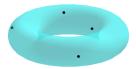
Roberto Pagaria

Scuola Normale Superiore

Cohomology of configuration spaces of points on the 2-torus

InterCity - seminar



at University of Neuchâtel November 30, 2018

Introduction

Let *E* be an elliptic curve. Define:

$$\mathcal{C}^{n}(E) := \{ (p_1, \dots, p_n) \in E^n \mid p_i \neq p_j \}$$
$$\mathcal{U}\mathcal{C}^{n}(E) := \{ X \subset E \mid |X| = n \} \simeq \mathcal{C}^{n}(E) / S_n$$

We will compute the cohomology ring $H^{\bullet}(\mathcal{UC}^{n}(E))$.

Introduction

Let *E* be an elliptic curve. Define:

$$\mathcal{C}^{n}(E) := \{ (p_1, \dots, p_n) \in E^n \mid p_i \neq p_j \}$$
$$\mathcal{U}\mathcal{C}^{n}(E) := \{ X \subset E \mid |X| = n \} \simeq \mathcal{C}^{n}(E) / S_n$$

We will compute the cohomology ring $H^{\bullet}(\mathcal{UC}^{n}(E))$.

Motivation:

- It is open in the Hilbert scheme.
- It is related to the motion planning problem.
- It is an example of elliptic arrangement.
- It is related to configurations in higher genus.

Introduction

Let *E* be an elliptic curve. Define:

$$\mathcal{C}^{n}(E) := \{ (p_1, \dots, p_n) \in E^n \mid p_i \neq p_j \}$$
$$\mathcal{U}\mathcal{C}^{n}(E) := \{ X \subset E \mid |X| = n \} \simeq \mathcal{C}^{n}(E) / S_n$$

We will compute the cohomology ring $H^{\bullet}(\mathcal{UC}^{n}(E))$.

Motivation:

- It is open in the Hilbert scheme.
- It is related to the motion planning problem.
- It is an example of elliptic arrangement.
- It is related to configurations in higher genus.

Our plan:

- Leray spectral sequence for $C^n(E) \hookrightarrow E^n$.
- Mixed Hodge theory for the degeneration of SS (Kriz model).
- Representation theory of S_n to compute the model for $\mathcal{UC}^n(E)$.
- Some non-trivial computations (not shown).

.

What is a spectral sequence?

It is a collection $(E_m, d_m)_{m \in \mathbb{N}}$ of CDGA such that $E_{m+1} = H(E_m, d_m)$.

÷	0	0	÷	÷	· · ·
2	\mathbb{Q}^2	0	0	0	
1	\mathbb{Q}^3	\mathbb{Q}^{6}	\mathbb{Q}^3	0	
0	Q	\mathbb{Q}^4	\mathbb{Q}^{6}	\mathbb{Q}^4	\mathbb{Q}
	0	1	2	3	4

Figure: The bigraded algebra E_2 .

What is a spectral sequence?

It is a collection $(E_m, d_m)_{m \in \mathbb{N}}$ of CDGA such that $E_{m+1} = H(E_m, d_m)$.

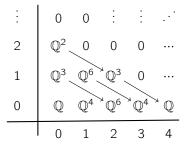


Figure: The bigraded algebra E_2 with differential d_2 .

The differential d_m has degree (m, 1 - m).

.

What is a spectral sequence?

It is a collection $(E_m, d_m)_{m \in \mathbb{N}}$ of CDGA such that $E_{m+1} = H(E_m, d_m)$.

2	0	0	0	0	
1	0	\mathbb{Q}^2	0	0	
0	Q	\mathbb{Q}^4	\mathbb{Q}^3	0	0
	0	1	2	3	4

Figure: The bigraded algebra E_3 .

The differential d_m has degree (m, 1 - m).

What is a spectral sequence?

It is a collection $(E_m, d_m)_{m \in \mathbb{N}}$ of CDGA such that $E_{m+1} = H(E_m, d_m)$.

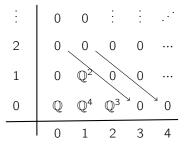


Figure: The bigraded algebra E_3 .

The differential d_m has degree (m, 1 - m).

.

What is a spectral sequence?

It is a collection $(E_m, d_m)_{m \in \mathbb{N}}$ of CDGA such that $E_{m+1} = H(E_m, d_m)$.

:	0	0	:	:	
2	0	0	0	0	
1	0	\mathbb{Q}^2	0	0	
0	Q	\mathbb{Q}^4	\mathbb{Q}^3	0	0
	0	1	2	3	4

Figure: The bigraded algebra E_{∞} .

The differential d_m has degree (m, 1 - m).

-

The Leray SS

Let $j: X \to Y$ be a continuous map and \mathcal{F} be a sheaf on X. Define the *higher direct image* sheaves $R^q j_* \mathcal{F}$ on Y by

 $U \mapsto H^q(j^{-1}U, \mathcal{F}).$

Theorem (Leray '46)

There exists a SS (E_m, d_m) such that:

•
$$E_2^{p,q} = H^p(Y, R^q j_* \mathcal{F})$$

•
$$H^k(X, \mathcal{F}) = \bigoplus_{p+q=k} E_{\infty}^{p,q}$$

The Leray SS

Let $j: X \to Y$ be a continuous map and \mathcal{F} be a sheaf on X. Define the *higher direct image* sheaves $\mathbb{R}^q j_* \mathcal{F}$ on Y by

 $U \mapsto H^q(j^{-1}U, \mathcal{F}).$

Theorem (Leray '46)

There exists a SS (E_m, d_m) such that:

•
$$E_2^{p,q} = H^p(Y, R^q j_* \mathcal{F})$$

•
$$H^k(X, \mathcal{F}) = \bigoplus_{p+q=k} E_{\infty}^{p,q}$$

We apply this to $j : C^n(E) \hookrightarrow E^n$ and $\mathcal{F} = \mathbb{Q}_{C^n(E)}$. In this case we have

$$\mathcal{R}^{q}_{j_{*}}\mathbb{Q}_{\mathcal{C}^{n}(E)} = \bigoplus_{\operatorname{codim} W=q} \mathbb{Q}_{W} \otimes H^{q}(\mathcal{C}^{q}(\mathbb{C})),$$

where $W \simeq E^{n-q}$.

Kähler varieties have a decomposition of the cohomology $H^k(X) = \bigoplus_{p+q=k} H^{p,q}(X)$

with $H^{p,q}(X) = \overline{H^{q,p}(X)}$.

Kähler varieties have a decomposition of the cohomology $H^{k}(X) = \bigoplus_{p+q=k} H^{p,q}(X)$

with $H^{p,q}(X) = \overline{H^{q,p}(X)}$.

Example

Let $X = \mathbb{C}^* \sim S^1$. The cohomology $H^1(\mathbb{C}^*) = \mathbb{C}$ cannot have such a decomposition.

Kähler varieties have a decomposition of the cohomology $H^{k}(X) = \bigoplus_{p+q=k} H^{p,q}(X)$

with $H^{p,q}(X) = \overline{H^{q,p}(X)}$.

Example

Let $X = \mathbb{C}^* \sim S^1$. The cohomology $H^1(\mathbb{C}^*) = \mathbb{C}$ cannot have such a decomposition.

Theorem (Deligne '74)

For algebraic varieties there exists a functorial decomposition:

$$H^{k}(X) = \bigoplus_{w=0}^{2 \dim X} \bigoplus_{p+q=w} H^{p,q}(X).$$

All "natural maps" preserve the weights w.

Kähler varieties have a decomposition of the cohomology $H^{k}(X) = \bigoplus_{p+q=k} H^{p,q}(X)$

with $H^{p,q}(X) = \overline{H^{q,p}(X)}$.

Example

Let $X = \mathbb{C}^* \sim S^1$. The cohomology $H^1(\mathbb{C}^*) = \mathbb{C}$ cannot have such a decomposition. Anyway we have $H^1(\mathbb{C}^*) = H^{1,1}(\mathbb{C}^*)$.

Theorem (Deligne '74)

For algebraic varieties there exists a functorial decomposition:

$$H^{k}(X) = \bigoplus_{w=0}^{2 \dim X} \bigoplus_{p+q=w} H^{p,q}(X).$$

All "natural maps" preserve the weights w.

The Mixed Hodge Structure satisfies:

• $H^k(X)$ has weights in [0, 2k].

The Mixed Hodge Structure satisfies:

- $H^k(X)$ has weights in [0, 2k].
- If X is compact then $H^k(X)$ has weights in [0, k].

The Mixed Hodge Structure satisfies:

- $H^k(X)$ has weights in [0, 2k].
- If X is compact then $H^k(X)$ has weights in [0, k].
- If X is smooth then $H^k(X)$ has weights in [k, 2k].

The Mixed Hodge Structure satisfies:

- $H^k(X)$ has weights in [0, 2k].
- If X is compact then $H^k(X)$ has weights in [0, k].
- If X is smooth then $H^k(X)$ has weights in [k, 2k].
- The module $H^k(\mathcal{C}^q(\mathbb{C}))$ has only the weight 2k.

The Mixed Hodge Structure satisfies:

- $H^k(X)$ has weights in [0, 2k].
- If X is compact then $H^k(X)$ has weights in [0, k].
- If X is smooth then $H^k(X)$ has weights in [k, 2k].
- The module $H^k(\mathcal{C}^q(\mathbb{C}))$ has only the weight 2k.

In our case

$$H^{p}(\mathbb{R}^{q}j_{*}\mathbb{Q}_{\mathcal{C}^{n}(\mathbb{E})}) = \bigoplus_{\operatorname{codim} W = q} H^{p}(W) \otimes H^{q}(\mathcal{C}^{q}(\mathbb{C}))$$

has only the weight p + 2q.

The Mixed Hodge Structure satisfies:

- $H^k(X)$ has weights in [0, 2k].
- If X is compact then $H^k(X)$ has weights in [0, k].
- If X is smooth then $H^k(X)$ has weights in [k, 2k].
- The module $H^k(\mathcal{C}^q(\mathbb{C}))$ has only the weight 2k.

In our case

$$H^{p}(\mathbb{R}^{q}j_{*}\mathbb{Q}_{\mathcal{C}^{n}(\mathbb{E})}) = \bigoplus_{\operatorname{codim} W = q} H^{p}(W) \otimes H^{q}(\mathcal{C}^{q}(\mathbb{C}))$$

has only the weight p + 2q.

Corollary

The map $d_m: E_m^{p,q} \rightarrow E_m^{p+m,q+1-m}$ is zero for m > 2.

Theorem (Kriz '94, Bibby '15, Dupont '15)

The CDGA (E_2, d_2) is a model for $H^{\bullet}(\mathcal{C}^n(E))$.

Theorem (Kriz '94, Bibby '15, Dupont '15)

The CDGA (E_2, d_2) is a model for $H^{\bullet}(\mathcal{C}^n(E))$.

We describe (E_2, d_2) explicitly: E_2 is the external algebra on generators

- x_i , y_i with degree (1, 0),
- $\omega_{i,j}$ for i < j with degree (0, 1),

Theorem (Kriz '94, Bibby '15, Dupont '15)

The CDGA (E_2, d_2) is a model for $H^{\bullet}(\mathcal{C}^n(E))$.

We describe (E_2, d_2) explicitly: E_2 is the external algebra on generators

- x_i , y_i with degree (1, 0),
- $\omega_{i,j}$ for i < j with degree (0, 1),

and relations

•
$$(x_i - x_j)\omega_{i,j} = 0$$
 and $(y_i - y_j)\omega_{i,j} = 0$,

•
$$\omega_{i,j}\omega_{j,k} - \omega_{i,j}\omega_{i,k} + \omega_{j,k}\omega_{i,k} = 0.$$

Theorem (Kriz '94, Bibby '15, Dupont '15)

The CDGA (E_2, d_2) is a model for $H^{\bullet}(\mathcal{C}^n(E))$.

We describe (E_2, d_2) explicitly: E_2 is the external algebra on generators

- x_i , y_i with degree (1, 0),
- $\omega_{i,j}$ for i < j with degree (0, 1),

and relations

•
$$(x_i - x_j)\omega_{i,j} = 0$$
 and $(y_i - y_j)\omega_{i,j} = 0$,

•
$$\omega_{i,j}\omega_{j,k} - \omega_{i,j}\omega_{i,k} + \omega_{j,k}\omega_{i,k} = 0.$$

The differential is given by

•
$$d_2(x_i) = d_2(y_i) = 0$$
,

•
$$d_2(\omega_{i,j}) = (x_i - x_j)(y_i - y_j)$$

Action of the symmetric group

The action of $\sigma \in S_n$ on E_2 is given by $\sigma x_i = x_{\sigma^{-1}(i)}, \sigma y_i = y_{\sigma^{-1}(i)}$, and $\sigma \omega_{i,j} = \omega_{\sigma^{-1}(i),\sigma^{-1}(j)}$.

Action of the symmetric group

The action of $\sigma \in S_n$ on E_2 is given by $\sigma x_i = x_{\sigma^{-1}(i)}, \sigma y_i = y_{\sigma^{-1}(i)}$, and $\sigma \omega_{i,j} = \omega_{\sigma^{-1}(i),\sigma^{-1}(j)}$.

Theorem (Ashraf, Azam, Berceanu '12)

The Krĭz model decomposes as

$$E_2^{p,q} = \bigoplus_{|L_*|=q,|H_*|=p} \operatorname{Ind}_{Z_{L_*,H_*}}^{S_n} \xi_{L_*,H_*}.$$

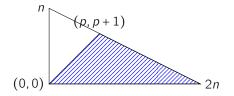
Action of the symmetric group

The action of $\sigma \in S_n$ on E_2 is given by $\sigma x_i = x_{\sigma^{-1}(i)}, \sigma y_i = y_{\sigma^{-1}(i)}$, and $\sigma \omega_{i,j} = \omega_{\sigma^{-1}(i),\sigma^{-1}(j)}$.

Theorem (Ashraf, Azam, Berceanu '12)

The Krĭz model decomposes as

$$E_2^{p,q} = \bigoplus_{|L_*|=q,|H_*|=p} \operatorname{Ind}_{Z_{L_*,H_*}}^{S_n} \xi_{L_*,H_*}.$$



Corollary (P. '18)

For
$$q > p + 1$$
 we have $(E_2^{p,q})^{S_n} = 0$

The Betti numbers

Let $T_n(t)$ be the truncation at degree *n* of

$$T(t) = \frac{1+t^3}{(1-t^2)^2} = 1 + 2t^2 + t^3 + 3t^4 + 2t^5 + 4t^6 \dots$$

Theorem (Drummond-Cole, Knudsen '17, Maguire '16, Schiessl '16)

The Poincaré polynomial of $\mathcal{UC}^{n}(E)$ is $(1+t)^{2}T_{n-1}(t)$.

The Betti numbers

Let $T_n(t)$ be the truncation at degree *n* of

$$T(t) = \frac{1+t^3}{(1-t^2)^2} = 1 + 2t^2 + t^3 + 3t^4 + 2t^5 + 4t^6 \dots$$

Theorem (Drummond-Cole, Knudsen '17, Maguire '16, Schiessl '16)

The Poincaré polynomial of $\mathcal{UC}^{n}(E)$ is $(1+t)^{2}T_{n-1}(t)$.

The group *E* acts on $C^n(E)$ by translation, so $C^n(E) \simeq E \times C^n(E)/E$.

The Betti numbers

Let $T_n(t)$ be the truncation at degree *n* of

$$T(t) = \frac{1+t^3}{(1-t^2)^2} = 1 + 2t^2 + t^3 + 3t^4 + 2t^5 + 4t^6 \dots$$

Theorem (Drummond-Cole, Knudsen '17, Maguire '16, Schiessl '16)

The Poincaré polynomial of $\mathcal{UC}^{n}(E)$ is $(1+t)^{2}T_{n-1}(t)$.

The group *E* acts on $C^n(E)$ by translation, so

 $\mathcal{C}^n(E)\simeq E\times \mathcal{C}^n(E)/E.$

We need to study only $C^n(E)/E \simeq C^{n-1}(E \smallsetminus p)$ that has Poincaré polynomial equal to $T_{n-1}(t)$.

The model E_2 for $C^n(E)/E$ differs from that of $C^n(E)$ by adding the relations $\sum_i x_i = 0$ and $\sum y_i = 0$.

Action of the MPC

The mapping class group $MCG(E) \sim SL_2(\mathbb{Z})$ acts on $C^n(E)$ and therefore on E_2 as follows:

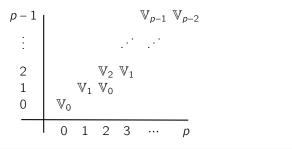
- $\omega_{i,j}$ are invariants.
- ⟨x_i, y_i⟩ is invariant and isomorphic to the irreducible representation V₁.

This action extends to $SL_2(\mathbb{Q})$.

Recall that the irreducible representations of $SL_2(\mathbb{Q})$ are $\mathbb{V}_n = S^n \mathbb{V}_1$ of dimension n + 1.

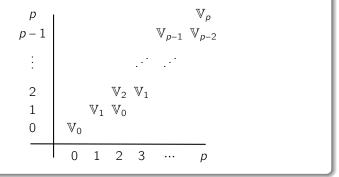
Theorem (P. '18)

The cohomology $H(E_2^{S_n}, d_2)$, for n = 2p, is:



Theorem (P. '18)

The cohomology $H(E_2^{S_n}, d_2)$, for n = 2p + 1, is:



Sketch of proof.

Consider the elements $\alpha \in E_2^{1,1}$ and $\beta \in E_2^{1,2}$ defined by:

$$\alpha \coloneqq \sum_{i,k < h} (x_i - x_k) \omega_{k,h}$$

$$\beta \coloneqq \sum_{i,j,k < h} (3x_i - x_j - 2x_k) (y_j - y_k) \omega_{k,h}$$

The cohomology $H(E_2^{S_n}, d_2)$ is generated as $SL_2(\mathbb{Q})$ -module by α^k and $\alpha^k \beta$.

Sketch of proof.

Consider the elements $\alpha \in E_2^{1,1}$ and $\beta \in E_2^{1,2}$ defined by:

$$\alpha \coloneqq \sum_{i,k < h} (x_i - x_k) \omega_{k,h}$$

$$\beta \coloneqq \sum_{i,j,k < h} (3x_i - x_j - 2x_k) (y_j - y_k) \omega_{k,h}$$

The cohomology $H(E_2^{S_n}, d_2)$ is generated as $SL_2(\mathbb{Q})$ -module by α^k and $\alpha^k \beta$.

Corollary (P. '18)

The cohomology algebra $H(\mathcal{UC}^n(E))$ is given by $H(E) \otimes S^{\bullet} \mathbb{V}_1[\beta]$ with relations

• for
$$n = 2p$$
: $\alpha^p = \alpha^{p-1}\beta = \beta^2 = 0$.

• for
$$n = 2p + 1$$
: $\alpha^{p+1} = \alpha^{p-1}\beta = \beta^2 = 0$.

Moreover, $\mathcal{UC}^{n}(E)$ is a formal space.

Let $\mathcal{G} = ([n], \mathcal{E})$ be a graph. Define $M_{\mathcal{G}} := \{(p_1, \dots, p_n) \in E^n \mid p_i \neq p_j \text{ for } (i, j) \in \mathcal{E}\}.$ Consider the Leray SS associated with $M_{\mathcal{G}} \hookrightarrow E^n$; we have $E_3(M_{\mathcal{G}}) = E_{\infty}(M_{\mathcal{G}}) = H(M_{\mathcal{G}}).$

Let $\mathcal{G} = ([n], \mathcal{E})$ be a graph. Define

$$M_{\mathcal{G}} := \{ (p_1, \ldots, p_n) \in E^n \mid p_i \neq p_j \text{ for } (i, j) \in \mathcal{E} \}.$$

Consider the Leray SS associated with $M_{\mathcal{G}} \hookrightarrow E^n$; we have $E_3(M_{\mathcal{G}}) = E_{\infty}(M_{\mathcal{G}}) = H(M_{\mathcal{G}})$. The model $(E_2(M_{\mathcal{G}}), d_2)$ is given by the generators

- x_i , y_i with degree (1, 0),
- $\omega_{i,j}$ for $(i,j) \in \mathcal{E}$ with degree (0,1),

Let $\mathcal{G} = ([n], \mathcal{E})$ be a graph. Define

$$M_{\mathcal{G}} \coloneqq \{ (p_1, \ldots, p_n) \in E^n \mid p_i \neq p_j \text{ for } (i, j) \in \mathcal{E} \}.$$

Consider the Leray SS associated with $M_{\mathcal{G}} \hookrightarrow E^n$; we have $E_3(M_{\mathcal{G}}) = E_{\infty}(M_{\mathcal{G}}) = H(M_{\mathcal{G}})$. The model $(E_2(M_{\mathcal{G}}), d_2)$ is given by the generators

- x_i , y_i with degree (1, 0),
- $\omega_{i,j}$ for $(i,j) \in \mathcal{E}$ with degree (0,1),

and relations

•
$$(x_i - x_j)\omega_{i,j} = 0$$
 and $(y_i - y_j)\omega_{i,j} = 0$,

• $\sum_{i \in C} (-1)^i \omega_{c_1, c_2} \omega_{c_2, c_3} \dots \omega_{c_{i-1}, c_i} \omega_{c_{i+1}, c_{i+2}} \dots \omega_{c_n, c_1} = 0$ for every cycle (circuit) *C* of *G*.

Let $\mathcal{G} = ([n], \mathcal{E})$ be a graph. Define

$$M_{\mathcal{G}} \coloneqq \{ (p_1, \ldots, p_n) \in E^n \mid p_i \neq p_j \text{ for } (i, j) \in \mathcal{E} \}.$$

Consider the Leray SS associated with $M_{\mathcal{G}} \hookrightarrow E^n$; we have $E_3(M_{\mathcal{G}}) = E_{\infty}(M_{\mathcal{G}}) = H(M_{\mathcal{G}})$. The model $(E_2(M_{\mathcal{G}}), d_2)$ is given by the generators

- x_i , y_i with degree (1, 0),
- $\omega_{i,j}$ for $(i,j) \in \mathcal{E}$ with degree (0,1),

and relations

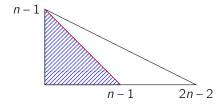
•
$$(x_i - x_j)\omega_{i,j} = 0$$
 and $(y_i - y_j)\omega_{i,j} = 0$,

• $\sum_{i \in C} (-1)^i \omega_{c_1, c_2} \omega_{c_2, c_3} \dots \omega_{c_{i-1}, c_i} \omega_{c_{i+1}, c_{i+2}} \dots \omega_{c_n, c_1} = 0$ for every cycle (circuit) *C* of *G*.

The differential is given by

- $d_2(x_i) = d_2(y_i) = 0$,
- $d_2(\omega_{i,j}) = (x_i x_j)(y_i y_j).$

As done before we add the relations $\sum_i x_i = \sum_i y_i = 0$. The third page $E_3(M_g)$ is non-zero only when p + q < n,

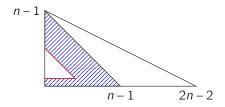


because M_G/E has the homotopy type of a CW-complex of dimension n-1.

Suppose now that G has no cycles (circuits) of length $\leq k$.

Conjecture

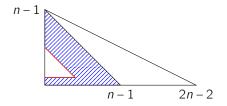
The groups $E_3^{p,q}(M_G)$ are zero for p + q < k and q > 0.



Suppose now that G has no cycles (circuits) of length $\leq k$.

Conjecture

The groups $E_3^{p,q}(M_G)$ are zero for p + q < k and q > 0.



This conjecture is equivalent to one of the following:

- $H^i(E^n \setminus M_G)$ has pure mixed Hodge structure for i > 2n k.
- computing the dimension of ∧[•](x_i, y_i)/((x_i x_j)(y_i y_j))_{(i,j)∈E} in degree less than k + 2.

Thanks for listening!

roberto.pagaria@gmail.com