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Cohomology Algebra

Definitions

A toric arrangement A in the torus T ≃ (C∗)r is a finite collection of
(translates of) hypertori {De}e∈E . Let Λ ∶= Hom(T ,C∗) ≃ Zr be the
character group of T and χe ∈ Λ a character defining De .

In coordinates: each character is χe(t1, . . . , tr) = t
a1
1 ta2

2 ⋯t
ar
r and the

hypertorus is
D = {(t1, . . . , tr) ∈ (C∗)r

∣ ta1
1 ta2

2 ⋯t
ar
r = b}.

The equations χ(t) = b and (−χ)(t) = b−1 define the same hypertorus.
We want to study the cohomology algebra of the complement
M(A) = T ∖⋃e∈E De .

p q r

t2 = 1

t31 t2 = 1

t1 = 1
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Cohomology Algebra

Generators

The cohomology of the torus is H1(T ;Z) = {d log ta1
1 . . . t

ar
r }a∈Zr ≃ Zr

and H●(T) = ⋀
●H1(T). We define ψe = d log ta1

1 . . . t
ar
r ∈ H1(T).

Remark

The form ψB ∶= ψb1⋯ψbk ∈ H
∣B ∣(T) is non-zero if and only if

χb1 , . . . , χbk are linearly independent.

p q r

We define
ωe = d log(b− ta1

1 ⋯t
an
n )+d log(b−1− t−a1

1 ⋯t−an
n ).

Observe that

ω1 ⋅ ω2 = ωp,1,2 + ωq,1,2 + ωr ,1,2;

these two-forms are linearly independent.

In general we define the differential forms ωW ,A for each independent
set A ⊂ E and W connected component of ∩i∈ADi .
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Cohomology Algebra

Relations

If A1 ⊔A2 is dependent then ωW1,A1ωW2,A2 = 0, otherwise
ωW1,A1ωW2,A2 = ± ∑

L c.c. W1∩W2

ωL,A1⊔A2 . (1)

Moreover, if ψ∣W = 0 in H●(W ) then
ωW ,Aψ = 0. (2)

Finally, the following non trivial relation holds for every circuit C and
c.c. L of ∩i∈CDi

∑
j∈C

∑
A⊔B⊔{j}=C
∣B ∣ even

(−1)∣A≤j ∣
m(A)

m(A ∪B)
ωW ,AeBψB = 0, (3)

where m(A′) is the number of c.c. of ∩i∈A′Di , W is the connected
component containing L and eB =∏i∈B sgnni for ∑i∈C niχi = 0.

Remark

The numbers sgnni correspond to the choice of an orientation for the
toric arrangement.
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Cohomology Algebra

The cohomology algebra

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. – June ’18)

The rational cohomology algebra of the complement M(A) ⊂ T is
generated by H1(T) and by ωW ,A, for A independent and W c. c. of
∩i∈ADi , with relations

ωW1,A1ωW2,A2 = ± ∑
L c.c. W1∩W2

ωL,A1⊔A2 (1)

ωW ,Aψ = 0 if ψ∣W = 0 (2)

∑
j∈C

∑
A⊔B⊔{j}=C
∣B ∣ even

(−1)∣A≤j ∣
m(A)

m(A ∪B)
ωW ,AeBψB = 0. (3)

This theorem is a generalization of the result in the unimodular case by
De Concini and Procesi (2005).

Question: How does the cohomology ring depend on the
combinatorics?

Roberto Pagaria Combinatorics and Cohomology of Toric Arrangements June 12, 2018 5 / 14



Cohomology Algebra

The cohomology algebra

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. – June ’18)

The rational cohomology algebra of the complement M(A) ⊂ T is
generated by H1(T) and by ωW ,A, for A independent and W c. c. of
∩i∈ADi , with relations

ωW1,A1ωW2,A2 = ± ∑
L c.c. W1∩W2

ωL,A1⊔A2 (1)

ωW ,Aψ = 0 if ψ∣W = 0 (2)

∑
j∈C

∑
A⊔B⊔{j}=C
∣B ∣ even

(−1)∣A≤j ∣
m(A)

m(A ∪B)
ωW ,AeBψB = 0. (3)

This theorem is a generalization of the result in the unimodular case by
De Concini and Procesi (2005).

Question: How does the cohomology ring depend on the
combinatorics?

Roberto Pagaria Combinatorics and Cohomology of Toric Arrangements June 12, 2018 5 / 14



Combinatorics

Combinatorial objects

Equations

«

Poset of layers

«

Arithmetic matroid

«

Arithmetic Tutte
polynomial

From now on we suppose all arrangements to be
central, i.e.

Di = {t ∈ (C∗)r
∣ ta1,i

1 . . . tar ,i
r = 1}.

We collect these data in a matrix with integer co-
efficients N = (ai ,j) ∈M(r ,n;Z).

Example: The equations
x = 1

y = 1

xy3 = 1
are described by the matrix

N = (
1 0 1
0 1 3

) .
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Combinatorics

Combinatorial objects

Equations

«

Poset of layers

«

Arithmetic matroid

«

Arithmetic Tutte
polynomial

The poset of layers L(A) is the set of connected
components of intersections ordered by reverse in-
clusion.

Example: the Hasse diagram of the poset of layers
is

p q r

T

D1 D2 D3

Every interval of L(A) is a geometric lattice
ranked with the codimension in T .
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Combinatorics

Combinatorial objects

Equations

«

Poset of layers

«

Arithmetic matroid

«

Arithmetic Tutte
polynomial

Definition: An arithmetic matroid is a ground set
E with the rank function rk and the multiplicity
function m.

Example: The ground set is E = [n], the set
of hypertori. The rank function is rk(A) =

codimT (∩i∈ADi) and the multiplicity function is
m(A) = # c.c. of ∩i∈A Di .
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Combinatorics

Combinatorial objects

Equations

«

Poset of layers

«

Arithmetic matroid

«

Arithmetic Tutte
polynomial

The arithmetic Tutte polynomial of an arithmetic
matroid is
T(x , y) ∶= ∑

A⊆E
m(A)(x−1)rk(E)−rk(A)(y−1)∣A∣−rk(A)

Theorem (Moci – 2012)

The Poincaré polynomial of M(A) is

P(q) = qrk(E)T (
2q + 1
q

,0) .

Theorem (d’Antonio, Delucchi – 2013)

The cohomology with integer coefficients of
M(A) is torsion free.
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Combinatorics

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. – June ’18)

The rational cohomology algebra of the complement M(A) ⊂ T is
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where ei = sgnni if ∑i∈C niχi = 0.
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Combinatorics

Representation of arithmetic matroids

GLr(Z) × (Z/2Z)n ⟳ M(r ,n;Z)

GLr(Q) × (Z/2Z)n ⟳ M(r ,n;Q)

Theorem (P. – 2017)

Suppose that N1 and N2 ∈M(r ,n;Z) are two representation of the
arithmetic matroid (E , rk,m) with m(∅) = 1. Then there exists
g ∈ GLr(Q) × (Z/2Z)n such that N2 = gN1.

Corollary (P. – 2017)

An arithmetic matroid (E , rk,m) with m(∅) = m(E) = 1 has at most
one essential representation (up to equivalence).
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Combinatorics

Orientable arithmetic matroids

Definition

An oriented arithmetic matroid is a matroid (E , rk) with two extra
data: a orientation χ and a multiplicity function m such that

r

∑
i=0

(−1)iχm(yi , x2, . . . , xr)χm(y0, . . . , ŷi , . . . , yr) = 0. (GP)

Theorem (P. – 2018)

If (E , rk,m, χ) and (E , rk,m, χ′) are two oriented arithmetic matroids
then χ′ is a reorientation of χ.

Thus we call these triples (E , rk,m) orientable arithmetic matroids.
Moreover in the realizable case we have:

∑
i∈C
χ(c0, . . . , ĉi , . . . , cr)m(C ∖ {i})ψi = 0 ∈ H1

(T)

so that ei = χ(c0, . . . , ĉi , . . . , cr).
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Combinatorics

Let A be an essential arrangement.

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. – June ’18)

The rational cohomology algebra of the complement M(A) ⊂ T is
generated by {ψi}i≤n and by ωW ,A, for A independent and W c. c. of
∩i∈ADi , with relations

ωW1,A1ωW2,A2 = ± ∑
L c.c. W1∩W2

ωL,A1⊔A2 (1)

ωW ,Aψi = 0 if i ∈ A (2)

∑
j∈C

∑
A⊔B⊔{j}=C
∣B ∣ even

(−1)∣A≤j ∣
m(A)

m(A ∪B)
ωW ,AeBψB = 0 (3)

∑
i∈C
χ(c0, . . . , ĉi , . . . , ck)m(C ∖ {i})ψi = 0 (4)

where eB =∏i∈B χ(c0, . . . , ĉi , . . . , ck).

This presentation depends only on the poset of layers L(A).
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Integer coefficients

Presentation with integer coefficients

Define the forms εi = d log(b − ta1
1 ⋯t

an
n ) and from these we define the

forms εW ,A for every A independent set and W c.c. of ∩i∈ADi .
The following holds:

ωW ,A = ∑
B⊆A

(−1)∣B ∣2∣A∖B ∣m(A ∖B)

m(A)
εL,A∖BψB ,

where L is the c.c. of ∩i∈A∖B containing W .

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. – June ’18)

The integral cohomology algebra of M(A) is generated by H1(T ;Z)
and εW ,A, with relations

εW1,A1εW2,A2 = ± ∑
L c.c. W1∩W2

εL,A1⊔A2

εW ,Aψ = 0 if ψ∣W = 0

1
2∣C ∣−1

∑
j∈C

∑
A⊔B⊔{j}=C
∣B ∣ even

(−1)∣A≤j ∣
m(A)

m(A ∪B)
ωW ,AeBψB = 0.
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Examples

First example

Consider the two central arrangements described by the matrices

(
1 1 2
0 7 7

)

= (
1 − 1

7
0 1

)

(
1 2 3
0 7 7

) .

The two arrangements have the isomorphic poset of layers and therefore
same arithmetic matroid.

Unfortunately, H1(T ;Z) is not generated by
ψ1,ψ2 and ψ3. The two cohomology algebras with integer coefficients
are not isomorphic.

However, the cohomology algebras with rational coefficients are
isomorphic.
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Examples

Second example

Consider the two central arrangements described by the matrices

⎛
⎜
⎝

1 1 1 3
0 5 0 5
0 0 5 5

⎞
⎟
⎠

=
⎛
⎜
⎝

1 − 3
5 0

0 1 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

1 4 1 6
0 5 0 5
0 0 5 5

⎞
⎟
⎠
.

The two arrangements have the same associated arithmetic matroid
(the same matroid over Z) but different poset of layers.

The two cohomology algebra with rational coefficient are not
isomorphic.
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.

The two arrangements have the same associated arithmetic matroid
(the same matroid over Z) but different poset of layers.
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Further developments

1. Defining and studying “pseudo-toric arrangements”.

2. Defining a “good” class of poset containing all poset of layers.

3. Working with other generalizations of matroids (e.g.
G -semimatroids).

4. Studying toric resonance varieties.
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Thanks for listening!
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