previous

implication to ¬ϕ(x; b) and obtain some n¬ϕ that satisfies 1 and 2 with
respect to ¬ϕ(x; b). Then for any nϕ, either o nϕ < n¬ϕ and thus point 2
cannot hold for nϕ, or nϕ ≥ n¬ϕ. In this case, since ¬ϕ(x; b) ∈ p, any
realization of p(n+1) � A ∪ {ai | i < n} ∪ {b} shows that, again, point 2
cannot hold for nϕ.

Theorem 3.34 ( [Sim15, Lemma 7.18], T nip). Every p ∈ Sinv(U, A) is
strongly Borel-definable over A, i.e. every dp(x)ϕ(x; y) is a constructible7

subset of Sy(A).

7I.e. a finite Boolean combination of closed sets.
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Proof. Notice that, since the projections Sxy(A) → Sy(A) are closed8, the
following subsets of Sy(A) are closed

An(y) = “∃(ai)i<n� p(n) �A
(
�
∧

i<n−1

ϕ(ai; y)4 ϕ(ai+1; y)
)
∧
(
� ϕ(an−1; y)

)
”

Bn(y) = “∃(ãi)i<n� p(n) �A
(
�
∧

i<n−1

ϕ(ãi; y)4 ϕ(ãi+1; y)
)
∧
(
� ¬ϕ(ãn−1; y)

)
”

By Lemma 3.33 dp(x)ϕ(x; y) =
∨
n≤alt(ϕ(x;y))An(y) ∧ ¬Bn+1(y).

Corollary 3.35 (T nip). Every p ∈ Sinv(U,M) is M -Borel-definable, i.e.
every dp(x)ϕ(x; y) is a Borel subset of Sy(M).

Proof. Constructible sets are Borel.

Characterization of Forking

In nip theories, forking can be characterized in terms of invariance.

Proposition 3.36 ( [Sim15, Proposition 5.21], T nip). The converse of
Proposition 2.78 holds, i.e. for global types A-non-forking is the same as
LstpA-invariance.

Proof. Let p ∈ Sx(U) and a0 ≡LstpA a1, and suppose that ϕ(x; a0)4ϕ(x; a1) ∈
p. Up to replacing them with some cj−1 ≡LstpA cj given by Corollary 2.43 we
can assume9 that they start anA-indiscernible (ai)i<ω. Since ((a2i, a2i+1))i<ω
is still A-indiscernible, π(x) = {ϕ(x; a2i)4 ϕ(x; a2i+1) | i < ω} is inconsis-
tent: otherwise any b � π(x), together with (ai)i<ω, would witness that the
alternation rank of ϕopp(y;x) is infinite, contradicting nip. But this means
that the formula ϕ(x; a0)4 ϕ(x; a1) ∈ p divides over A.

Together with Remark 2.44, this has two immediate consequences:

Corollary 3.37 (T nip). A global type does not fork over A if and only if
for all M ⊇ A it is M -invariant.

Theorem 3.38 ([Sim15, Corollary 5.22], T nip). A global type does not
fork over M if and only if it is M -invariant.

Remark 3.39 (T nip). By Corollary 3.37, for a global type, being non-
forking over a small set is equivalent to being invariant over a small model.

8Inasmuch continuous from a compact to an Hausdorff.
9If ϕ(x; cj−1)↔ ϕ(x; cj) ∈ p always holds then ϕ(x; a0)↔ ϕ(x; a1) ∈ p.
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3.3 Measures

Dependency has quite strong repercussions on the behaviour of measures;
this is basically due to the fact that, using the nip, measures can be approx-
imated by averages of types even if they are not smooth, and this allows to
transfer results and constructions from S(U) to M(U). In the present section
we prove this approximation result via the existence of smooth extensions
and see its first “transfer” consequences.

Before we get into lemmas and theorems, let us see an example of how
the finiteness of alt(ϕ(x; y)) allows to build measures from indiscernible se-
quences.

Example 3.40 ([Sim15, Example 7.2]). Let (ai)i∈[0,1] be any ∅-indiscernible
sequence in a nip theory indexed on the real unit interval, and let λ be
the usual Lebesgue measure. Since for all ϕ(x; b) ∈ L(U) the nip implies
that alt(ϕ(x; b), (ai)i∈[0,1]) is finite, {i ∈ [0, 1] |� ϕ(ai; b)} is a finite union
of convex sets, hence Lebesgue-measurable. We can then define µ ∈Mx(U)
setting µ(ϕ(x; b)) = λ({i ∈ [0, 1] |� ϕ(ai; b)}).

Characterization of Forking

Proposition 3.41 ([Sim15, Proposition 7.15], T nip). Let A be small and
µ ∈Mx(U). Then the following are equivalent.

1. is strongly LstpA-invariant

2. µ is LstpA-invariant

3. µ does not fork over A

Proof. One implication is obvious and another one is Corollary 2.117, so
suppose that µ does not fork over A. Given ϕ(x; y) ∈ L and b0 ≡LstpA b1, we
have to show that µ(ϕ(x; b0)4ϕ(x; b1)) = 0, and by hypothesis we only need
to prove that ϕ(x; b0)4 ϕ(x; b1)) forks over A. If ((b2i, b2i+1) | i < ω) is any
indiscernible sequence starting with (b0, b1), then {ϕ(x; b2i) 4 ϕ(x; b2i+1) |
i < ω} is inconsistent by nip, so this proves the proposition in the case
where b0, b1 starts an A-indiscernible sequence. We can then conclude by
Corollary 2.43 and the fact that µ(X 4 Y ) is a distance.

Corollary 3.42 (T nip). Let M be small and µ ∈ Mx(U). Then the fol-
lowing are equivalent.

1. is strongly M -invariant

2. µ is M -invariant

3. µ does not fork over M
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Smooth Extensions

Lemma 3.43 ([Sim15, Lemma 7.6], T nip). Let µ ∈Mx(M), (bi)i<ω ∈ M
and ϕ(x; y) ∈ L. Then there is no ε > 0 such that for all i < j < ω we have
µ(ϕ(x; bi)4 ϕ(x; bj)) > ε.

Proof. First of all, applying the Standard Lemma inside M̃µ, we can replace
(bi)i<ω with some L(M̃µ)-indiscernible (b̃i)i<ω in some elementary exten-
sion10 of M . Hence, by nip, π(x) = {ϕ(x; b̃2i)4ϕ(x; b̃2i+1) | i < ω} must be
inconsistent, or we would violate finite alternations. Then the existence of
such an ε > 0 would trigger Proposition 2.116 and make π(x) consistent.

Hence, in a nip theory, changing parameters infinitely many times inside
a formula will result in two instances of it having small difference with re-
spect to µ. This implies the existence of smooth measures with a prescribed
restriction:

Proposition 3.44 ([Sim15, Proposition 7.9], T nip). Measures always have
smooth extensions. More precisely, if µ ∈Mx(M), then there is N �M and
an extension of M to Mx(N) which is smooth.

Proof. The strategy of proof is to set up an iterative construction that
must either stop and return the desired smooth extension or contradict the
previous lemma. So suppose that µ has no smooth extension to any big-
ger model, and define ((Mα, µα) | α < |T |+, µα ∈ Mx(Mα)) as follows.
Start with (M0, µ0) = (M,µ), if α is a non-zero limit take unions over
the previous ordinals and at successor stages do the following. Since µα is
not smooth by hypothesis, there are ν0, ν1 ∈ L(U) both extending µα and
such that for some ϕα(x; y) ∈ L, bα ∈ U and a positive εα ∈ Q we have
ν1(ϕα(x; bα))− ν0(ϕα(x; bα)) > 4εα. Let Mα+1 be a small model containing
Mα and bα and set µα+1 = ν0+ν1

2 �Mα+1.

Claim. For all θ(x) ∈ L(Mα) we have µα+1(θ(x)4 ϕα(x; bα)) > εα.

Proof of the Claim. Denote ϕα(x; bα) with ϕ and θ(x) with θ. If we show
that at least one between ν0(ϕ4 θ) and ν1(ϕ4 θ) is greater than 2εα we
are done, so assume that this is not the case. Since θ ∈ L(Mα) and both ν0

and ν1 extend µα, we have ν1(θ) = ν0(θ). But then11 we can get an absurd
as follows:

ν1(ϕ4 θ) + ν0(ϕ4 θ) ≤ 4εα < ν1(ϕ)− ν0(ϕ)

=⇒ν1(ϕ) + ν1(θ)− 2ν1(ϕ ∧ θ) + ν0(ϕ) + ν0(θ)− 2ν0(ϕ ∧ θ) < ν1(ϕ)− ν0(ϕ)

=⇒2
(
ν1(θ) + ν0(ϕ)

)
< 2
(
ν1(ϕ ∧ θ) + ν0(ϕ ∧ θ)

)
=⇒ν1(θ) + ν0(ϕ) < ν1(ϕ ∧ θ) + ν0(ϕ ∧ θ) ≤ ν1(θ) + ν0(ϕ) =⇒ 0 < 0

claim
10After these b̃i are found in some Ñ � M̃µ, just take the reduct Ñ � L of Ñ to L.
11The fact that ν1(θ) = ν0(θ) is used when passing from the second line to the third

one.



66 Chapter 3. NIP Theories

Carry out this construction for all α < |T |+. By pigeonhole, up to
discarding co-|T |+-many α, we can assume that ϕα(x; y) and εα do not
depend on α and remove the subscript. But if β < α then ϕ(x; bβ) counts as
a θ in the Claim, hence

⋃
α<|T |+ µα gives measure at least ε to all ϕ(x; bβ)4

ϕ(x; bα), against Lemma 3.43.

Approximation of Measures

When dealing with types, one can consider its realizations. Strictly
speaking (and without resorting to continuous logic) measures which are
not types cannot be realized but, for instance, if µ is an average of types
we still have their realizations available. Proposition 2.115 tells us that,
in any theory, if µ is smooth we can get close enough to this scenario. In
nip theories, we can approximate with averages of types even non-smooth
measures.

Theorem 3.45 ( [Sim15, Proposition 7.11], T nip). Let A be small and
µ ∈ Mx(A). For all B0, . . . , Bm−1 Borel subsets of Sx(A), ϕ(x; y) ∈ L and
ε > 0 there are p0, . . . , pn−1 ∈ Sx(A) such that for all b ∈ A and j < m

|µ(Bj ∩ ϕ(x; b))−Av(p0, . . . , pn−1;Bj ∩ ϕ(x; b))| ≤ ε

Moreover, we can choose such p0, . . . , pn−1 in S(µ).

Proof. By Proposition 3.44, let M ⊇ A be such that there is a smooth
ν ∈Mx(M) extending µ. It then suffices to apply Proposition 2.115 to the
unique extension ν | U of ν to U, set pi = tp(ai/A), and notice that since all
the tp(ai/U) are in the support of ν | U, as a special case if ϕ(x) ∈ tp(ai/A)
then µ(ϕ(x)) = ν(ϕ(x)) > 0, hence every pi is in S(µ).

We can now take advantage of approximations to transfer results from
types to measures.

Theorem 3.46 ([Sim15, Proposition 7.19], T nip). Let M be small. Then
M -invariant global measures are M -Borel-definable.

Proof. Given µ ∈Minv(U,M), ϕ(x; y) ∈ L and C closed in [0, 1] we have to
show that X = {q | ∃/∀b ∈ q(U) µ(ϕ(x; b)) ∈ C} is Borel in Sy(M). For all
s ∈ Q ∩ [0, 1] ∩ C{ choose εs such that (s − εs, s + εs) ∩ [0, 1] ⊆ [0, 1] \ C,
and notice that we may suppose that for all k cofinitely many εs are smaller
than 2−k. Apply12 Theorem 3.45 to µ, ϕ(x; y) and εs, choosing p0, . . . , pn−1

in the support of µ such that for all b ∈ U

|µ(ϕ(x; b))−Av(p0, . . . , pn−1;ϕ(x; b))| ≤ εs
12The cautious reader may have noticed that U is not small, so we have to work in a

bigger Ũ +� U.
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and the set νs(x) = Av(p0, . . . , pn−1). Since by Corollary 3.42 µ is strongly
M -invariant, by Proposition 2.104 the pi are M -invariant, so by Corol-
lary 3.35 Ys = {q ∈ Sy(M) | ∃/∀b ∈ q(U) νs(ϕ(x; b)) = s} is Borel. Therefore
it suffices to show that

X =
⋂
{Y {s | s ∈ Q ∩ [0, 1] ∩ C{}

Let b � q. If there is s such that q ∈ Ys, then by construction µ(ϕ(x; b)) ∈
[0, 1] \ C, so q /∈ X. Conversely, if µ(ϕ(x; b)) = r ∈ [r − ε, r + ε] ∩ [0, 1] ⊆
[0, 1]\C, we can find an s ∈ [r−ε, r+ε]∩ [0, 1]∩Q such that εs < ε because
this does not happen only for finitely many s. Then we have νs(ϕ(x; b)) =
s ∈ [r − εs, r + εs] and therefore q ∈ Ys.

Remark 3.47. Notice that in the previous proof we used a countable inter-
section, so even if the Ys are constructible we have proved that X is Borel,
but not that X is constructible.

Although we will use Theorem 3.45 again later in this thesis, we will be
forced by space reasons to omit a large number of its consequences. For
instance, a beautiful fact proved in [CPS14, Theorem 2.7] is that in nip
theories definability of types implies definability of measures, and the proof
relies heavily on being able to approximate measures with averages of types.

Borel-definability of invariant measures implies that it is possible to define
a product measure µ⊗ ν, and a lot of results generalize from the product of
invariant types to the product of invariant measures. Notice that the usual
measure-theoretic product will not suffice, since it would only account for
formulas in which the variables in x are separated from the ones in y. In
other words, the space Sxy(U) is not the product of Sx(U) and Sy(U): in
the latter there is no place for formulas like x = y. This is analogous to
the fact that the Zariski topology on An+m is not the product topology on
An ×Am. Since we will not need product measures, we are not going to see
these results, and refer the reader to [Sim15, Chapter 7].

3.4 Honest Definitions

In stable theories, externally definable sets of any model are already
definable and sets are stably embedded. This means that, for any A and
ϕ ∈ L(U), there is some ψ ∈ L(A) such that ϕ(A) = ψ(A). Indeed, this
is another characterization of stability (see [TZ12, Exercise 10.1.5]), so in
unstable nip theories it may fail. We will now study a result from [CS13]
implying that, in nip theories, the parameters of ψ may be chosen in an
“elementary extension” of A. It will also imply that such a ψ may be required
to have a certain property, called honesty, that will be used to show quantifier
elimination for M ext.
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Definition and Existence

Definition 3.48. If M is an L-structure and A ⊆ M , the pair (M,A)
is defined as follows. Let P be a unary predicate outside L, and define
LP = L ∪ {P}. Then let (M,A) be the LP -expansion of M obtained by
interpreting P with A. An elementary pair is a pair (N,M) with M ≺L N .

Remark 3.49. Even ifM and N are nip andM ≺ N , the pair (N,M) may
be independent. As Poizat points out in [Poi83, Section 3], this can be the
case even with pairs of stable structures.

Definition 3.50. Consider a pair (M,A), a formula ϕ(x; y) ∈ L and b ∈M .
An honest definition of ϕ(x; b) over A is given by an elementary extension
(M ′, A′) � (M,A) and a formula ψ(x; d) such that

• ϕ(x; z) ∈ L and d ∈ A′

• ϕ(A; b) = ψ(A; d)

• ψ(A′; d) ⊆ ϕ(A′; b) (honesty condition or honesty hypothesis)

Example 3.51 (Dishonest definition in DLO). Let A = Q,M ⊇ Q∪{π} and
(M ′, A′) +� (M,A). By ℵ1-saturation find π + ε ∈ A′ such that π + ε > π
and for all m ∈ Q such that m > π we have π + ε < m. Then x ≤ π + ε is
not an honest definition of x < π, even if the two formulas agree on A = Q.

We state the following result in a way that is even too general for the
purposes of the present section, and indeed the exposition in [Sim15, Sec-
tion 3.2] works well with a special case of it. Anyway, the greater generality
will be needed later on. We first need a definition.

Definition 3.52. Let ϕ(x; y) be a formula and p(x) a partial type. We say
that ϕ is nip over p(x) iff for all c ∈ U there is no indiscernible sequence
(ai)i<ω of realizations of p such that alt(ϕ(x; c), (ai)i∈I) =∞.

Lemma 3.53 ([CS13, Proposition 1.1]). Let L ⊆ L′ and work in a monster
U that is an L′-structure. Let p(x) be a small partial L′-type, ϕ(x; y) ∈ L
a nip formula over p(x) and c ∈ U. Then for each small A ⊆ p(U) there is
θ(x) ∈ L(p(U)) such that

1. θ(x) ∩A = ϕ(x; c) ∩A

2. θ(p(U)) ⊆ ϕ(p(U); c)

3. ϕ(x; c)\θ(x) does not contain any A-invariant global L-type consistent
with p(x).
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Proof. Let X be the compact13 space of all q(x) ∈ Sinv
x (U � L,A) consistent

with {ϕ(x; c)}∪p(x). Suppose that for all q ∈ X we are able to find some ψ ∈
L(p(U)) such that p(x) ` ψ(x)→ ϕ(x; c). Then we can write X =

⋃
q∈X [ψq],

extract a finite subcover by compactness, and let θ be its disjunction. Such
a θ will trivially satisfy the last two points of the thesis, and the fact that it
satisfies the first one follows because among the A-invariant global L-types
there are the L-types of points in A.

So fix q ∈ X. We set up an iterative construction that will stop by nip
and produce the required ψ. The construction finds inductively ai, bi ∈ p(U)
and qi ⊆ qi+1 ⊆ q in the following way

At stage 4i+ 0 set q2i(x) = q(x) � Aa<i, b<i

At stage 4i+ 1 let ai � q2i(x) ∪ {ϕ(x; c)} ∪ p(x)

At stage 4i+ 2 set q2i+1(x) = q(x) � Aa≤i, b<i

At stage 4i+ 3 let bi � q2i+1(x) ∪ {¬ϕ(x; c)} ∪ p(x)

By Corollary 2.26, if we are able to carry out this construction for all the
i < ω, then we will find inside p(U) a Morley sequence of q over A, which
in particular will be A-indiscernible, alternating truth values on ϕ(x; c) in-
finitely many times and contradicting the fact that ϕ(x; y) is nip over p(x).
So, for some i, the construction must stop. Stages with even index cannot be
stopped, since nothing can prevent us from taking a restriction. Neither can
4i+ 1, since the small type q2i ∪{ϕ(x; c)}∪ p is included in q∪{ϕ(x; c)}∪ p,
which is guaranteed to be consistent by hypothesis. Therefore the construc-
tion stops because there is no bi to fulfil the requirements of stage 4i+3. This
means that p∪ q2i+1 ` ϕ(x; c), and by compactness we can find the required
ψ inside q2i+1 ⊆ q. Since q2i+1 has parameters from Aa≤i, b<i ⊆ p(U), we
are done.

Theorem 3.54 ([CS13, Corollary 1.3], [Sim15, Theorem 3.13], T nip). Let
A ⊆ M , ϕ(x; y) ∈ L and b ∈ M . Then any (M ′, A′) +� (M,A) has an
honest definition of ϕ(x; b) over A.

Proof. Apply Lemma 3.53 setting

L′ := LP U := (M ′, A′) p := {P} ϕ := ϕ c := b A := A

Since θ ∈ L(p(U)) = L(P (M ′, A′)) = L(A′), we can let θ be the required
honest definition.

For a version of the previous theorem that does not mention any (M ′, A′)
see [Sim15, Remark 3.14].

13It is a closed subspace of the space of L′-types Sx(U).
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Quantifier Elimination for Shelah’s Expansion

Honest definitions “stay in the M -closure”:

Proposition 3.55 ([Sim15, Proposition 3.21], T nip). All externally defin-
able D ⊆Mk have an external definition ϕ(x; b) with the following property:
if θ(x; a) ∈ L(M) is such that D ⊆ θ(M ; a), then U � ϕ(x; b)→ θ(x; a).

Proof. Let N +� M , consider the pair (N,M) and let ϕ0(x; b0) ∈ L(N) be
such that ϕ0(M ; b0) = D. Let ϕ(x; b) be an honest definition of ϕ0(x; b0)
in some (N ′,M ′) +� (N,M). If D ⊆ θ(M ; a) then we have (N,M) �
∀x ∈ P ϕ0(x; b0) → θ(x; a). Since by honesty ϕ(M ′; b) ⊆ ϕ0(M ′; b0), then
ϕ(M ′; b) ⊆ θ(M ′; a). Since M ′ is a model this means � ∀x ϕ(x; b)→ θ(x; a).

Theorem 3.56 ( [Sim15, Proposition 3.23], T nip). If M is nip, then
Th(M ext) has quantifier elimination.

Proof. By induction on formulas, all we have to show is that if D ⊆Mk0+k1

is externally definable and π : Mk0+k1 → Mk0 is the usual projection, then
π(D) is still externally definable.

Let ϕ(x0, x1; b) be an external definition ofD as given by Proposition 3.55
with b ∈M ′ +�M , use M ′ to build Lext and set ψ(x0; b) = ∃x1 ϕ(x0, x1; b).
Since π(D) ≡ ∃x1 ∈ M ϕ(x0, x1; b), we have π(D) ⊆ ψ(M ; b). If we prove
the other inclusion, we can conclude that

M ext � ∃x1Rϕ(x0,x1;b)(x0, x1)↔ Rψ(x0;b)(x0)

Let a ∈ Mk0 \ π(D) and set ζ(x0, x1; a) = x0 6= a. Since π(D) ⊆ ζ(M),
by choice of ϕ we have � ϕ(x0, x1; b) → ζ(x0, x1; a). But then � ψ(x0; b) →
x0 6= a, and so ψ(M ; b) ⊆ π(D).

Corollary 3.57 ([Sim15, Corollary 3.24]). If M is nip, then M ext is nip
too.

Proof. By quantifier elimination and the fact that R commutes with con-
nectives14 it suffices to check formulas of the form Rϕ(x;y)(x; y). Since every
L(M ext)-indiscernible sequence is L(M)-indiscernible, Rϕ(x;y)(x; y) has at
most the same alternation rank as ϕ(x; y).

Corollary 3.58. If M is nip, then M extext can be identified with M ext. In
other words, all externally definable subsets of M ext are definable.

Proof. Let N0
+� M and use N0 to build the language Lext; then let

Ñ +� M ext. By Theorem 3.56, every Lext formula is equivalent to some
14Or by Lemma 3.24.
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Rϕ(x;y,b)(x; y) for some ϕ(x; y, z) ∈ L and b ∈ N0. Let a ∈ Ñ and con-
sider Rϕ(x;y,b)(x; a). By saturation, we can find inside N0 some (a0, b0)
with the same L-type over M as (a, b). Then for all m ∈ M we have
� ϕ(m; a, b) ↔ ϕ(m; a0, b0). Since M and M ext share the same underlying
set, writing m ∈ M or m ∈ M ext does not make any difference. Therefore
for all m ∈ M ext we have Ñ � Rϕ(x;y,b)(m; a) ↔ Rϕ(x;a0,b0)(m), and the
externally definable set Rϕ(x;y,b)(M

ext; a) can be defined inside M ext by the
Lext-formula Rϕ(x;a0,b0)(x).

3.5 The Type-Connected Component

This section revolves around two main results concerning the behaviour of
type-definable, bounded-index subgroups of a definable group in nip theories.
The first one, Theorem 3.64, ensures that G00

A does not depend on A, while
in Corollary 3.78 we will prove that passing fromM toM ext does not change
G00.

Existence

We will now prove that in nip theories G00 exists15. Nonetheless, our
first lemmas are still valid in any theory.

Lemma 3.59. If A is small and X is a type-definable set invariant under
Aut(U/A), then it is A-type-definable.

Proof. We want to write X as the intersection of a family of L(A)-definable
sets. The natural candidate for such a family is clearly Φ = {ϕ(x) ∈ L(A) |
X ⊆ [ϕ(x)]}. Of course X ⊆

⋂
Φ; suppose that the other inclusion does not

hold, and let b witness it. If we find c ∈ X such that c ≡A b then we are
done: sending c to b by an element of Aut(U/A) contradicts the fact that X
should be fixed set-wise by such an automorphism. Suppose there is no such
c; then by compactness, since X is type-definable, there is ψ(x) ∈ tp(b/A)
such that X ⊆ [¬ψ(x)]. Then ¬ψ ∈ Φ, so � ¬ψ(b), a contradiction.

Notation 3.60. G will indicate an ∅-definable group.

Lemma 3.61 ([BOPP05, Remark 1.4]). Every type-definable subgroup H <
G can be written as

⋂
i∈I Hi, where each Hi is a subgroup of G that can be

type-defined by countably many formulas.

Proof. Let H =
⋂
j∈J [ϕj(x)], where every ϕj concentrates on G. Suppose

without loss of generality that � ϕj(x) → ϕj(x
−1) and fix j0 ∈ J . Itera-

tively, for all k ∈ ω find by compactness jk+1 ∈ J such that � (ϕjk+1
(x) ∧

ϕjk+1
(y))→ ϕjk(x · y), and let Hi0 =

⋂
k∈ω[ϕjk ], which is clearly a subgroup

15See Definition 1.81.
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of G. Now let jω ∈ J \ {jk | k < ω} and repeat the construction to find
Hi1 . After less than |J |+ steps the process ends and produces the required
subgroups Hi.

This is the crucial result:

Proposition 3.62 ([HPP08, Proposition 6.1]). Suppose that ā = (a` | ` <
ω) ∈ U and H = Σ(x; ā), where Σ(x; ȳ) = {ϕn(x; ȳ) | n < ω} ⊆ L. If H is a
bounded-index subgroup of G, and each ϕn(x; ȳ) is nip, then its orbit under
the action of Aut(U/∅) is bounded.

Proof. Observe that, since Σ is countable, up to conjunctions we can assume
ϕn → ϕn−1. Suppose that H has unbounded orbit. The proof proceeds in
four steps, corresponding to paragraphs.

By hypothesis we can find unboundedly many distinct Σ(x; b̄i). Then,
by Theorem A.49, we can find an indiscernible sequence (āi | i < ω) such
that the Hi = Σ(x; āi) are pairwise distinct.

Suppose that for some i0 < ω we have Hi0 ⊇
⋂
j 6=i0 Hj . Then, using

the Standard Lemma, we can replace āi0 with an indiscernible sequence of
unbounded length between āi0−1 and āi0+1 in a way that the resulting long
sequence is still A-indiscernible and with the same Ehrenfeucht-Mostowski
type. Since the Hi were pairwise distinct, this would produce too many
subgroups K ⊇

⋂
j 6=i0 Hj , contradicting the fact that the latter has bounded

index, since it is a bounded intersection of bounded index subgroups. We
can therefore choose, for each i < ω, some ci ∈

⋂
j 6=iHj \Hi.

We now use the Standard Lemma and automorphisms to extend (āi | i <
ω) to an indiscernible sequence of sufficiently big length and choose ci ∈ Hi

as before. This allows us to apply Theorem A.49 again and assume that
((ci, āi) | i < ω) is indiscernible.

Now we want to show that some ϕn(x; y) has the ip, contradicting the
hypotheses. We will do this by finding some n ∈ ω and, for each w ∈Pfin(ω),
some dw such that ¬ϕn(dw; āi) ⇐⇒ i ∈ w. If we take dw =

∏
i∈w ci, then

if i /∈ w we have dw ∈ Hi, so � ϕn(dw; āi) for all n. Thus we are left to
find an n for which the other implication holds. In order for such an n
to work, it is sufficient that for all x0, x1 ∈ Hi we have � ¬ϕn(x0cix1; āi).
Since x0cix1 /∈ Hi and each ϕk implies the previous ones16, by compactness
there is some ni such that x0 ∈ Hi ∧ x1 ∈ Hi ` ¬ϕni(x0cix1; āi). Since
((ci, āi) | i < ω) is indiscernible, ni does not depend on i.

Remark 3.63. The nip assumption was only used in the last step, when we
got an absurd in showing that one of the ϕn has the independence property.
Therefore, as long as they are nip, the result is valid even if T is independent.
This will be useful later on in this section.

16Otherwise we would only have had
∨
i<` ¬ϕni .
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Theorem 3.64. In nip theories, G00 exists and has index bounded by 2|T |.

Proof. Given a small A, we have to show that, G00
A = G00

∅ . Clearly ⊆
always holds. Write G00

A =
⋂
i∈IA Hi as in Lemma 3.61. Since each Hi has

bounded index, inasmuch it has G00
A as a subgroup, by Proposition 3.62, it

has bounded orbit under Aut(U/∅). Let λ be a common bound for |Orb(Hi)|
as i ∈ IA varies, and write, for each Hi, Orb(Hi) = {fi,j(Hi) | j < λ}. Now
consider

KA =
⋂
j<λ
i∈IA

fi,j(Hi)

Since KA is trivially invariant under Aut(U/∅), by Lemma 3.59 it is ∅-type-
definable, and it has bounded index because it is a bounded17 intersection
of subgroups of bounded index. This means that we have18

G00
∅ ⊇ G

00
A ⊇ KA ⊇ G00

∅

and this proves that for all small A we have G00
∅ = G00

A . The bound on the
index follows from Proposition 2.54 and Löwenheim-Skolem.

Another name for G00 is the infinitesimal subgroup. For an explanation,
see [HPP08, right before Proposition 6.2]. It was proven in [BOPP05] that if
G is ∅-definable in an o-minimal theory, then G/G00 is a real Lie group. This
was part of Pillay’s conjectures, now theorems, relating o-minimal structures
and Lie groups. See also [HPP08, Theorem 8.1].

Passing to Shelah’s Expansion

If M is nip, by Theorem 3.56 we can identify Sext
G (M) with SG(M ext)

and carry out the Ellis group construction directly inside SG(M ext). Nev-
ertheless, dealing with externally definable sets still introduces some degree
of complication. Hence we would be happy to assume from the start that
all externally definable subsets are already definable. This can be done by
replacing M with M ext, and by Corollary 3.58 all the results from Theo-
rem 1.75 to Theorem 1.79 hold setting M := M ext :=N . Moreover, the
nip hypothesis transfers from M to M ext by Corollary 3.57. This settles the
problem, at least for what concerns one of the two objects we want to com-
pare, namely the Ellis group. Alas, since in Lext there are more predicate
symbols, hence potentially more bounded index ∅-type-definable subgroups
to intersect, we have two questions to answer: if Ũ is a monster forM ext and
U = Ũ � L is the corresponding monster forM , is G00(Ũ) = G00(U)? If this is
the case, is the logic topology on G/G00 unchanged? In [CPS14, Sections 4.2
and 4.3] it was shown that the answer to both questions is yes, and we are
now going to explain why.

17|IA| is bounded by (|A|+ ℵ0)ℵ0 .
18G00

A ⊇ KA is simply due to the fact that we are taking a bigger intersection.
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Notation 3.65. Until the end of Section 3.5 we assume G(U) = U in or-
der to simplify the notation. Moreover, “saturated” and “κ-saturated” will
implicitly mean also “strongly homogeneous” and “κ-strongly homogeneous”.

Hereditary Subgroups

The main proof will involve a certain inductive construction that must
stop by nip. This implies that we will need to prove some lemmas to set up
said construction, and these will be quite technical. To help the reader see
where this is going, we anticipate that the intended use of the following will
be when N +�M is used to define Lext.

Definition 3.66. Work inside an elementary pair (N,M). Let Σ(x) be a
disjunction of complete L-types over some A ⊆ N , each consistent with P (x).
We call Σ(x) an hereditary subgroup of P (x) iff for all (N ′,M ′) � (N,M)
we have that Σ(M ′) is a subgroup of M ′. An hereditary subgroup is of
hereditarily bounded index iff every time (N ′,M ′) � (N,M) is κ-saturated
and not κ+-saturated then [M ′ : Σ(M ′)] < κ.

At least in the cases that will be relevant to us, these two notions have
syntactic characterizations that allow to avoid checking all the (N ′,M ′) �
(N,M). This is the content of the next lemmas.

Lemma 3.67 ([CPS14, Lemma 4.7]). Work inside an elementary pair (N,M).
Let Σ(x) be a disjunction of complete L-types over some A ⊆ N , each con-
sistent with P (x). Consider the following two statements:

1. The following two conditions hold:

(a) If p(x) ∈ Σ(x) then p(x−1) ∈ Σ(x).

(b) For all p(x), q(x) ∈ Σ(x) and all sequences Φ = (ϕr(x) | r ∈ Σ)
of formulas ϕr(x) ∈ r(x) there are ψp ∈ p, ψq ∈ q, n ∈ ω and, for
i < n, some ri ∈ Σ, such that(

ψp(x) ∧ P (x) ∧ ψq(y) ∧ P (y)
)
→
∨
i<n

ϕri(x · y) ∧ P (x · y)

2. Σ(M) is a subgroup of M .

Then 1⇒ 2 always holds. If moreover (N,M) is |A|+-saturated, then 2⇒ 1
holds too.

Proof. 1⇒ 2 Let a, b � Σ(x) ∧ P (x) and call p(x) = tp(a/A), q(x) =
tp(b/A). Since P (N,M) = M is a group and � P (a)∧P (b), then by (1a) we
have a−1, b−1 � Σ ∧ P . Similarly, � P (a · b). If a · b /∈ Σ, then for all r ∈ Σ
there is some ϕr ∈ r such that � ¬ϕr(a · b). This contradicts (1b).
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2⇒ 1 If Σ(M) is a group, for any m,n ∈ Σ(M) we have that for
p = tp(m/A) and q = tp(n/A) both (1a) and (1b) hold. Therefore, the
only possible obstruction is that some p ∈ Σ is not realized in M . Since
p is consistent with P , this is the same as saying that it is not realized in
(N,M), and by |A|+-saturation of the latter this cannot happen.

Lemma 3.68 ([CPS14, Lemma 4.8]). Let (N,M) be κ-saturated and A ⊆ N
be such that |A|≪ κ. Let Σ(x) be a disjunction of complete L-types over
A, each consistent with P (x). Suppose that Σ(M) is a subgroup ofM . Then
the following are equivalent:

1. For every sequence Φ = (ϕr | r ∈ Σ) of formulas ϕr ∈ r, there are
n,m ∈ ω and, for k < n, some ϕk ∈ Φ, such that if (ai)i<m ∈ M
are pairwise distinct, then there are i < j < m such that a−1

i aj �∨
k<n ϕk(x).

2. [M : Σ(M)] < κ.

Proof. 1⇒ 2 Fix λ ≥ κ. Since [M : Σ(M)] is unbounded, we can find
ā = (ai)i<λ in M such that for all i < j < λ we have a−1

i aj /∈ Σ(M). Hence
for all r ∈ Σ there is ϕi,jr ∈ r such that a−1

i aj � ¬ϕi,jr . Colour {i, j} ∈ [λ]2

with Φi,j : r 7→ ϕi,jr . Taking λ big enough, by Erdös-Rado19, there is an
infinite I ⊆ λ where these maps are constantly Φ = (ϕr | r ∈ Σ). Then, for
all i, j ∈ I, we have a−1

i aj �
∧
r∈Σ ¬ϕr(x), contradicting 1.

2⇒ 1 Suppose that [M : Σ(M)] = λ � κ, but 1 does not hold for
Φ. By compactness and saturation, we can find (ai | i < λ+) inside N such
that a−1

i aj �
∧
r∈Σ ¬ϕr(x), and this means that [M : Σ(M)] ≥ λ+.

Notice how the previous lemma allows to speak of “bounded index” with-
out mentioning any bound, analogously to Proposition 2.39.

Corollary 3.69 ([CPS14, Remark 4.9]). If (N,M) is sufficiently saturated20,
Σ(x) is an hereditary subgroup of P (x) of hereditarily bounded index if and
only if satisfies point 1 of both the previous lemmas.

Proof. After possibly replacing M with P (N,M) in the statements of such
points, they hold in (N,M) if and only if they hold in all (N ′,M ′) � (N,M).

Since we are going to do an inductive construction, we will need these
notions to be preserved under unions of elementary chains. This will require
some hypotheses.

Notation 3.70. L∀,bddP = {∀z ∈ P ϕ(z; ȳ) | ϕ ∈ L}
19Theorem A.1
20This condition can be removed if one also removes “of hereditarily bounded index”

and replaces “both the previous lemmas” with “Lemma 3.67”.
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Lemma 3.71 ([CPS14, Lemma 4.10]). Let Σ(x; ȳ) a disjunction of complete
L-types, each consistent with P (x). Then the following facts hold:

1. If (N0,M0), (N1,M1) are saturated elementary pairs, b̄i ∈ Ni and
tp(b̄0/L

∀,bdd
P ) = tp(b̄1/L

∀,bdd
P ), then Σ(x; b̄0) is an hereditary subgroup

of P (x) of hereditarily bounded index in (N0,M0) if and only if the
same is true for Σ(x; b̄1) in (N1,M1).

2. Suppose that (Ni | i < κ) and (Mi | i < κ) are elementary chains of
L-structures, that (Ni,Mi) is an elementary pair for all i < κ, and let
N =

⋃
i<κNi and M =

⋃
i<κMi. If b̄ ∈ N0 is such that tp(b̄/L∀,bddP )

is the same in all the (Ni,Mi), then it is still unchanged in (N,M).

3. As a special case, if Σ(x; b̄) is an hereditary subgroup of P (x) of hered-
itarily bounded index in (N0,M0), then the same is true in (N,M).

Proof. Notice that in Lemma 3.67 we can safely remove “∧P (x·y)”, because it
is automatically implied by P (x)∧P (y). A direct inspection then shows that
the relevant formulas in point 1 of the previous lemmas are all (equivalent
to some formula in) L∀,bddP , and this proves the first part.

In order to prove the second one, let ψ(ȳ) ≡ ∀z ∈ P ϕ(z; ȳ) and
suppose that (N,M) � ¬ψ(b), i.e. for some a ∈ M = P (N) we have
(N,M) � ¬ϕ(a; b̄). Then there is i < κ such that a ∈ P (Ni) = Mi and
by L-elementarity of (Mi)i<κ for all i < k we have (Ni,Mi) � ¬ψ(b). On the
other hand, if (N,M) � ψ(b), again by L-elementarity, for all i < κ we have
(Ni,Mi) � ψ(b).

The third part follows trivially from the previous two.

Type-Connected Components of Pairs

Definition 3.72. For (N,M) a saturated pair21 of models of a nip theory22

and L ⊆ L′ ⊆ LP , we define G00
L′(B)(N,M) to be the intersection of all

the bounded index subgroups of M of the form Σ(M ;B), with Σ a partial
L′-type over B, a small tuple from N . Then we define G00

L′(N,M) as the
intersection of all the former objects as B varies among small tuples of N .

Remark 3.73. The notation G00
L′(N,M) may suggest that it is a subgroup

of N , with possibly points outside M . Actually it is a subgroup of M by
definition. The role of N is, morally speaking23, to provide parameters for
external definitions. In order to have a clearer picture, the reader may want
to read in advance the statements of Theorem 3.77 and Corollary 3.78 and
the proof of the latter.

21Recall that, by monster conventions, it is automatically an elementary pair.
22We are speaking of M and of N separately. See Remark 3.49.
23In the sense that we have not stated this “officially” yet, but our interest is exactly in

the case where N is used to build Lext.
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To show that G00
L′(N,M) exists we need an analogue of Lemma 3.59:

Lemma 3.74. Let (N,M) be a saturated pair, Θ(x; ȳ) a partial type and b̄
a (possibly infinite) small tuple from N . If Θ(M ; b̄) is AutL′(M/∅)-invariant,
then it is definable by a partial L′-type over ∅.

Proof. We want to write Θ(M ; b̄) as the intersection of a family of L′(∅)-
definable sets with P (x). The natural candidate for such a family is clearly
Φ = {ϕ(x) ∈ L′(∅) | Θ(x; b̄)∧P (x)→ ϕ(x)}. Of course Θ(M ; b̄) ⊆ P ∩

⋂
Φ;

suppose the other inclusion does not hold and, by saturation, let ã ∈ M
witness it. If we find a ∈ Θ(M ; b̄) such that a ≡L′(∅) ã then we are done:
sending a to ã by an element of Aut(M/∅) contradicts the fact that Θ(M ; b̄)
should be fixed set-wise by such an automorphism. Suppose there is no
such a; then by compactness, there is ψ(x) ∈ tp(ã/A) such that Θ(M ; b̄) ⊆
[¬ψ(x)]. Then ¬ψ ∈ Φ, so � ¬ψ(ã), a contradiction.

Proposition 3.75 ([CPS14, Proposition 4.13], T nip). If (N,M) is a satu-
rated pair and B ⊆ N is small, then G00

LP (∅)(N,M) ⊆ G00
L(B)(N,M), and as

this is true for all small B ⊆ N , the same holds for G00
L (N,M). In particular

the index of the latter is bounded. Moreover, there is a bound on it that
only depends on |L|.

Proof. Even if ThLP (N,M) may not be nip, formulas of the form ϕ(x; y, b)∧
P (x) ∧ P (y), with ϕ(x; y, z) ∈ L, are; this is because they correspond to
externally definable subsets of M and Corollary 3.57 applies. As we stressed
in Remark 3.63, Proposition 3.62 still applies. Taking conjugates of suitable
countable subtypes as given by Lemma 3.61 we have that G00

L(B)(N,M) is
both of bounded index and invariant under LP -automorphisms. Then, by
the previous lemma, it is LP (∅)-type-definable and we have the required
inclusion.

As the index of G00
L (N,M) is bounded by the one of G00

LP (∅)(N,M), it
is sufficient to provide a bound for it. Since G00

LP (∅) is a partial LP -type
over ∅, it is defined by at most |LP | = |L| formulas. Suppose that [M :
G00
LP (∅)(N,M)] ≥ λ. Let r range among complete LP -types concentrating on

G00
LP (∅) and colour {i, j} ∈ [λ]2 with Φi,j : r 7→ ϕi,jr as in Lemma 3.68. In this

case, there are only |L| formulas, hence at most 2|L| types r, hence at most
|L|2

|L|
= 22|L| such Φ. This means that Erdös-Rado is triggered as soon as

λ ≥ (22|L|)+, and yields [M : G00
LP (∅)(N,M)] ≤ 22|L| .

Corollary 3.76. For some smallB ⊆ N we haveG00
L (N,M) = G00

L(B)(N,M).

Proof. Otherwise we would have too many subgroups H such that G ⊇ H ⊇
G00
L (N,M), contradicting fact that the latter has bounded index.

We are finally ready for the crucial result.
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Theorem 3.77 ([CPS14, Theorem 4.14], T nip). Let (N,M) be a saturated
pair. Then G00(M) = G00

L (N,M).

Before proving it, let us see its consequences.

Corollary 3.78 ([CPS14, Corollary 4.16], T nip). Let Ũ be a monster model
for Th(M ext), and let U = Ũ � L be its reduct to the original language. Then
G00(Ũ) = G00(U).

Proof. Use some N +� M to define Lext and let (N ′, Ũ) be a monster for
(N,M). Then G00

L (N ′,U) is exactly G00(Ũ), and by Theorem 3.77 it equals
G00(U).

Remark 3.79. Again by the fact that two compact Hausdorff topologies
are either incomparable or identical, the logic topology on G/G00 evaluated
with respect to L is the same as the logic topology evaluated with respect
to Lext.

Proof of Theorem 3.77. The strategy of proof is to fix some λ ≫ [M :
G00
L (N,M)] and set up an iterative construction that, if carried out for λ+1

steps, contradicts Proposition 3.7524. When this happens, we will have an
Mα that will allow us to prove the inclusion G00(M) ⊆ G00

L (N,M). The
other one is trivial.

The construction goes as follows. For all stages α ≤ λ, find models Mα,
Nα, a partial L-type Σα(x; ȳα) and a |ȳα|-tuple b̄α ∈ Nα with the following
properties:

1. M0 = M , N0 = N , and Σ0(M0; b̄0) = G00
L (N,M).

2. (Mβ | β ≤ α) and (Nβ | β ≤ α) are two L-elementary chains.

3. (Nα,Mα) is a sufficiently saturated elementary pair.

4. Σα(x; ȳα) is a partial L-type of small size with respect to (Nα,Mα).

5. For all γ ≥ α, tp((b̄i)i≤α/L
∀,bdd
P ) is the same in Mγ as in Mα.

6. Σα(x; b̄α) is an hereditary subgroup of P (x) of hereditarily bounded
index in (Nα,Mα).

7. For all j < i ≤ α we have the strict inclusion Σi(Mα; b̄i) ( Σj(Mα; b̄j).

As anticipated, if this construction can be done all the way up to stage λ,
then in (Nλ,Mλ) we have the chain of subgroups (Σ(Mλ; b̄i) | i < λ), which
are of bounded index and defined by small partial types. Therefore they all
include G00

L (Nλ,Mλ), contradicting Proposition 3.75 as anticipated25.
24This is where the nip stops the construction.
25Here we use the fact that the bound does not depend on N , M .
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Claim. The first stage α∗ that cannot be completed is a successor.

Proof of the Claim. Limit stages can always be carried out in the following
way: if α∗ is a limit, take as (N∗α,M

∗
α) any sufficiently saturated extension of

the elementary pair (
⋃
α<α∗ Nα,

⋃
α<α∗Mα) and then set b̄α∗ =

⋃
α<α∗ b̄α

and Σα∗(x; b̄α∗) =
⋃
α<α∗ Σα(x; b̄α). Then, by inductive hypothesis and

Lemma 3.71, these objects still satisfy the requirements of the construc-
tion.

claim

Write α∗ = α + 1 and let K � Nα � Mα be very saturated. Then
define F as the family of partial types in L(K) defining in (K,Mα) an
hereditary subgroup of Mα of hereditarily bounded index, and let26 Λ(x) =⋃

Σ(x)∈F Σ(x). We then have

Λ(Mα) ⊆ G00
L (Nα,Mα) ⊆ Σα(Mα; b̄α)

where the first inclusion is trivial by definition of Λ and the second one
is again Lemma 3.71, which can be applied since tp((b̄i)i≤α)/L∀,bddP ), only
caring about what happens in Mα, is the same in (K,Mα) as in (Nα,Mα).

Claim. Λ(Mα) = G00
L (Nα,Mα). Moreover, it is AutL(Mα/∅)-invariant.

Proof of the Claim. We show that if the inclusion is strict, then the con-
struction could have continued after α. Take as (Nα+1,Mα+1) a sufficiently
saturated elementary extension of (K,Mα). Since Λ(x) is defined as the
intersection of at most 2|M |α hereditary subgroups of hereditarily bounded
index, it is small with respect to (Nα+1,Mα+1); we then take as b̄α+1 the
parameters involved in defining Λ(x) and write it as Σα+1(x; b̄α+1). Again
by Lemma 3.71, these new objects still satisfy the hypotheses of the con-
struction.

Now let f ∈ AutL(Mα/∅). Since K is saturated27 enough, we can extend
it to some f̃ ∈ AutLP (K,Mα/∅). But now f̃(Λ(Mα)) = Λ(Mα) by definition
of Λ(x).

claim

By the latest Claim and Lemma 3.74 G00
L (Nα,Mα) is L-type-definable

over Mα. We can therefore start the following chain of inclusions:

G00(Mα) ⊆ G00
L (Nα,Mα) ⊆ Σα(Mα; b̄α) ⊆ Σ0(Mα; b̄0)

Since G00(Mα) is definable over ∅ by Theorem 3.64, the inclusion G00(−) ⊆
Σ0(−; b̄0) is still valid withM0 in place ofMα. Since Σ0(M0; b̄0) = G00

L (N,M),

26The union is intended at the level of formulas; contravariantly, it corresponds to the
intersection of the defined subgroups.

27Recall that we stipulated in Notation 3.65 that “saturated” means “saturated and
strongly homogeneous”.
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the proof is completed, but there is more: since, unless α = 0, by re-
quirement 7 the last inclusion in the chain above should be strict, we have
that α∗ = 1 and the construction cannot even start, otherwise G00(M0) ⊆
Σ0(M0; b̄0) = G00

L (N,M) would be strict too.

3.6 Invariant Heirs

The aim of this section is to show that in nip theories types in S(M)
have global heirs which are M -non-forking, hence M -invariant by nip. This
will follow from a special case of the so-called Broom Lemma, which was
proven in [CK12] for the broader class of ntp2 theories. Since we only need
it in the nip case we follow the proof of [Sim15] and, in order to simplify
some details, do not work in full generality.

The Tree Property of The Second Kind

The definition of ntp2 is in the same spirit of the definition of nip: we
look at a partitioned formula as a uniformly definable family, and we isolate
a “wild” combinatorial property of this family; then we ask the formula to
omit it in order to be “tame”.

Definition 3.80. A partitioned formula ϕ(x; y) has the tree property of
the second kind, or tp2, iff there is k ∈ ω and an infinite matrix of |y|-
tuples (bti | i < ω, t < ω) such that for all the rows t the partial type
{ϕ(x; bti) | i < ω)} is k-inconsistent, but every time we choose an element
from each row with some η : ω → ω, the partial type {ϕ(x; btη(t)) | t < ω} is
consistent. A formula has/is ntp2 iff it does not have tp2. A theory is ntp2

iff all of its formulas are.

Fact 3.81. If ϕ(x; y) has tp2 with k = 2, then it has ip.

Proof. For each X ∈ P(ω), let ηX be its characteristic function and let
aX realize {ϕ(x; btη(t)) | t < ω}, which is consistent by hypothesis. In
other words, concentrate the attention on the η with values on the first
two columns. Then, by 2-inconsistency of the rows, for any t the only bti
satisfying ϕ(aX ; y) is the one with i = η(t). Therefore, looking at the second
column i = 1, we discover that � ϕ(aX ; bt1) ⇐⇒ ηX(t) = 1 ⇐⇒ t ∈ X.

It can be proven (see for example [She90, Chapter 4, § III, Theorem 7.7])
that in order to show that a theory is ntp2 it suffices to show the failure of
tp2 in the special case above, i.e. where k = 2. We will not use Fact 3.81;
instead we will arrive at the result that nip theories are ntp2 via a small
detour in the realm of mutually indiscernible sequences.
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Mutually Indiscernible Sequences

Definition 3.82. The sequences28 in a family (It | t ∈ X) are calledmutually
indiscernible over A iff each It is A ∪ {Is | s ∈ X \ {t}}-indiscernible.

We now want to prove that in nip theories, for any b ∈ U, a sufficiently
large family of A-mutually indiscernible sequences always has a subfamily
which is mutually indiscernible over Ab, because this will be shown to fail
in a tp2 theory. This will require some preliminary results. The first one
is that, in the same fashion as we “turn” any sequence to an indiscernible
one with the Standard Lemma, it is possible to build families of mutually
indiscernible sequences with prescribed Ehrenfeucht-Mostowski behaviour.

Construction 3.83. Let (It | t < α) be a family of sequences. Inductively
define At = A ∪ {I ′s | s < t} ∪ {Is | s > t} and, by the Standard Lemma,
replace It with an At-indiscernible I ′t � em(It/At).

Lemma 3.84 ([Sim15, Lemma 4.2]). The sequences (I ′t | t < α) of Con-
struction 3.83 are mutually indiscernible over A.

Proof. The only thing that could go wrong is that a stage messes up with
the previous ones. In other words, we have to make sure that the sequence
I ′s built at stage s will remain indiscernible even with respect to the I ′t that
we will build later for t > s. We claim that this automatically happens.

If not, let t be the first stage for which there is some s < t such that
I ′s is not indiscernible with respect to a formula ϕ(x) with parameters in
A ∪ {I ′r | r < t, r 6= s} ∪ I ′t. Make the parameters from I ′t explicit, i.e.
write ϕ(x) = ϕ(x; b) where b ∈ I ′t and ϕ(x; y) has hidden parameters from
A ∪ {I ′r | r < t, r 6= s}. Let ı̄ = i0 < . . . < in−1 and ̄ = j0 < . . . < jn−1

be such that � ψ(b) = ϕ(aı̄; b)4 ϕ(ā; b), with aı̄, ā ∈ I ′s. Notice that by
inductive hypothesis b cannot be the empty tuple, and that it can be replaced
with an element of It: if for all b̃ ∈ It we had � ¬ψ(b̃), the same would be true
for b, because then ¬ψ(y) ∈ em(It/A∪{I ′r | r < t}) ⊆ em(I ′t/A∪{I ′r | r < t}).
Inductively, we can replace all parameters in ϕ(x0)4 ϕ(x1) living in some
I ′r with parameters in Ir by exploiting the fact that I ′r � em(Ir/Ar). After
at most min{|t− s|, |b|} steps this will violate As-indiscernibility of I ′s.

We first need the following consequence of the existence of honest defini-
tions.

Lemma 3.85 ([Sim15, Corollary 3.18], T nip). If P ⊆M , b ∈M is a finite
tuple and (M,P ) ≺+ (M ′, P ′), there is P0 ⊆ P ′ of size at most |T | such that
for all a0, a1 ∈ P we have a0 ≡P0 a1 ⇒ a0 ≡b a1.

28Not necessarily of the same length.
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Proof. For all ϕ(x; y) ∈ L choose an honest definition ψϕ(x; dϕ) of ϕ(x; b) in-
side (M ′, P ′). This implies that for all a ∈ A we have � ϕ(a; b)↔ ψϕ(a; dϕ).
Let P0 = {dϕ,b | ϕ(x; y) ∈ L} and notice that it has the required cardinal-
ity.

Proposition 3.86 ([Sim15, Proposition 4.8], T nip). Let (It | t ∈ X) be
family of sequences of n-tuples of M , mutually indiscernible over A, and let
b ∈ M be a finite tuple. There is Xb ⊆ X such that |Xb| ≤ |T | and the
(It | t ∈ X \Xb) are mutually indiscernible sequences over Ab.

Proof. Up to passing to M eq and using Theorem 3.32 we can assume that
n = 1, i.e. that each It = (ati | i ∈ Jt) is a sequence of single elements. Let
L′ = L ∪ {A(x), P (x), R(x, y)} and expand M to an L′-structure with the
following interpretations

A(M) = A P (M) = A ∪ {ati | t ∈ X, i ∈ Jt}
R(M2) = {(ati, atj) | t ∈ X, i, j ∈ Jt, i < j}

Take some (M ′, A′, P ′, R′) +� (M,A,P,R). By L′-elementarity, there are
X ′ ⊇ X and for each t ∈ X ′ some J ′t such that

• P ′ = P (M ′) = A′ ∪ {ati | t ∈ X ′, i ∈ J ′t};

• if t ∈ X then Jt ⊆ J ′t;

• if I ′t = (ati | i ∈ J ′t) then the family (I ′t | t ∈ X ′) is made of mutually
indiscernible sequences over A′.

Use Lemma 3.85 to find P0 ⊆ P ′ such that |P0| ≤ |T | and a0 ≡P0 a1 ⇒
a0 ≡b a1 holds for all a0, a1 ∈ P (M), and discard the t ∈ X involved in P0,
i.e. let Xb = {t ∈ X | ∃i ∈ Jt ati ∈ P0}. Notice that |Xb| ≤ |P0| ≤ |T |.

To conclude, let ϕ(x; y0, y1, y2) ∈ L, a ∈ A, t0 ∈ X \Xb, d a tuple from
{ati | t ∈ X\(Xb∪t0), i ∈ Jt} and fix at0ı̄ , a

t0
̄ for ı̄ = i0 < . . . < in and ̄ = j0 <

. . . < jn. The hypotheses on (It | t ∈ X) imply that (a, at0ı̄ , d) and (a, at0̄ , d)
have the same type over P0. Therefore, since they live in P , they have the
same type over b and this proves � ϕ(at0ı̄ ; a, d, b)↔ ϕ(at0̄ ; a, d, b).

We invite the reader to notice that results such as Proposition 3.86, Corol-
lary 3.58, Theorem 3.34, or Corollary 3.22 all have a similar flavour: in nip
theories, up to discarding a small amount (less than |T |+ sequences, an initial
segment. . . ) of objects, some constructions carry more information than ex-
pected (“more” indiscernibility, “double externals” already externals, strong
Borel-definability, etc.). Also, compare Proposition 3.86 with Lemma 3.29.
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The Broom Lemma for NIP Theories

Proposition 3.87 ([Sim15, Proposition 5.31]). Nip theories are ntp2.

Proof. Let T have tp2. Since Ehrenfeucht-Mostowski types are aware of k-
inconsistency, by Lemma 3.84 and compactness we can find a matrix made
of mutually ∅-indiscernible sequences that witnesses tp2 apart from having
|T |+ rows instead of ω. Let b realize the partial type corresponding to
the first column, namely {ϕ(x; bt0) | t < |T |+}. Then no row t can be b-
indiscernible, because this would contradict the fact that {ϕ(x; bti) | i < ω}
is k-inconsistent. Therefore Proposition 3.86 fails for b, and T cannot be
nip.

In order to explore the consequences of the previous fact, we need a
preliminary result.

Lemma 3.88 ([Sim15, Lemma 5.34], T any theory). If b̄ = (bi | i < ω) is
A-indiscernible and p = tp(b̄/A) does not fork over A, then there is a global
extension of p that is the type of some U-indiscernible sequence and does not
fork over A.

Proof. Let c̄ = (ci | i < ω) realize an A-non-forking global extension of p.
Clearly c̄ need not be U-indiscernible, but it suffices to use the Standard
Lemma to find a U-indiscernible d̄ � em(c̄/U) ⊇ em(c̄/A) = p. To show
that q = tp(d̄/U) does not fork over A, notice that if q ` ψ(~x) then there is
~c ⊆ c̄ such that ψ(~c), otherwise we would have had q ` ¬ψ by definition of
Ehrenfeucht-Mostowski type. Therefore ψ cannot fork over A.

Lemma 3.89 ([Sim15, Lemma 5.35], T nip). Dividing over extension bases
can be witnessed by Morley sequences. More precisely, let A be an extension
base and let ϕ(x; b) divide over A. Then there are M ⊇ A, p ∈ Sinv(U,M)
and a Morley sequence c̄ of p over M such that c0 = b and {ϕ(x; ci) | i < ω}
is inconsistent.

Proof. Let b̄ witness A-dividing. Since A is an extension base, tp(b̄/A) does
not fork over A, and by the previous lemma it has a global A-non-forking
extension q which is the type of a U-indiscernible sequence. Since q does not
fork over A, it is M -invariant for any M ⊇ A by Corollary 3.37. Let (c̄t |
t < ω) be a Morley sequence of q over M . For each t < ω, since c̄t ≡A b̄, the
partial type {ϕ(x; cti) | i < ω} is k-inconsistent. Then, by Proposition 3.87,
there is η : ω → ω such that {ϕ(x; ctη(t)) | t < ω} is inconsistent, and since
q was the type of a U-indiscernible sequence, this is a Morley sequence of
tp(c0

0/U) over M . Up to an element of Aut(U/A) (that may change M , but
this is not a problem) we have c0 = b.

What follows is, as anticipated, a special case of a result called the Broom
Lemma. For the general statement see [CK12, Lemma 3.7].
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Lemma 3.90 ([Sim15, Lemma 5.36 (Broom Lemma)], T nip). Let A be
an extension base and π(x) be a partial LstpA-invariant29 type. Let ψ(x; b)
and {ϕi(x; c) | i < n} be such that each ϕi divides over A and b |̂ A c, and
suppose that

π(x) ` ψ(x; b) ∨
∨
i<n

ϕi(x; c)

Then π(x) ` ψ(x; b).

Proof. By induction on n. If n = 0 there is nothing to prove, so assume that
the Broom Lemma is true for n. By Lemma 3.89 let (cj)j<ω be a Morley
sequence of some p ∈ Sinv(U,M) over M ⊇ A witnessing dividing of ϕn,
say with respect to k. By Lemma 2.85, modulo an f ∈ Autf(U/A), we can
assume that b |̂ A (cj)j<ω. This will prove that f(π(x)) ` ψ(x; f(b)), but
since π is LstpA-invariant it is enough. Since now tp(b/A(cj)j<ω) does not
fork over A, it is LstpA-invariant, hence (cj)j<ω is Ab-indiscernible30. This
implies that (bcj)j<ω is A-indiscernible, and again by LstpA-invariance of
π(x), for all j < ω we have

π(x) ` ψ(x; b) ∨
∨

i<n+1

ϕi(x; cj)

Taking the conjunction over the first k among the (cj)j<ω we have

π(x) ` ψ(x; b) ∨
∧
j<k

∨
i<n+1

ϕi(x; cj)

Since the (cj)j<ω were chosen specifically in order for {ϕn(x; cj) | j < ω}
to be k-inconsistent31, no realization of π(x) can satisfy the conjunction by
always realizing the last disjoint. In other words,

π(x) ` ψ(x; b) ∨
∨
j<k
i<n

ϕi(x; cj) (3.1)

Recall that we arranged to have b |̂ A (cj)j<ω. For all j < k this implies32

b |̂ Ac>j cj , and since (cj)j<ω is a Morley sequence of p over A by Lemma 2.84
we also have c>j |̂ A cj . Therefore bc>j |̂ A cj by Lemma 2.82. For j = 0
this allows us to apply the induction hypothesis by rewriting (3.1) as

π(x) `
(
ψ(x; b) ∨

∨
0<j<k
i<n

ϕi(x; cj)
)
∨
∨
i<n

ϕi(x; c0)

29See Remark 2.51.
30Since for ı̄ < ̄ we have that aı̄ā starts an A-indiscernible sequence, by LstpA-

invariance for all ϕ(x; y) ∈ L(A) we have � ϕ(b; aı̄)↔ ϕ(b; ā).
31. . . and since this is preserved by any f ∈ Autf(U/A). . .
32Trivially, if tp(b/Ac≥j) forks over Ac>j , it also forks over A.
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and we can “sweep away” the last disjunction. We can then rewrite the
previous formula again, set j = 1 and iterate; after k − 1 more “sweeps”, we
end up with π(x) ` ψ(x).

Corollary 3.91 ([Sim15, Corollary 5.37], T nip). Let A be an extension base
and π(x) be a partial LstpA-invariant type. Let ψ(x; b) and {ϕi(x; c) | i < n}
be such that each ϕi divides over A and, and suppose that

π(x) ` ψ(x; b) ∨
∨
i<n

ϕi(x; c)

Then there are (bj | j < m) such that for all j < m we have bj ≡LstpA b and

π(x) `
∨
j<m

ψ(x; bj)

Proof. Apart from the fact that this time we do not know b |̂ A c, our
hypotheses are the same as before. The type π̃(x) = π(x) ∪ {¬ψ(x; b̃) |
b̃ ≡LstpA b} is still LstpA-invariant, and trivially ∅ |̂ A c, so we can apply
the Broom Lemma to π̃(x) and x 6= x ∨

∨
i<n ϕi(x; c), and discover that

π̃(x) ` x 6= x. Now apply compactness.

Global Invariant Heirs

We are ready to reap the fruits of this section.

Theorem 3.92 ([Sim15, Proposition 5.39], T nip). Every type in S(M) has
a global, M -non-forking heir.

Proof. Let p ∈ Sx(M) and consider the following partial types

π0(x) = {ψ(x; b) ∈ L(U) | ∀b̃ ∈M p ` ψ(x; b̃)}
π1(x) = {ϕ(x; c) ∈ L(U) | ¬ϕ(x; c) divides over M}

up to rewriting π0(x) as

π0(x) = {ψ(x; b) ∈ L(U) | ¬∃b̃ ∈M p ` ¬ψ(x; b̃)}

it is clear that all we have to show is that p(x)∪ π0(x)∪ π1(x) is consistent.
If it is not, since π0 is closed under conjunctions, by compactness we can
find ψ(x; b) ∈ π0(x) and {ϕi(x; c) | i < m} ⊆ π1(x) such that

p(x) ` ¬ψ(x; b) ∨
∨
i<n

¬ϕi(x; c)

Since models are extension bases by Proposition 2.87 and p, as an element
of Sx(M), isM -invariant, we are in the hypotheses of the previous Corollary
and there are, for j < m, some bj ≡M b such that p(x) `

∨
j<m ¬ψ(x; bj).
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Suppose that we find a formula θ(y) ∈ tp(b0, . . . , bm−1/M) such that p(x) `
∀y (θ(y) →

∨
j<m ¬ψ(x; yj)). Then, since M is a model, there are some

b̃0, . . . , b̃m−1 ∈ M realizing θ(y), and this contradicts ψ(x; b) ∈ π0(x). Sup-
pose that for all formulas θ(y) ∈ tp(b0, . . . , bm−1/M) we have

p(x) ` ∃y
(
θ(y) ∧ ¬

∨
j<m

¬ψ(x; yj)
)

Then by compactness33 there is (d0, . . . , dm−1) ≡M (b0, . . . , bm−1) such that
p(x) ` ¬

∨
j<m ¬ψ(x; dj). If f ∈ Aut(U/M) is such that f(dj) = bj , we have

p = f(p) ` ¬
∨
j<m ¬ψ(x; bj), a contradiction.

Corollary 3.93 (T nip). Every type in S(M) has a global, M -invariant
heir.

Proof. By the previous proposition and Theorem 3.38.

For the reader’s convenience, we state the following result, which can be
found in [CK12, Theorem 3.9] and will not be used in this thesis. A proof
for the special case of nip theories can be found in [Sim15, Theorem 5.49],
and it requires strict non-forking.

Theorem 3.94. In ntp2 theories, forking over an extension base equals
dividing. In particular this is true over models.

33It suffices to show that the family of closet sets of Sxy(M) of the form [p(x)] ∩ [θ(y)]
has non-empty intersection, find a point inside it, and then take the restriction to Sy(M).
But we just showed that this family has the fip.



Chapter 4

Definable Amenability

A group G is amenable if there is a finitely additive probability measure
µ defined on the whole P(G) which is left-translation-invariant, i.e. for all
g ∈ G and X ⊆ G we have µ(X) = µ(g ·X). The notion was introduced by
von Neumann in his work on the Banach-Tarski paradox, which is essentially
due to the fact that SO(3,R) is not amenable, as it contains a copy of
the free group on two generators F2. This allows to decompose the three-
dimensional ball in a finite number of pieces D3 =

⊔
i<kXi that can be

then “reassembled” via rigid motions in two copies of the same ball, say
D3 t (D3 + (4, 0, 0)) =

⊔
i<k giXi, where the gi are suitable orientation-

preserving isometries of R3. Notice that at least some of the Xi must be non-
Lebesgue-measurable, since such a decomposition would violate the fact that
the Lebesgue measure is translation-invariant. This is a key issue, since as
soon as one is only concerned with definable sets, these kind of obstructions
to amenability disappear, and both SO(3,R) and F2 are definably amenable.

Amenable groups were extensively studied in the past century and con-
tinue to be an active research topic; as a result, there is a vast literature on
the subject. Some classical results are that all abelian, and more generally
all solvable groups are amenable. On the other hand, a group containing a
copy of F2 is not amenable1. A systematic study of amenability is beyond
the scope and purpose of this thesis; the interested reader can consult for
instance the monograph [Pie84].

Permanent Assumption 4.1. From now on, G will be an ∅-definable
group.

4.1 Definably Amenable Groups

Notation 4.2. Let A be a set of parameters and identify G with a clopen
subset of Sx(A) for a suitable x. We denote with MG(A) the closed sub-

1The converse of this statement was known under the name of von Neumann’s conjec-
ture, and it was disproven.
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space of Mx(A) consisting of measures concentrating on G, i.e. such that the
formula defining G has measure one.

Equivalently, this means µ ∈MG(A)↔ S(µ) ⊆ G. See also Lemma 2.102.

Definition 4.3. G is definably amenable iff it has a global left-invariant
measure, i.e. iff there is some µ ∈MG(U) such that for all g ∈ U and Borel
B ⊆ SG(U) we have µ(g ·B) = µ(B). We also say that µ is G(U)-invariant.

So the difference between “amenable” and “definably amenable” resides
in asking the invariant measure to be defined only on definable subsets of G.

Remark 4.4. The focus on left invariant measures is convenient, but not
essential. In fact, if µ(x) is left-invariant, then ν(ϕ(x)) = µ(ϕ(x−1)) is
obviously right-invariant. Anyway this does not mean that all left-invariant
measures are also right-invariant; see [CSed, Example 6.1].

Lemma 4.5. Definable amenability may be checked on a small model. More
precisely every G(M)-invariant µ ∈ MG(M) can be extended to a G(U)-
invariant ν ∈ MG(U). Conversely, the restriction of a G(U)-invariant ν ∈
MG(U) to MG(M) is G(M)-invariant.

Proof. Use Fact 2.108 to lift such a µ to a measure on a sufficiently saturated
Ũ, an notice that this lifting will be G(Ũ)-invariant by L(M̃µ)-elementarity
with respect to the formula ∀g ∈ G fϕ(y−1·x)(e) = fϕ(y−1·x)(g). Then embed
U into Ũ � L and take a restriction. The second statement is trivial.

Clearly, all amenable groups are automatically definably amenable re-
gardless of the first-order structure we put on them, since we already have
a left-invariant (finitely additive) measure defined on their whole power-set,
and as a special case on all the definable subsets. As anticipated, F2 and
SO(3,R) are examples of definably amenable groups that are not amenable.
This is due to two more general facts.

The first one is that stable groups are definably amenable (see [Sim15,
Example 8.14]) and F2 happens to be stable (see [Sel13]). The second one is
that SO(3,R) is a definably compact o-minimal group and, in an o-minimal
structure, a group G is definably amenable if and only if (see [CP12]) there
are a torsion free H, a definably compact C, and a short exact sequence
1 → H → G → C → 1. In this case it suffices to take SO(3,R) = G = C
and H = 1.

An example of a group which is not even definably amenable is SL(2,R).
This follows from the previous characterization, as it is well-known that its
only normal subgroup is its center {I,−I} and the quotient PSL(2,R) is
not compact. As anticipated, in [GPP15] it was proven that the Ellis group
of SL(2,R) is not isomorphic to SL(2,R)/SL(2,R)00, hence the “definably
amenable” hypothesis in the Ellis Group Conjecture is necessary.

For more about definably amenable groups in nip theories, see [CSed].
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4.2 Extension of Measures to Shelah’s Expansion

Permanent Assumption 4.6. From now until the end of the chapter the
ambient theory will be supposed nip.

Our first concern is to prove that definably amenability is preserved after
passing to M ext. This amounts to extending a G(M)-invariant µ ∈MG(M)
to a G(M)-invariant µ̃ ∈MG(M ext), and was done in [CPS14]. The strategy
of proof is the following:

1. Prove that every G(M)-invariant measure in MG(M) has a G(U)-
invariant extension in Minv

G (U,M). As a special case, it will be G(M)-
invariant.

2. Take a retraction of Minv(U,M) onto Mfs(U,M) that preserves the
property of being G(M)-invariant.

3. Identify Mfs(U,M) with M(M ext).

Heirs of a Measure

A G(U)-invariant, M -invariant extension will be found with the help of
heirs. A notion of heir of a measure was given in [HPP08], but we need a
stronger definition2.

Definition 4.7 ([CPS14, Definition 2.2]). Let µ ∈Mx(M) and ν ∈Mx(U).
We say that ν is an heir of µ iff for all a ∈ U, n ∈ ω and, for i < n,
ϕi(x; y) ∈ L(M) and ri ∈ [0, 1) there is b ∈M such that∧

i<n

ν(ϕi(x; a)) > ri =⇒
∧
i<n

µ(ϕi(x; b)) > ri

Clearly, if µ is a type, this coincides with Definition 1.71. This is what
we will use heirs for:

Proposition 4.8 ([CPS14, Proposition 3.4]). Global heirs ofG(M)-invariant
measures over M are G(U)-invariant.

Proof. Being an heir allows to produce, from a counterexample to G(U)-
invariance, a counterexample to G(M)-invariance. Let us spell this out. Let
µ ∈Mx(M) be G(M)-invariant and let ν ∈Mx(U) be an heir of µ. If ν is not
G(U)-invariant there are ϕ(x; y) ∈ L(M), a ∈ U, g ∈ G(U) and r0, r1 ∈ [0, 1]
such that

ν(ϕ(x; a)) = r0 > r1 = ν(ϕ(g−1x; a))

2The weak one only differs in requiring the condition for single formulas instead of
finitely many.



90 Chapter 4. Definable Amenability

Letting r = (r0 + r1)/2 and using the “heir” hypothesis we can contradict
G(M)-invariance of µ by finding (b, h) ∈ M that allow to pass from left to
right:

ν(ϕ(x; a)) > r µ(ϕ(x; b)) > r
ν(¬ϕ(g−1x; a)) > 1− r µ(¬ϕ(h−1x; b)) > 1− r
ν(g ∈ G) > 0 µ(h ∈ G) > 0

Proposition 4.9 ([CPS14, Theorem 2.5]). Measures over M have global
M -invariant heirs.

Proof. Let µ ∈Mx(M) and let Hµ ⊆Mx(U) be the set of heirs of µ. Notice
that we can write it as the intersection of the closed sets of “∆-heirs of µ up
to ε”, where ∆ is a finite set of L(M)-formulas and ε > 0, namely

Hµ,∆,ε =

{
ν ∈Mx(U)

∣∣∣∣ ∀a ∈ U, ∀(rϕ)ϕ∈∆ ∈ [0, 1)∆

(
∀b ∈M

∨
ϕ∈∆

(µ(ϕ(x; b)) ≤ rϕ − ε)
)

=⇒
( ∨
ϕ∈∆

(ν(ϕ(x; a)) ≤ rϕ)
)}

Notice that {Hµ,∆,ε | ∆ ∈ Pfin(L(M)), ε > 0} is closed under finite in-
tersections, so by compactness of Mx(U) we only have to show that each
Hµ,∆,ε ∩Minv

x (U,M) is non-empty. Fix ∆ and ε and invoke Theorem 3.45
to find p0, . . . , pn−1 ∈ S(µ) such that for all b ∈M and ϕ ∈ ∆ we have3

|µ(ϕ(x; b))−Av(p0, . . . , pn−1;ϕ(x; b))| ≤ ε

Let x̄ = x0, . . . , xn−1, take a completion
⋃
i<n pi(xi) ⊆ p(x̄) ∈ Sx̄(M), and

then use Corollary 3.93 to find a global M -invariant heir q(x̄) of p(x̄). Split
q(x̄) = q(x0, . . . , xn−1) into n types qi(xi) by taking restrictions and then set

ν∆,ε = Av(q0, . . . , qn−1) ∈Mx(U)

We have to check two things:
ν∆,ε ∈Minv

x (U,M). By Corollary 3.42 it suffices to show that ν∆,ε does
not fork over M . Suppose that ψ(x) ∈ L(U) forks over M and ν(ψ(x)) > 0.
Then, by definition, there is i < n such that ψ(xi) ∈ qi(xi), contradicting
the fact that q is M -invariant, hence M -non-forking.

ν∆,ε ∈ Hµ,∆,ε. Fix a ∈ U and (rϕ)ϕ∈∆ such that∧
ϕ∈∆

|i < n | ϕ(xi; a) ∈ qi(xi)|
n︸ ︷︷ ︸

=ν∆,ε(ϕ(x;a))

> rϕ

3The fact that ∆ is a finite set of formulas instead of a single one can be dealt with by
doing definitions by cases, i.e. δ(x; y, z) ≡

∨
ϕ∈∆ z = cϕ ∧ ϕ(x; y).
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Since q is an heir of p, by taking a suitable conjunction we can find b ∈ M
such that for all i < n if ϕ(xi; a) ∈ qi(xi) then ϕ(xi; b) ∈ pi(xi). Hence∧

ϕ∈∆

|i < n | ϕ(xi; b) ∈ pi(xi)|
n

> rϕ

By choice of the pi, for all ϕ ∈ ∆ this implies µ(ϕ(x; b)) > rϕ − ε.

Theorem 4.10. All G(M)-invariant measures over M can be extended to
an M -invariant, G(U)-invariant global measure.

Proof. Take anM -invariant global heir by Proposition 4.9 and apply Propo-
sition 4.8.

Remark 4.11. It is possible (see [Sim15, Lemma 8.31]) to prove the ex-
istence of a G(U)-invariant, definable global extension of a G(M)-invariant
measure in a more straightforward way4, basically adapting the proof of
Proposition 3.44. The drawback is that this extension will be definable over
some small N � M , but we need invariance over M in order to produce
from it, as we are about to see, a measure finitely satisfiable in M , hence a
measure on M ext.

A Retraction

Construction 4.12. Use N +�M to build Lext, i.e. add to L the predicates
{Rϕ(x) | ϕ(x) ∈ L(N)}, expand the pair (N,M) to (N,M, (Rϕ)ϕ∈L(N))
and take some (N ′,M ′, (Rϕ)ϕ∈L(N))

+� (N,M, (Rϕ)ϕ∈L(N)). Let T ext =

ThLext(M ext). Notice thatM ext ≺Lext
(M ′, (Rϕ)ϕ∈L(N)) and identifyM ′ � L

with U.

Until the end of the section, we will use the notations from the previous
construction.

Proposition 4.13 ([CPS14, Proposition 3.9]). Let p(x) ∈ Sinv
L (M ′,M) and

Rϕ(x) ∈ Lext. Think of p as a partial Lext-type. If p(x)∪Rϕ(x) is consistent,
then p(x) ` Rϕ(x).

Proof. If we find θ ∈ p such that θ(M ′) ⊆ ϕ(M ′) then, since (M ′, (Rϕ)ϕ∈L(N))
is a model of ThLext(M ext), we have θ ` Rϕ. To find θ apply Lemma 3.53
translating notations this way:

L′ := Lext ∪ {P} U := (N ′, (Rϕ)ϕ∈L(N)) p := {P}
ϕ(x; c) := ϕ(x) A := M θ := θ

Since p is M -invariant and clearly consistent with P (x), and moreover θ ∈
L(M ′), point 3 of the lemma implies that θ ∈ p, and point 2 says precisely
that θ(M ′) ⊆ ϕ(M ′).

4I.e. without passing from the Broom Lemma.
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Definition 4.14. In the hypotheses and notations of the previous proposi-
tion, let p′ = {Rϕ | p ` Rϕ}.

Remark 4.15. Proposition 4.13 implies that p′ is5 a complete Lext-type.

Definition 4.16. Let p ∈ Sinv
x (M ′,M). Define FM (p) as the “translation”

of p′ in L(M ′), i.e.

FM (p) = {ϕ(x) ∈ L(M ′) | ∃ψ(x) ∈ L(N) p ` Rψ(x) and Rψ(M) = ϕ(M)}

Remark 4.17. FM does not depend on N , as long as it codes all externally
definable subsets of M .

Lemma 4.18. If p(x) is a global type and f(x) is a definable function, then
the pushforward f∗(p) is still a global type. Moreover, if p is M -invariant
and f is M -definable, then f∗(p) is M -invariant.

Proof. Since by definition ϕ(y) ∈ f∗(p) ⇐⇒ f−1(ϕ(y)) ∈ p ⇐⇒ ϕ(f(x)) ∈
p, then f∗(p) is still consistent. Invariance follows from the fact that ϕ(f(x))
is a shorthand for ∃y ψy=f(x)(x, y)∧ϕ(y), and by hypothesis the previous is
an L(M)-formula.

Proposition 4.19 ([CPS14, Proposition 3.10]). FM satisfies what follows.

1. (FM (p)) �M = p �M .

2. It is a continuous retraction Sinv(U,M)→ Sfs(U,M).

3. It commutes with f∗ whenever f is M -definable.

Proof. In the following, suppose that ψ ∈ L(N) witnesses ϕ ∈ FM (p), i.e.
ψ(M) = ϕ(M) and p ` Rψ.

1. If ϕ ∈ L(M), then we can set ϕ = ψ.

2. We have to check three things.

It is onto Sfs(U,M): Since Rψ comes from p′ ∈ S(M ext), we have that
ϕ(M) = Rψ(M) 6= ∅. Since M -finitely satisfiable types are M -
invariant, surjectivity is trivial.

Continuity: By definition ϕ ∈ FM (p) if and only if p ∧ P ` ψ. Hence
F−1
M (ϕ) =

⋃
θ∧P`ψ[θ].

Fixing Sfs(U,M): Suppose that ¬ϕ ∈ p, and let θ ∈ p be such that
θ ` Rψ. Then p cannot be finitely satisfiable in M , because
θ(M) ∩ ¬ϕ(M) ⊆ ψ(M) ∩ ¬ϕ(M) = ϕ(M) ∩ ¬ϕ(M) = ∅.

5Or, more precisely, “extends uniquely to”.
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3. We have ϕ(x) ∈ FM (f∗(p)) ⇔ Rψ(x)(x) ∈ (f∗(p))′, and ϕ(x) ∈
f∗(FM (p)) ⇔ Rψ(x) ∈ f∗(p′), so we might as well work with p′. By
compactness and saturation of M ′, we can find some B ⊆ M ′ such
that |B| = |N |, p � B ` p′ and f∗(p) � B ` (f∗(p))′. Since B is now
small with respect to M ′, we can find a ∈M ′ such that a � p � B. Let
b = f(a). On one hand, since b � f∗(p) � B, then b � (f∗(p))′. On the
other hand, since a � p′, we have b � f∗(p′).

Example 4.20. Let M be a small model of DLO and let p = tp(+∞/U).
Then FM (p) = tp(M+/U).

Proof. We have to show that FM (p) ` x < b if and only if b > M . If b > M ,
then the formula ϕ(x) = x ≥ b is such that ϕ(M) = ∅, so ¬ϕ ∈ FM (p).
If b 6> M , then ϕ(x) = x > b identifies a cut in M that, by saturation, is
also identified by x > c for some c ∈ N ; setting ψ(x) = x > c proves that
ϕ ∈ FM (p).

Extending an Invariant Measure to External Types

By Corollary 3.42 and Proposition 2.104 we can identify respectively
Minv

x (U,M) and Mfs
x (U,M) with the space of measures over Sinv

x (U,M) and
over Sfs

x (U,M). This allows to extend FM from types to measures and gen-
eralize Proposition 4.19.

Definition 4.21. FM : Minv(U,M) → Mfs(U,M) is defined as FM (µ) =
F ∗M (µ), where F ∗M (µ) is the pushforward of µ under FM : Sinv(U,M) →
Sfs(U,M), i.e. (F ∗M (µ))([ϕ(x)]) = µ(F−1

M ([ϕ(x)])).

Proposition 4.22 ([CPS14, Proposition 3.15]). FM satisfies what follows.

1. (FM (µ)) �M = µ �M .

2. It is a continuous retraction Minv(U,M)→Mfs(U,M).

3. It commutes with f∗ whenever f is M -definable.

Proof. All the verifications boil down to Proposition 4.19.

Proposition 4.23 ([CPS14, Proposition 3.16]). Mx(M ext) can be identified
with Mfs

x (U,M).

Proof. The former is the space of measures on Sx(M ext) and the latter is
the space of measures on Sfs

x (U,M). By Proposition 1.77 together with
Corollary 3.58, the two spaces are homeomorphic.

Remark 4.24. The homeomorphism between MG(M ext) and Mfs
G(U,M) is

also an isomorphism of G(M)-flows, i.e. it commutes with multiplication by
all the g ∈ G(M), where (g · µ)(ϕ(x)) = µ(ϕ(g · x)). Therefore, it preserves
G(M)-invariance.
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Theorem 4.25 ([CPS14, Theorem 3.17 (i)]). EveryG(M)-invariant measure
on SG(M) has an extension to a G(M)-invariant measure on SG(M ext).

Proof. Let µ ∈ MG(M) be G(M)-invariant, and take a G(U)-invariant ν ∈
Minv(U,M) by Theorem 4.10. Consider the retraction FM (ν) ∈Mfs(U,M).
By point 3 of Proposition 4.22 FM commutes with the pushforward by M -
definable functions. Since if g ∈ G(M) the function g ·− isM -definable, and
by G(U)-invariance (g · −∗)(ν) = ν, for all g ∈ G(M) we have

(FM (ν))(ϕ(g · x)) = (FM (ν))(g−1ϕ(x)) = (FM (ν))((g · −)−1ϕ(x))

= ((g · −)∗(FM (ν)))(ϕ(x)) = FM ((g · −)∗(ν))(ϕ(x)) = (FM (ν))(ϕ(x))

To conclude, apply the previous remark.

There is a number of properties of a definable group that pass to Shelah’s
expansion, but that we did not even define; the interested reader is addressed
to [CPS14]. Also, it was proven in [PYar, Lemma 5.1] that a type is almost
periodic if and only if it has an almost periodic external extension.

4.3 Strongly F-Generic Types

In this section we study a characterization of definably amenable groups
in nip6 theories which was found in [HP11]. The proof presented here will
replace [HP11, Remark 5.7] with a result of [CSed] that would be anyway
needed in the proof of the Ellis Group Conjecture; as a consequence, Corol-
lary 4.34, follows from Theorem 4.26 instead of being involved in its proof
as in [HP11] or [Sim15]. Moreover, since we already proved it, we will use
Theorem 4.10 instead of the result mentioned in Remark 4.11.

The main idea is the following. Recall7 that every compact Hausdorff
topological group has a unique left-invariant regular Borel probability mea-
sure, called the Haar measure, which we will denote with h. By Theorem 2.59
this is true for G/G00. If G is definably amenable, a left-invariant measure
on SG(U) can be push-forwarded onto G/G00, and this pushforward must
coincide with h by uniqueness. Thus, definable amenability of G should be
equivalent to the existence of a lifting of h. It turns out that such a lifting is
possible if and only if certain special global types exist. The precise result,
around which this section revolves, is the following:

Theorem 4.26. A definable group is definably amenable if and only if it
has a global strongly f-generic type.

Let us begin with defining what such a type is.
6Recall that Permanent Assumption 4.6 is still valid.
7Theorem A.33.
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Definition 4.27. A global type p ∈ SG(U) is strongly f-generic over M iff
for all g ∈ G(U) the translate g · p does not fork over M . If we simply say
that p is strongly f-generic we mean that there is a small M such that p is
strongly f-generic over M .

In [HP11] “f-generic” means what here we would call “strongly f-generic
over ∅”. Moreover, [Sim15] and a number of papers omit the “strongly”.
The reason behind is that this diction was first adopted in [CSed], where
“f-generic” is reserved for a weaker notion that turned out to allow stronger
characterizations. We will not use “plain” f-generic types, but for the benefit
of the curious reader let us mention that the difference with Definition 4.27
is that different translates are allowed to be non-forking over different small
models, and that even if there are examples of f-generic, non-strongly-f-
generic types (see [CSed, Example 3.11]), G has an f-generic if and only if it
has a strongly f-generic. See [CSed, Corollary 3.21].

Definition 4.28. If p ∈ SG(U), we let Stab p denote the stabilizer of p under
the action of G(U), i.e. Stab p = {g ∈ G(U) | gp = p}.

Proposition 4.29 ([HP11, Proposition 5.6 (i)]). The stabilizer of a global
strongly f-generic type is G00.

Proof. Let p be strongly f-generic over M .

Claim. Stab p = {g−1
1 g0 | g0 ≡M g1}

Proof of the Claim. By Theorem 3.38, for all g ∈ G(U) we have g · p ∈
Sinv(U,M). Hence, if g0 ≡M g1, and if f ∈ Aut(U/M) is such that f(g0) =
g1, we have g1p = f(g0)f(p) = f(g0p) = g0p. This means that g−1

1 g0 ∈
Stab p. Conversely, let g ∈ Stab p and let h � p � Mg. Then tp(gh/M) =
gp � M = p � M = tp(h/M). Set g1 = h−1g−1 and g0 = h−1 and write
g = g−1

1 g0.
claim

The Claim proves simultaneously that Stab p is type-definable over M
and that its index is bounded by |SG(M)|. This implies that Stab p ⊇ G00.
On the other hand, if g /∈ G00 then gp is in a different G00-coset than p, and
this proves the other inclusion.

This ensures that the following object is well-defined.

Definition 4.30. If p is strongly f-generic and ϕ(x) ∈ L(U), define Upϕ =
{gG00 | ϕ ∈ gp}.

Proposition 4.31 ([CSed, Proposition 5.1]). Every Upϕ is constructible.

Proof. Let M be such that p is strongly f-generic over M , let π : SG(U) →
G/G00 be the canonical projection and make the parameters explicit in
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ϕ(x) = ϕ(x; b). Write Upϕ = π(S), where8 S = {g ∈ G(U) | ϕ(gx) ∈ p}.
Applying Theorem 3.34 to the formula ψ(x; y, z) = ϕ(z · x; y), taking in-
verse images from SG,y(M) to SG,y(U) and then setting y = b we can write
S =

⋃
n<N (An ∧¬Bn+1) for suitable An and Bn closed in SG(U). Let A′n =

π−1π(An) and B′n = π−1π(Bn), which are still closed because π is continuous
from a compact space to an Hausdorff one, and let S′ =

⋃
n<N (A′n∧¬B′n+1).

Claim. It suffices to prove that S = S′.

Proof of the Claim. If S = S′, trivially Upϕ = π(S) = π(S′). Since, A′n and
B′n are G00-invariant by definition, i.e. π−1π(A′n) = A′n and π−1π(B′n) = B′n,
we have that π(A′n ∧ ¬B′n+1) = π(A′n) ∧ ¬π(B′n+1). But then we can write
Upϕ as a finite Boolean combination of closed sets in the following way:

Upϕ = π(S′) = π

( ⋃
n<N

(A′n ∧ ¬B′n+1)

)
=
⋃
n<N

(π(A′n) ∧ ¬π(B′n+1))
claim

S′ ⊆ S If g ∈ A′n ∧ ¬B′n+1 there is h ∈ An such that h−1g ∈ G00. If
h ∈ Bn+1 then we contradict g /∈ B′n+1, so we must have h ∈ An∧¬Bn+1 ⊆ S.
As p is G00-invariant, S is too by definition, so g ∈ S.

S ⊆ S′ Let now g ∈ S and n be maximal among the ones for which
there is an h such that h−1g ∈ G00 and h ∈ An ∧ ¬Bn+1. By maximality
h ∈ A′n ∧¬B′n+1 ⊆ S′, and since A′n and B′n+1 are G00-invariant, g ∈ S′.

Proposition 4.32 ([HP11, Proposition 5.6 (ii)]). If G has a global strongly
f-generic type, it is definably amenable.

Proof. Fix a global p strongly f-generic over M , and define µ(ϕ) = h(Upϕ).
This is well-defined because by Proposition 4.29 the stabilizer of p is G00

and by Proposition 4.31 U is Borel, hence Haar-measurable. As for G(U)-
invariance, since h is G/G00 invariant,

h(Upϕ(gx)) = h({hG00 | ϕ(gx) ∈ hp}) = h({hG00 | ϕ(x) ∈ ghp})
= h({ghG00 | ϕ(x) ∈ ghp}) = h(Upϕ(x))

Thus we have proved half of Theorem 4.26. We now prove a strengthening
of the other half.

Proposition 4.33. If G is definably amenable, and M is any small model,
then G has a global strongly f-generic type over M .

Proof. If µ is a global G(U)-invariant measure, its restriction toM is G(M)-
invariant. By Theorem 4.10 there is µ′, an extension of µ � M , which is
G(U)-invariant and M -invariant; recall that M -invariance is equivalent to

8Which differs from δpϕ as the latter is a subset of SG(M), while S ⊆ SG(U).



4.4. Proof of the Ellis Group Conjecture 97

M -non-forking by Proposition 3.41. Take any p ∈ S(µ′). Since µ′ is G(U)-
invariant, for all g ∈ G(U) we have gp ∈ S(gµ′) = S(µ′), and since µ′ is
M -invariant, by Proposition 2.104 we have S(µ′) ⊆ Sinv

x (U,M).

Corollary 4.34 ([Sim15, Corollary 8.20]). If a group has a global strongly
f-generic type then for all small M it has a global type which is strongly
f-generic over M .

Proof. By Proposition 4.32 the group is definably amenable. Apply the
previous proposition with your favourite small M .

Remark 4.35. Anyway, it may happen that a definably amenable group
does not have any global type which is strongly f-generic over ∅. See [HP11,
Proposition 5.11 (ii)].

Notice that strong f-genericity propagates to the orbit closure:

Lemma 4.36. If p ∈ SG(U) is strongly f-generic over M and q ∈ G(U)p,
then q is strongly f-generic over M too.

Proof. By continuity9 of g · −, if q ∈ G(U)p then every gq is still in G(U)p.
Suppose that ϕ ∈ gq and ϕ forks over M . Then since gq ∈ G(U)p there is h
such that hp ∈ [ϕ], so p cannot be strongly f-generic over M .

In Definition 4.27 we did not even bother mentioning the word “left”, but
the reader should understand what we mean if we say “the space S of right
strongly f-generic global types”. Pillay showed in [Pil13, Proposition 2.5]
that it is possible to define a product p · q also on S and that this induces
and Ellis semigroup structure in which there are no proper ideals and the
Ellis groups are isomorphic to G/G00. Anyway, this is not a proof of the
Ellis Group Conjecture, as S lives inside the G(U)-flow SG(U), whereas the
Conjecture is about the G(M)-flow SG(M).

4.4 Proof of the Ellis Group Conjecture

We conclude this thesis by studying the proof of the Ellis Group Con-
jecture from [CSed]. From now on, let G be a group which is ∅-definable
in a nip theory and suppose it is definably amenable. The work done from
Chapter 2 onwards guarantees the following.

Fact 4.37. Up to replacingM withM ext we may assume that all types over
M are definable and work directly in SG(M).

9Or, directly, if gq ∈ [ϕ] then q ∈ [g−1ϕ], so there is some hp ∈ [g−1ϕ], hence ghp ∈ [ϕ].
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Proof. Use Corollary 3.58 to trigger Theorem 1.52. By Corollary 3.57, M ext

is still nip, and by Corollary 3.78 and Remark 3.79 G00 does not change,
nor does the logic topology on G/G00. Definable amenability is preserved
by Lemma 4.5 and Theorem 4.25.

Corollary 3.58 ensures that we may work inside SG(M ext) instead of
Sext
G (M ext), and that the hypotheses of Theorem 1.75 and Theorem 1.79 are

still satisfied, so by Corollary 1.76 we have unique coheirs over arbitrary set
of parameters and a characterization of the product p · q in terms of the
realizations of p and q.

We still need an important result.

Theorem 4.38 ( [CSed, Theorem 5.2 (Baire-Generic Compact Domina-
tion)]). Let p ∈ SG(U) be strongly f-generic, π : SG(U)→ G/G00 the projec-
tion and ϕ(x) ∈ L(U). Denote G = G(U) and define

Epϕ = π([ϕ(x)] ∩Gp) ∩ π([¬ϕ(x)] ∩Gp)

Then Epϕ is closed with empty interior.

Proof. Since π is continuous from a compact space to an Hausdorff one, Epϕ
is closed. As translating p does not change Gp, we may assume that p ∈ G00

without changing Epϕ, and strong f-genericity is preserved by Lemma 4.36.
Since by Proposition 4.31 the set Upϕ is constructible, and the border of a
constructible set has empty interior10, it suffices to show Epϕ ⊆ ∂Upϕ.

This amounts to proving that, for all g ∈ Epϕ and all open V 3 g, both
V ∩Upϕ and V ∩ (Upϕ){ are non-empty. Fix such g and V and let us rewrite
Upϕ as

Upϕ = {h ∈ G/G00 | hp ∈ [ϕ]}

Since g ∈ Epϕ, there are q0 ∈ [ϕ] ∩ Gp and q1 ∈ [¬ϕ] ∩ Gp such that
π(q0) = g = π(q1). Since g ∈ V we also have

q0 ∈ π−1V ∩ [ϕ(x)] ∩Gp q1 ∈ π−1V ∩ [¬ϕ(x)] ∩Gp

Hence, since π−1V ∩ [ϕ] is a neighbourhood of q0, it meets Gp, so there is
h0 ∈ G(U) such that h0p ∈ π−1V ∩ [ϕ]. This implies π(h0) ∈ Upϕ and,
trivially, π(h0p) ∈ V . Applying the same argument to q1 we find h1 ∈ G(U)
such that π(h1) ∈ Up¬ϕ = (Upϕ){ and π(h1p) ∈ V . To conclude observe
that, since we arranged to have p ∈ G00,

π(h0) = π(h0p) ∈ V ∩ Upϕ π(h1) = π(h1p) ∈ V ∩ (Upϕ){

We are almost ready to prove that the Ellis Group Conjecture is true.
Injectivity of π � uI will be shown through the following lemma.

10See Proposition A.5.
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Lemma 4.39. If p0, p1 ∈ uI and there is r ∈ I such that rp0 = rp1, then
p0 = p1.

Proof. Since r ∈ I, by points 3 and 4 of Theorem 1.32 there is some v ∈
Idem(I) such that r belongs to the group vI. Multiplying both sides of
rp0 = rp1 on the left by r−1 ∈ vI and then by u yields uvp0 = uvp1. By
point 2 of Theorem 1.32 uv = u, hence up0 = up1, and since u is the identity
of the group uI we have p0 = p1.

Theorem 4.40 ([CSed, Theorem 5.6]). Let G be a definably amenable nip
group. Then for any minimal ideal I of SG(M) and idempotent u ∈ I, the
natural map π : uI → G/G00 is injective.

Proof. Given the length of this proof, we break it in three parts. We invite
the reader to keep in mind through all of them that, even if we will mention
SG(U) several times, the Ellis group uI lives inside the G(M)-flow SG(M).

General Set-Up. By Theorem 1.35 we are free to choose the I and u ∈
Idem(I) we work with. Using Proposition 4.33 fix p ∈ SG(U) which is
strongly f-generic overM . Consider G(M)(p �M). It is a subflow of SG(M),
hence it has a minimal subflow I, which is a minimal ideal by Proposi-
tion 1.29. By Lemma 4.36 we can assume, up to replacing p with some
p̃ ∈ G(U)p such that p̃ �M ∈ I, that I = G(M)(p �M). Fix u ∈ Idem(I).

Given p0, p1 ∈ uI such that π(p0) = π(p1) we want to show that p0 = p1.
Since Kerπ = G00 ∩ uI, we may assume p0, p1 ∈ G00. By Lemma 4.39 it
suffices to find r ∈ I such that rp0 = rp1.

Definitions. Fix any ultrafilter U ∈ β(G/G00) extending the comeagre
filter11. For all ϕ(x) ∈ L(U), the set Epϕ is closed with empty interior by
Theorem 4.38, hence it is meagre and Epϕ /∈ U . Define the following objects:

• For each g ∈ G/G00, choose by Theorem 1.83 some rg ∈ I ⊆ SG(M)
such that π(rg) = g.

• Set r = limg→U rg, and notice that r ∈ I because I is closed. We will
prove that for this r we have rp0 = rp1.

• Let q0, q1 ∈ G(U)p ⊆ SG(U) extend p0 and p1, and notice that they are
still in G00.

• Find a0 � q0 and a1 � q1 inside a bigger monster Ũ +� U.

• By Corollary 1.76 every type in SG(M) has a unique coheir to any
bigger set of parameters. Let r′ be the unique coheir of r over Ua0a1

and, for all g ∈ G/G00, let r′g be the unique coheir of rg over Ua0a1.

• Find inside Ũ some b � r′ and, for all g ∈ G/G00, some bg � r′g.
11See Definition A.6, Remark A.7 and Example A.10.
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Computations. Since the subspace ofM -finitely satisfiable types is closed,
we have limg→U r

′
g ∈ Sfs

G(Ua0a1,M). Since this type obviously extends
limg→U rg = r, by uniqueness of coheirs we have r′ = limg→U r

′
g.

We now show that, for i ∈ {0, 1},

lim
g→U

tp(bg · ai/U) = tp(b · ai/U)

Indeed, fix ϕ(x) ∈ L(U) and let N be such that N � M and ϕ(x) ∈ L(N).
Since r′g and r′ are finitely satisfiable in M , as a special case they are N -
invariant. Thus, after finding inside U some ci ≡N ai, we can compute12

ϕ(x) ∈ lim
g→U

tp(bg · ai/U) ⇐⇒ {g ∈ G/G00 |� ϕ(bg · ai)} ∈ U

†⇐=⇒ {g ∈ G/G00 |� ϕ(bg · ci)} ∈ U ⇐⇒ ϕ(x · ci) ∈ lim
g→U

tp(bg/U)

⇐⇒ ϕ(x·ci) ∈ r′
†⇐=⇒ ϕ(x·ai) ∈ r′ ⇐⇒ � ϕ(b·ai) ⇐⇒ ϕ(x) ∈ tp(b·ai/U)

Suppose towards a contradiction that rp0 6= rp1, as witnessed by some
ϕ ∈ L(M) such that ϕ(x) ∈ rp0 and ¬ϕ(x) ∈ rp1. Then

ai � qi ⊇ pi b � r′ = r |chM Ua0a1 ⊇ r |chM Ma0a1

Hence, by Theorem 1.79, b·ai � rpi, and if we set θ(x) = ϕ(x·a0)∧¬ϕ(x·a1) ∈
L(Ma0a1) we have b � θ(x). This means that {g ∈ G/G00 |� θ(bg)} is in U ;
as a special case, {g ∈ G/G00 |� θ(bg)} ∩ Epϕ{ 6= ∅, therefore it has a point
g. We are now going to show that this is absurd.

Since g ∈ (Epϕ){, which is open by Theorem 4.38, and π is continuous,
there is [ψ(x)] ⊆ SG(U) such that r′g ∈ [ψ] and π([ψ]) ∩ Epϕ = ∅. Since, by
choice of g, we have also � θ(bg), then ψ ∧ θ ∈ r′g, and by finite satisfiabilty
there is h ∈ G(M) such that � ψ(h)∧ θ(h). Now, h � ψ implies π(h) /∈ Epϕ.
On the other hand, since q0, q1 ∈ G00, we have π(h · a0) = π(h) = π(h · a1).
Since tp(h · ai/U) = hqi ∈ G(U)p, and h � θ(x), i.e. � ϕ(h · a0) ∧ ¬ϕ(h · a1),
this shows

π(h) ∈ π(G(U)p ∩ [ϕ(x)]︸ ︷︷ ︸
3h·q0

) ∩ π(G(U)p ∩ [¬ϕ(x)]︸ ︷︷ ︸
3h·q1

) = Epϕ

Corollary 4.41 ([CSed, Corollary 5.7]). In a nip theory, if G is a definably
amenable group, then its Ellis group does not depend on the model used to
compute it.

12† indicates where N -invariance is used.
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Appendix

Here we collect some definitions and the statements of some theorems
that have been used in the main chapters of this thesis. We usually give a
reference to a book, and for a small number of them we also provide proofs.
The disclaimer in the Note on References inside the Introduction still applies.

A.1 Combinatorics

Theorem A.1 (Erdös-Rado). Let µ be an infinite cardinal and define induc-
tively i0(µ) = µ and in+1(µ) = 2in(µ). Let [X]n be the set of n-elements
subsets of X. Then, for all n ∈ ω and all functions c : [(in(µ))+]n+1 → µ
there is a subset H of (in(µ))+ such that |H| = µ+ and c � [H]n+1 is
constant.

Usually, c is called a colouring of [(in(µ))+]n+1 with µ colours and H
is called an homogeneous set. For a proof, see for instance [TZ12, Theo-
rem C.3.2].

A.2 General Topology

Familiarity with basic concepts and definitions is assumed. For instance,
we expect the reader to know the definition of product topology and to
recognize Proposition A.2 as standard. Any book on basic general topology
is a reference, for instance [Bou66].

Proposition A.2. A continuous function from a compact space to an Haus-
dorff one is closed.

Proposition A.3. Compact Hausdorff spaces are locally compact, i.e. every
point has a fundamental system made of compact neighbourhoods.

Definition A.4. A subset of a topological space is constructible iff it is a
finite Boolean combination of closed sets.
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Proposition A.5. In all topological spaces, the border of a constructible
set has empty interior.

Proof. By induction on the length of the Boolean combination. If C is closed
and x ∈ ∂C, let V 3 x be open and suppose V ⊆ ∂C. Since C is closed,
∂C ⊆ C. Then V should meet both C and C{, but since V ⊆ C we have
V ∩ C{ = ∅.

Since ∂A = ∂(A{), all we are left to do is to prove that if ∂A and ∂B
have empty interior then ∂(A∪B) has empty interior too. Let x ∈ ∂(A∪B)
and V be a neighbourhood of x. Then V meets A ∪B, say it meets A, and
also meets (A ∪B){ = A{ ∩B{ ⊆ A{. Therefore ∂(A ∪B) ⊆ ∂A ∪ ∂B.

Definition A.6. A subset of a topological space is

• Nowhere dense iff its closure has empty interior.

• Meagre iff it is a countable union of nowhere dense sets.

Remark A.7. Sets which are closed with empty interior are nowhere dense,
hence meagre.

A.3 Filters and Ultrafilters

For a thorough treatment of the use of filters in topology, see [Bou66].
Another fine exposition, together with a comparison with nets, can be found
in [Cla]. For more informations on ultrafilters see for instance [HS98].

Definition A.8. Let (B,∧,∨,¬, 0, 1,v) be a Boolean algebra. We call F ⊆
B a filter on B if

• If x, y ∈ F then x ∧ y ∈ F .

• If x ∈ F and x v y, then y ∈ F .

• 0 /∈ F and 1 ∈ F .

If we say that F is a filter on X, but X is not a Boolean algebra, we mean
that F is a filter on the Boolean algebra P(X).

Remark A.9. Some authors drop the condition 0 /∈ F and call the filters
that satisfy it proper. Notice that if F satisfies the second condition, but
0 ∈ F , then F = B. For this reason, sometimes B is called the improper
filter. For us, filters will always be proper unless stated otherwise.

Example A.10. These are some examples of filters.

• For any 0 6= x ∈ B, the family F = {y ∈ B | y w x} is called the
principal filter on x.
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• The Fréchet filter on an infinite set X is the family of cofinite subset
of X.

• Let X be a topological space. Then, for any point p ∈ X, the family
of neighbourhoods of p is a filter.

• Let X be a topological space. The comeagre filter is the filter {E ⊆
X | E{ is meagre}.

Filters are dual to ideals, that we are now going to define. The name
comes from the fact that, under the identification of Boolean algebras with
Boolean rings with unity, the ideals of a Boolean algebra correspond to the
proper ideals of the associated Boolean ring.

Definition A.11. Let (B,∧,∨,¬, 0, 1,v) be a Boolean algebra. We call
I ⊆ B an ideal of B iff

• If x, y ∈ I then x ∨ y ∈ I.

• If x ∈ I and x w y, then y ∈ I.

• 1 /∈ I and 0 ∈ I.

If we say that I is an ideal on X, but X is not a Boolean algebra, we mean
that I is an ideal on the Boolean algebra P(X).

Remark A.12. It is very easy to see that if F is a filter then {¬x | x ∈ F}
is an ideal, and that if I is an ideal then {¬x | x ∈ I} is a filter.

Definition A.13. An ultrafilter U is a filter which is maximal with respect
to inclusion, i.e. if F ⊇ U is a filter then F = U .

Proposition A.14. Let U be a filter. Then the following are equivalent:

1. U is an ultrafilter.

2. If x /∈ U , then ¬x ∈ U .

3. If x ∨ y ∈ U , then x ∈ U or y ∈ U .

Example A.15. Let x ∈ B be an atom of B, i.e. be such that x 6= 0 and
if 0 6= y v x then y = x. Then the principal filter on x is an ultrafilter. In
an algebra of the form P(x) the atoms are precisely the singletons {x}. In
this case, the principal ultrafilter on {x} is denoted tx.

Lemma A.16 (Ultrafilter Lemma). Every filter can be extended to an ul-
trafilter.

Proof. An easy check reveals that the union of a chain of filters is still a
filter. Then apply Zorn’s Lemma.
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Corollary A.17. If X is an infinite set, there is a non-principal ultrafilter
on X.

Proof. Apply the Ultrafilter Lemma to the Fréchet filter.

Definition A.18. If B is a Boolean algebra, its Stone space is the space
of ultrafilters on B with the following topology. For all x ∈ B, the set
[x] = {U ultrafilter on B | x ∈ U} is a basic open set.

The Stone space of ultrafilters on a set X is denoted βX.

Remark A.19. By Proposition A.14 we have [x]{ = [¬x], so every [x] is
clopen and {[x] | x ∈ B} is simultaneously a basis for the open sets and a
basis for the closed sets.

Remark A.20. It is easy to check that filters on B correspond to closed
sets of its Stone space.

Theorem A.21. The Stone space of a Boolean algebra is compact Haus-
dorff.

Definition A.22. If f : X → Y is a function and F is a filter on X, the
pushforward f∗(F) is the ultrafilter on Y defined as

U ∈ f∗(F) ⇐⇒ f−1(U) ∈ F

Remark A.23. The pushforward of an ultrafilter is an ultrafilter.

We recall how to treat convergence in terms of filters. The following
definition was already given in Chapter 1.

Definition A.24. If F is a filter on a topological space Y , and ` ∈ Y , we
say that ` = limF iff every neighbourhood of ` is in F . If f : Z → Y is a
function from a set Z to Y and F is the pushforward f∗(F0) of a filter F0

on Z, we also write limz→F0 f(z) for limF .

Example A.25. The usual limit of a sequence (an)n<ω can be seen as the
limit of the pushforward of the Fréchet filter on ω under a−.

Proposition A.26. Limits on filters commute with continuous functions.

Theorem A.27. A space is compact iff every ultrafilter has at least one
limit. A space is Hausdorff iff every ultrafilter has at most one limit.

Proposition A.28. The product topology is the topology of point-wise con-
vergence. In other words, denoting πj :

∏
i∈I Xi → Xj the usual projection,

an ultrafilter U on
∏
i∈I Xi converges to ` if and only if for all i ∈ I, the

pushforward π∗i (U) converges to πi(`).

Theorem A.29 (Tychonoff). All products of compact spaces are compact.
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Let us recall another definition which was already given in Chapter 1.

Definition A.30. If U ∈ βX and V ∈ βY , the tensor product U ⊗ V ∈
β(X × Y ) is defined as

U ∈ U ⊗ V ⇐⇒ {x ∈ X | {y ∈ Y | (x, y) ∈ U} ∈ V} ∈ U

Lemma A.31. Let f be a function with values in a compact Hausdorff space.
Then limg→U limh→V f(g, h) = lim(g,h)→U⊗V f(g, h) = lim`→f∗(U⊗V) `.

Proof. Let fg(h) denote f(g, h). On one hand p = lim(g,h)→U⊗V f(g, h) if and
only if for all open neighbourhoods U of p the following equivalent statements
hold:

{g | {h | f(g, h) ∈ U} ∈ V} ∈ U ⇐⇒ {g | {h | (g, h) ∈ f−1(U)} ∈ V} ∈ U
⇐⇒ {g | {h | h ∈ f−1

g (U)} ∈ V} ∈ U ⇐⇒ {g | U ∈ f∗g (V)} ∈ U

On the other hand p = limg→U limh→V f(g, h) if and only if for all open
neighbourhoods U of p we have {g | limh→V fg(h) ∈ U} ∈ U . Since by com-
pactness and Hausdorffness limh→V fg(h) exists and is unique, by defini-
tion and the fact that U is a neighbourhood of each of its points we have
limh→V fg(h) ∈ U ⇐⇒ U ∈ f∗g (V), and this proves the first equality. The
second one is true by definition.

Lemma A.32. ⊗ is associative.

A.4 Measure Theory and Probability

For the results in this section, see any text covering the foundations of
the field, for instance [Hal74].

Theorem A.33 (Haar Measure). Every compact Hausdorff topological group
has a unique left-translation-invariant regular Borel probability measure.

Definition A.34. If f : (X0,Σ0)→ (X1,Σ1) is a measurable function and µ
is a measure on (X0,Σ0), the pushforward f∗(µ) is the measure on (X1,Σ1)
defined as f∗(µ)(A) = µ(f−1(A)).

Proposition A.35. Let (S,B, µ) be a probability space. Then there is a
probability space (Ω,Σ, P ) and a sequence of independent measurable func-
tions (Yi : Ω→ S | i < ω) all with law µ, i.e. such that (Yi)

∗(P ) = µ.

Theorem A.36. Let (Ω,Σ, P ) be a probability space, (Xi : Ω→ R | i < ω)
a sequence of independent, equidistributed real random variables in L1, and
ZN =

∑
i<N Xi. Then the sequence ((ZN − E[ZN ])/N | N < ω) converges

in probability to 0, i.e. for all ε > 0

lim
N→∞

P

({
ρ ∈ Ω

∣∣∣∣ |ZN (ρ)− E[ZN ]|
N

> ε

})
= 0
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A.5 Model Theory

Here we recall some standard theorems of model theory that we will be
using from time to time. We omit basic definitions and results; for instance,
we will not say what an elementary embedding is or what is the content of
the Compactness Theorem. Some reference books are [TZ12,Mar02,Hod93,
Hod97,CK90,Poi00].

Definition A.37. Let x be a tuple of variables, M � T and A ⊆ M . A
partial type with parameters from A in variables x is a (non necessarily com-
plete) L(A∪ x)-theory. We sometimes say partial type over A. A realization
of a partial type π(x) is some a ∈ N |x|, where N �M , such that N � π(a).
A complete type is a complete partial type. We denote the space of complete
types with Sx(A). If we simply say type, we mean “complete type”.

Remark A.38. A partial (resp. complete) type can be identified with a
filter (resp. ultrafilter) on the algebra of L(A)-definable sets of U in variables
x. Therefore, Sx(A) can be identified with the Stone space of Defx(A) and
this endows it with the topology given in Definition A.18.

Definition A.39. A subset of a structure is type-definable iff it can be
written as the set of realizations of a partial type. If we say A-type-definable
or type definable over A we mean that such a partial type can be chosen with
parameters in A.

Proposition A.40. If M0 ≺ N , M1 ≺ N and M0 ⊆M1, then M0 ≺M1.

Proposition A.41 (Amalgamation). IfM0 ≡M1 there is N such that both
M0 and M1 can be elementarily embedded1 in N .

Definition A.42. If κ is an infinite cardinal, a model M is κ-saturated iff
for all A ⊆ M such that |A| < κ and all finite tuples of variables x, every
type in Sx(A) is realized in M . We say that M is strongly κ-homogeneous
iff for all A ⊆ M such that |A| < κ all partial elementary maps A → M
extend to automorphisms of M . If every N ≡ M such that |N | < κ can be
elementarily embedded in M we say that M is κ-universal.

Theorem A.43. Every κ-saturated model is κ+-universal.

Theorem A.44. Let κ be an infinite cardinal. Every model has an elemen-
tary extension which is both κ-saturated and strongly κ-homogeneous.

Definition A.45. Let I be an infinite linear order and A a set of parameters.
A sequence (ai)i∈I of tuples from M of the same length is indiscernible over
A or A-indiscernible iff for all n ∈ ω, all ϕ(x0, . . . , xn−1) ∈ L(A) and all ı̄ =
i0 < . . . < in−1 and ̄ = j0 < . . . < jn−1 from I we have M � ϕ(aı̄)↔ ϕ(ā).

1Anyway, it may happen thatM0 ⊆M1,M0 6≺M1, and f0(M0) 6⊆ f1(M1). For instance
(2Z, <) ⊆ (Z, <), but the embedding is not elementary, and thus by Proposition A.40 in
N the inclusion cannot hold.
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Definition A.46. Let I be an infinite linear order and (ai)i∈I be a sequence
of tuples from M of the same length `. If A is a set of parameters, the
Ehrenfeucht-Mostowski type of (ai)i∈I over A is the partial type in the `-
tuples of variables (xj | j < ω) denoted with em((ai)i∈I/A) and defined as
follows. For all ϕ(x0, . . . , xn−1) ∈ L(A),

ϕ(x0, . . . , xn−1) ∈ em((ai)i∈I/A)⇔ ∀i0 <. . .< in−1 ∈ I M � ϕ(ai0 ,. . ., ain−1)

Remark A.47. em((ai)i∈I/A) is a complete type if and only if (ai)i∈I is
A-indiscernible.

Lemma A.48 ([TZ12, Lemma 5.1.3 (The Standard Lemma)]). Let I and J
be two infinite linear orders, (ai)i∈I a sequence of elements of a structure M
and A ⊆ M . Then there is N � M containing an A-indiscernible sequence
(bj)j∈J such that em((ai)i∈I/A) ⊆ em((bj)j∈J/A).

Theorem A.49 ([Cas11, Proposition 1.6]). Let A be a set of parameters,
κ > |T | + |A| and λ = i(2κ)+ . Let (bj | j < λ) be a sequence of tuples
all of the same length ≤ κ. Then there is an indiscernible sequence (ai |
i < ω) such that for all n < ω there are some j0 < . . . < jn−1 < λ with
(a0, . . . , an−1) ≡A (bj0 , . . . , bjn−1).

Definition A.50. Let M be an L-structure. We define a language Leq and
an Leq-structure M eq as follows. Let (Ei(x0, x1) | i ∈ I) be an enumeration
of all ∅-definable equivalence relations on tuples of M , where Ei is a relation
on tuples of multi-sort2 si.

Let Leq be L together with a new sort Si for each i ∈ I and a function
symbol πi from multi-sort si to Si. Define M eq as M together with, for each
i ∈ I, the quotient M si/Ei as the interpretation of Si and the projection
M si →M si/Ei as the interpretation of πi.

Proposition A.51 ([TZ12, Proposition 8.4.5]). Every ϕ(πi0(x0), πi1(x1)) is
equivalent to some ψ(x0, x1) ∈ L.

A.6 The Monster Model

We call U a monster model for T if it is κ-saturated and κ-strongly homo-
geneous for a sufficiently big κ. What “sufficiently big” means varies among
the literature. Some authors require U to be proper-class-sized, some assume
that κ is inaccessible, the more cautious just regard U as a convenient way
to simplify statements by avoiding to refer to “some elementary extension”
in every theorem and definition.

Since we will sometimes realize types over U, in order to keep the proofs
inside ZFC, for us “sufficiently big κ” means that κ is sufficiently bigger than

2I.e., if x0 has length n, a function from n to the sorts of M .
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objects that we call “small”. In other words, we treat U as an abuse of
notation, and

• if we say “A is small” then |A| < κ.

• Sometimes, we assume tacitly that also f(|A|) < κ, where f(λ) can be
for instance 2λ, in(λ), or the like.

We now list some conventions and consequences of this. They can be justified
via the previous theorems.

• Even if U is not uniquely determined, we speak of “the” monster.

• � ϕ means U � ϕ, and b � ϕ(x) means U � ϕ(b).

• All small A are tacitly assumed to be included in U.

• All small modelsM are tacitly assumed to be elementary substructures
of U. This implies that if M ⊆ N then automatically M ≺ N .

• All elementary bijections between small sets can be extended to auto-
morphisms of U.

• a ≡A b if and only if there is f ∈ Aut(U/A) such that f(a) = b.

We would be tempted to add another bullet point stating “all other models
are supposed to be small”. Since we sometimes realize global types, or even
consider bigger monsters with respect to whom U is small, this is simply not
true. In order to avoid transforming an abuse of notation into an inconsis-
tency, we do not make this assumption. We would like to ask the reader to
forgive us if somewhere in this thesis we have forgotten to say explicitly that
an object was supposed to be small, and to try to deduce from the context
if this is the case.

Remark A.52. Sometimes definitions and results seem to rely essentially
on who U or κ are because — say — they quantify on “all small A”, but in
fact there are characterizations that avoid mentioning them. See for instance
Proposition 2.39.
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