
Oscar Papini
University of Pisa

Fribourg · June 26, 2018

Computational Aspects of
Line and Toric Arrangements



Line Arrangements

Hyperplane arrangements

Definition (Hyperplane arrangement)
Let V be a finite-dimensional vector space over a fieldK. A hyper-
plane arrangement A is a (finite) collection of affine hyperplanes
of V . The same definition can be given for a projective hyperplane
arrangement in a projective space.
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Line Arrangements

Basic definitions

I The complement of an arrangement A is the set

M(A) := V r
⋃
H∈A

H.

I An arrangement A is central if⋂
H∈A

H 6= ∅.

I The defining polynomial of an arrangement A is

QA =
∏
H∈A

αH

where αH is a linear form defining H.
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Line Arrangements

Coning and deconing

{
affine arr. of
r hyp. inKm

}

{
central arr. of

r+ 1 hyp. inKm+1

}

{
projective arr. of

r+ 1 hyp. in Pm(K)

}
coning

deconing

deprojectivization

projectivization
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Line Arrangements

Intersection poset

Definition (Intersection poset)
The intersection poset L(A) of an arrangement A is the set of all
non-empty intersections of hyperplanes of A, partially ordered by
reverse inclusion. It includes V as the intersection of zero hyper-
planes.
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A, B, C,D are the singular points of A. For a singular point P, its
multiplicitym(P) is the number of lines passing through it.
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Line Arrangements

Combinatorial properties

Definition (Combinatorial property)
We say that a property of an arrangement A is combinatorial if it
depends only on the intersection poset L(A).

I The cohomology ring H∗(M(A);C) is combinatorial (Orlik-
Solomon algebra).

I The fundamental group π1(M(A)) is not combinatorial (Ryb-
nikov counterexample).
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Line Arrangements

Local systems

Definition (Local system)
Let A be an arrangement of n hyperplanes in Cm,M := M(A),
and let R be a commutative ring with unity. A rank-1 local system is
a structure of π1(M)-module on R.

When R = C, the action π1(M)→ Aut(C) ' C∗ factors through
H1(M;Z), which is free abelian of rank n generated by β1, . . . , βn,
where βi is a loop around a line of A. In this case, the local system
is defined by a choice of a non-zero complex number ti for each βi.

We will denote by Ct the local system defined by
t := (t1, . . . , tn) ∈ (C∗)n, and with H∗(M;Ct) and H∗(M;Ct)
respectively the homology and cohomology with coefficients in Ct.
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Line Arrangements

Characteristic varieties

Definition (Characteristic variety)
Let A be an arrangement as before. The (first) characteristic variety
is

V(A) := {t ∈ (C∗)n | dimH1(M;Ct) > 1}.

Theorem (Arapura ’97)
V(A) is a union of (possibly translated) subtori of (C∗)n.

Is V(A) combinatorial?
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Line Arrangements

Resonance varieties

Let A be the Orlik-Solomon algebra associated with A. Fix a ∈ A1.
Left-multiplication by a gives A• the structure of a cochain complex.

Definition (Resonance variety)
The (first) resonance variety is

R(A) := {a ∈ A1 | dimH1((A•, a · );C) > 1}.

R(A) is a union of linear subspaces of A1 ' Cn

Tangent Cone Theorem (Cohen-Suciu ’99)
R(A) is the tangent cone of V(A) at (1, . . . , 1) ∈ (C∗)n.

The “homogeneous part” of V(A) is combinatorial!
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Line Arrangements

Our setting

From now we will suppose that A is an arrangement of n+ 1
projective lines in P2(R). The defining polynomialQA belongs to
R[X, Y, Z] and it is homogeneous of degree n+ 1.

Since the topology ofM(A) in P2(R) is easy to describe, we will
consider the complexified arrangement AC, which is the
arrangement in P2(C) defined byQA, and study the complement
M(AC) Ď C2.
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Line Arrangements

Our setting

IfA is an arrangement of n+ 1 projective lines in P2(C), it is known
that

H1(M(A);C) = 〈β1, . . . , βn+1 | β1 · · ·βn+1 = 1〉
with the commutation relations.

1. If (t1, . . . , tn+1) is a local system for A, then t1 · · · tn+1 = 1.
2. Let aA be the arrangement of n lines in C2 obtained by send-
ing `n+1 to infinity. Then

V(A) = {(t, tn+1) ∈ (C∗)n+1 | t ∈ V(aA), t1 · · · tn+1 = 1}.
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Line Arrangements

Local and non-local components

Denote the lines of A with [n+ 1] := {1, . . . , n+ 1} and a singular
point with the subset of [n+ 1] indicating the lines passing through
it. Let S Ď P([n+ 1]) be the set of the singular points.

For each P ∈ S with #(P) > 3, there is a local component of R(A)
given by

C(P) :=

z

∣∣∣∣∣∣
n+1∑
j=1

zj = 0

 ∩ ⋂
j/∈P

{z | zj = 0}

The non-local components admit a description in terms of
neighbourly partitions.
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Line Arrangements

Neighbourly partitions

Definition (Neighbourly partition)
A partition π = (p1 | · · · | pr) of [n + 1] is neighbourly if for all
i = 1, . . . , r and for all P ∈ S

#(pi ∩ P) > #(P) − 1 ⇒ P Ď pi.

If π is a neighbourly partition, define C(π) Ď Cn+1 as

C(π) :=

z

∣∣∣∣∣∣
n+1∑
j=1

zj = 0

 ∩ ⋂
P∈P

z

∣∣∣∣∣∣
∑
j∈P

zj = 0


where P := {P ∈ S | @ p ∈ π s.t. P Ď p}.
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Line Arrangements

Neighbourly partitions

Proposition
If dim(C(π)) > 2, then C(π) is a non-local component of R(A).

If π is a partition of a subset B Ď [n+ 1], define support of π,
supp(π), the set B.

Proposition
Let B Ď A be a subarrangement and let π be a neighbourly parti-
tion for B such that dim(C(π)) > 2. Then

C(π) ∩
⋂

j/∈supp(π)

{zj = 0}

is a non-local component of R(A). All non-local components of
R(A) arise from subarrangements of A this way.
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Line Arrangements

Combinatorics of the characteristic variety

For the homogeneous part of the characteristic variety V(A), we
define ideals of C[T±11 , . . . , T±1n+1] such that their varieties are the
components of V(A).

I If P ∈ S with #(P) > 3, define

I(P) :=

n+1∏
j=1

Tj − 1

+
(
Tj − 1

∣∣ j /∈ P);
this corresponds to a local component of V(A).

I If π is a neighbourly partition, define

I(π) :=

n+1∏
j=1

Tj − 1

+

∏
j∈P

Tj − 1

∣∣∣∣∣∣ P ∈ P


where P := {P ∈ S | @ p ∈ π s.t. P Ď p}.
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Line Arrangements

Combinatorics of the characteristic variety

Proposition
Let B Ď A be a subarrangement and let π be a neighbourly parti-
tion for B such that dim(I(π)) > 2. Then the component passing
through (1, . . . , 1) of the variety in (C∗)n+1 defined by the ideal

I(π) + (Tj − 1 | j /∈ supp(π))
is a non-local component of V(A). All non-local components of
V(A) passing through (1, . . . , 1) arise from subarrangements of A
this way.

If B = A, we call the component essential.
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Line Arrangements

Example: A3

1
2

3

4

5 ∞
I 4 local components
I 1 component with equations

t1 − t4, t2 − t5, t3t4t5 − 1
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Line Arrangements

Example: B3x

This example was discovered by Suciu in 2002

∞ 1 2

3

4

5
6

7

I 7 local components
I 5 components of type A3
I 1 translated component with
equations

t6 + 1, t2 − t3, t1 − t4,

t5t7 − 1, t4t7 + t3,

t3t5 + t4, t24 − t5,

t3t4 + 1, t23 − t7
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Line Arrangements

Computing the characteristic variety

Let A be an arrangement of n+ 1 lines in P2(R) and let
M = M(AC).

I Alexander matrix from a presentation of π1(M);
I refined Salvetti complex (Salvetti-Settepanella ’07; Gaiffi-
Salvetti ’09): algebraic complex that computes the homology
ofM with local coefficients.

Theorem
Let ∂2(t) be the 2-boundary map of the refined Salvetti complex
that computes H∗(M;Ct). Then

V(AC) = {t ∈ (C∗)n | rk([∂2](t)) < n− 1}.
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Line Arrangements

Computing the characteristic variety

I Compute the primary decomposition of the ideal of all
(n− 1)× (n− 1) minors.

I Compute one (n− 1)× (n− 1) minor at a time, factoring it and
computing “partial components”.

Remark
The number of minors is

n ·
(

ν

n− 1

)
where ν =

∑
P∈Sing(A)

(m(P) − 1).
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Line Arrangements

Computing the characteristic variety

CPU total time for computation of V(aB3x):

Computer Processor Benchmark Time

sedna Intel Atom N550 235 2 h 38 min 46 s
lab6 AMD A8-3850 APU 995 26 min 14 s
lnx1 Intel Xeon E5-2643 v4 2060 13 min 19 s

(benchmark: www.cpubenchmark.net, single thread, last checked
on June 11, 2018)
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Line Arrangements

R(10)

2

3

4

5

6

7
9

1
8 ∞

I 11 local components
I 10 components of type A3
I 4 translated components with
equations

t7 − t8, t6 − t8, t5 − t8,

t4 − t9, t3 − t9, t2 − t9,

t1 − t9, t28 − t9, t39 − t8,

t8t9 + t
2
9 + t8 + t9 + 1
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Line Arrangements

A new algorithm

We developed a new algorithm that computes the characteristic
variety through a series of bifurcations.

p ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



p ∗ ∗
0 ∗ ∗
0 ∗ ∗



q ∗ ∗
∗ ∗ 0

∗ ∗ ∗


p 6= 0 p = 0
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Line Arrangements

Comparison of the two algorithms

Computer Old algorithm New algorithm

sedna 2 h 38 min 46 s 2 min 21 s
lab6 26 min 14 s 27 s
lnx1 13 min 19 s 14 s
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Line Arrangements

R(12)

∞ 10

9

8

7

6

3

4

5

2

1

11

I 16 local components
I 23 comp. of type A3
I 1 comp. of type NonPappus
I 3 trans. comp. of type B3x
I 1 comp. with equations

t8 − t11, t7 − t10, t6 − t9,
t5 − t11, t4 − t10, t3 − t9,

t2 − t9, t1 − t10, t9t10t11 − 1

I 2 trans. comp. with equations

t10 + t11, t9 + t11, t8 + t11,
t7 + t11, t6 + t11, t5 − t11,
t4 − t11, t3 − t11, t2 − t11,
t1 − t11, t

2
11 − t11 + 1
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Line Arrangements

A(12, 2)

8

9

7

2 31 4

10
11

6
5∞

I 14 local components
I 35 comp. of type A3
I 2 comp. of type B3
I 1 comp. of type NonPappus
I 10 trans. comp. of type B3x
I 8 trans. comp. of type A(10, 2)
I 4 trans. comp. of type A(11, 1)
I 2 trans. comp. with equations

t10 − t11, t9 + 1, t8 − t11 + 1,
t7 + 1, t6 − t11, t5 − t11,
t4 − t11 + 1, t3 − t11 + 1,
t2 − t11 + 1, t1 − t11 + 1,

t211 − t11 + 1
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Line Arrangements

Double points partitions

Let A be a line arrangement in P2(R). The double points graph
Γ(A) is the graph defined as follows:

I its vertex set is {H | H ∈ A};
I there is an edge {H1, H2} iff H1 ∩H2 is a double point.

Definition
The double points partition of A is the partition ΠA induced by
the connected components of Γ(A).

∞ 1 2

3

4

5
6

7

→
4

5

1

3

7

2

6 ∞ → (1 4 5 | 2 3 7 | 6 |∞)
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Line Arrangements

Double points partitions

The definition of I(π) does not require that π is neighbourly.

Proposition
For all arrangements A of which we computed V(A) except one,
if ΠA is the double points partition of A, the essential translated
components of V(A) (if exist) appear as the zero locus of one ideal
of the primary decomposition of (the radical of) I(ΠA).
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Line Arrangements

Example: DPP of B3x

∞ 1 2

3

4

5
6

7

The primary decomposition of I(1 4 5 | 2 3 7 | 6 |∞) is I1 ∩ I2, where

I1 =

(
t6 + 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 + t3,

t3t5 + t4, t24 − t5, t3t4 + 1, t23 − t7

)
I2 =

(
t6 − 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 − t3,

t3t5 − t4, t24 − t5, t3t4 − 1, t23 − t7

)
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Line Arrangements

Counterexample: A(11, 1)

7

8

6

1 32

9

10

5

4∞

I 12 local components
I 25 comp. of type A3
I 1 comp. of type B3
I 1 comp. of type NonPappus
I 8 trans. comp. of type B3x
I 4 trans. comp. of type A(10, 2)
I 2 trans. comp. with equations

t9 − t10, t8 + 1, t7 − t10 + 1,
t6 + 1, t5 − t10, t4 − t10,
t3 − t10 + 1, t2 + t10,

t1 − t10 + 1, t
2
10 − t10 + 1
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Line Arrangements

Counterexample: A(11, 1)

ΠA = (2 4 5 6 7 8 9 10 | 1 | 3 |∞)

The two translated components are 0-dimensional, whereas all
irreducible components of Z(I(ΠA)) are 1-dimensional. However,
the two points do belong to Z(I(ΠA)).

It turns out that the two translated components appear in the
primary decomposition of

I(ΠA) + (t2t4t9 − 1, t2t5t10 − 1)

which is the ideal generated by all the polynomials
∏
ti − 1

associated with singular points with multiplicity at least three.
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Toric Arrangements

The torus

Definition
A complex algebraic torus T is an affine variety isomorphic to
(C∗)n.

Definition
A character of T is a group homomorphism χ : T → C∗ that is a
morphism of algebraic varieties. The set of characters of T is a
group X∗(T) isomorphic to Zn.

Definition
A one-parameter subgroup of T is a group homomorphism
λ : C∗ → T that is a morphism of algebraic varieties. The set of
one-parameter subgroups of T is a group X∗(T) isomorphic to Zn.
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Toric Arrangements

Toric arrangements

Definition
A layer in T is a set of the form

K(Γ,ϕ) := {t ∈ T | χ(t) = ϕ(χ) for all χ ∈ Γ }
where Γ < X∗(T) is a split direct summand and ϕ : Γ → C∗ is a
homomorphism.

Definition
A toric arrangement A in T is a finite set of layers in T.
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Toric Arrangements

Wonderful models

Wonderful models have been introduced by De Concini and Procesi
in 1995 for subspace arrangements.

Definition
A projective wonderful model YA forM(A) is a smooth projective
variety containingM(A) as a dense open set and such that the
complement YA r M(A) is a divisor with normal crossings and
smooth irreducible components.
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Toric Arrangements

Building the wonderful model

A

XA

YA

toric arrangement

“good” toric variety

wonderful model

A toric variety can be obtained from a polyhedral rational fan ∆ in
V := X∗(T)⊗ R.

34/49Oscar Papini Computational Aspects of Line and Toric Arrangements



Toric Arrangements

Building the wonderful model

A

XA

YA

toric arrangement

“good” toric variety

wonderful model

A toric variety can be obtained from a polyhedral rational fan ∆ in
V := X∗(T)⊗ R.

34/49Oscar Papini Computational Aspects of Line and Toric Arrangements



Toric Arrangements

Equal sign bases

There is a pairing <·, ·> : X∗(T)× X∗(T)→ Z.

Definition
Let ∆ be a fan in V . A character χ ∈ X∗(T) has the equal sign
property with respect to ∆ if, for every cone C ∈ ∆, either
<χ, c> > 0 for all c ∈ C or <χ, c> 6 0 for all c ∈ C.

Definition
Let ∆ be a fan in V and letK(Γ,ϕ) be a layer. A basis (χ1, . . . , χm)
for Γ is an equal sign basis with respect to ∆ if χi has the equal
sign property for all i = 1, . . . ,m.

XA is “good” if it is projective, smooth and every layer of A has an
equal sign basis w.r.t. the fan associated with XA.
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Toric Arrangements

Two algorithms

For eachKi = K(Γi, ϕi) ∈ A, let χi,1, . . . , χi,si be a Z-basis of Γi
and let

Ξ =
⋃

Ki∈A
{χi,1, . . . , χi,si}.

1. Start with a smooth, projective fan and subdivide it so that
the final fan is equal sign.

2. Start with an equal sign, projective fan and subdivide it so
that the final fan is smooth.
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Toric Arrangements

DCG algorithm

1. Start with the orthant fan (corresponding variety: (P1)n).
2. Choose a vector χ ∈ Ξ.
3. Repeat until there are no “bad” cones:

3.1 Create the list of bad cones.
3.2 Choose a bad cone and subdivide it.

4. Repeat for all vectors in Ξ, using the last computed fan as
input.

Subdivision can be done in such a way that each computed fan is
still smooth and projective.
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Toric Arrangements

Smooth algorithm

1. Start with the fan generated by the vectors orthogonal to the
ones in Ξ.

2. For each non-smooth cone of the fan, subdivide it in two
cones. This can be done in such a way that at least one of
them is smooth, and eventually both of them are.
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Toric Arrangements

Example

First algorithm Second algorithm

Ξ = {(−1, 3), (−1, 4)}
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Toric Arrangements

Cohomology of the wonderful model

De Concini and Gaiffi (2018): presentation of H∗(YA;Z).
I Cohomology ring H∗(XA;Z)
I Well-connected building set G

I Poset of layers C(A)
I Adapted bases for the elements of C(A)

H∗(YA;Z) ' H∗(XA;Z)[TG | G ∈ G]
/
some relations
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Toric Arrangements

Cohomology of the toric variety

Let X be a smooth complete toric variety with associated fan ∆ and
let R be the set of the primitive rays of ∆.

H∗(X;Z) ' Z[Cr | r ∈ R]
/
(ISR + IL)

where
I ISR is the Stanley-Reisner ideal

ISR := (Cr1 · · ·Crk | r1, . . . , rk do not belong to a cone of ∆);
I IL is the linear equivalence ideal

IL :=

(∑
r∈R

<β, r>Cr

∣∣∣∣∣ β ∈ X∗(T)
)
.
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Toric Arrangements

Poset of layers

Definition
Let A be a toric arrangement in the torus T. The poset of layers
C(A) is the set of all the connected components of the non-empty
intersections of the layers of A, partially ordered by reverse inclu-
sion. It includes T as the intersection of zero layers.

To compute C(A) we use an algorithm by Lenz (2017). However he
considers arrangements in the real compact torus (S1)n instead of
the complex algebraic torus (C∗)n. This is not a problem, as our
definition is more general.
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Toric Arrangements

Building sets

Let C0(A) := C(A)r {T}. For the sake of simplicity, assume that all
the non-empty intersections of the layers of A are connected.

Definition
A subset G Ď C0(A) is a building set for A if for each layerK ∈
C0(A) r G the minimal elements of the set {G ∈ G | G Ě K}

intersect transversally and their intersection isK.

Definition
A building set G is well-connected if for any subset {G1, . . . , Gk} Ď

G, if the intersection G1 ∩ · · · ∩ Gk has two or more connected
components, then each of them belongs to G.
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Toric Arrangements

Adapted bases

For every pair (M,G) ∈ C(A)× C(A) with G Ď M, we choose a
basis (β1, . . . , βs) for ΓG such that (β1, . . . , βk), with k 6 s, is a
basis for ΓM. We omit the details here.

From these bases, we compute polynomials PMG ∈ H∗(XA;Z)[Z],
from which the relations for H∗(YA;Z) can be obtained.
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Toric Arrangements

A two-dimensional example

K1

K2

K3

K4

K5

3 0 3

0 1 −2


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A two-dimensional example (cont’d)

T

K2 K3 K4 K1 K5

P1 P2 P3 P4 P5 P6

H4(YA;Z) ' Z, H2(YA;Z) ' Z14, H0(YA;Z) ' Z.
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Toric Arrangements

A five-dimensional example

K1 = {(t1, . . . , t5) ∈ (C∗)5 | t1t
−1
4 = 1},

K2 = {(t1, . . . , t5) ∈ (C∗)5 | t2t
−1
5 = 1},

K3 = {(t1, . . . , t5) ∈ (C∗)5 | t3t4t5 = 1}.

T

K1 K2 K3

K4 K5 K6

K7 H10(YA;Z) ' Z,
H8(YA;Z) ' Z29,
H6(YA;Z) ' Z132,
H4(YA;Z) ' Z132,
H2(YA;Z) ' Z29,
H0(YA;Z) ' Z.
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Future directions

I Line arrangements: investigate the link between the ideals
generated by multiple points and the components of the char-
acteristic variety.

I Toric arrangements: generalize the construction, allowing
arbitrary building sets as well as toric arrangements according
to De Concini and Gaiffi’s definition.
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Thank you!

Thank you for your attention.
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