Winter School
Geometry, Algebra and Combinatorics of Moduli Spaces and Configurations II

Milnor Fibre and Characteristic Variety of Line Arrangements

Oscar Papini
University of Pisa

Dobbiaco/Toblach • February 21, 2018

Hyperplane arrangements

Definition (Hyperplane arrangement)

Let V be a finite-dimensional vector space over a field \mathbb{K}. A hyperplane arrangement \mathcal{A} is a (finite) collection of affine hyperplanes of V . The same definition can be given for a projective hyperplane arrangement in a projective space.

Basic definitions

- The complement of an arrangement \mathcal{A} is the set

$$
\mathcal{M}(\mathcal{A}):=\mathrm{V} \backslash \bigcup_{\mathrm{H} \in \mathcal{A}} \mathrm{H} .
$$

- An arrangement \mathcal{A} is central if

$$
\bigcap_{H \in \mathcal{A}} \mathrm{H} \neq \varnothing .
$$

- The defining polynomial of an arrangement \mathcal{A} is

$$
\mathrm{Q}_{\mathcal{A}}=\prod_{\mathrm{H} \in \mathcal{A}} \alpha_{\mathrm{H}}
$$

where α_{H} is a linear form defining H .

Intersection poset

Definition (Intersection poset)

The intersection poset $\mathrm{L}(\mathcal{A})$ of an arrangement \mathcal{A} is the set of all non-empty intersections of hyperplanes of \mathcal{A}, partially ordered by reverse inclusion. It includes V as the intersection of zero hyperplanes.

A, B, C, D are the singular points of \mathcal{A}. For a singular point P, its multiplicity $m(P)$ is the number of lines passing through it.

Combinatorial properties

Definition (Combinatorial property)
We say that a property of an arrangement \mathcal{A} is combinatorial if it depends only on the intersection poset $\mathrm{L}(\mathcal{A})$.

Combinatorial properties

Definition (Combinatorial property)

We say that a property of an arrangement \mathcal{A} is combinatorial if it depends only on the intersection poset $\mathrm{L}(\mathcal{A})$.

- The cohomology ring $\mathrm{H}^{*}(\mathcal{A}(\mathcal{A}) ; \mathbb{C})$ is combinatorial (OrlikSolomon algebra).
- The fundamental group $\pi_{1}(\mathcal{M}(\mathcal{A}))$ is not combinatorial (Rybnikov counterexample).

Our setting

From now we will suppose that \mathcal{A} is an arrangement of $\mathfrak{n}+1$ projective lines in $\mathbb{P}^{2}(\mathbb{R})$. The defining polynomial $Q_{\mathcal{A}}$ belongs to $\mathbb{R}[X, Y, Z]$ and it is homogeneous of degree $n+1$.

Since the topology of $\mathcal{M}(\mathcal{A})$ in $\mathbb{P}^{2}(\mathbb{R})$ is easy to describe, we will consider the complexified arrangement $\mathcal{A}_{\mathbb{C}}$, which is the arrangement in $\mathbb{P}^{2}(\mathbb{C})$ defined by $\mathrm{Q}_{\mathcal{A}}$, and study the complement $\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) \subseteq \mathbb{C}^{2}$.

The Milnor fibre

Definition (Milnor fibre and geometric monodromy)

Let \mathcal{A} be an arrangement of $n+1$ projective lines. Consider $\mathrm{Q}=\mathrm{Q}_{\mathcal{A}}$ as a map $\mathrm{Q}: \mathbb{C}^{3} \rightarrow \mathbb{C}$; it defines a fibration

$$
\left.\mathrm{Q}\right|_{\mathrm{Q}^{-1}\left(\mathbb{C}^{*}\right)}: \mathrm{Q}^{-1}\left(\mathbb{C}^{*}\right) \rightarrow \mathbb{C}^{*} .
$$

The fibre $F:=Q^{-1}(1)$ is the Milnor fibre of the arrangement. The map

$$
\begin{aligned}
h: & F \rightarrow F \\
& x \mapsto \lambda x
\end{aligned}
$$

where $\lambda:=e^{2 \pi i /(n+1)}$ is called geometric monodromy of the Milnor fibre.

The Milnor fibre

The geometric monodromy induces a map

$$
h_{*}: \mathrm{H}_{*}(\mathrm{~F} ; \mathbb{C}) \rightarrow \mathrm{H}_{*}(\mathrm{~F} ; \mathbb{C}) ;
$$

we will focus on the first homology group.

Proposition

There is a $\mathbb{C}\left[\mathbf{T}^{ \pm 1}\right]$-module isomorphism

$$
\mathrm{H}_{1}(\mathrm{~F} ; \mathbb{C}) \simeq \mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right]\right)
$$

where the action of T on the left is given by the monodromy action, i.e. $T \cdot[a]=h_{1}([a])$ for $[a] \in \mathrm{H}_{1}(\mathrm{~F} ; \mathbb{C})$.
$\mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right]\right)$ is an example of local coefficients homology (we'll come back on this later).

A-monodromicity

Since $\mathbb{C}\left[T^{ \pm 1}\right]$ is a PID, and the monodromy action has order $n+1$, we have a decomposition

$$
\mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right]\right) \simeq \bigoplus \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right] /\left(\varphi_{\mathrm{d}}\right)
$$

where φ_{d} is the d -th cyclotomic polynomial, and $\mathrm{d} \mid \mathrm{n}+1$.

A-monodromicity

Since $\mathbb{C}\left[T^{ \pm 1}\right]$ is a PID, and the monodromy action has order $n+1$, we have a decomposition

$$
\mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right]\right) \simeq \bigoplus \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right] /\left(\varphi_{\mathrm{d}}\right)
$$

where φ_{d} is the d -th cyclotomic polynomial, and $\mathrm{d} \mid \mathrm{n}+1$.

Definition (A-monodromic arrangement)

An arrangement \mathcal{A} of lines in $\mathbb{P}^{2}(\mathbb{R})$ is a-monodromic if

$$
\mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}\left[\mathrm{T}^{ \pm 1}\right]\right) \simeq \mathbb{C}^{\mathrm{n}}\left[\simeq\left(\mathbb{C}\left[\mathrm{~T}^{ \pm 1}\right] /(\mathrm{T}-1)\right)^{\mathrm{n}}\right]
$$

This corresponds to the fact that the only eigenvalue of h_{1} is 1 , i.e. h_{1} is trivial.

A conjecture

No general formula for the Milnor fibre homology is known (not even for the first Betti number!), nor it is known to what extent all this is combinatorial-there are some conjectures, though.

A conjecture

No general formula for the Milnor fibre homology is known (not even for the first Betti number!), nor it is known to what extent all this is combinatorial-there are some conjectures, though.

Let \mathcal{A} be a line arrangement in $\mathbb{P}^{2}(\mathbb{R})$. The double point graph $\Gamma(\mathcal{A})$ is the graph defined as follows:

- its vertex set is $\{\mathrm{H} \mid \mathrm{H} \in \mathcal{A}\}$;
- there is an edge $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ iff $\mathrm{H}_{1} \cap \mathrm{H}_{2}$ is a double point.

A conjecture

No general formula for the Milnor fibre homology is known (not even for the first Betti number!), nor it is known to what extent all this is combinatorial-there are some conjectures, though.

Let \mathcal{A} be a line arrangement in $\mathbb{P}^{2}(\mathbb{R})$. The double point graph $\Gamma(\mathcal{A})$ is the graph defined as follows:

- its vertex set is $\{\mathrm{H} \mid \mathrm{H} \in \mathcal{A}\}$;
- there is an edge $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ iff $\mathrm{H}_{1} \cap \mathrm{H}_{2}$ is a double point.

Conjecture (Salvetti-Serventi '15/'17)
If $\Gamma(\mathcal{A})$ is connected, then \mathcal{A} is a-monodromic.

A conjecture

No general formula for the Milnor fibre homology is known (not even for the first Betti number!), nor it is known to what extent all this is combinatorial-there are some conjectures, though.

Let \mathcal{A} be a line arrangement in $\mathbb{P}^{2}(\mathbb{R})$. The double point graph $\Gamma(\mathcal{A})$ is the graph defined as follows:

- its vertex set is $\{\mathrm{H} \mid \mathrm{H} \in \mathcal{A}\}$;
- there is an edge $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ iff $\mathrm{H}_{1} \cap \mathrm{H}_{2}$ is a double point.

Conjecture (Salvetti-Serventi '15/'17)

If $\Gamma(\mathcal{A})$ is connected, then \mathcal{A} is a-monodromic.
Salvetti and Serventi proved this only assuming extra hypotheses on the graph $\Gamma(\mathcal{A})$.

Local systems

Definition (Local system)

Let \mathcal{A} be an arrangement of $n+1$ lines in $\mathbb{P}^{2}(\mathbb{R}), M:=\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right)$, and let R be a commutative ring with unity. A rank-1 abelian local system is a structure of $\pi_{1}(M)$-module on R.

Local systems

Definition (Local system)

Let \mathcal{A} be an arrangement of $n+1$ lines in $\mathbb{P}^{2}(\mathbb{R}), M:=\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right)$, and let R be a commutative ring with unity. A rank-1 abelian local system is a structure of $\pi_{1}(M)$-module on R.

When $R=\mathbb{C}$, the action $\pi_{1}(M) \rightarrow \mathcal{A u t}(\mathbb{C}) \simeq \mathbb{C}^{*}$ factors through $H_{1}(M ; \mathbb{Z})$, which is free abelian of rank $n+1$ generated by $\beta_{1}, \ldots, \beta_{n+1}$, where β_{i} is a loop around a complex line of $\mathcal{A}_{\mathbb{C}}$. In this case, the local system is defined by a choice of a non-zero complex number t_{i} for each β_{i}.

Local coefficient (co)homology

We will denote by \mathbb{C}_{t} the local system defined by $t:=\left(t_{1}, \ldots, t_{n+1}\right) \in\left(\mathbb{C}^{*}\right)^{n+1}$, and with $H_{*}\left(M ; \mathbb{C}_{t}\right)$ and $H^{*}\left(M ; \mathbb{C}_{\mathbf{t}}\right)$ respectively the homology and cohomology of M with coefficients in $\mathbb{C}_{\mathbf{t}}$.

Remark

1. We have

$$
H\left(M ; \mathbb{C}_{t}\right) \simeq H\left(M ; \mathbb{C}\left[T_{1}^{ \pm 1}, \ldots, T_{n+1}^{ \pm 1}\right]\right)
$$

where the action of β_{i} on the right is given by multiplication by T_{i}.
2. The homology of the Milnor fibre is isomorphic to the homology of M with coefficients in the local system defined by $\beta_{i} \mapsto t$ for all $i=1, \ldots, n+1$.

Characteristic varieties

Definition (Characteristic variety)

Let \mathcal{A} be an arrangement as before. The (first) characteristic variety is

$$
\mathcal{V}(\mathcal{A}):=\left\{\mathbf{t} \in\left(\mathbb{C}^{*}\right)^{n+1} \mid \operatorname{dim} \mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}_{\mathbf{t}}\right) \geqslant 1\right\} .
$$

Characteristic varieties

Definition (Characteristic variety)

Let \mathcal{A} be an arrangement as before. The (first) characteristic variety is

$$
\mathcal{V}(\mathcal{A}):=\left\{\mathbf{t} \in\left(\mathbb{C}^{*}\right)^{n+1} \mid \operatorname{dim} \mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}_{\mathbf{t}}\right) \geqslant 1\right\} .
$$

Theorem (Arapura '97)

$\mathcal{V}(\mathcal{A})$ is a union of (eventually translated) subtori of $\left(\mathbb{C}^{*}\right)^{n+1}$.

Characteristic varieties

Definition (Characteristic variety)

Let \mathcal{A} be an arrangement as before. The (first) characteristic variety is

$$
\mathcal{V}(\mathcal{A}):=\left\{\mathbf{t} \in\left(\mathbb{C}^{*}\right)^{n+1} \mid \operatorname{dim} \mathrm{H}_{1}\left(\mathcal{M}\left(\mathcal{A}_{\mathbb{C}}\right) ; \mathbb{C}_{\mathbf{t}}\right) \geqslant 1\right\} .
$$

Theorem (Arapura '97)

$\mathcal{V}(\mathcal{A})$ is a union of (eventually translated) subtori of $\left(\mathbb{C}^{*}\right)^{n+1}$.

$$
\text { Is } \mathcal{V}(\mathcal{A}) \text { combinatorial? }
$$

Resonance varieties

Let A be the Orlik-Solomon algebra associated with \mathcal{A}. Fix $a \in A^{1}$. Left-multiplication by a gives A^{\bullet} the structure of a cochain complex.

Definition (Resonance variety)

The (first) resonance variety is

$$
\mathcal{R}(\mathcal{A}):=\left\{a \in A^{1} \mid \operatorname{dim} H^{1}\left(\left(A^{\bullet}, a \cdot\right) ; \mathbb{C}\right) \geqslant 1\right\} .
$$

$\mathcal{R}(\mathcal{A})$ is a union of linear subspaces of $A^{1} \simeq \mathbb{C}^{\mathfrak{n}+1}$

Resonance varieties

Let A be the Orlik-Solomon algebra associated with \mathcal{A}. Fix $a \in A^{1}$. Left-multiplication by a gives A^{\bullet} the structure of a cochain complex.

Definition (Resonance variety)

The (first) resonance variety is

$$
\mathcal{R}(\mathcal{A}):=\left\{a \in A^{1} \mid \operatorname{dim} H^{1}\left(\left(A^{\bullet}, a \cdot\right) ; \mathbb{C}\right) \geqslant 1\right\} .
$$

$\mathcal{R}(\mathcal{A})$ is a union of linear subspaces of $A^{1} \simeq \mathbb{C}^{n+1}$

Tangent Cone Theorem (Cohen-Suciu '99)

$\mathcal{R}(\mathcal{A})$ is the tangent cone of $\mathcal{V}(\mathcal{A})$ at $(1, \ldots, 1) \in\left(\mathbb{C}^{*}\right)^{n+1}$.
The "homogeneous part" of $\mathcal{V}(\mathcal{A})$ is combinatorial!

Local and non-local components

Denote the lines of \mathcal{A} with $[n+1]:=\{1, \ldots, n+1\}$ and a singular point with the subset of $[n+1]$ indicating the lines passing through it. Let $S \subseteq P([n+1])$ be the set of the singular points.

For each $\mathrm{P} \in S$ with $\#(\mathrm{P}) \geqslant 3$, there is a local component of $\mathcal{R}(\mathcal{A})$ given by

$$
C(P):=\left\{z \mid \sum_{j=1}^{n+1} z_{j}=0\right\} \cap \bigcap_{j \notin P}\left\{z \mid z_{j}=0\right\}
$$

The non-local components admit a description in terms of neighbourly partitions.

Neighbourly partitions

Definition (Neighbourly partition)

A partition $\pi=\left(p_{1}|\cdots| p_{r}\right)$ of $[n+1]$ is neighbourly if for all $i=1, \ldots, r$ and for all $P \in S$

$$
\#\left(p_{i} \cap P\right) \geqslant \#(P)-1 \Rightarrow P \subseteq p_{i}
$$

Neighbourly partitions

Definition (Neighbourly partition)

A partition $\pi=\left(p_{1}|\cdots| p_{r}\right)$ of $[n+1]$ is neighbourly if for all $i=1, \ldots, r$ and for all $P \in S$

$$
\#\left(p_{i} \cap P\right) \geqslant \#(P)-1 \Rightarrow P \subseteq p_{i}
$$

If π is a neighbourly partition, define $C(\pi) \subseteq \mathbb{C}^{n+1}$ as

$$
C(\pi):=\left\{z \mid \sum_{j=1}^{n+1} z_{j}=0\right\} \cap \bigcap_{P \in \mathcal{P}}\left\{z \mid \sum_{j \in P} z_{j}=0\right\}
$$

where $\mathcal{P}:=\{P \in S \mid \nexists p \in \pi$ s.t. $P \subseteq p\}$.

Neighbourly partitions

Proposition

If $\operatorname{dim}(\mathrm{C}(\pi)) \geqslant 2$, then $\mathrm{C}(\pi)$ is a non-local component of $\mathcal{R}(\mathcal{A})$.

Neighbourly partitions

Proposition

If $\operatorname{dim}(\mathrm{C}(\pi)) \geqslant 2$, then $\mathrm{C}(\pi)$ is a non-local component of $\mathcal{R}(\mathcal{A})$.
If π is a partition of a subset $B \subseteq[n+1]$, define support of π, $\operatorname{supp}(\pi)$, the set B.

Proposition

Let $\mathcal{B} \subseteq \mathcal{A}$ be a subarrangement and let π be a neighbourly partition for \mathcal{B} such that $\operatorname{dim}(\mathrm{C}(\pi)) \geqslant 2$. Then

$$
C(\pi) \cap \bigcap_{j \notin \operatorname{supp}(\pi)}\left\{z_{j}=0\right\}
$$

is a non-local component of $\mathcal{R}(\mathcal{A})$. All non-local components of $\mathcal{R}(\mathcal{A})$ arise from subarrangements of \mathcal{A} this way.

Combinatorics of the characteristic variety

For the homogeneous part of the characteristic variety $\mathcal{V}(\mathcal{A})$, we define ideals of $\mathbb{C}\left[T_{1}^{ \pm 1}, \ldots, T_{n+1}^{ \pm 1}\right]$ such that their varieties are the components of $\mathcal{V}(\mathcal{A})$.

Combinatorics of the characteristic variety

For the homogeneous part of the characteristic variety $\mathcal{V}(\mathcal{A})$, we define ideals of $\mathbb{C}\left[T_{1}^{ \pm 1}, \ldots, T_{n+1}^{ \pm 1}\right]$ such that their varieties are the components of $\mathcal{V}(\mathcal{A})$.

- If $\mathrm{P} \in \mathrm{S}$ with $\#(\mathrm{P}) \geqslant 3$, define

$$
\mathcal{J}(P):=\left(\prod_{j=1}^{n+1} T_{j}-1\right)+\left(T_{j}-1 \mid j \notin P\right)
$$

this corresponds to a local component of $\mathcal{V}(\mathcal{A})$.

Combinatorics of the characteristic variety

For the homogeneous part of the characteristic variety $\mathcal{V}(\mathcal{A})$, we define ideals of $\mathbb{C}\left[\mathrm{T}_{1}^{ \pm 1}, \ldots, \mathrm{~T}_{n+1}^{ \pm 1}\right]$ such that their varieties are the components of $\mathcal{V}(\mathcal{A})$.

- If $\mathrm{P} \in \mathrm{S}$ with $\#(\mathrm{P}) \geqslant 3$, define

$$
\mathcal{J}(P):=\left(\prod_{j=1}^{n+1} T_{j}-1\right)+\left(T_{j}-1 \mid j \notin P\right)
$$

this corresponds to a local component of $\mathcal{V}(\mathcal{A})$.

- If π is a neighbourly partition, define

$$
\mathcal{J}(\pi):=\left(\prod_{j=1}^{n+1} T_{j}-1\right)+\left(\prod_{j \in P} T_{j}-1 \mid P \in \mathcal{P}\right)
$$

where $\mathcal{P}:=\{P \in S \mid \nexists p \in \pi$ s.t. $P \subseteq p\}$.

Combinatorics of the characteristic variety

Proposition

Let $\mathcal{B} \subseteq \mathcal{A}$ be a subarrangement and let π be a neighbourly partition for \mathcal{B} such that $\operatorname{dim}(\mathcal{J}(\pi)) \geqslant 2$. Then the component passing through $(1, \ldots, 1)$ of the variety in $\left(\mathbb{C}^{*}\right)^{n+1}$ defined by the ideal

$$
\mathcal{J}(\pi)+\left(T_{j}-1 \mid j \notin \operatorname{supp}(\pi)\right)
$$

is a non-local component of $\mathcal{V}(\mathcal{A})$. All non-local components of $\mathcal{V}(\mathcal{A})$ passing through $(1, \ldots, 1)$ arise from subarrangements of \mathcal{A} this way.

Example: A_{3}

Note: in all examples, we actually compute the characteristic variety of the affine arrangement $a \mathcal{A}$ of n lines in \mathbb{R}^{2}.

$$
\mathcal{V}(\mathcal{A})=\left\{\left(\mathbf{t}, \mathrm{t}_{\mathrm{n}+1}\right) \in\left(\mathbb{C}^{*}\right)^{n+1} \mid \mathbf{t} \in \mathcal{V}(\mathrm{a} \mathcal{A}), \mathrm{t}_{1} \cdots \mathrm{t}_{\mathrm{n}+1}=1\right\}
$$

$14|25| 3 \infty$

- 4 local components
- 1 non-local component, given by $\mathcal{J}(14|25| 3 \infty)$

Example: B_{3}

$$
\left.\begin{array}{c}
12|37| 45 \\
\vdots \\
3 \infty|48| 56
\end{array}\right\} \text { 11 part. }
$$

- 7 local components
- 11 non-local components given by A_{3} subarrangements
- 1 non-local component given by $\mathcal{J}(156|248| 37 \infty)$

The three partitions of the form $x x x|x| x|x| x$ give rise to a zero-dimensional ideal, so they don't contribute to $\mathcal{V}(\mathcal{A})$.

Example: B_{3} deleted

$$
\begin{aligned}
& 14|23| 6 \infty \\
& 15|26| 3 \infty \\
& 16|27| 4 \infty \\
& 1 \infty|37| 46 \\
& 2 \infty|36| 45 \\
& 145|2| 3|6| \infty \\
& 237|1| 4|6| \infty
\end{aligned}
$$

- 7 local components
- 5 non-local components given by A_{3} subarrangements
- 1 translated component with equations (in $\mathcal{V}(a \mathcal{A})$)

$$
\begin{gathered}
t_{6}+1, \quad t_{2}-t_{3}, \quad t_{1}-t_{4}, \quad t_{5} t_{7}-1, \quad t_{4} t_{7}+t_{3}, \\
\\
t_{3} t_{5}+t_{4}, \quad t_{4}^{2}-t_{5}, \quad t_{3} t_{4}+1, \quad t_{3}^{2}-t_{7}
\end{gathered}
$$

The $R(10)$ arrangement

- 11 local components
- 10 non-local components given by A_{3} subarrangements
- 4 translated components with equations (in $\mathcal{V}(\mathrm{a} \mathcal{A})$)

$$
\begin{gathered}
\mathrm{t}_{7}-\mathrm{t}_{8}, \quad \mathrm{t}_{6}-\mathrm{t}_{8}, \quad \mathrm{t}_{5}-\mathrm{t}_{8}, \quad \mathrm{t}_{4}-\mathrm{t}_{9}, \quad \mathrm{t}_{3}-\mathrm{t}_{9}, \quad \mathrm{t}_{2}-\mathrm{t}_{9}, \\
\mathrm{t}_{1}-\mathrm{t}_{9}, \quad \mathrm{t}_{8} \mathrm{t}_{9}+\mathrm{t}_{9}^{2}+\mathrm{t}_{8}+\mathrm{t}_{9}+1, \quad \mathrm{t}_{8}^{2}-\mathrm{t}_{9}, \quad \mathrm{t}_{9}^{3}-\mathrm{t}_{8}
\end{gathered}
$$

The $R(10)$ arrangement

The ideal $\mathcal{J}(\star)$ associated with the partition (\star) is zero-dimensional, so it doesn't contribute to the variety. But its primary decomposition has 7 ideals, among which there is the ideal that defines the translated components!

B_{3} deleted - Part II

$$
\begin{aligned}
& 14|23| 6 \infty \\
& 15|26| 3 \infty \\
& 16|27| 4 \infty \\
& 1 \infty|37| 46 \\
& 2 \infty|36| 45 \\
& 145|2| 3|6| \infty \\
& 237|1| 4|6| \infty
\end{aligned}
$$

If we try to compute the primary decompositions of the two ideals given by the $x x x|x| x|x| x$ partitions, we obtain nothing of interest.

Sum of partitions

Definition (Sum of partitions)

Let π_{1} and π_{2} be partitions with a priori different supports $\operatorname{supp}\left(\pi_{1}\right)$ and $\operatorname{supp}\left(\pi_{2}\right)$. Define the sum of π_{1} and π_{2} as the partition $\pi_{1}+\pi_{2}$ such that

1. $\operatorname{supp}\left(\pi_{1}+\pi_{2}\right)=\operatorname{supp}\left(\pi_{1}\right) \cup \operatorname{supp}\left(\pi_{2}\right)$;
2. it is the finest partition such that each block of π_{1} and π_{2} is contained in a block of $\pi_{1}+\pi_{2}$.

$$
\begin{aligned}
\pi_{1} & =145|2| 3|6| \infty \\
\pi_{2} & =237|1| 4|6| \infty \\
\pi_{1}+\pi_{2} & =145|237| 6 \mid \infty
\end{aligned}
$$

B3 deleted - Part III

$$
\begin{aligned}
& 14|23| 6 \infty \\
& 15|26| 3 \infty \\
& 16|27| 4 \infty \\
& 1 \infty|37| 46 \\
& 2 \infty|36| 45 \\
& 145|2| 3|6| \infty \\
& 237|1| 4|6| \infty
\end{aligned}
$$

The primary decomposition of $\mathcal{J}(145|237| 6 \mid \infty)$ is $\mathrm{I}_{1} \cap \mathrm{I}_{2}$, where

$$
\begin{aligned}
& I_{1}=\left(\begin{array}{ccc}
t_{6}+1, & t_{2}-t_{3}, & t_{1}-t_{4}, \\
t_{3} t_{5}+t_{4}, & t_{4}^{2}-t_{7}-1, & t_{4} t_{7}+t_{3}, \\
t_{3} t_{4}+1, & t_{3}^{2}-t_{7}
\end{array}\right) \\
& I_{2}=\left(\begin{array}{ccc}
t_{6}-1, & t_{2}-t_{3}, & t_{1}-t_{4}, \\
t_{3} t_{5}-t_{4}, & t_{4}^{2}-t_{7}-1, & t_{4} t_{7}-t_{3}, \\
t_{3} t_{4}-1, & t_{3}^{2}-t_{7}
\end{array}\right)
\end{aligned}
$$

Final remarks

- I have other examples of translated components appearing in primary decompositions of ideals associated with iterated sum of partitions. Unfortunately I don't have a criterion to select which ideals actually belong to the characteristic variety. But I am working on it!
- I used a chain complex introduced by Gaiffi and Salvetti in order to compute the characteristic varieties. The algorithm requires some time (it took more than two weeks for $R(10)$) and becomes unfeasible for arrangements with > 10 lines.
- Notice that the monodromy of the Milnor fibre can be retrieved from the characteristic variety (just put all t_{i} 's equal to t).

Thank you for your attention.

