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Hyperplane arrangements

Hyperplane arrangements

We will see:

A OMat Mat

M(AC) L(A)

Where:
A is a real hyperplane arrangement,
M(AC) is the complement,
Mat and OMat are a matroid and an oriented matroid,
L(A) is the lattice of intersections.
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Hyperplane arrangements

A real hyperplane arrangement A is a finite collection of
hyperplanes Hi, i ∈ E in Rk.
The complementM(AC) is the topological space Ck \ ∪H∈AH ⊗ C.

The poset of intersections is the partially ordered set whose
elements are ∩H∈IH, for I ⊆ E ordered by reverse inclusion.

C2

H1 H2 H3

The poset of intersections is a geometric lattice, i.e. a graded
atomistic semimodular lattice.
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Hyperplane arrangements

A matroid is a finite set E with a rank function rk : 2E → N that
satisfies:
1. rk(I) ≤ |I|,
2. if I ⊂ J then rk(I) ≤ rk(J),
3. rk(I ∩ J) + rk(I ∪ J) ≤ rk(I) + rk(J).

A k-flat is a subset I ⊆ E maximal among all subsets of rank k.
A set I is (in-)dependent if rk(I) < |I| (resp. rk(I) = |I|).
A basis B ⊆ E is an independent set such that rk(E) = rk(B)(= |B|).
A circuit C ⊆ E is a minimal dependent set.

Facts:
1. the poset of flats coincides with the poset of the intersections.
2. the matroid is uniquely determined by its bases.
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A k-flat is a subset I ⊆ E maximal among all subsets of rank k.
A set I is (in-)dependent if rk(I) < |I| (resp. rk(I) = |I|).
A basis B ⊆ E is an independent set such that rk(E) = rk(B)(= |B|).
A circuit C ⊆ E is a minimal dependent set.

Example
The previous arrangement defines the matroid E = {1, 2, 3} and
rk(I) = codim(∩i∈IHi) = min{|I|, 2}.
The flats are ∅, {1}, {2}, {3}, {1, 2, 3}.
The bases are {1, 2}, {1, 3}, {2, 3}.
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Hyperplane arrangements

Explicit construction

Any hyperplane Hi in Rk is defined by vi ∈ (Rk)∗, unique up to
scalars. An arrangement A can be defined by a matrix

V = (vi) ∈M(k, n;R).

For each I ∈ [n], let V [I] = (vi)i∈I .

The matroid associated with A is the set [n] with rank function

rk(I) := rank(V [I])

and does not depend on the choice of V .
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Hyperplane arrangements

Oriented matroids

Definition
A chirotope of rank k over E is χ : Ek → {0, 1,−1} such that
1. χ(σx) = sgn(σ)χ(x) for each σ ∈ Sk,
2. (−1)iχ(yi, x2, . . . , xk)χ(x1, y1, . . . , ŷi, . . . , yk) ≥ 0 for all i, then

χ(x)χ(y) ≥ 0.

Example: The chirotope defined by an arrangement A in Rk is of
rank k and is defined by:

χ(i1, . . . , ik) = sgn det(vi1 , . . . , vik).

Fact: A chirotope defines a matroid by B = {B ∈ Er | χ(B) ̸= 0}.

Definition
Two chirotopes χ and χ′ are equivalent if there exists A ⊆ E such that

χ′(x) = (−1)|A∩x|χ(x).
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χ(x)χ(y) ≥ 0.

Example: The chirotope defined by an arrangement A in Rk is of
rank k and is defined by:

χ(i1, . . . , ik) = sgn det(vi1 , . . . , vik).

Fact: A chirotope defines a matroid by B = {B ∈ Er | χ(B) ̸= 0}.

Definition
Two chirotopes χ and χ′ are equivalent if there exists A ⊆ E such that

χ′(x) = (−1)|A∩x|χ(x).

Roberto Pagaria Arithmetic Matroids April 3, 2019 5 / 19



Hyperplane arrangements

Oriented matroids

Definition
A chirotope of rank k over E is χ : Ek → {0, 1,−1} such that
1. χ(σx) = sgn(σ)χ(x) for each σ ∈ Sk,
2. (−1)iχ(yi, x2, . . . , xk)χ(x1, y1, . . . , ŷi, . . . , yk) ≥ 0 for all i, then
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Hyperplane arrangements

Tutte polynomial

Definition
The Tutte polynomial of a matroid (E, rk) is

T (x, y) :=
∑
A⊆E

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

The Poincaré polynomial ofM(AC) coincides with

PM(AC)(q) = qnT

(
q + 1

q
, 0

)
,

where T is the Tutte polynomial of the matroid represented by A.
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Hyperplane arrangements

Topology

The cohomology algebra H •(M(AC)) is isomorphic to the
Orlik-Solomon algebra of the associated matroid.

The homotopy type ofM(AC) depends only on the oriented matroid
data using the Salvetti complex.

However, the homotopy type is not determined by the matroid as
shown by Rybnikov.

Definition
The OS-algebra of a matroid (E, rk) is the external algebra on
generators ωe for e ∈ E and relations

r∑
i=1

(−1)iωc1 . . . ω̂ci . . . ωcr = 0

for each circuit C = {c1, . . . , cr} ⊂ E.
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Toric arrangements

Toric arrangements

We will see:

AT OAMat AMat

M(AT ) S(AT )

Where:
AT is a toric arrangement,
M(AT ) is the complement,
AMat and OAMat are arithmetic matroid and orientable arithmetic
matroid,
S(AT ) is the lattice of layers.
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Toric arrangements

An hypertorus T in an algebraic torus (C∗)k is the set
T = {(t1, . . . , tk) ∈ (C∗)k | tv1

1 t
v2
2 · · · tvkk = 1}

for a vector (vi) ∈ Zk.
A toric arrangement AT is a collection of hypertori Hi, for i ∈ [n].

Example: the integer matrix

V =

(
1 1 0
0 3 1

)
defines the following toric arrangement:

p q r

t1 = 1

t1t
3
2 = 1

t2 = 1
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Toric arrangements

Poset of layers

A layer is a connected component of the intersection of some
hypertori of AT .
The poset of layers S(AT ) is the set of all layers ordered by reverse
inclusion.

Example

p q r

p q r

(C∗)2

T1 T2 T3

Fact: The poset of layers is a geometric semilattice.
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Toric arrangements

Arithmetic matroids

A molecule is S = R ⊔ T ⊔ F ⊆ E such that rk(R ⊔ T ) = rk(R) and
rk(R ⊔ F ) = rk(R) + |F |.

Definition (Brändén – Moci, D’Adderio – Moci 2014)
An arithmetic matroid is a matroid (E, rk) together with a multiplicity
function m : 2E → N+ such that:
1. if rk(I ∪ e) = rk(I), then m(I ∪ e)|m(I); otherwise m(I)|m(I ∪ e),
2. for each molecule m(R)m(R ∪ T ∪ F ) = m(R ∪ F )m(R ∪ T ),
3. for each molecule

∑
R⊆I⊆S(−1)|R|+|F |−|I|m(I) ≥ 0.

Example
A toric arrangement AT defines an arithmetic matroid by
rk(I) := codim(∩i∈ITi) and m(I) = # c.c. of ∩i∈I Ti.
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Toric arrangements

Explicit construction

An hypertorus T is the set
{(t1, . . . , tk) ∈ (C∗)k | tv11 t

v2
2 · · · tvkk = 1}

for a vector (vi) ∈ Zk. We collect these data in a matrix
V = (vi) ∈M(k, n;Z).

This matrix is defined up to left multiplication by GL(k,Z) and reverse
sign of the columns.

The associated arithmetic matroid is defined by
rk(I) := rank(V [I])

and by
m(I) := gcd

|J|=|I|
|det(V [I]J)|.
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Toric arrangements

Orientable arithmetic matroid

An oriented arithmetic matroid is (E,χ,m) such that (E,χ) is an
oriented matroid and (E, rk,m) is an arithmetic matroid with the
compatibility condition: for all x2, . . . , xk and y0, . . . , yk

k∑
i=0

(−1)iχ(xi)m(xi)χ(y
i)m(yi) = 0, (GP)

where xi = (yi, x2 . . . , xk) and yi = (y0, . . . yi−1, yi+1 . . . yk).

Remark
Condition (GP) involves only the value of m on the bases of (E, rk).

Theorem (P. 2018)
If an arithmetic matroid is orientable then the orientation is unique up
to re-orientation.
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Toric arrangements

Representability problem

We ask whether an arithmetic matroid is representable and how
many different representations exist.

An arithmetic matroid is strong GCD if for all I ⊂ E

m(I) = gcd{m(B)|B basis and |B ∩ I| = rk I}.

Theorem (P. 2018)
Suppose that m(∅) = m(E) = 1, then (E, rk,m) is representable if
and only if
1. it is orientable,
2. it is strong GCD.

Moreover, the representation is unique.
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Toric arrangements

Arithmetic Tutte polynomial

Definition (Moci 2011)
The arithmetic Tutte polynomial of an arithmetic matroid (E, rk) is

T ′(x, y) :=
∑
A⊆E

m(A)(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

The Poincaré polynomial ofM(AT ) coincides with

PM(AT )(q) = qnT ′
(
2q + 1

q
, 0

)
,

where T ′ is the arithmetic Tutte polynomial of the arithmetic matroid
represented by AT .
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Toric arrangements

Topology

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. 2018)
The rational cohomology algebra of the complementM(AT ) is
generated by ψi and by ωW,I , for I independent andW c. c. of
∩i∈ITi, with relations

ωW1,I1ωW2,I2 = ±
∑

L c. c. W1∩W2

ωL,I1⊔I2 (1)

ωW,Iψi = 0 if i ∈ I (2)∑
j∈C

∑
A⊔B⊔{j}=C

|B| even

(−1)|A≤j |cB
m(A)

m(A ∪B)
ωW,AψB = 0, (3)

∑
j∈C

(−1)jcC\jm(C \ j)ψC\j = 0 (4)

where C is a circuit and cB ∈ {±1} depending on the chosen
orientation.
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Toric arrangements

Example: The two toric arrangements described by

N1 =

(
1 1 2
0 7 7

)
and N2 =

(
1 2 3
0 7 7

)
,

have the same poset of layers but different integral cohomology
algebras.

Example: The two toric arrangements described by

N3 =

 1 1 1 3
0 5 0 5
0 0 5 5

 and N4 =

 1 4 1 6
0 5 0 5
0 0 5 5

 ,

have different posets of layers and different rational cohomology
algebra. However, they have the same arithmetic matroid.
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Toric arrangements

Toric arrangements

We have seen:

AT OAMat AMat

M(AT ) S(AT )

m(E)=m(∅)=1

/
/

Where:
AT is a toric arrangement,
M(AT ) is the complement,
AMat and OAMat are arithmetic matroid and orientable arithmetic
matroid,
S(AT ) is the lattice of layers.
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Thanks for listening!

roberto.pagaria@gmail.com
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