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Abstract. Given a family of critical points uε :Mn → C for the complex Ginzburg–

Landau energies

Eε(u) =

∫
M

(
|du|2

2
+

(1− |u|2)2

4ε2

)
,

on a manifold M , with natural energy growth Eε(uε) = O(|log ε|), it is known that

the vorticity sets {|uε| ≤ 1
2
} converge subsequentially to the support of a stationary,

rectifiable (n− 2)-varifold V in the interior, characterized as the concentrated portion

of the limit limε→0
eε(uε)
π|log ε| of the normalized energy measures.

When n = 2 or the solutions uε are energy-minimizing, it is known moreover that

this varifold V is integral ; i.e., the (n − 2)-density Θn−2(|V |, x) of |V | takes values

in N at |V |-a.e. x ∈ M . In the present paper, we show that for a general family of

critical points with Eε(uε) = O(|log ε|) in dimension n ≥ 3, this energy quantization

phenomenon only holds where the density is less than 2: namely, we prove that the

density Θn−2(|V |, x) of the limit varifold takes values in {1}∪ [2,∞) at |V |-a.e. x ∈M ,

and show that this is sharp, in the sense that for any n ≥ 3 and θ ∈ {1} ∪ [2,∞),

there exists a family of critical points uε for Eε in the ball Bn
1 (0) with concentration

varifold V given by an (n− 2)-plane with density θ.

1. Introduction

1.1. The Ginzburg–Landau equations and the integrality question. A complex

valued map u :M → C on a Riemannian manifold (or Euclidean domain) M is said to

satisfy the Ginzburg–Landau equations with parameter ε > 0 if

(1) ε2∆u = DW (u) = −(1− |u|2)u,

where ∆ = −d∗d and W : R2 → R2 is the nonlinear potential W (u) = 1
4(1− |u|2)2. The

system (1) arises as the Euler–Lagrange equations for the energy functional

(2) Eε(u) :=

∫
M
eε(u) =

∫
M

(
1

2
|du|2 + W (u)

ε2

)
,

which combines the usual Dirichlet energy
∫

1
2 |du|

2 with a nonlinear term
∫ (1−|u|2)2

4ε2

which penalizes the deviation of the values u from the unit circle S1 ⊂ C, with increasing

severity as ε→ 0.

While the study of the system (1) can be traced back to Ginzburg and Landau’s work

on superconductivity in the 1950s, the subject captured the attention of the geometric

analysis community about thirty years ago, with the publication of the influential

monograph [5] by Bethuel–Brezis–Hélein. The investigations of [5, 26], and others of this

period focused on solutions uε : Ω → R2 on simply connected planar domains Ω ⊂ R2

1
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obtained by minimizing Eε with prescribed boundary data g : ∂Ω → S1 of nonzero degree

deg(g, ∂Ω) ̸= 0, motivated by the search for a canonical ‘energy-minimizing’ extension

u∗ : Ω → S1 of g, in a setting where no finite-energy extension exists. It was shown that

these maps uε converge as ε→ 0 to a singular harmonic S1-valued extension u∗ : Ω → S1

of g, whose singularities minimize a certain interaction energy between points in the

plane. Moreover, these maps have energy Eε(uε) = π|deg(g)| log(1/ε) +O(1) as ε→ 0,

with the normalized energy measures eε(uε)
π log(1/ε) dx converging to a sum of Dirac masses

at the |deg(g)| singular points of u∗. Non-minimizing critical points on two-dimensional

domains were also studied, e.g., in [4] and [10].

Later, attention turned to solutions of (1) in dimension n ≥ 3, with the work of

Rivière [21], Lin–Rivière [17, 18], Jerrard–Soner [16], Bethuel–Brezis–Orlandi [6], and

others. For solutions uε : Ω ⊂ Rn → C of (1) in higher dimensional domains, satisfying

the natural energy growth Eε(uε) = O(|log ε|), it was shown that the zero sets u−1
ε {0}

converge (roughly speaking) to the support of a generalized minimal submanifold of

codimension two. In particular, following the analysis of [6] (see also [24]), one arrives

at the following asymptotic description of solutions as ε→ 0.

Theorem 1.1. Given a manifold Mn without boundary, of dimension n ≥ 3, assume

that we have a sequence of maps uε :M → C (indexed by a sequence ε→ 0) solving (1),

with respect to a smoothly converging sequence of metrics gε → g0, such that

lim sup
ε→0

1

|log ε|

∫
K

(
1

2
|duε|2gε +

W (uε)

ε2

)
d volgε <∞

for all compact K ⊆M . Then, up to a subsequence, the normalized energy densities

µε :=
eε(uε)

π|log ε|
volgε , where eε(uε) :=

|duε|2gε
2

+
W (uε)

ε2
,

converge to a Radon measure µ which decomposes as

µ = |V |+ f volg0 ,(3)

for a suitable smooth nonnegative function f : M → R and a stationary rectifiable

(n− 2)-varifold with density Θn−2(|V |, ·) ≥ c(n) > 0 on its support. Also, the measures
W (uε)
ε2

volgε converge to a limit measure satisfying

lim
ε→0

W (uε)

ε2
volgε ≤ C(K)|V |(4)

for all compact K ⊆M . Finally, spt(|V |) is the limit of the sets {|uε| ≤ β} in the local

Hausdorff topology, for any β ∈ (0, 1).

Remark 1.2. Since the variants of Theorem 1.1 appearing in [6, 24] are not quite

stated in this form, we later include a sketch of the proof for the reader’s convenience.

We note also that the last statement is true even for β = 0; in this case, it follows from

some arguments contained in the present paper (see Remark 4.5 below).

The simple example uε(x) =
√

1− ε2k2ε e
ikεx on the circle M = R/2πZ, with kε ∈ N

satisfying kε ∼
√

|log ε|, shows that the limit measure µ can be completely diffuse. In

[25] (see also [9]), it was shown however that any closed Riemannian manifold (M, g0)
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of dimension ≥ 2 admits a family of solutions satisfying the hypotheses of Theorem 1.1

with gε = g0 for which the energy concentration varifold V is nonzero, and it is expected

that many such families exist.

While results like Theorem 1.1 reveal a strong link between solutions of (1) and

minimal varieties of codimension two, the result sheds little light on the structure of the

limit varifold. In particular, the weakest notion of minimal variety typically considered

in geometric measure theory is not the stationary rectifiable varifold, but the slightly

stronger stationary integral varifold, which satisfies the additional condition that the

density Θn−2(|V |, x) takes values in N for |V |-almost every x.

For some formally similar (though qualitatively rather different) families of equations

like the Allen–Cahn equations or the self-dual abelian Higgs equations, results analogous

to Theorem 1.1 do indeed give energy concentration along stationary integral varifolds

of codimension one [14] and codimension two [20], respectively. Moreover, the results of

[17] for Eε-minimizing solutions of (1) and [10] for general solutions in dimension two

reveal that integrality of the limit varifold holds in these cases. All of these observations

naturally lead us to the following question.

Question 1.3. When n ≥ 3, is the stationary varifold V arising from a family of

solutions to (1) as in Theorem 1.1 necessarily integral? In other words, is the energy of

uε quantized along the concentration set?

For an equivalent formulation, consider the set D ⊂ (0,∞) of positive real numbers

θ ∈ (0,∞) for which there exists a family uε : B
n
1 (0) → R2 of solutions to (1) in the

unit n-ball whose energy concentrates along an (n− 2)-plane P ⊂ Rn with (necessarily

constant) density θ, in the sense that

µε ⇀
∗ θHn−2 P.

By a straightforward blow-up argument, it is easy to check that Question 1.3 has a

positive answer if and only if D = N \ {0}.
In the present paper, we answer Question 1.3 in the negative, proving instead that

D = {1} ∪ [2,∞) ⊋ N \ {0}.

In other words, we prove that the density Θn−2(|V |, ·) of the energy concentration

varifold V in Theorem 1.1 takes values in {1} ∪ [2,∞) almost everywhere, and give

examples to show that this cannot be improved in general.

1.2. Quantization and non-quantization results. The bulk of the paper is devoted

the proof of the following theorem, showing that D ⊆ {1} ∪ [2,∞), and hence that

the density of the limiting energy measure in Theorem 1.1 is indeed quantized where

Θn−2(|V |, ·) ≤ 2.

Theorem 1.4. In the setting of Theorem 1.1, assume moreover that M = Bn
2 (0)

and g0 is the Euclidean metric. If the energy densities concentrate along the plane
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P = Rn−2 × {0} with constant multiplicity θ ∈ (0,∞), i.e.,

eε(uε)

π|log ε|
volgε ⇀ θHn−2 P ∩Bn

2 (0)

in C0
c (M)∗, then θ ∈ {1} ∪ [2,∞).

In the general setting of Theorem 1.1, by applying Theorem 1.4 to a family of rescaled

solutions in balls centered at a point where the varifold V has flat tangent cone, we

arrive at the following corollary.

Corollary 1.5. Under the hypotheses of Theorem 1.1, the (n−2)-varifold V has density

Θn−2(|V |, x) = lim
r→0

|V |(Br(x))
ωn−2rn−2

∈ {1} ∪ [2,∞)

for |V |-a.e. x.

Previously, the best known lower bound for non-minimizing solutions uε in dimension

n ≥ 3 was the non-explicit lower bound Θn−2(|V |, ·) ≥ c(n) > 0, a consequence of the

following important result, obtained by different methods in [18] when n = 3, and in [6]

for n ≥ 3, which is the key ingredient in the proof of Theorem 1.1. In later works it was

suggestively called clearing-out for the vorticity. Here, for simplicity, we state it for the

flat Euclidean metric.

Theorem 1.6. [18, 6] There exists a constant η(n) > 0 such that, if

Eε(uε;Br(x)) ≤ ηrn−2 log(r/ε),

for a ball Br(x) in the domain with r ≥ ε, then |uε(x)| > 1
2 .

By a trivial covering argument, up to changing the constant η(n), one then obtains

that |uε| > 1
2 on the entire smaller ball Br/2(x). When uε is a typical two-dimensional

vortex centered at x, then the energy is ∼ rn−2 log(r/ε). Thus, Theorem 1.6 essentially

says that, if the energy is much smaller than the expected one, then indeed there cannot

be any vortex on a smaller ball.

While it is possible to obtain explicit lower bounds for the energy threshold η(n)

using the arguments of [6], the resulting bounds are non-sharp. As a simple consequence

of Corollary 1.5, we obtain the following sharp version of Theorem 1.6.

Corollary 1.7. For any η < π · ωn−2 there exists δ(η, n) > 0 such that, if

Eε(uε;Br(x)) ≤ ηrn−2 log(r/ε)

and ε ≤ δr, then |uε(x)| > 1
2 .

For otherwise, since by scaling we can assume that x = 0 and r = 1, there would exist

a sequence uε with ε → 0 and energy at most η|log ε| on B1(0), but with |uε(0)| ≤ 1
2 .

By Theorem 1.1, the point 0 would belong to the support of the energy concentration

varifold V . Since V is stationary, Corollary 1.5 and upper semicontinuity of density
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give Θn−2(|V |, 0) ≥ 1, which gives |V |(B1(0)) ≥ ωn−2 by the monotonicity formula.

However, this contradicts the fact that

|V |(B1(0)) ≤ µ(B1(0)) ≤ lim inf
ε→0

Eε(uε;B1(0))

π|log ε|
≤ η

π
< ωn−2.

Note that for any β < 1 the same argument gives |uε(x)| > β provided that we assume

Eε(uε;Br(x)) ≤ ηrn−2 log(r/ε) for η < πωn−2 and ε ≤ δ(β, η, n)r.

Remark 1.8. It seems likely that variants of Theorem 1.4 and Corollary 1.7 should

hold in the parabolic setting as well, yielding, e.g., a sharp version of [8, Theorem 1].

Building on these observations, one can also easily obtain sharp lower bounds on the

energy of nontrivial solutions to the Ginzburg–Landau equations in several settings. For

instance, one obtains the following sharp lower bound on the energy of nonconstant

entire solutions, which was already shown in [23] when n = 3 and u is energy-minimizing.

Corollary 1.9. For n ≥ 2, any entire solution u : Rn → C of

∆u = −(1− |u|2)u

for which

(5) lim sup
R→∞

∫
BR(0)(

1
2 |du|

2 +W (u))

Rn−2 logR
< πωn−2

must be a constant map u ≡ eiα for some α ∈ [0, 2π).

It is well known [13] that there exist nonconstant solutions for which equality holds.

The proof is a straightforward consequence of the previous corollary: if the strict

inequality (5) holds, then the arguments of the preceding paragraph can be employed to

show that |u| ≥ 1 everywhere on Rn. Since we also have |u| ≤ 1 + CR−2 on BR/2 (by

rescaling the bound (102) from the appendix), we obtain |u| ≡ 1. Hence, u is harmonic

as a map to R2, which together with (5) clearly shows that u must be a constant map

to S1.

The other main result gives a converse to Theorem 1.4, showing that {1}∪ [2,∞) ⊆ D,

the novel observation here being that [2,∞) \ N ⊆ D.

Theorem 1.10. For any θ ∈ {1} ∪ [2,∞), there exists a family of solutions satisfying

the hypotheses of Theorem 1.4 (with n ≥ 3 and gε = g0), with limit density θ.

The examples provided by Theorem 1.10 are obtained by scaling down certain entire

solutions in R3 with helical symmetry, constructed in [11]. In particular, we see that

the conclusion of Theorem 1.4 is sharp in dimension ≥ 3, without additional constraints

on the family of solutions.

1.3. Proof ideas. Unlike in the asymptotic analysis of the Allen–Cahn or U(1)-Higgs

equations, where most of the energy concentrates at the O(ε) scale about the zero

sets of solutions, the main contribution to the |log ε| energy blow-up for solutions of

the Ginzburg–Landau equations as in Theorem 1.1 comes from the annular regions of

distance ε1−δ ≤ r ≤ εδ about the zero set of a solution uε (for δ ∈ (0, 12) small), where
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uε resembles a harmonic S1-valued map. In particular, for any α ∈ (0, 1), interactions

between distinct components of the zero sets u−1
ε {0} separated by a distance ∼ εα

influence the leading-order behavior of the energy, and the key point in the proofs

of Theorem 1.4 and Theorem 1.10 is to understand which kinds of interactions are

permissible for solutions of (1) in higher dimension.

Given a family of solutions uε in B
n
1 (0) with energy concentrating on an (n− 2)-plane

P = Rn−2 × {0} as in Theorem 1.4, we show that the limiting multiplicity θ ∈ (0,∞)

for which
eε(uε)

π log(1/ε)
volgε ⇀

∗ θHn−2 P

can be computed via the following preliminary energy identity. After passing to a

subsequence, for a generic sequence yε ∈ Bn−2
1 , the zero set {z ∈ D2

1 : uε(yε, z) = 0} of

the solutions uε in the two-dimensional slice {yε} ×D2
1 is contained in a collection of m

disks DCε(z
ε
1), . . . , DCε(z

ε
m) of radius O(ε) with centers zε1, . . . , z

ε
m. Denoting by κεj ∈ Z

the (nonzero) local degree

κεj := deg(uε/|uε|, ∂DCε(z
ε
j )) ∈ Z,

we then find that (after passing to a subsequence)

(6) θ = lim
ε→0

(∑m
j=1(κ

ε
j)

2 + 2
∑

1≤i<j≤mκ
ε
iκ
ε
j

|log |zεi − zεj ||
|log ε|

)
.

Note that if all of these degrees κεj had the same sign, it would follow from (6) that

θ ≥ m, and the conclusion of Theorem 1.4 would follow easily, since θ < 2 would

imply that there is only m = 1 such disk DCε(z
ε
1), with degree (κε1)

2 < 2, and therefore

θ = (κε1)
2 = 1. The difficulty in proving Theorem 1.4 therefore lies in the case where the

degrees κεj have different signs, so that the interaction terms κεiκ
ε
j

|log |zεi−zεj ||
|log ε| subtract

from the limiting density θ.

After some reductions, in the proof of Theorem 1.4 we may assume that |zεi | ≤ εδ for

some fixed δ > 0 for all 1 ≤ i, j ≤ m, and denoting by κ the total degree

κ :=
∑m

j=1κj ,

we argue that (possibly after precomposing uε with a small translation) the energy

density drop of uε between the scales 1 and εδ is given by

Eε(uε;B1(0))− (εδ)2−nEε(uε;Bεδ(0)) = πωn−2|κ|2 log(1/εδ) + o(|log ε|).

By the well-known monotonicity formula for solutions of (1), it then follows that

πωn−2|κ|2 log(1/εδ) + o(|log ε|) ≥
∫ 1

εδ

2

rn−1

∫
Br(0)

W (uε)

ε2
,

and one easily concludes that there exists a sequence rε ∈ [εδ, 1] for which

(7)
2

rn−2
ε

∫
Brε (0)

W (uε)

ε2
≤ πωn−2|κ|2 + o(1).

Note that in the two-dimensional setting, a simple argument via a Pohozaev identity

upgrades the inequality (7) to equality, which forms the basis for the quantization results

in [10].
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We then introduce new estimates relating the potential energy
∫
Br(0)

W (uε)
ε2

to the

degrees κεj , concluding roughly that

(8)
2

rn−2
ε

∫
Brε (0)

W (uε)

ε2
≥ πωn−2

2

∑m
j=1|κ

ε
j |.

Combining this with (7), we deduce in particular that∑m
j=1|κ

ε
j | ≤ 2|κ|2 = 2

∣∣∣∑m
j=1κ

ε
j

∣∣∣2 .
On the other hand, if θ < 2, then the results of [16] imply that κ = ±1 or 0, and by

the preceding inequality, it follows that the only possibility is that, for some 1 ≤ i ≤ m,

κεi = ±1 and κεj = 0 for all j ̸= i; hence, θ = 1 by (6). This suffices for the proof of

Theorem 1.4, showing that θ < 2 forces the vortex to occur with multiplicity one.

To prove Theorem 1.10, we observe that the families of entire solutions of (1) in R3

constructed in [11], whose zero sets consist of m ≥ 2 degree-one helices separated by a

distance ∼ 1√
|log ε|

collapsing to the line L = {0} ×R, can be blown down by a factor of

ετ for any fixed τ ∈ [0, 1), to obtain a new family of solutions to (1) with parameter

ε̃ = ε1+τ . The zero sets of these blown-down solutions are then separated by a distance

∼ ετ |log ε|−1/2 = ε̃
τ

1+τ |log ε|−1/2, and we can use (6) to deduce that the limiting energy

measure on the line L has density

θ(m, τ) =
∑m

j=11 + 2
∑

1≤i<j≤m1 · 1 ·
τ

τ + 1
= m+ (m2 −m)

τ

τ + 1
.

In particular, since

{θ(m, τ) | τ ∈ [0, 1)} = [m, 12(m
2 +m))

and
⋃∞
m=2[m,

1
2(m

2 +m)) = [2,∞), Theorem 1.10 follows.

Note that the solutions constructed in [11] appear to be quite unstable at large scales;

in particular, it should be possible to decrease the energy via a perturbation that spreads

the m components of the zero set farther apart. From a variational perspective, it

would be very interesting to understand whether an additional assumption of stability

or bounded Morse index of solutions allows one to refine the conclusions of Theorem 1.4,

perhaps even giving a positive answer to Question 1.3 in this case.
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2. Preliminary estimates

In this section we prove Theorem 1.1 and, later, we obtain additional information

in the special situation of Theorem 1.4. While the proof of Theorem 1.1 is simply a

localization of some arguments from [6, 7, 18] and [9, 25], we summarize it here as a

convenient way to fix some notation which will be used in the next sections.
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2.1. Proof of Theorem 1.1. Since the statement is local, we can assume that M =

Bn
2 (0), and prove that the conclusions hold on Bn

3/2(0). In the appendix, we recall some

fundamental estimates from [7], stating them in the case of a general metric. Thus, we

are considering a family of solutions

uε : B
n
2 (0) → C

to the complex Ginzburg–Landau equation

(9) ε2∆gεuε = −(1− |uε|2)uε

with ∫
Bn

2 (0)

(
|duε|2gε

2
+
W (uε)

ε2

)
d volgε ≤ C|log ε|

for some C > 0 independent of ε.

First of all, from the local bounds stated in the appendix, it follows that

|uε| ≤ 1 + Cε2, |duε|2gε ≤
1− |uε|2

ε2
+ C(10)

on the smaller ball B7/4 = Bn
7/4(0), as well as∫

B7/4

(
|d|uε||2gε +

W (uε)

ε2

)
d volgε ≤ C,(11)

where, throughout the paper, C denotes different constants which do not depend on

ε, but possibly on our sequence of solutions (we will, however, emphasize whether

such constants depend on additional parameters introduced later on). Henceforth, we

suppress the subscript gε in quantities depending on the metric when the meaning is

clear from context, as well as the volume form.

As in the works quoted above, we introduce the one-forms

juε := u∗ε(r
2 dθ) = u1 du2 − u2 du1,

and observe that

|duε|2 = |d|uε||2 +
|juε|2

|uε|2

on {uε ̸= 0}, and consequently

||duε|2 − |juε|2| ≤ |d|uε||2 + |1− |uε|2||duε|2 ≤ |d|uε||2 +
(1− |uε|2)2

ε2
+ C.(12)

Hence, it follows from (11) that

(13)

∫
B7/4

∣∣∣∣eε(uε)− 1

2
|juε|2

∣∣∣∣ ≤ C.

Note moreover that we have

(14) d∗juε = 0,

as an easy consequence of (9). Now, for each uε, we denote by V(uε) ⊆ B2 the vorticity

set

V(uε) := {|uε| ≤ 1
2},
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and define a perturbed map vε : B2 → C by

vε := χ(|uε|)uε,

where χ : R → R is smooth and such that χ(t) = 1 on [0, 14 ] and χ(t) =
1
t on [12 ,∞). In

particular,

vε(x) =
uε(x)

|uε(x)|
∈ S1 for x ∈ B2 \ V(uε)

and |vε| ≤ C|uε| on V(uε). As in [6, 7, 18], a suitable Hodge decomposition of the

one-forms

(15) jvε = v∗ε(r
2 dθ) = χ(|uε|)2juε

plays a central role in the analysis. To obtain the exact part of the decomposition, first

consider a solution ψε ∈ C∞(B7/4) to the boundary value problem{
d∗dψε = d∗(jvε) = d∗(jvε − juε) in B7/4,

ψε = 0 on ∂B7/4.
(16)

Note then that ∫
B7/4

|dψε|2 ≤
∫
B7/4

|jvε − juε|2

≤
∫
B7/4

|χ(|uε|)2 − 1|2|uε|2|duε|2

≤ C

∫
B7/4

|1− |uε|2||duε|2

(by (10)) ≤ C

∫
B7/4

W (uε)

ε2
+ C,

which together with (11) gives

(17) ∥jvε − juε∥L2(B7/4)
+ ∥dψε∥L2(B7/4)

≤ C.

Next, let φ ∈ C∞
c (B7/4) be a cutoff function with B3/2 ⊂⊂ {φ = 1}, and consider

the two-form

ξε := ∆−1
H (φdjvε) = G ∗ (φdjvε),(18)

given by convolution of djvε = 2dv1ε ∧ dv2ε (multiplied by the cutoff φ) where

(G ∗ ζ)(x) :=
∑
i∈I

∫
p∈B7/4

Gi,p(x)⟨ζ(p), ωi(p)⟩ d volgε

is the local Green’s operator for the Hodge Laplacian ∆H = d∗d+ dd∗ with respect to

the metric gε as described in Proposition A.7 (with U := B2 and K := B7/4), so that

∆Hξε = d∗dξε + dd∗ξε = φdjvε.

It is easy to see that φdjvε is supported in V(uε) ∩B7/4(0), where

|djvε| ≤ C|duε|2 ≤ C
W (uε)

ε2
(19)
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(since |duε| ≤ C
ε and 1− |uε|2 ≥ 3

4 on V(uε)). In particular, using Proposition A.7 to

bound |∇Gi,p|(x) ≤ C distgε(x, p)
1−n, we have

(20) |ξε|(x) + |∇ξε|(x) ≤ C

∫
V(uε)∩B7/4

distgε(x, y)
1−nW (uε(y))

ε2
dy,

and as an easy consequence,

(21) ∥ξε∥Lp(B7/4) + ∥∇ξε∥Lp(B7/4) ≤ C(p)

∫
B7/4

W (uε)

ε2
≤ C(p)

for any p ∈ [1, n
n−1).

Finally, letting

(22) hε := jvε − d∗ξε − dψε,

observe that hε is harmonic on the interior of {φ = 1}, since here

∆Hhε = d∗d(jvε − d∗ξε) + dd∗(jvε − dψε)

= d∗(djvε −∆Hξε)

= d∗(djvε − φdjvε)

= 0.

In particular, elliptic estimates give

∥hε∥C1(B3/2)
≤ C∥hε∥L1(B7/4)

,

and using (17) and (21), we deduce that

∥hε∥C1(B3/2)
≤ ∥jvε∥L1(B7/4)

+ C ≤ C|log ε|1/2.(23)

Using again (17), (22), and the trivial bound ∥juε∥L2(B2) ≤ C|log ε|1/2, this also implies

∥d∗ξε∥L2(B3/2)
≤ ∥jvε∥L2(B3/2)

+ C + C|log ε|1/2 ≤ C|log ε|1/2.(24)

Now, let S be the (subsequential) limit of the sets V(uε), in the Hausdorff topology

on B2. (Note that the metrics gε in the family are uniformly equivalent to the Euclidean

metric δ, i.e., C−1gε ≤ δ ≤ Cgε on the ball B7/4, so Hausdorff convergence can be

considered with respect to the Euclidean metric.) This set will be useful in the proof of

the following statement.

Lemma 2.1. As ε→ 0, we have

lim
ε→0

1

|log ε|

∫
B3/2

|d∗ξε||hε| = 0.(25)

Proof. If x ∈ S then we can find xε ∈ V(uε) such that xε → x, and by Theorem A.3 we

then have

µ(Br(x)) ≥ lim sup
ε→0

µε(Br−|xε−x|(xε)) ≥ c(n) lim
ε→0

(r − |xε − x|)n−2 = c(n)rn−2(26)

for any r < 2− |x|. By a simple Vitali covering argument, this implies that

Hn−2 S ≤ C(n)µ,(27)

and in particular S is negligible with respect to the Lebesgue measure.
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Now, for any δ > 0, denoting by Bδ(S) the δ-neighborhood of S, we can bound∫
B3/2

|d∗ξε||hε| ≤
∫
B3/2∩Bδ(S)

|d∗ξε||hε|+ ∥d∗ξε∥L∞(B3/2\Bδ(S))∥hε∥L1(B3/2)
.

By Cauchy–Schwarz, (23), and (24), the first term is bounded by

∥d∗ξε∥L2(B3/2)
|Bδ(S)|1/2 · ∥hε∥L∞(B3/2) ≤ C|log ε||Bδ(S)|1/2.

Moreover, recalling the definition of S, (20) gives

lim sup
ε→0

∥d∗ξε∥L∞(B3/2\Bδ(S)) ≤ C(δ)

∫
B7/4

W (uε)

ε2
≤ C(δ),(28)

which implies that the second term above is at most C(δ)|log ε|1/2, and (25) follows by

letting ε→ 0 and then δ → 0. □

By (13), (17), and (22), we have

µ = lim
ε→0

|jvε|2

2π|log ε|
dx = lim

ε→0

|dψε + d∗ξε + hε|2

2π|log ε|
dx = lim

ε→0

|d∗ξε + hε|2

2π|log ε|
dx.

The previous lemma, together with (23) and (24), implies that

µ = lim
ε→0

|d∗ξε + hε|2

2π|log ε|
dx = ν +

1

2π
|h0|2 dx on B3/2

up to subsequences, where h0 := limε→0
hε

|log ε|1/2 is a harmonic one-form, while

ν := lim
ε→0

|d∗ξε|2

2π|log ε|
dx.

From (28) it follows that spt(ν) ⊆ S, while (26) and the structure of µ imply

lim
r→0

ν(Br(x))

rn−2
≥ c(n) > 0,(29)

which forces the reverse inclusion to hold on B3/2. Thus,

S = spt(ν) on B3/2.

Note that the previous argument also shows that limε→0{|uε| ≤ β} = spt(ν) on B3/2

for any β ∈ (0, 1) (without the need of a further subsequence, as any subsequential limit

of {|uε| ≤ β} equals spt(ν)).

To prove (4), define the measure λ := limε→0
W (uε)
ε2

dx, which exists up to subsequences

by (11). Note that, by the monotonicity formula (101), the rescaled maps ũε̃(x) :=

uε(p+ rx) (with ε̃ = ε/r) have energy at most C|log ε| on B1(0), for p ∈ B3/2(0) and

r < 1
4 . Applying Proposition A.5 and scaling back, it follows that r2−nλ(Br/2(p)) ≤ C.

Also, from [7, Theorem 2.1] it easily follows that λ = 0 on B3/2 \ S (since S is the limit

of the sets {|uε| ≤ β} for any β ∈ (0, 1)). Hence,

λ ≤ CHn−2 S

on B3/2, while (27) and the structure of µ imply that the right-hand side is bounded

above by Cν.
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This proves (4) and the theorem, provided that we check that ν = µ S coincides

with the weight of a stationary (n− 2)-varifold V for the limit metric g0 = limε→0 gε.

On B3/2 we introduce the stress-energy tensor

Tε := eε(uε)I − duε ⊗ duε,

with the implicit scalar product duε ⊗ duε = du1ε ⊗ du1ε + du2ε ⊗ du2ε, and define the

measure

T0 = lim
ε→0

Tε
π|log ε|

volgε ,

taking values in symmetric bilinear forms. The fact that uε is critical with respect to

inner variations gives divgε Tε = 0, which implies that T0 is also divergence-free, in the

sense that the pairing ⟨T0,∇g0X⟩ vanishes for any C1 vector field X supported in B3/2.

A computation similar to (12), together with (11), shows that

T0 = lim
ε→0

1

π|log ε|

(
|juε|2

2
I − juε ⊗ juε

)
volgε .

Also, (17) and (25) give

T0 = V +

(
|h0|2

2
I − h0 ⊗ h0

)
volg0 ,

with

V := lim
ε→0

1

π|log ε|

[
|d∗ξε|2

2
I − (d∗ξε)⊗ (d∗ξε)

]
volgε .

Note that h0 is strongly harmonic, meaning that dh0 = 0 and d∗g0h0 = 0: indeed, we

already have d∗gεhε = d∗gε(jvε− dψε) = 0 by (16); also, (21) gives ∥dξε∥L1(B3/2)
≤ C, and

hence

dh0 = lim
ε→0

dhε

|log ε|1/2
= lim

ε→0

djvε − dd∗ξε

|log ε|1/2
= lim

ε→0

∆Hξε − dd∗ξε

|log ε|1/2
= lim

ε→0

d∗dξε

|log ε|1/2
= 0

on B3/2, with the limits understood distributionally (where we used (22) in the second

equality and (18) in the third one). Since h0 is strongly harmonic, the term |h0|2
2 I−h0⊗h0

is divergence-free, and thus div V = 0, as well.

Since tr(V ) ≥ (n− 2)ν and |⟨V w,w⟩| ≤ |w|2ν for any w ∈ Rn, the measure V can be

identified with a generalized stationary (n− 2)-varifold with weight ν, according to the

definition from [25, Section A.2]. Since it has positive density on its support by (29),

it now follows from the classical result by Ambrosio–Soner [3, Theorem 3.8] that V is

actually a rectifiable varifold.

2.2. Additional bounds in the situation of Theorem 1.4. Suppose now that we

are in the setting of Theorem 1.4. Henceforth, we will assume for simplicity of notation

that gε is in fact equal to the flat Euclidean metric; it is an easy exercise to extend the

arguments to metrics converging smoothly to the Euclidean metric, and we will comment
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occasionally on the necessary modifications for this case. Thus, we are considering a

family of solutions uε : B
n
2 (0) → C to (9), for which the normalized energy measures

µε :=
eε(uε)

π|log ε|
dx

converge weakly in C0
c (B2)

∗ to a multiple of the (n− 2)-plane P = Rn−2 × {0}

µε ⇀ θHn−2 P

as ε→ 0.

On any domain compactly contained in B2 = B2(0), such as B7/4, the following is a

simple consequence of the last assumption.

Lemma 2.2. Writing |duε(P )|2 :=
∑n−2

i=1 |duε(ei)|2, we have

(30) lim
ε→0

1

|log ε|

∫
B7/4

|duε(P )|2 = 0.

Proof. Since the stationary varifold V from Theorem 1.1 coincides with a multiple of P ,

viewing V as a matrix-valued measure we can write

V = θM Hn−2 P,(31)

where M ∈ Rn×n is the orthogonal projection onto P . As seen in the proof of Theo-

rem 1.1, the normalized stress-energy tensors Tε
π|log ε| converge to V , and by (31) this

implies that

lim
ε→0

∫
B2

χ
⟨Tεw,w⟩
π|log ε|

dx =

∫
B2

χd⟨V w,w⟩ =
∫
B2

χd|V |

for any χ ∈ C0
c (B2) and any unit vector w ∈ P . Recalling the definition of Tε and the

fact that

lim
ε→0

∫
B2

χ
eε(uε)

π|log ε|
=

∫
B2

χd|V |,

we deduce that limε→0

∫
B2
χ |duε(w)|2

π|log ε| = limε→0

∫
B2
χ eε(uε)−⟨Tεw,w⟩

π|log ε| = 0, as desired. □

Using the preceding bounds, we can prove the following key estimates, showing that

the limiting energy density can be computed in terms of the one-form d∗ξε.

Lemma 2.3. As ε→ 0, we have

lim
ε→0

1

|log ε|

∫
B3/2

|juε − d∗ξε|2 = 0.

In particular, combining with (13) gives

(32) lim
ε→0

1

|log ε|

∫
B3/2

∣∣∣∣eε(uε)− 1

2
|d∗ξε|2

∣∣∣∣ = 0.

Proof. In view of (17), it suffices to show that

∥jvε − d∗ξε∥2L2(B3/2)
= o(|log ε|)(33)

as ε→ 0. Note that

jvε − d∗ξε = hε + dψε,
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and we know from (17) that ∥dψε∥2L2(B7/4)
≤ C, so all that remains is to show that

∥hε∥2L2(B3/2)
= o(|log ε|).

Since the energy concentrates along P , note that, for any fixed δ > 0,

lim sup
ε→0

∥duε∥L1(B7/4)

|log ε|1/2
= lim sup

ε→0

∥duε∥L1(B7/4∩Bδ(P ))

|log ε|1/2

≤ lim sup
ε→0

∥duε∥L2(B7/4∩Bδ(P ))

|log ε|1/2
|B7/4 ∩Bδ(P )|1/2

≤ Cδ,

so that ∥duε∥2L1(B7/4)
= o(|log ε|). Using (23), we arrive at

∥hε∥L2(B3/2)
≤ ∥juε∥L1(B7/4)

+ C = o(|log ε|1/2),

and the claim follows. □

Now, denote by Q the cylinder

Q := Bn−2
1 (0)×D2

1(0) ⊂ Bn
3/2(0),

and fix a large constant K > 0, which will be specified in the final part of the proof. In

what follows, we identify a distinguished family of two-dimensional slices perpendicular

to the (n− 2)-plane P of concentration, such that the energy density θ can be computed

in terms of the behavior of the solutions uε along these slices. (Cf., e.g., [19] or [22] for

similar arguments in the harmonic map or Yang–Mills settings.)

Definition 2.4. Given y ∈ Bn−2
1/2 (0), we say that P⊥

y := {y} ×D2
1(0) (or simply y) is a

δ-good slice for uε if

sup
0<r<1/2

∣∣∣∣∣r2−n
∫
Bn−2

r (y)×D2
1

eε(uε)− πωn−2θ|log ε|

∣∣∣∣∣ < δ|log ε|,

sup
0<r<1/2

r2−n
∫
Bn−2

r (y)×D2
1

(
|duε(P )|2 + |jvε − d∗ξε|2 +

∣∣∣∣eε(uε)− 1

2
|d∗ξε|2

∣∣∣∣) < δ|log ε|,

and

sup
0<r<1/2

r2−n
∫
Bn−2

r (y)×D2
1

(
W (uε)

ε2
+ |ξε|

)
< K.

The first and second conditions require uniform L2 vanishing of duε(P ) on the

cylinders Bn−2
r (y)×D2

1 centered at y at all small scales r, and assert that the density

θ can be computed by integrating any one of eε(uε),
1
2 |d

∗ξε|2, or 1
2 |jvε|

2 along the

cylinders Bn−2
r (y)×D2

1, or (letting r → 0) along the slice P⊥
y = {y} ×D2

1, while the

third condition enforces uniform L1 control on the potential W (u)
ε2

and |ξε| over the same

cylinders at all scales.

Lemma 2.5. Denote by Gε,δ ⊆ Bn−2
1/2 (0) the collection of δ-good slices for uε. Then, for

any δ > 0, we have

lim sup
ε→0

|Bn−2
1/2 \ Gε,δ| ≤

C

K
.
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Proof. Let F 1
ε , F

2
ε , and F 3

ε be the sets of slices where the first, second, and third

requirements fail, respectively. In view of (11) and (21), we have∫
Bn−2

1

∫
D2

1

(
W (uε)

ε2
+ |ξε|

)
(y, z) dz dy =

∫
Q

(
W (uε)

ε2
+ |ξε|

)
≤ C,

for some constant C independent of ε. The Hardy–Littlewood weak (1, 1) estimate for

the maximal function of

y 7→
∫
D2

1

(
W (uε)

ε2
+ |ξε|

)
(y, z) dz

then implies that

|F 3
ε | ≤

C

K
.

Similarly, from (30), (32), (33), and the maximal inequality, it follows that

|F 2
ε | ≤

C

δ|log ε|

∫
Q

(
|duε(P )|2 + |jvε − d∗ξε|2 +

∣∣∣∣eε(uε)− 1

2
|d∗ξε|2

∣∣∣∣)→ 0.

In order to bound the measure of F 1
ε , we observe that F 1

ε ⊆ F 1a
ε ∪ F 1b

ε , where we

denote by F 1a
ε and F 1b

ε the sets of slices y ∈ Bn−2
1/2 such that

sup
0<r<1/2

r2−n
∫
Bn−2

r (y)×[D2
1\D2

1/2
]
eε(uε) ≥

δ

2
|log ε|

and

sup
0<r<1/2

∣∣∣∣∣r2−n
∫
Bn−2

r (y)×D2
1

χeε(uε)− πωn−2θ|log ε|

∣∣∣∣∣ ≥ δ

2
|log ε|,

respectively, where χ = χ(z) is a cutoff function supported in D2
1, with χ ≡ 1 on D2

1/2

and 0 ≤ χ ≤ 1.

Since the energy concentrates along P , we have

1

|log ε|

∫
Bn−2

1 ×[D2
1\D2

1/2
]
eε(uε) → 0,

which implies that |F 1a
ε | → 0, again by the Hardy–Littlewood maximal inequality.

Finally, for y ∈ Bn−2
5/4 (0), let

fε(y) :=

∫
{y}×D2

1

χeε(uε) dz.

Recall that the stress-energy tensor Tε = eε(uε)I − du∗εduε has zero divergence. Hence,

testing against the vector field ψ(y)χ(z)ek gives∫
Bn

2

eε(uε)∂k(ψχ) =

∫
Bn

2

∑n
j=1∂juε∂kuε∂j(ψχ),

for ψ ∈ C1
c (B

n−2
5/4 ). In particular, for k = 1, . . . , n− 2, (30) and Cauchy–Schwarz imply

that ∣∣∣∣∣
∫
Bn−2

5/4

fε∂kψ

∣∣∣∣∣ ≤ C∥duε∥L2(B7/4)
∥∂kuε∥L2(B7/4)

∥ψ∥C1 ≤ o(|log ε|)∥dψ∥C0
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(as Bn−2
5/4 ×D2

1 ⊆ Bn
7/4 and ∥ψ∥C1 ≤ C∥dψ∥C0). In particular, applying the Hahn–Banach

extension theorem to the functionals

∇ψ 7→ 1

|log ε|

∫
Bn−2

5/4

fε∂kψ

on the subspace

{∇ψ | ψ ∈ C1
c (B

n−2
5/4 )} ⊂ C0(B

n−2
5/4 ,R

n−2),

where C0(B
n−2
5/4 ,R

n−2) = C∞
c (Bn−2

5/4 ,Rn−2)
C0

, it follows that there exist vector-valued

Radon measures Xε
k ∈ C0(B

n−2
5/4 ,R

n−2)∗ such that

lim
ε→0

∥Xε
k∥ = 0

and

⟨Xε
k,∇ψ⟩ =

1

|log ε|

∫
fε∂kψ,

so that div(Xε
k) = ∂k

(
fε

|log ε|

)
distributionally.

We can then apply Allard’s strong constancy lemma [2, Theorem 1.(4)] and deduce

that

1

|log ε|
∥fε − αε∥L1(Bn−2

1 ) → 0,

for suitable constants αε. In fact, since 1
|log ε|

∫
Bn−2

1
fε → πωn−2θ, the same conclusion

must hold with αε = πθ|log ε|. This implies that |F 1b
ε | → 0, which completes the

proof. □

Next, we record the following lemma about the small-scale behavior of the two-form

djvε near a good slice, which we will use repeatedly in subsequent sections to refine our

characterization of the limiting energy measure.

Lemma 2.6. For any α ∈ (0, 1) and γ > 0, there exists δ1(α, γ) ∈ (0, 1) such that if

B2r(x) ⊂ Q is a ball with r ≥ εα for which

(34) r2−n
∫
B2r(x)

|duε(P )|2 ≤ δ1|log ε|,

then for ε small enough (depending on α and γ)

(35)

∣∣∣∣∣r2−n
∫
Br(x)

(djvε(x
′))ab

x− x′

|x− x′|
dx′

∣∣∣∣∣ < γ for (a, b) ̸= (n− 1, n).

Moreover, if V(uε) ∩B2r(x) ∩ P⊥
x ⊆ Bδ1r(x), with κ := deg(vε, x+ {0} × rS1) we have

(36)

∣∣∣∣∣r2−n
∫
Br(x)

(djvε(x
′))n−1,n − 2πκωn−2

∣∣∣∣∣ < γ.

Proof. We first prove (35), via a contradiction argument. If the statement fails, then

(passing to a subsequence) there exist balls B2rε(xε) ⊂ Q with rε ≥ εα such that

lim
ε→0

r2−nε

1

|log ε|

∫
B2rε (xε)

|duε(P )|2 = 0
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but

(37)

∣∣∣∣∣r2−nε

∫
Brε (xε)

(djvε(x
′))ab

xε − x′

|xε − x′|
dx′

∣∣∣∣∣ ≥ γ

for some (a, b) ̸= (n − 1, n). Rescaling B2rε(xε) to B2(0), we obtain a sequence of

solutions ũε̃ of the Ginzburg–Landau equation on B2(0), with ε̃ = ε/rε ≤ ε1−α and

Eε̃(ũε̃) ≤ C|log ε| ≤ C

1− α
|log ε̃|,

as well as
1

|log ε̃|

∫
B2(0)

|dũε̃(P )|2 → 0

as ε̃→ 0.

By Theorem 1.1, the limit of the normalized energy densities of ũε̃ has a concentrated

part |Ṽ |, for a rectifiable stationary varifold Ṽ , and by reversing the proof of Lemma 2.2,

we know that the tangent plane to Ṽ at x coincides with P , for |Ṽ |-a.e. x. Together

with stationarity, this easily implies (testing stationarity against vector fields of the form

X = ϕv for fixed vectors v ∈ P ) that Ṽ is invariant under translations by vectors in P ,

and therefore coincides on B2(0) with a locally finite union of planes P + xj parallel to

P (with multiplicity at least c(n) > 0).

Moreover, as in (19),

(38) |djṽε̃| ≤ C
W (ũε̃)

ε̃2
,

and by (4) we deduce that

(39) |djṽε̃|⇀
∑

jfjH
n−2 (P + xj)

weakly in C0
c (B2)

∗, with fj locally bounded.

Hence, the rescaled (n− 2)-cycles ∗djṽε̃ converge weakly as currents in B2 to a cycle

supported on
⋃
j(P + xj). By the constancy theorem for cycles, it follows that

(40) ∗(djṽε̃)⇀
∑

j2πκj(P + xj) on B2,

for suitable constants κj ∈ R (actually κj ∈ Z, by [16, Theorem 5.2], or by a slicing

argument similar to the proof of (69) below, which reveals that κj is the degree of ṽε̃

around P + xj).

If (37) holds, then rescaling gives

(41)

∣∣∣∣∫
B1

(djṽε̃(x
′))ab

x′

|x′|
dx′
∣∣∣∣ ≥ γ,

but fixing χ ∈ C∞
c (B1), 0 ≤ χ ≤ 1 be some test function supported away from 0 such

that ∑
j

∫
(P+xj)∩B1

(1− χ)fj dHn−2 <
γ

2
,

it follows from the distributional convergence (40) that, for this couple (a, b) ̸= (n−1, n),

(djṽε̃)ab vanishes distributionally as ε̃→ 0, so

lim
ε̃→0

∫
B1

(djṽε̃(x
′))abχ(x

′)
x′

|x′|
dx′ = 0.
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On the other hand, it then follows from (39) that

lim sup
ε̃→0

∣∣∣∣∫
B1

(djṽε̃(x
′))ab

x′

|x′|
dx′
∣∣∣∣ = lim sup

ε̃→0

∣∣∣∣∫
B1

(djṽε̃(x
′))ab(1− χ(x′))

x′

|x′|
dx′
∣∣∣∣

≤
∑

j

∫
(P+xj)∩B1

(1− χ)fj dHn−2

< γ/2,

contradicting (41).

The proof of (36) is similar, where in the limiting rescaled picture we have simply∑
j2πκj(P + xj) = 2πκP . □

In the following section, we will use this together with the following formulas for ξε and

∇ξε, which follow simply from (18) and the formula for the Euclidean Green’s function

G(x, y) in Rn, together with a simple integration by parts (recall that nωn = 2πωn−2).

Lemma 2.7. For any pair (a, b) with 1 ≤ a < b ≤ n, we have

(42) 2πωn−2(ξε)ab(x) =

∫ ∞

0

1

r

(
r2−n

∫
Br(x)

φ(x′)[djvε(x
′)]ab dx

′

)
dr,

(43) ∇(ξε)ab(x) =
n− 1

2πωn−2

∫ ∞

0

1

r2

(
r2−n

∫
Br(x)

φ(x′)[djvε(x
′)]ab

x− x′

|x− x′|
dx′

)
dr.

Remark 2.8. For non-Euclidean metrics gε converging smoothly to the Euclidean

metric, Proposition A.7 shows that (42) and (43) hold up to errors of size

o(1) ·
∫ ∞

0
r2−n

(∫
Br(x)

|φ(x′)djvε| dx′
)
dr, o(1) ·

∫ ∞

0
r1−n

(∫
Br(x)

|φ(x′)djvε| dx′
)
dr,

both of which can be seen to be o(|log ε|) (as in the proof of (44) below).

As in [6], note that combining (42) with (19) gives, for any x ∈ B3/2(0),

|ξε(x)| ≤ C

∫ 1/4

0

1

rn−1

(∫
Br(x)

W (uε)

ε2

)
dr + C

∫
B7/4(0)

W (uε)

ε2
,

which together with the monotonicity formula (101) (integrated over s ∈ (0, 14)) gives as

in [6] the pointwise estimate

(44) |ξε(x)| ≤ CEε(uε;B1/4(x)) + C

∫
B7/4(0)

W (uε)

ε2
≤ CEε(uε;B7/4(0)).

Interpolating with (21), we obtain

∥ξε∥L2n(B3/2)
≤ ∥ξε∥1/2nL1(B3/2)

∥ξε∥1−1/2n
L∞(B3/2)

≤ C|log ε|1−1/2n,

and using again (21) we get∫
B3/2

|ξε||d∗ξε| ≤ ∥ξε∥L2n(B3/2)
∥d∗ξε∥L2n/(2n−1)(B3/2)

≤ C|log ε|1−1/2n.(45)
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For a given cutoff function χ ∈ C∞
c (B3/2(0)) with χ ≡ 1 on B1(0), a simple integration

by parts yields∫
B3/2

χ2|d∗ξε|2 =
∫
B3/2

⟨ξε, d(χ2 d∗ξε)⟩

=

∫
B3/2

⟨ξε, 2χdχ ∧ d∗ξε⟩+
∫
B3/2

⟨χ2 ξε, dd
∗ξε⟩

=

∫
B3/2

⟨ξε, 2χdχ ∧ d∗ξε⟩ −
∫
B3/2

⟨χ2 ξε, dhε⟩+
∫
B3/2

⟨χ2 ξε, djvε⟩.

It follows from (21), (23), and (45) that the first two terms on the last line are o(|log ε|)
as ε→ 0, so that

lim
ε→0

1

|log ε|

∫
B3/2

χ2|d∗ξε|2 = lim
ε→0

1

|log ε|

∫
B3/2

χ2⟨ξε, djvε⟩

(using (44)) ≤ lim inf
ε→0

CEε(uε;B7/4(0))

|log ε|

∫
B3/2

|djvε|

(using (19)) ≤ lim inf
ε→0

CEε(uε;B7/4(0))

|log ε|

∫
B3/2

W (uε)

ε2
.

In particular, using Lemma 2.3 and recalling that χ ≡ 1 on B1, we deduce that

lim
ε→0

Eε(uε;B1)

|log ε|
≤ lim inf

ε→0

CEε(uε;B2)

|log ε|

∫
B2

W (uε)

ε2
.

This computation holds for any sequence of solutions uε : B2 → C obeying an energy

bound Eε(uε;B2(0)) ≤ Λ|log ε|.
Combining this observation with Theorem A.3 and a trivial rescaling, we obtain the

following lemma, which will be useful later.

Lemma 2.9. There exists c(Λ, n) > 0 such that if uε solves the Ginzburg–Landau

equation on Br(x), with r ≥ ε, Br/4(x) ∩ V(uε) ̸= ∅, and

r2−nEε(uε;Br(x)) ≤ Λ log(r/ε),

then

(46) r2−n
∫
Br(x)

W (uε)

ε2
> c(Λ, n).

Moreover, the simpler estimate

(47) ε2−n
∫
Bε(x)

W (uε)

ε2
> c(n)

holds for x ∈ V(uε) without any additional assumptions.

Note that the second conclusion (as well as the first one, when r is comparable to

ε) follows directly from the bound |duε| ≤ C(n)
ε , which implies that W (uε) ≥ 1

10 in a

c(n)ε-neighborhood of any point in Br/4(x) ∩ V(uε).
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3. Preliminary energy identity and related bounds

In this section we establish two of the key ingredients for the proof of Theorem 1.4,

proving the preliminary energy identity (6) and the new potential bound (8) for arbitrary

families satisfying the hypotheses of Theorem 1.4.

Let uε be a family of solutions satisfying the assumptions of Theorem 1.4. Appealing

to Lemma 2.5, choose a family δε → 0 such that

(48) lim inf
ε→0

|Gε,δε | ≥
ωn−2

2n−2
− C

K
> 0 as ε→ 0,

and fix yε ∈ Gε,δε .
Next, given δ > 0, consider the set Uδ,ε ⊆ P⊥

yε given by

Uδ,ε := {x = (yε, z) ∈ P⊥
yε : |uε(x)| < 1− δ}.

Proposition 3.1. There exists C = C(δ) independent of ε > 0 and points pε1, . . . , p
ε
k ∈

Uδ,ε with k ≤ C such that

Uδ,ε ⊆
k⊔
j=1

BCε(p
ε
j),

up to a subsequence, for a disjoint family of balls BCε(p
ε
j).

Proof. By a simple Vitali covering argument applied to the covering {Bε(p) | p ∈ Uδ,ε},
it is clear that there exist pε1, . . . , p

ε
m ∈ Uδ,ε such that

Bε(p
ε
i ) ∩Bε(pεj) = ∅ for i ̸= j

and

Uδ,ε ⊆
m⋃
j=1

B5ε(p
ε
j),

where m = mε depends on ε a priori. On the other hand, since |uε(pεj)| < 1 − δ and

|duε| ≤ C
ε , writing p

ε
j = (yε, z

ε
j ) it is clear that∫

{yε}×Dε(zεj )

W (uε)

ε2
≥ c(δ)

for some c(δ) > 0, and summing over 1 ≤ j ≤ mε and using (87) gives

mεc(δ) ≤
∫
P⊥
yε

W (uε)

ε2
≤ 2ωn,

hence

mε ≤ C(δ).

In particular, passing to a subsequence, we may assume thatmε = m is fixed independent

of ε, and that the (possibly infinite) limits

(49) γij := lim
ε→0

|pεi − pεj |
ε

exist. It is then easy to see that the desired conclusion holds with

C(δ) := 10 + max
ℓ∈F

ℓ, where F := {γij | γij <∞}.



VORTEX DENSITIES 21

Indeed, we can form an equivalence relation on {1, . . . ,m} by declaring that i ∼ j

precisely when γij <∞, and we can take a set of representatives S ⊆ {1, . . . ,m}; with
the previous choice of C(δ), we have

Uδ,ε ⊆
m⋃
j=1

B5ε(p
ε
j) ⊆

⋃
i∈S

BC(δ)ε(p
ε
i ),

since if i represents the class of j then |pεi − pεj | ≤ (γij + 1)ε for ε small enough, and the

last union is disjoint since for i, i′ ∈ S we have
|pεi−pεi′ |

ε → γii′ = ∞ (unless i = i′). □

Now, for k ≤ C(δ) and points pε1, . . . , p
ε
k as in Proposition 3.1, denote by Dj,ε the

disks

Dj,ε := BCε(p
ε
j) ∩ P⊥

yε

(note that eventually Dj,ε is compactly included in P⊥
yε , as |uε| → 1 on Bn−2

1 × ∂D1),

and consider the degrees

κεj := deg

(
uε
|uε|

, ∂Dj,ε

)
.

The following proposition gives a very useful (though non-sharp) bound on the

degrees κεj in terms of the potential W (uε)
ε2

, which plays a crucial role in ruling out

energy-cancellation due to interactions between vortices with degrees of opposite signs

in the proof of Theorem 1.4

Proposition 3.2. For ε sufficiently small (depending on δ),

(50)

∫
Dj,ε

2W (uε)

ε2
≥ π

2
|κεj |(1− 5δ).

Proof. By Proposition 3.1, we know that ∂Dj,ε ⊆ {|uε| ≥ 1− δ}. For each 0 < t < 1− δ,
consider the set

Ωt := {|uε| < t} ∩Dj,ε,

and if t is a regular value for |uε|, consider also the boundary

St := ∂Ωt ⊂ Dj,ε.

By the coarea formula for |uε| on Dj,ε, we have∫
Ω1−δ

W (uε)

ε2
=

∫ 1−δ

0

(1− r2)2

4ε2

(∫
Sr

1

|d|uε||

)
dr.

Next, note that for each regular value t ∈ (0, 1− δ) of |uε|, a few simple applications of

the Cauchy–Schwarz inequality give

|St| =
∫
St

|d|uε||−1/2|d|uε||1/2

≤
(∫

St

1

|d|uε||

)1/2(∫
St

|d|uε||
)1/2

≤
(∫

St

1

|d|uε||

)1/2(∫
St

|d|uε||2
)1/4

|St|1/4,
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which we can write equivalently as∫
St

1

|d|uε||
≥ |St|3/2

(∫
St

|d|uε||2
)−1/2

,

and applying this in the preceding computation yields

(51)

∫
Ω1−δ

W (uε)

ε2
≥
∫ 1−δ

0

(1− r2)2

4ε2
|Sr|3/2

(∫
Sr

|d|uε||2
)−1/2

dr.

Now, since

|duε|2 ≤
1− |uε|2

ε2
+ C

on Dj,ε, we have for any regular value t ∈ (0, 1− δ) of |uε| that

(52)

∫
St

|duε|2 ≤
(
1− t2

ε2
+ C

)
|St|.

In particular, writing

|duε|2 = |uε|2|d(uε/|uε|)|2 + |d|uε||2,

it follows that

t2
∫
St

|d(uε/|uε|)|2 +
∫
St

|d|uε||2 ≤
(
1− t2

ε2
+ C

)
|St|,

and an application of Young’s inequality on the left-hand side gives

2t

(∫
St

|d(uε/|uε|)|2
)1/2(∫

St

|d|uε||2
)1/2

≤
(
1− t2

ε2
+ C

)
|St|.

Moreover, since

2πκεj =

∫
St

(uε/|uε|)∗(dθ)

for each regular value t ∈ (0, 1− δ), we have that

2π|κεj | ≤
∫
St

|d(uε/|uε|)| ≤ |St|1/2
(∫

St

|d(uε/|uε|)|2
)1/2

,

which we can combine with the preceding computation to see that

4π|κεj |t ·
(∫

St

|d|uε||2
)1/2

≤
(
1− t2

ε2
+ C

)
|St|3/2.

Rearranging, we see that

(53) |St|3/2
(∫

St

|d|uε||2
)−1/2

≥
(
1− t2

ε2
+ C

)−1

· 4π|κεj |t.

Applying (53) to the integrand on the right-hand side of (51), we deduce that∫
Ω1−δ

W (uε)

ε2
≥
∫ 1−δ

0

(1− r2)2

4ε2
·
(
1− r2

ε2
+ C

)−1

· 4π|κεj |r dr

≥ π|κεj |
∫ 1−δ

0
(1− r2 − Cε2)r dr

≥ π|κεj | ·
1

4
(1− 4δ − Cε2),
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and choosing ε small enough so that Cε2 ≤ δ, we deduce that∫
Dj,ε

2W (uε)

ε2
≥ π

2
|κεj |(1− 5δ),

as claimed. □

In particular, summing the estimate from Proposition 3.2 over j = 1, . . . , k, we deduce

that

π

2
(1− 5δ)

∑k
j=1|κ

ε
j | ≤

∑k
j=1

∫
Dj,ε

2W (uε)

ε2
≤
∫
P⊥
yε

2W (uε)

ε2
.

Later, in the proof of Theorem 1.4, we will use this together with sharp upper bounds

on
∫
P⊥
yε

2W (uε)
ε2

to show that there can be only one zero of nonzero degree in a good slice

when the density θ < 2.

Now, since yε ∈ Gε,δε , we know already that

(54) πθ = lim
ε→0

1

|log ε|

∫
P⊥
yε

1

2
|d∗ξε|2.

On our way to proving (6), we show next that the only terms in d∗ξε which contribute

nontrivially to the limit are those of the form ∂a(ξε)ab, where {a, b} = {n− 1, n}.

Lemma 3.3. For yε ∈ Gε,δε as above, and for any pair (a, b) ̸= (n− 1, n), we have

lim
ε→0

1

|log ε|

∫
P⊥
yε

|∇(ξε)ab|2 = 0.

Proof. To begin, fix α ∈ (0, 1) close to 1, and consider the distance function

ρε(x) := dist(x,V(uε)).

For each εα ≤ r ≤ 1
4 , consider the set Fr ⊂ P⊥

yε given by

Fr := {x ∈ {yε} ×D1/2 : ρε(x) ≤ r}.

We claim first that, for ε sufficiently small (depending on α) and r ≥ εα, we have

(55) H2(Fr) ≤ C(α)r2

for a constant C(α) independent of ε. To see this, note that for each x ∈ Fr, there

exists x′ ∈ Br(x) ∩ V(uε). In particular, by Theorem A.3, it follows that

r2−nEε(uε;B2r(x)) ≥ c(n) log(2r/ε) ≥ c(n)(1− α)|log ε|.

Now, by Vitali’s covering lemma, there exist x1, . . . , xN ∈ Fr such that the balls

B2r(x1), . . . , B2r(xN ) are disjoint and Fr ⊆
⋃N
j=1B10r(xj). From the disjointness of the

balls B2r(xj) we deduce that

N · c(n)(1− α)|log ε| ≤
∑N

j=1r
2−nEε(uε;B2r(xj)) ≤ r2−nEε(uε;B

n−2
2r (yε)×D1).

In particular, since yε ∈ Gε,δε , the right-hand side is bounded by C|log ε|, with C

independent of r and ε, and therefore N ≤ C(α) for ε small enough. Since Fr is covered

by the N balls B10r(xj) of radius 10r, the bound (55) follows.
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Next, let (a, b) be a pair of indices with a < n− 1, and fix an arbitrary small γ > 0.

Since yε ∈ Gε,δε , for ε sufficiently small, the hypotheses of (the first part of) Lemma 2.6

hold for every ball Br(x) with x ∈ {yε} ×D1/2 and εα ≤ r ≤ 1
4 , so that

(56)

∣∣∣∣∣r2−n
∫
Br(x)

(djvε(x
′))ab

x− x′

|x− x′|
dx′

∣∣∣∣∣ < γ.

As a consequence, if x ̸∈ Fεα , it follows from Lemma 2.7 that

|∇(ξε)ab(x)| ≤ C + C

∫ 1/4

ρε(x)

1

r2

∣∣∣∣∣r2−n
∫
Br(x)

[djvε(x
′)]ab

x− x′

|x− x′|
dx′

∣∣∣∣∣ dr
≤ C + C

∫ 1/4

ρε(x)

γ

r2
dr

≤ C[1 + γ/ρε(x)]

(or |∇ξε| ≤ C if ρε(x) ≥ 1
4), while clearly |∇(ξε)ab(x)| ≤ C if x ∈ {yε} × [D1 \D1/2], by

Lemma 2.7 and the fact that here ρε ≥ 1
4 (eventually). Combining this with (55) and

an application of the coarea formula, since |dρε| = 1 (a.e.) we then see that

lim sup
ε→0

1

|log ε|

∫
P⊥
yε

\Fεα

|∇(ξε)ab|2 ≤ lim sup
ε→0

C

|log ε|

∫
P⊥
yε

\Fεα

(
1 +

γ2

ρε(x)2

)

(by the coarea formula) ≤ lim sup
ε→0

C

|log ε|

∫ 1/4

εα

γ

r2
d

dr
(H2(Fr)) dr

(integrating by parts) ≤ lim sup
ε→0

C

|log ε|

∫ 1/4

εα

2γ

r3
H2(Fr) dr

(by (55)) ≤ lim sup
ε→0

C(α)γ

|log ε|

∫ 1/4

εα

dr

r

= C(α)γ.

And since γ > 0 was arbitrary, it follows that

(57) lim
ε→0

1

|log ε|

∫
P⊥
yε

\Fεα

|∇(ξε)ab|2 = 0.

To estimate the integral of |∇(ξε)ab|2 on Fεα , we first observe that, by definition of ξε,

|∇ξε| ≤
1

|x|n−1
∗ |φdjvε|.

We can then invoke Proposition A.6 from the appendix and (19) to see that, since

yε ∈ Gε,δε , the gradient |∇ξε| satisfies a uniform L2,∞ bound

∥∇ξε∥L2,∞(P⊥
yε )

≤ C(K)

independent of ε along the slice P⊥
yε . In other words, we have the uniform estimate

(58) H2(P⊥
yε ∩ {|∇ξε| > λ}) ≤ C(K)

λ2
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for every λ ∈ (0,∞). Moreover, since |djvε| ≤ CW (uε)
ε2

, we see from Lemma 2.7 that

|∇ξε| ≤
∫ ε

0

C

ε2
+

∫ 1/2

ε

C

r2
· r2−n

∫
Br(x)

W (uε)

ε2
+ C

≤ C(K)

ε

on {yε}×D1/2, by definition of Gε,δε (which gives
∫
Br(x)

W (uε)
ε2

≤ Krn−2), while |∇ξε| ≤ C

on the rest of the slice P⊥
yε . Hence, writing

Aλ := {x ∈ P⊥
yε : |∇ξε(x)| > λ},

we find that ∫
Fεα

|∇ξε|2 =
∫ C(K)/ε

0
2λH2(Fεα ∩Aλ) dλ

≤ ε−2αH2(Fεα) +

∫ C(K)ε−1

ε−α

C(K)

λ
dλ

≤ C(α) + C(K) log(C(K)εα−1),

thanks to (55) and (58). Combining this with (57), we deduce that

lim sup
ε→0

1

|log ε|

∫
P⊥
yε

|∇(ξε)ab|2 ≤ C(K)(1− α).

Finally, since α ∈ (0, 1) was arbitrary, we can take α → 1 to deduce that the limit

vanishes, as desired. □

With the above preparations in place, we are now ready to prove the identity (6).

Proposition 3.4. For uε satisfying the hypotheses of Theorem 1.4 and a sequence of

slices yε ∈ Gε,δε with pεj ∈ P⊥
yε and degrees κεj as above, we have

θ = lim
ε→0

(∑
j(κ

ε
j)

2 +
∑

j<ℓ2κ
ε
jκ
ε
ℓ

|log |pεj − pεℓ ||
|log ε|

)
.

Proof. To begin, fix a cutoff function χ(y, z) = χ(z) on Rn−2 × R2 satisfying χ(z) = 1

for |z| ≤ 1
2 , χ(z) = 0 for |z| ≥ 3

4 , and |dχ| ≤ C. Since yε ∈ Gε,δε , we have∫
P⊥
yε

|jvε − d∗ξε|2 = o(|log ε|);

together with (54), this implies in particular that

∥jvε∥L2(P⊥
yε )

≤ C|log ε|1/2.

Moreover, using (20) and the fact that V(uε) ∩ P⊥
yε ⊂ {yε} × D1/4, it is also easy to

check that ∫
{yε}×[D1\D1/2]

(|ξε|2 + |d∗ξε|2) ≤ C.

As a consequence, using again (54), we have

πθ = lim
ε→0

1

|log ε|

∫
P⊥
yε

1

2
χ|d∗ξε|2 = lim

ε→0

1

|log ε|

∫
P⊥
yε

1

2
χ⟨d∗ξε, jvε⟩.
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By Lemma 3.3, we can further refine this to see that

πθ = − lim
ε→0

1

|log ε|

∫
P⊥
yε

1

2
χ[∂n−1(ξε)n−1,njvε(∂n) + ∂n(ξε)n,n−1jvε(∂n−1)].

Writing βε := (ξε)n−1,n and integrating by parts on P⊥
yε = {yε} ×D1, we obtain

πθ = lim
ε→0

1

|log ε|

∫
P⊥
yε

1

2
βε[χdjvε + dχ ∧ jvε].

Since χ ≡ 1 on {yε} ×D1/2, using the previous bounds and the fact that |βε| ≤ |ξε|, we
see that the second term gives no contribution in the limit. Also, χ ≡ 1 on spt(djvε)∩P⊥

yε .

We conclude that

(59) πθ = lim
ε→0

1

|log ε|

∫
P⊥
yε

1

2
βε djvε(∂n−1, ∂n).

Next, note that djvε|P⊥
yε

is supported in the set

Uδ,ε = {|uε| < 1− δ} ∩ P⊥
yε ,

and recall from Proposition 3.1 that there exists a constant C = C(δ) and points

pε1, . . . , p
ε
k with k ≤ C such that

V(uε) ∩ P⊥
yε ⊆ Uδ,ε ⊆ BCε(p

ε
1) ∪ · · · ∪BCε(pεk).(60)

Using this in the right-hand side of (59), and writing Dj,ε := BCε(p
ε
j) ∩ P⊥

yε , we see that∫
P⊥
yε

1

2
βεdjvε(∂n−1, ∂n) =

∑k
j=1

∫
Dj,ε

1

2
βεdjvε(∂n−1, ∂n)

=
∑k

j=1βε(p
ε
j)

∫
Dj,ε

1

2
djvε(∂n−1, ∂n)

+
∑k

j=1

1

2

∫
Dj,ε

[βε − βε(p
ε
j)]djvε(∂n−1, ∂n).

Now, since |dβε| ≤ |∇ξε| ≤ C/ε (as observed while proving the previous lemma), we

have a pointwise bound of the form |βε − βε(p
ε
j)| ≤ C on Dj,ε. Also,

∫
P⊥
yε
|djvε| ≤ C (by

the pointwise bound |djvε| ≤ CW (uε)
ε2

), and we deduce that

πθ = lim
ε→0

1

|log ε|
∑k

j=1βε(p
ε
j)

∫
Dj,ε

1

2
djvε(∂n−1, ∂n).

Moreover, noting that∫
Dj,ε

djvε(∂n−1, ∂n) = 2π deg(vε, ∂Dj,ε) = 2πκεj ,

it follows that

(61) πθ = lim
ε→0

1

|log ε|
∑k

i=1βε(p
ε
i )πκ

ε
i .

With (61) in hand, to complete the proof, it suffices to show that

(62) lim
ε→0

1

|log ε|
(βε(p

ε
i )− κεi |log ε| −

∑
j ̸=iκ

ε
j |log |pεi − pεj ||) = 0
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for every i ∈ {1, . . . , k}. Up to relabeling the indices, it of course suffices to treat the

case i = 1, and assume that the distances

rεj := |pε1 − pεj |

are in increasing order 0 = rε1 < rε2 ≤ rε3 ≤ · · · ≤ rεk.

Now, fix γ > 0 small and α ∈ (0, 1) close to 1, and observe that for ε sufficiently small

(depending on α and γ), the ball Br(p
ε
1) satisfies the full hypotheses of Lemma 2.6, with

degree

κε(r) :=
∑

rεj<r
κεj ,

whenever

r ∈
[
εα,

1

4

]
\

k⋃
j=2

[
rεj − Cε

2
,
rεj + Cε

δ1

]
,

where δ1 = δ1(α, γ) > 0 is the constant from the hypotheses of Lemma 2.6, since

this ensures that, for each j > 1, either B2r(p
ε
1) is disjoint from BCε(p

ε
j) if r < rεj or

BCε(p
ε
j) ⊆ Bδ1r(p

ε
1) if r ≥ rεj . In particular, for every such r, we have

(63)

∣∣∣∣∣2πωn−2κ
ε(r)− r2−n

∫
Br(pε1)

[djvε(x
′)]n−1,n dx

′

∣∣∣∣∣ < γ.

Now, it follows from Lemma 2.7 (and the bound |djvε| ≤ CW (uε)
ε2

≤ C
ε2
) that∣∣∣∣∣2πωn−2βε(p

ε
1)−

∫ 1/4

ε

1

r

(
r2−n

∫
Br(pε1)

[djvε(x
′)]n−1,n dx

′

)
dr

∣∣∣∣∣ ≤ C.

Combining this with (63), we have∣∣∣∣∣2πωn−2βε(p
ε
1)− 2πωn−2

∫ 1/4

ε

κε(r)

r
dr

∣∣∣∣∣
≤ C + γ log(1/4ε) +

∫
I

1

r

∣∣∣∣∣2πωn−2κ
ε(r)− r2−n

∫
Br(pε1)

[djvε(x
′)]n−1,n dx

′

∣∣∣∣∣ ,
where

I := (ε, εα) ∪
k⋃
j=2

(
rεj − Cε

2
,
rεj + Cε

δ1

)
.

Appealing once more to the uniform bound

r2−n
∫
Br(pε1)

|djvε| ≤ r2−n
∫
Br(pε1)

W (uε)

ε2
≤ C(K) = C



28 A. PIGATI AND D. STERN

(by definition of Gε,δε) and noting that each rεj ≥ 2Cε for j ≥ 2, it therefore follows that∣∣∣∣∣βε(pε1)−
∫ 1/4

ε

κε(r)

r
dr

∣∣∣∣∣
≤ C + γ|log ε|+

∫
I

C

r
dr

≤ C + γ|log ε|+ C log(εα−1) +
∑k

j=1 log

(
(rεj + Cε)/δ1

(rεj − Cε)/2

)
≤ C + γ|log ε|+ C(1− α)|log ε|+ C(α, γ).

Dividing through by |log ε| and passing to the limit ε→ 0, we deduce that

lim sup
ε→0

1

|log ε|

∣∣∣∣∣βε(pε1)−
∫ 1/4

ε

κε(r)

r
dr

∣∣∣∣∣ ≤ γ + C(1− α)

for any γ > 0 and α ∈ (0, 1). In particular, taking γ → 0 and α→ 1, we deduce that

(64) lim sup
ε→0

1

|log ε|

∣∣∣∣∣βε(pε1)−
∫ 1/4

ε

κε(r)

r
dr

∣∣∣∣∣ = 0.

But now we need only observe that∫ 1/4

ε

κε(r)

r
dr =

∫ 1/4

ε

1

r
·
∑

rεj<r
κεj dr

=

∫ 1/4

ε

κε1
r
dr +

∑k
j=2

∫ 1/4

rεj

κεj
r
dr

= κε1(log(1/ε) + log(1/4)) +
∑k

j=2κ
ε
j(log(1/r

ε
j ) + log(1/4))

= κε1|log ε|+
∑k

j=2κ
ε
j |log |pε1 − pεj ||+O(1).

Together with (64), this gives the desired identity (62), completing the proof. □

4. Solutions of density < 2

Denote by D ⊂ R the collection of densities θ arising as in the statement of Theo-

rem 1.4, and set

θmin := inf D.

Note that θmin > 0, by virtue of Theorem 1.1. By a simple diagonal sequence argument,

we see that θmin ∈ D. In terms of the minimum density θmin, it is clear that Theorem 1.4

is equivalent to the following proposition.

Proposition 4.1. Under the hypotheses of Theorem 1.4, if θ < 2θmin, then θ = 1.

In particular, having established Proposition 4.1, it follows immediately that θmin = 1,

and that D ∩ [1, 2) = {1}.
To begin the proof of Proposition 4.1, we note that the assumption θ < 2θmin allows

us to make the following reduction, showing roughly that the vorticity set lies close to a

single (n− 2)-plane at all scales ≥ ετ0 for some fixed τ0 > 0. Recall that Gε,δ is the set

of δ-good slices for uε, introduced in the previous section.
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Lemma 4.2. Let τ0 := 2θmin−θ
4θmin

∈ (0, 12). Under the assumptions of Proposition 4.1, for

any η ∈ (0, 1] there exists c(η) > 0 independent of ε such that, for any sequences δε → 0

and yε ∈ Gε,δε, there exists

pε = (yε, zε) ∈ P⊥
yε

such that

(65) Bε1/2(pε) ∩ V(uε) ̸= ∅

and, for any x = (y, z) ∈ Q, we have

(66) dist(x,V(uε)) ≥ c|z − zε|,

provided that |z − zε| ≥ ηmax{ετ0 , |y − yε|} and that ε is sufficiently small (depending

on η).

Proof. Given yε ∈ Gε,δε , choose zε ∈ D2
1 such that pε = (yε, zε) is the closest point in

the slice P⊥
yε to the vorticity set V(uε). If (65) fails along a subsequence, then setting

rε := dist(pε,V(uε)) ≥ ε1/2 we can consider the rescaled solutions

ũε̃(x) := uε(pε + rεx),

which solve the ε̃-Ginzburg–Landau equation on B2(0) with ε̃ := ε/rε ≤ ε1/2 (note also

that zε → 0 and rε → 0, since V(uε) → P ∩ B2(0) in the Hausdorff sense). By our

assumption yε ∈ Gε,δε , we then see that the rescaled solutions ũε̃ satisfy

lim
ε̃→0

1

|log ε̃|

∫
B2(0)

|dũε̃(P )|2 = 0.(67)

By Theorem 1.1, the concentrated part of the limiting energy measure

µ = lim
ε→0

eε̃(ũε̃)

π|log ε̃|
dx

is a stationary rectifiable varifold V , and by reversing the proof of Lemma 2.2, it follows

that its tangent planes coincide with P , and we deduce that V is given by a locally

finite union of (n− 2)-planes parallel to P , each with multiplicity at least θmin.

By assumption, V(ũε̃) does not intersect B1(0), and since pε was chosen to be the

closest point in P⊥
yε to the vorticity set, we see that there exists qε̃ ∈ Rn−2 with |qε̃| = 1

such that (qε̃, 0) ∈ V(ũε̃). Since the support of |V | is the Hausdorff limit of V(ũε̃),
it follows that it is disjoint from B1(0), but at the same time it contains the whole

(n− 2)-plane P + (q0, 0) = P (intersected with B2), for a subsequential limit q0 of qε̃, a

contradiction.

Now let us verify (66). We proceed by a similar contradiction argument: suppose to

the contrary that there exists xε = (y′ε, z
′
ε) ∈ Q such that |z′ε−zε| ≥ ηmax{ετ0 , |y′ε−yε|},

but

lim
ε→0

dist(xε,V(uε))
|z′ε − zε|

= 0.(68)

Evidently, since dist(xε,V(uε)) → 0, we must have z′ε → 0, and hence

sε := |z′ε − zε| → 0.
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For fixed small δ ∈ (0, 1), we can consider the rescaled solutions

ũε̃(x) := uε(pε + sεx/δ),

which solve the ε̃-Ginzburg–Landau equation on B2(0) with ε̃ := δε/sε ∈ (δε, η−1ε1−τ0)

(since sε ≥ ηετ0). Again, the rescaled solutions ũε̃ satisfy (67). Also, by (65), since

τ0 <
1
2 we have

lim
ε→0

dist(pε,V(uε))
sε

≤ lim
ε→0

ε1/2

ηετ0
= 0.

After passing to a subsequence, by the last observation and (68), the Hausdorff limit of

V(ũε̃) ∩B1(0) must contain 0 and the point

ξ := lim
ε→0

δ · xε − pε
sε

,

which exists thanks to the assumption that |y′ε−yε| ≤ η−1|z′ε−zε| = η−1sε, and satisfies

|P⊥(ξ)| = lim
ε→0

δ

sε
|z′ε − zε| = δ.

As observed above, from (67) it follows that in B1(0) the support of the energy concen-

tration varifold contains the parallel (n− 2)-planes P and (P + ξ), and therefore the

limit energy measure µ = limε→0
eε̃(ũε̃)
π|log ε̃| dx satisfies

µ ≥ θminHn−2 P + θminHn−2 (P + ξ).

Hence,

lim inf
ε→0

∫
B1(0)

eε̃(ũε̃)

π|log ε̃|
≥ µ(B1(0)) ≥ θminωn−2[1 + (1− δ2)

n−2
2 ].

Now, returning to the original family of solutions uε, by the monotonicity formula (101)

we have

θ = lim
ε→0

1

ωn−2

∫
B1(pε)

eε(uε)

π|log ε|

≥ lim inf
ε→0

1

ωn−2(sε/δ)n−2

∫
Bsε/δ(pε)

eε(uε)

π|log ε|

= lim inf
ε→0

|log ε̃|
|log ε|

1

ωn−2

∫
B1(0)

eε̃(ũε̃)

π|log ε̃|

≥ (1− τ0)θmin[1 + (1− δ2)
n−2
2 ],

and since δ > 0 was arbitrary, it follows that

θ ≥ 2(1− τ0)θmin.

However, this cannot hold since we have chosen τ0 such that τ0 <
2θmin−θ
2θmin

. We thus

reach a contradiction, concluding the proof. □

Next, choosing a radial cutoff function ϕ ∈ C1
c (D1) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on

D1/2, and applying [16, Theorem 2.1], we see that

lim sup
ε→0

∣∣∣∣∫
D1

ϕJε

∣∣∣∣ ≤ lim
ε→0

∫
P⊥
yε

eε(uε)

|log ε|
= πθ,
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where Jε :=
1
2djuε is the Jacobian of uε along the slice P⊥

yε
∼= D1 (in the last equality

we used the fact that yε ∈ Gε,δε , which gives |
∫
P⊥
yε

eε(uε)
|log ε| − πθ| ≤ δε). But, integrating

by parts and using polar coordinates, we have∫
D1

ϕJε = −1

2

∫ 1

0
∂rϕ

[∫
{yε}×∂Dr

juε(dθ)

]
dr,

and since |uε| → 1 on spt(dϕ) ⊂ D1 \D1/2, the last expression is the same as

−1

2

∫ 1

1/2
∂rϕ

[∫
{yε}×∂Dr

jvε(dθ)

]
dr = π deg(vε, {0} × S1),

up to an infinitesimal error. We deduce that the degree

κε := deg(vε, {0} × S1) ∈ Z

eventually satisfies

|κε| ≤ θ < 2θmin ≤ 2.

Thus, passing to a subsequence, we may assume that κε = κ is constant and

|κ| ≤ 1.(69)

Applying Lemma 4.2 (for fixed η), note also that

κ = deg(vε, {yε} × ∂Dr(zε)) for all r ∈ [ηετ0 , 12 ],(70)

since (66) implies that |uε| > 1
2 on the annulus {yε} × [D1(0) \Dηετ0 (zε)].

Ultimately, we wish to show that |κ| = 1 = θ. First, we compute the energy

contribution from an annular region centered at pε.

Lemma 4.3. For any fixed η ∈ (0, 1] and pε, τ ∈ (0, τ0] as in Lemma 4.2, we have

lim
ε→0

1

|log ε|(ετ )n−2

∫
Aη

ετ (pε)
eε(uε) = πωn−2κ

2τ,

where we set

Aη
r(pε) := Bn−2

r (yε)× [D2
1(0) \D2

ηr(zε)].

More generally, for any family of radii rε ∈ [ετ0 , 1) for which limε→0
log(1/rε)
log(1/ε) = τ , we

have

(71) lim
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε (pε)
eε(uε) = πωn−2κ

2τ.

Proof. Let rε ∈ [ετ0 , 1) be a family of radii as above. For simplicity, we assume that

pε = 0, and write simply Aη
rε = Aη

rε(0).

Let βε(x) := (ξε)n−1,n(x). To begin with, we claim that

(72) lim
ε→0

1

|log ε|rn−2
ε

∫
Arε

eε(uε) = lim
ε→0

1

2|log ε|rn−2
ε

∫
Bn−2

rε (0)

∫
∂Dηrε (0)

βε d
∗ξε(∂θ).

Indeed, since 0 ∈ Gε,δε for some sequence δε → 0 by assumption, it follows from the

definition of Gε,δε that

(73) lim
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε

eε(uε) = lim
ε→0

1

2|log ε|rn−2
ε

∫
Aη

rε

|d∗ξε|2.
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Moreover, since 0 ∈ Gε,δε , for any fixed δ1 > 0, it is easy to see that

(74) r2−n
∫
B2r(x)

|duε(P )|2 < δ1|log ε|

for any x = (y, z) ∈ Arε with |y| ≤ 1
2 and 1

8 ≥ r ≥ cηrε ≥ cηετ0 , where we take c > 0

to be the constant from Lemma 4.2, for ε sufficiently small. As a consequence, for any

given γ > 0 we see that the hypotheses of Lemma 2.6 hold for every such ball B2r(x).

Combining this with Lemma 2.7, the fact that spt(djvε) ⊆ V(uε), and (19), we find

that, for x ∈ Aη
rε and (a, b) ̸= (n− 1, n),

|∇(ξε)ab|(x) ≤ C

∫ 1/8

dist(x,V(uε))

1

r2

∣∣∣∣∣r2−n
∫
Br(x)

[djvε(x
′)]ab

x− x′

|x− x′|
dx′

∣∣∣∣∣ dr + C

≤ C + C

∫ 1/8

dist(x,V(uε))

1

r2
γ dr

≤ C +
Cγ

dist(x,V(uε))
,

provided ε is sufficiently small (if dist(x,V(uε)) ≥ 1
8 , then actually |∇ξε| ≤ C). In

particular, since x ∈ Aη
rε , by Lemma 4.2 we know that dist(x,V(uε)) ≥ c|z|, and it

follows that

lim sup
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε

|∇(ξε)ab|2 ≤ lim sup
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε

Cγ2

|z|2

≤ lim sup
ε→0

Cγ2
log(1/ηrε)

log(1/ε)

≤ Cγ2τ0

for any γ > 0; hence,

(75) lim
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε

|∇(ξε)ab|2 = 0 for (a, b) ̸= (n− 1, n).

Combining this with (73), we then see that

lim
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε

eε(uε) = lim
ε→0

1

2|log ε|rn−2
ε

∫
Aη

rε

[d∗ξε(∂n−1)∂nβε − d∗ξε(∂n)∂n−1βε].

A simple integration by parts shows that∫
D1\Dηrε

[d∗ξε(∂n−1)∂nβε − d∗ξε(∂n)∂n−1βε]

=

∫
∂Dηrε

βε d
∗ξε(∂θ)−

∫
∂D1

βε d
∗ξε(∂θ) +

∫
D1\Dηrε

βεdd
∗ξε[∂n−1, ∂n]
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on any slice P⊥
y

∼= D1. Also, recall that dd
∗ξε = djvε − dhε. Hence, using the fact that

djvε = 0 on Aη
rε , as well as |βε| ≤ |ξε|, we deduce from the preceding identities that

lim
ε→0

1

|log ε|rn−2
ε

∣∣∣∣∣
∫
Aη

rε

eε(uε)−
1

2

∫
Bn−2

rε

(∫
∂Dηrε

βε d
∗ξε(∂θ)−

∫
∂D1

βε d
∗ξε(∂θ)

)∣∣∣∣∣
= lim

ε→0

1

2|log ε|rn−2
ε

∣∣∣∣∣
∫
Bn−2

rε

∫
D1\Dηrε

βεdd
∗ξε[∂n−1, ∂n]

∣∣∣∣∣
≤ lim

ε→0

C

|log ε|rn−2
ε

∥dhε∥L∞(Q)

∫
Bn−2

rε ×D1

|ξε|

≤ lim
ε→0

C

|log ε|
∥dhε∥L∞(Q)

= 0,

where in the last two lines we used the fact that 0 ∈ Gε,δε (giving
∫
Bn−2

rε ×D1
|ξε| ≤ Krn−2

ε )

and (23).

Now, by Proposition A.5 and the monotonicity formula (101), together with the

pointwise bound (19), it is easy to see that

r2−n

∣∣∣∣∣
∫
Br(x)

φ(x′)[djvε(x
′)]n−1,n dx

′

∣∣∣∣∣ ≤ C(76)

for all r ≥ ε1/2, for some C independent of ε (alternatively, a similar bound with CK in

place of C follows immediately from (19) and the fact that 0 = yε ∈ Gε,δε). Combining

this observation with Lemma 2.7, writing

ρε(x) := dist(x,V(uε)),

we see that

(77) |ξε| ≤ C log(1/ρε) + C, |d∗ξε| ≤ C/ρε,

whenever ρε ≥ ε1/2. In particular, since ρε → 1 uniformly on Bn−2
1 (0) × ∂D1(0) as

ε→ 0, it follows that

1

2|log ε|rn−2
ε

∫
Bn−2

rε

∫
∂D1

|βε d∗ξε(∂θ)| ≤
C

|log ε|
→ 0

as ε→ 0, which proves (72).

In order to estimate the right-hand side of (72), we let Sε := Bn−2
rε × ∂Dηrε and, for

x = (y, z) ∈ Sε, we first show for any fixed γ > 0 the uniform bound

|2πωn−2βε(x)− 2πκωn−2 log(1/rε)| ≤ C(γ, η) + γ|log ε|.(78)

Note that by Lemma 4.2 we have

2rε ≥ ρε(x) ≥ cηrε for all x ∈ Sε.(79)

Moreover, again by Lemma 4.2, for any x = (y, z) ∈ Sε ⊂ Arε we have

V(uε) ∩ P⊥
y ⊆ {y} ×Dηrε(0) ⊆ B2rε(x).
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Hence, fixing an arbitrary γ > 0, we see that the full hypotheses of Lemma 2.6 hold on

B2r(x) for ε > 0 sufficiently small, whenever

2rε
δ1(τ0, γ)

< r ≤ 1

8

(note that (34) holds by (74)). As in (70), the degree deg(vε, {y} × ∂Dr(z)) = κ, and

from (36) we deduce that

(80)

∣∣∣∣∣2πκωn−2 − r2−n
∫
Br(x)

[djvε(x
′)]n−1,n

∣∣∣∣∣ < γ

for x ∈ Sε and
2rε

δ1(τ0,γ)
< r ≤ 1

8 .

Next, recall from Lemma 2.7 that

2πωn−2βε(x) =

∫ ∞

0

1

r

(
r2−n

∫
Br(x)

φ(x′)[djvε(x
′)]n−1,n dx

′

)
dr,

and note that φ|Br(x) ≡ 1 for r ≤ 1
8 , so that

∣∣∣∣∣2πωn−2βε(x)−
∫ 1/8

ρε(x)

1

r

(
r2−n

∫
Br(x)

[djvε(x
′)]n−1,n dx

′

)
dr

∣∣∣∣∣ ≤ C

for a suitable C independent of ε > 0. Note also that, by (79) and (76),

∣∣∣∣∣
∫ 2rε/δ1

ρε(x)

1

r

(
r2−n

∫
Br(x)

[djvε(x
′)]n−1,n dx

′

)
dr

∣∣∣∣∣ ≤
∫ 2rε/δ1

cηrε

C

r
dr ≤ C log(2/cηδ1),

while, by (80),

∫ 1/8

2rε/δ1

1

r

∣∣∣∣∣2πκωn−2 − r2−n
∫
Br(x)

[djvε(x
′)]n−1,n dx

′

∣∣∣∣∣ dr < γ

∫ 1/8

2rε/δ1

dr

r
< γ log(1/rε).

Combining these bounds, we arrive at (78).

Turning now to the right-hand side of (72), it follows that, for any γ > 0,

lim
ε→0

r2−nε

2|log ε|

∣∣∣∣∫
Sε

(βε − κ|log rε|) d∗ξε(∂θ)
∣∣∣∣ ≤ lim sup

ε→0

r2−nε

|log ε|

∫
Sε

(C(γ, η) + γ|log ε|)|d∗ξε|

(using (77)) ≤ lim sup
ε→0

r2−nε

|log ε|

∫
Sε

C · C(γ, η) + γ|log ε|
cηrε

= C(η)γ,
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and since γ > 0 was arbitrary, it follows that the limit on the left-hand side must vanish.

In particular, returning to (72), we see that

lim
ε→0

1

|log ε|rn−2
ε

∫
Aη

rε

eε(uε) = lim
ε→0

r2−nε

2|log ε|

∫
Bn−2

rε

∫
∂Dηrε

κ|log rε|d∗ξε(∂θ)

= lim
ε→0

r2−nε

2|log ε|
κ|log rε|

∫
Bn−2

rε

(∫
Dηrε

dd∗ξε

)

= lim
ε→0

r2−nε

2|log ε|
κ|log rε|

∫
Bn−2

rε

(∫
Dηrε

djvε

)

= lim
ε→0

r2−nε κ|log rε|
2|log ε|

∫
Bn−2

rε

2π deg(vε, {y} × ∂Dηrε) dy

= πωn−2κ
2 lim
ε→0

log(1/rε)

log(1/ε)
,

where we used again (70) and, in the third equality, the fact that djvε − dd∗ξε = dhε is

bounded pointwise by C|log ε|1/2. This concludes the proof. □

Next, note that for pε and τ0 as in Lemma 4.2, using the fact that yε ∈ Gε,δε and

Bn−2
ετ0 (yε)×D2

ηετ0 (zε) ⊂ Bn
(1+η)ετ0 (pε), we have for any given η ∈ (0, 1] that

lim
ε→0

Eε(uε;Aη
ετ0 (pε))

|log ε|(ετ0)n−2
≥ lim

ε→0

Eε(uε;B
n−2
ετ0 (yε)×D2

1(0))

|log ε|(ετ0)n−2
− lim sup

ε→0

Eε(uε;B(1+η)ετ0 (pε))

|log ε|(ετ0)n−2

= lim inf
ε→0

(
Eε(uε;B1(pε))

|log ε|
−
Eε(uε;B(1+η)ετ0 (pε))

|log ε|(ετ0)n−2

)
≥ lim inf

ε→0

(
Eε(uε;B1(pε))

|log ε|
−
Eε(uε;B(1+η)ετ0 (pε))

|log ε|[(1 + η)ετ0 ]n−2

)
− Cη lim sup

ε→0

Eε(uε;B(1+η)ετ0 (pε))

|log ε|[(1 + η)ετ0 ]n−2
,

where the equality comes from the fact that limε→0
Eε(uε;B

n−2
ετ0

(yε)×D2
1(0))

|log ε|(ετ0 )n−2 = πωn−2θ (as

yε ∈ Gε,δε), which in turn equals limε→0
Eε(uε;B1(pε))

|log ε| since energy concentrates on a

plane with multiplicity θ. In particular, combining Lemma 4.3 with the monotonicity

formula (101) (integrated between radii (1 + η)ετ0 and 1), we see that

(81) lim sup
ε→0

1

log(1/ετ0)

∫ 1

(1+η)ετ0

1

rn−1

∫
Br(pε)

2W (uε)

ε2
≤ πωn−2κ

2 + Cη.

As an easy consequence, we have the following proposition.

Proposition 4.4. For pε and τ0 as in Lemma 4.2, given δ ∈ (0, 1), there exists

rε ∈ (ετ0 , εδτ0) such that

(82) lim sup
ε→0

1

(rε/2)n−2

∫
Brε/2(pε)

2W (uε)

ε2
≤ πωn−2κ

2

1− δ
.

In particular, we can conclude that |κ| = 1, and

(83) lim sup
ε→0

1

(rε/2)n−2

∫
Brε/2(pε)

2W (uε)

ε2
≤ πωn−2

1− δ
.
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Proof. Writing

ιε := inf
r∈(ετ0/2,εδτ0/2)

r2−n
∫
Br(pε)

2W (uε)

ε2
,

we see that the existence of a sequence rε satisfying (82) is equivalent to the statement

that lim supε→0 ιε ≤
πωn−2κ2

1−δ . By (81) we have, for every η > 0,

πωn−2κ
2 + Cη ≥ lim sup

ε→0

1

log(1/ετ0)

∫ εδτ0/2

(1+η)ετ0

ιε
r
dr

= lim sup
ε→0

ιε log(ε
δτ0/2(1 + η)ετ0)

log(1/ετ0)

= (1− δ) lim sup
ε→0

ιε.

Since η > 0 was arbitrary, (82) clearly follows.

As discussed earlier in the section, since θ < 2θmin ≤ 2, we know that |κ| ≤ 1, so to

complete the proof of the proposition, we simply need to demonstrate that |κ| ≠ 0. And

this is straightforward: in view of the bound (82), if κ = 0, it would follow that

1

(rε/2)n−2

∫
Brε/2(pε)

W (uε)

ε2
→ 0

as ε→ 0; but since pε ∈ Gε,δε , this would contradict Lemma 2.9 (which applies by (65)).

Hence, we must have κ = ±1, as claimed. □

Remark 4.5. This bound gives another proof that, in Theorem 1.1, the support of |V |
is characterized as the limit of the zero sets u−1

ε {0} (which can also be deduced from

Proposition 3.4). To check this, it is enough to show that the energy cannot concentrate

when uε ̸= 0 everywhere on B2. And indeed, if this happened, we could define a minimal

density θ′min > 0, among all densities θ arising as in Theorem 1.4 with the additional

constraint that uε ̸= 0 on B2. Repeating the previous arguments, since now the degree

κ = 0, we would reach a contradiction to Lemma 2.9.

In the next section, we show that a sequence of Ginzburg–Landau solutions on Bn
1 (0)

with energy concentrating along the (n− 2)-plane P must have energy ≈ πωn−2|log ε|
as ε → 0, provided that an additional assumption such as (83) holds with rε = 1. In

particular, by combining Proposition 4.4 with Proposition 5.2 of the next section, we

can complete the proof of Proposition 4.1 as follows.

Proof of Proposition 4.1. Let pε = (yε, zε) and τ0 be as in Lemma 4.2. For a given

δ ∈ (0, 1) to be specified below, let rε be the sequence of scales satisfying (83), whose

existence is guaranteed by Proposition 4.4. Passing to a subsequence so that log(1/rε)
log(1/ε)

converges, let

τ := lim
ε→0

log(1/rε)

log(1/ε)
,

and note that τ ∈ (0, τ0] since rε ∈ (ετ0 , εδτ0).

Fixing an arbitrary γ > 0 and recalling (65), we then see that B2rε(pε) satisfies

the hypotheses of Proposition 5.2 in the next section for ε sufficiently small, provided
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that we choose δ such that πωn−2

1−δ < πωn−2(1 + δ2) (with δ2 as in Proposition 5.2), and

provided that

(84) lim
ε→0

r2−nε

∫
B2rε (pε)\Bδ2rε

(P+pε)

eε(uε)

|log ε|
= 0

holds. To check (84), observe that

B2rε(pε) \Bδ2rε(P + pε) ⊆ Bn−2
2rε

(yε)× [D2
2rε(zε) \D

2
δ2rε(zε)]

= Aδ2/2
2rε

(pε) \ A1
2rε(pε),

and using Lemma 4.3, it follows that

lim
ε→0

r2−nε

∫
B2rε (pε)\Bδ2rε

(P+pε)

eε(uε)

|log ε|
≤ lim

ε→0

(
Eε(uε;Aδ2/2

2rε
(pε))

|log ε|rn−2
ε

−
Eε(uε;A1

2rε(pε))

|log ε|rn−2
ε

)
= 2n−2πωn−2κ

2τ − 2n−2πωn−2κ
2τ

= 0,

as desired.

In particular, for ε sufficiently small, we can now apply Proposition 5.2 on the ball

B2rε(pε) to conclude that∣∣∣∣∣ r2−nε

log(rε/ε)

∫
Bn−2

rε (yε)×Drε (zε)
eε(uε)− πωn−2

∣∣∣∣∣ < γ,

which implies

(85)

∣∣∣∣∣ r2−nε

|log ε|

∫
Bn−2

rε (yε)×Drε (zε)
eε(uε)− πωn−2

log(rε/ε)

|log ε|

∣∣∣∣∣ < γ.

On the other hand, it follows from Lemma 4.3 (together with |κ| = 1) that, for ε

sufficiently small, ∣∣∣∣∣ r2−nε

|log ε|

∫
A1

rε
(pε)

eε(uε)− πωn−2
log(1/rε)

log(1/ε)

∣∣∣∣∣ < γ

as well. Since Bn−2
rε (yε)×D1(0) = A1

rε(pε) ⊔ [Bn−2
rε (yε)×Drε(zε)] and

log(rε/ε) + log(1/rε) = log(1/ε),

we can combine these estimates to conclude that

lim
ε→0

r2−nε

|log ε|

∫
Bn−2

rε (yε)×D1(0)
eε(uε) = πωn−2.

Since yε ∈ Gε,δε , it follows that θ = 1, as desired. □
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5. From bounds on W (u)/ε2 to unit density

In this section we show that if, in addition to the hypotheses of Proposition 4.1, we

have the bound

(86) lim sup
ε→0

∫
B1/2(0)

2W (uε)

ε2
≤ πωn−2

2n−2
(1 + δ),

for some (explicit) δ > 0 small enough, then the limiting density θ = 1. In other words,

we are going to prove Proposition 4.1 with the additional assumption (86). As we saw

above, this combines with the analysis of the preceding section to give Proposition 4.1

in full generality, from which Theorem 1.4 follows.

Since the measures W (uε(x))
ε2

dx converge to an absolutely continuous measure with

respect to Hn−2 P (by Theorem 1.1), where the plane P = Rn−2 × {0}, the estimate

(86) also gives

lim sup
ε→0

∫
Bn−2

1/2
(0)×D2

1(0)

2W (uε)

ε2
≤ πωn−2

2n−2
(1 + δ).

In particular, this implies that

πωn−2

2n−2
(1 + δ) ≥ lim sup

ε→0

∫
Gε,δε×D2

1

2W (uε)

ε2

≥ lim sup
ε→0

(
|Gε,δε | · inf

y∈Gε,δε

∫
{yε}×D2

1

2W (uε)

ε2

)
,

which together with (48) implies the existence of yε ∈ Gε,δε for which

lim sup
ε→0

∫
{yε}×D2

1

2W (uε)

ε2
≤ (πωn−2/2

n−2)(1 + δ)

(ωn−2/2n−2)− (C/K)
.

We now fix K large enough (e.g., K = K(δ) = 4C
δ

2n−2

ωn−2
), in such a way that the previous

estimate becomes

lim sup
ε→0

∫
{yε}×D2

1

2W (uε)

ε2
≤ π(1 + 2δ).(87)

Applying Propositions 3.1 and 3.2, we deduce that for these yε such that (87) holds,

the set

Uδ,ε = {x ∈ P⊥
yε : |uε(x)| < 1− δ}

is contained in a disjoint collection of disks DCε(p
ε
1), . . . , DCε(p

ε
k) such that the degrees

κεj of uε around ∂DCε(p
ε
j) satisfy

lim sup
ε→0

π

2
(1− 5δ)

∑k
j=1|κ

ε
j | ≤ π(1 + 2δ).

In particular, since κεj ∈ Z, taking δ small enough it follows that∑k
j=1|κ

ε
j | ≤ 2

for ε sufficiently small.

On the other hand, by Proposition 4.4, we know that

|κ| = |
∑k

j=1κ
ε
j | = 1,



VORTEX DENSITIES 39

so we see by parity that the case
∑k

j=1|κεj | ∈ {0, 2} is impossible, so we must have∑k
j=1|κ

ε
j | = 1.

In other words, up to relabeling pε1, . . . , p
ε
k and possibly replacing uε with the conjugate

solution uε, for ε sufficiently small, we must have

(88) κε1 = 1, κε2 = · · · = κεk = 0.

Finally, combining this with Proposition 3.4 immediately gives the following conclu-

sion.

Lemma 5.1. Suppose that the hypotheses of Theorem 1.4 and the potential bound (86)

are both satisfied. Then the limiting density θ = 1.

By a simple contradiction and scaling argument, we can recast the result in the

following ‘quantitative’ form.

Proposition 5.2. For any γ > 0, there exists δ2(γ) > 0 such that if uε solves the

Ginzburg–Landau equation on a ball B2r(x) (where x = (y, z) ∈ Rn−2×R2) with ε ≤ δ2r,

and satisfies

(r/2)2−n
∫
Br/2(x)

2W (uε)

ε2
≤ πωn−2 + δ2,

V(uε) ∩Br(x) ̸= ∅,

and (to ensure that all energy concentrates along the (n− 2)-plane P + x)

r2−n
∫
B2r(x)\Bδ2r

(P+x)
eε(uε) ≤ δ2 log(r/ε),

then ∣∣∣∣∣ r2−n

log(r/ε)

∫
Bn−2

r (y)×D2
r(z)

eε(uε)− πωn−2

∣∣∣∣∣ < γ.

6. Solutions concentrating with prescribed density θ ∈ {1} ∪ [2,∞)

In this section, we explain how to use the entire solutions of the Ginzburg–Landau

equations constructed in [11] to prove Theorem 1.10. More precisely, we prove the

following proposition.

Proposition 6.1. For each integer κ ≥ 2 and τ ∈ [0, 1), there exists a family of

solutions (uτε)ε∈(0,ε0(κ,τ)) in the unit 3-ball B3
1(0) ⊂ R3 with energy concentrating along

the line P = {0} × R, degree κ = deg(uε,
1
2S

1 × {0}) and limiting energy measure

lim
ε→0

eε(uε)

π|log ε|
= θ(κ, τ)H1 P,

where

θ(κ, τ) := κ+ κ(κ− 1)
τ

1 + τ
∈
[
κ,
κ(κ+ 1)

2

)
.
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It is straightforward to check that Theorem 1.10 follows from Proposition 6.1, since⋃∞
κ=2[κ,

κ(κ+1)
2 ) = [2,∞). The solutions described in Proposition 6.1 are obtained by

rescaling families of entire solutions with κ helical vortex filaments constructed in [11].

Namely, we rely on the following result. (In what follows, we make the identifications

R2 ∼= C and S1 ∼= R/2πZ.)

Theorem 6.2. [11, Theorem 1] For κ ∈ {2, 3, . . .} and ε < ε0(κ) sufficiently small,

there exists a solution vε : R2 × S1 → R2 of the Ginzburg–Landau equations

(89) ε2∆vε = DW (vε)

satisfying ∣∣∣vε(z, t)−∏κ
j=1w(ε

−1[z − f εj (t)])
∣∣∣ ≤ C(κ)

|log ε|
,

where w : R2 → R2 is the radially symmetric degree-one solution constructed in [13],

and f εj : S1 → R2 satisfies

lim
ε→0

∣∣∣√|log ε|f εj (t)−
√
n− 1eite2i(j−1)π/κ

∣∣∣ = 0.

Moreover, these vε have the additional symmetry

(90) vε(z, t) = eκitṽε(e
−itz)

for some map ṽε : R2 → R2.

By looking closely at the construction of these solutions and keeping track of a few

key estimates in [11], we are able to check that the following estimate holds.

Lemma 6.3. For every τ ∈ [0, 1), there exists a constant C(κ) < ∞ such that the

solutions vε : R2 × S1 → R2 from Theorem 6.2 satisfy

(91)

∫
Dε−τ×S1

eε(vε) ≤ C(κ) log(1/ετ+1)

for ε < ε0(κ, τ), and, for every δ ∈ (0, 1), there exists moreover a constant C(δ, κ, τ) <∞
such that

(92)

∫
[Dε−τ \Dδε−τ ]×S1

eε(vε) ≤ C(δ, κ, τ)

for ε < ε1(δ, κ, τ).

We postpone the proof of Lemma 6.3 to the end of the section; next, we show how

the results of Theorem 6.2 and Lemma 6.3 can be used to prove Proposition 6.1.

Proof of Proposition 6.1. As in [11], we identify the solutions vε : R2 × S1 → R2 given

by Theorem 6.2 with solutions on R3 that are 2π-periodic in the third variable. Under
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this identification, note that Lemma 6.3 gives∫
B3

ε−τ

eε(vε) ≤
∫
Dε−τ×[−ε−τ ,ε−τ ]

eε(vε)

≤ Cε−τ
∫
Dε−τ×S1

eε(vε)

≤ C(κ)ε−τ log(ε−τ−1),

and similarly ∫
B3

ε−τ (0)\Bδε−τ (P )
eε(vε) ≤ Cε−τ

∫
[Dε−τ \Dδε−τ ]×S1

eε(vε)

≤ C(δ, κ, τ)ε−τ .

It is then straightforward to see that, for ε̃ = ε1+τ , the rescaled maps

uτε̃ : R3 → R2, uτε̃(x) := vε(x/ε
τ )

solve the ε̃-Ginzburg–Landau equations

ε̃2∆uτε̃ = DW (uτε̃)

on R3, and satisfy∫
B3

1(0)
eε̃(u

τ
ε̃) = ετ

∫
B3

ε−τ (0)
eε(vε) ≤ C(κ, τ) log(1/ε̃)

and, for any δ > 0,∫
B3

1(0)\Bδ(P )
eε̃(u

τ
ε̃) = ετ

∫
B3

ε−τ (0)\Bδε−τ (P )
eε(vε) ≤ C(δ, κ, τ).

In particular, it follows that the maps

uτε̃ : B3
1(0) → R2, for ε̃ ∈ (0, ε0(κ)

1+τ ),

give a family of solutions to the Ginzburg–Landau equations on B3
1(0) (or similarly, any

fixed compact subset of R3) with energy of order log(1/ε̃) concentrating along P as

ε̃→ 0; i.e. (up to subsequences),

lim
ε̃→0

eε̃(u
τ
ε̃)

π|log ε̃|
dx = θH1 P

for some θ > 0.

To compute θ, we appeal to Proposition 3.4, together with Theorem 6.2. Fixing a

small (but arbitrary) δ ∈ (0, 12), consider δε̃ → 0 and tε̃ ∈ Gε̃,δε̃ ⊆ (−1
2 ,

1
2) a family of

δε̃-good slices for uτε̃ as in the preceding sections. By virtue of the symmetry (90) of vε,

note that we can simply take tε̃ = 0. Following the analysis of the preceding section,

consider the set

Uδ,ε̃ := {z ∈ R2 : |uτε̃(z, 0)| < 1− δ}.

By Theorem 6.2, we see that if |vε(z, 0)| < 1− δ, then∣∣∣∏κ
j=1w(ε

−1[z − f εj (0)])
∣∣∣ ≤ C(κ)

|log ε|
+ 1− δ ≤ 1− δ

2
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for ε sufficiently small, and since the model single-vortex solution w satisfies |w(z)| → 1

as |z| → ∞, it follows that

z ∈
κ⋃
j=1

BC(δ)ε(f
ε
j (0)).

Moreover, note that for 1 ≤ j < l ≤ κ, Theorem 6.2 gives

|f εj (0)− f εl (0)| ≥
√
n− 1√
|log ε|

|e2i(j−1)π/κ − e2i(l−1)π/κ|+ o(|log ε|−1/2)

≥ c(κ)√
|log ε|

for ε sufficiently small and c(κ) > 0, and a similar upper bound also holds. In particular,

it follows that the balls BC(δ)ε(f
ε
j (0)) are mutually disjoint for ε sufficiently small, and

it follows from the C0 closeness∣∣∣vε(z, 0)−∏k
j=1w(ε

−1[z − f εj (t)])
∣∣∣ ≤ C(κ)

|log ε|
that

deg(vε, ∂DC(δ)ε(f
ε
j (0))) = 1.

In particular, for our rescaled solutions uτε̃(z, 0) = vε(z/ε
τ , 0), writing

pε̃j := ετf εj (0),

it follows that

Uδ,ε̃ = {(ετz, 0) : |vε(z, 0)| < 1− δ} ⊆
κ⋃
j=1

BC(δ)ε1+τ (ετf εj (0)) =
κ⋃
j=1

BC(δ)ε̃(p
ε̃
j),

where the balls BC(δ)ε̃(p
ε̃
j) are mutually disjoint, uτε̃ has degree

κε̃j := deg(uτε̃ , ∂DC(δ)ε̃(p̃
ε
j)) = 1,

and
c(δ, κ)ε̃τ/(1+τ)√

|log ε|
=
c(δ, κ)ετ√

|log ε|
≤ |p̃εj − p̃εl | ≤

C(δ, κ)ετ√
|log ε|

=
C(δ, κ)ε̃τ/(1+τ)√

|log ε|
for 1 ≤ j < l ≤ κ. Thus, applying Proposition 3.4, we deduce that

θ = lim
ε̃→0

(∑κ
j=11 + 2

∑
j<l1 · 1 ·

|log |pε̃j − pε̃l ||
|log ε̃|

)
= κ+ κ(κ− 1)

τ

1 + τ
,

completing the proof of Proposition 6.1. □

It remains now to prove Lemma 6.3, verifying that natural energy growth conditions

hold for the solutions constructed in [11].

Proof of Lemma 6.3. For simplicity, we specialize to the case κ = 2, for which the

construction in [11] is carried out in detail. In this case, the solutions vε : R2×S1 → R2

of Theorem 6.2 have the form

vε(z, t) = e2itVε(e
−itz/ε),
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for a map Vε of the form

Vε(z) := w(z − d̃ε)w(z + d̃ε)[η · (1 + iψε) + (1− η) · eiψε ]

(see [11, eq. (3.2)]), where w : R2 → R2 is the radially symmetric solution of

∆v + (1− |v|2)v = 0

with degree one constructed in [13], d̃ε ∈ R2 are points in the plane with

|d̃ε| ≤
C

ε
√
|log ε|

,

η is a cutoff function of the form

η(z) = η1(|z − d̃ε|) + η1(|z + d̃ε|),

with η1(t) = 1 for t ≤ 1 and η1(t) = 0 for t ≥ 2, and ψε : R2 → C is an unknown

function whose implicit construction (with estimates) is the content of the proof of

Theorem 6.2.

It follows from [11, Proposition 6.1] (see also [11, p. 18] for the definition of ∥ψ∥∗)
that the real part ℜ(ψε) of ψε satisfies

(93) |ℜ(ψε)| ≤
C

|log ε|
where min{|z ± d̃ε|} > 2

and, for any fixed σ ∈ (0, 1], the imaginary part satisfies1

(94) |ℑ(ψε)| ≤ C(σ)(|z − d̃ε|σ−2 + |z + d̃ε|σ−2 + ε2−σ) where min{|z ± d̃ε|} > 2.

In particular, where min{|z ± d̃ε|} > 2, we have

|1− |Vε(z)|| = |1− |w(z − d̃ε)||w(z + d̃ε)|e−ℑ(ψε)|

≤ |1− |w(z − d̃ε)||+ |1− |w(z + d̃ε)||+ |1− e−ℑ(ψε)|

≤ C(σ)(|z − d̃ε|σ−2 + |z + d̃ε|σ−2 + ε2−σ),

where we used that the model single-vortex solution w(z) satisfies 0 ≤ 1−|w(z)| ≤ C
|z|2 (cf.

[11, Lemma 7.1]). In particular, scaling back down to the solutions vε = e2itVε(e
−itz/ε),

it follows that

|1− |vε(z, t)|| ≤ C(σ)ε2−σ(|z − eitεd̃ε|σ−2 + |z + eitεd̃ε|σ−2 + 1)

where |z ± eitεd̃ε| > 2ε. Also, from the bound (102) in the appendix (and a trivial

rescaling), we have |u(x)| ≤ 1 + Cε2R−2 on BR/2(0), for all R ≥ 1, which implies that

|vε| ≤ 1 everywhere.

In particular, by the preceding estimates, setting

ρε(z, t) := min{|z − eitεd̃ε|, |z + eitεd̃ε|},

1Note that the first occurrence of εσ−2 in the definition of ∥ψ2∥2,∗ from [11, p. 18] should read ε2−σ.
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we see that for σ, τ ∈ (0, 1)∫
D2ε−τ×S1

(1− |vε|2)2

ε2
≤
∫
{ρε≤2ε}

(1− |vε|2)2

ε2

+

∫
{4ε−τ≥ρε>2ε}

(1− |vε|2)2

ε2

≤ Cε2 · C
ε2

+ C(σ)

∫
{4ε−τ≥ρε>2ε}

1

ε2
[ε2−σ(ρσ−2

ε + 1)]2

≤ C +
C(σ)

ε2
· ε2(2−σ)(ε2σ−2 + ε−2τ )

≤ C(σ)(1 + ε2(1−σ−τ)),

where we used the coarea formula to bound
∫
{4ε−τ≥ρε>2ε} ρ

2(σ−2)
ε ≤ C(σ)ε2σ−2 (as each

level set {ρε = r} has length at most Cr); hence, taking σ = 1− τ gives

(95)

∫
D2ε−τ×S1

(1− |vε|2)2

ε2
≤ C(τ)

for all τ ∈ (0, 1), and thus also for all τ ∈ [0, 1).

With the bound (95) in place, it follows from Proposition A.4 (after a suitable

rescaling) that

(96)

∫
Dε−τ×S1

|d|vε||2 ≤ C(τ)

as well, so to obtain the desired energy estimates for vε, it remains to estimate the

contribution from

|dvε|2 − |d|vε||2 = |vε|−2|jvε|2,

recalling that

jvε = v∗ε(r
2 dθ) = v1ε dv

2
ε − v2ε dv

1
ε .

To start, observe that on {ρε ≤ 4ε}, we have

(97)

∫
{ρε≤4ε}

|dvε|2 ≤ Cε2 · C
ε2

≤ C,

so we only need to estimate the energy contribution from the region

A := [Dε−τ × S1] ∩ {ρε ≥ 4ε}.

To this end, for R ∈ [2ε, 2ε−τ ], consider the annular regions

ΩR := {R < ρε(z, t) < 5R}

and

Ω′
R := {2R ≤ ρε(z, t) ≤ 4R},

so that, for ε < ε0(τ) sufficiently small (since |eitεd̃ε| ≤ C/
√
|log ε| ≤ ε−τ ), we have

(98) A ⊆
Jε,τ⋃
j=1

Ω′
2jε
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where Jε,τ := ⌈log(ε−τ−1)/ log 2⌉ and, for ε < ε1(δ, τ) (since |eitεd̃ε| ≤ C/
√
|log ε| ≤

1
2δε

−τ ),

(99) [Dε−τ \Dδε−τ ]× S1 ⊆
Jε,τ⋃

j=Iε,τ,δ

Ω′
2jε

where Iε,τ,δ := ⌊log(δε−τ−1)/ log(2)⌋ − 3. Now, given R ∈ [2ε, 2ε−τ ], let χR be a cutoff

function such that

0 ≤ χR ∈ C∞
c (ΩR), χR ≡ 1 on Ω′

R, |dχR| ≤
C

R
.

Next, observe that where ρε ≥ 2ε, vε has the form

vε(z, t) = e2itw(e−itε−1z − d̃ε)w(e
−itε−1z + d̃ε)e

iψε(e−itε−1z),

and since the model single-vortex solution w satisfies w(z)
|w(z)| =

z
|z| , it follows that

vε(z, t)

|vε|(z, t)
=

z − eitεd̃ε

|z − eitεd̃ε|
· z + eitεd̃ε

|z + eitεd̃ε|
· eiφε ,

where we set

φε(z, t) := ℜ(ψε(e−itε−1z)).

It is straightforward to check that∣∣∣∣∣d
(
z ± eitεd̃ε

|z ± eitεd̃ε|

)∣∣∣∣∣ ≤ C

|z ± eitεd̃ε|
,

and as a consequence,

|j(vε/|vε|)− dφε| = |j(e−iφεvε/|vε|)| ≤
C

ρε

where ρε ≥ 2ε. Moreover, recall that, since vε solves the Ginzburg–Landau equations,

we have as always d∗jvε = 0; as a consequence, for any R ∈ [2ε, 2ε−τ ], we see that∫
χ2
R⟨jvε, dφε⟩ = −

∫
φε⟨jvε, d(χ2

R)⟩,

and therefore∫
χ2
R|vε|−2|jvε|2 =

∫
χ2
R⟨jvε, j(vε/|vε|)⟩

=

∫
χ2
R⟨jvε, j(vε/|vε|)− dφε⟩+

∫
χ2
R⟨jvε, dφε⟩

≤
∫
χ2
R|jvε| ·

C

ρε
−
∫
φε⟨jvε, d(χ2

R)⟩

≤ C∥χR jvε∥L2

(∫
ρ−2
ε χ2

R + ∥φε dχR∥2L∞ · |ΩR|
)1/2

.

Now, since χR is supported on the set ΩR = {R < ρε < 5R}, whose area is ≤ CR2, we

see that ∫
ρ−2
ε χ2

R ≤
∫
ΩR

C

R2
≤ C.
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Moreover, it follows from (93) that |φε| ≤ C
|log ε| on ΩR for R ≥ 2ε, so that

∥φε dχR∥2L∞ · |ΩR| ≤
C

|log ε|2
· C
R2

· CR2 ≤ C

|log ε|2
.

Finally, since |vε| ≤ 1, we have

∥χR jvε∥L2 ≤ ∥χR|vε|−1 jvε∥L2 ,

and putting together the preceding computations gives

∥χR|vε|−1 jvε∥2L2 ≤ C∥χR|vε|−1 jvε∥L2 ,

and hence

(100)

∫
Ω′

R

|vε|−2|jvε|2 ≤
∫
χ2
R|vε|−2|jvε|2 ≤ C.

Now, applying (98), it follows that∫
Dε−τ×S1

|vε|−2|jvε|2 =
∫
{ρε≤4ε}

|vε|−2|jvε|2 +
∫
A
|vε|−2|jvε|2

≤ C +
∑Jε,τ

j=1

∫
Ω′

2jε

|vε|−2|jvε|2

≤ C + CJε,τ

≤ C log(1/ετ+1),

and since we have already shown (in (95) and (96)) that∫
Dε−τ×S1

(eε(uε)− |vε|−2|jvε|2) ≤ C(τ),

it follows that ∫
Dε−τ×S1

eε(uε) ≤ C log(1/ετ+1) + C(τ) ≤ C log(1/ετ+1)

for ε < ε0(τ) sufficiently small, as claimed.

Moreover, for any δ ∈ (0, 1) and ε < ε0(δ) sufficiently small, it follows from (99) and

(100) that∫
[Dε−τ \Dδε−τ ]×S1

|vε|−2|jvε|2 ≤
∑Jε,τ

j=Iε,τ,δ

∫
Ω′

2jε

|vε|−2|jvε|2

≤
∑Jε,τ

j=Iε,τ,δ
C

= C(⌈log(ε−τ−1)/ log 2⌉ − (⌊log(δε−τ−1)/ log(2)⌋ − 3))

≤ C(5− log(δ)),

hence ∫
[Dε−τ \Dδε−τ ]×S1

eε(uε) ≤ C(δ, τ),

completing the proof of the claim. □
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Appendix.

In this appendix we collect some fundamental estimates for maps u : Bn
1 (0) → C

which are critical for the Ginzburg–Landau energy

Eε(u) =

∫
B1

(
|du|2g
2

+
W (u)

ε2

)
d volg,

with respect to a smooth Riemannian metric g, defined on the closure B1. Recall that

u solves the nonlinear elliptic equation

ε2∆gu+ (1− |u|2)u = 0.

In the proof of these results a central ingredient, which also appears in our arguments,

is the following monotonicity formula (see, e.g., [25, Proposition A.1]).

Proposition A.1. For any x ∈ Bn
1 (0), denoting by Bs(x) the geodesic ball with respect

to g, we have

d

ds

(
eC(g)s2Eε(u;Bs(x))

sn−2

)
≥ 1

sn−2

∫
∂Bs(x)

|∂νu|2g +
1

sn−1

∫
Bs(x)

2W (uε)

ε2
(101)

for all s ∈ (0, injg(x)), where we omit the volume element of g. In particular,

s 7→ eC(g)s2Eε(u;Bs(x))
sn−2

is an increasing function of the radius s ∈ (0, injg(x)).

Note that the constant C(g) → 1, when we let g converge smoothly to the Euclidean

metric. We also record some useful pointwise bounds for u and its differential.

Proposition A.2. Assuming ε ≤ 1, on the smaller ball Bn
1/2(0) we have

|u(x)| ≤ 1 + C(g, n)ε2, |du|g ≤
C(g, n)

ε
.(102)

Also, if the energy Eε(u) ≤ Λ|log ε|, then on Bn
1/2(0)

|du|2g ≤
1− |u|2

ε2
+ C(g,Λ, n).(103)

Proof. The function ρ := |u| satisfies

−∆gρ+
(ρ+ 1)(ρ− 1)ρ

ε2
≤ 0,

while it is easy to check that, for any fixed s ∈ (12 , 1), bγ(x) := 1 + γε2 s2

(s2−|x|2)2 is a

supersolution on Bs = Bn
s (0), for γ ≥ γ(g, n) > 0 large enough.

On Bs, we have ρ ≤ bγ for some least γ ≥ 0. However, we cannot have γ ≥ γ, since

then the supersolution bγ would touch the subsolution ρ from above (at an interior

point), violating the maximum principle for semilinear equations.

Thus, we must have ρ ≤ bγ on Bs, and letting s→ 1 we get

|u(x)| ≤ 1 + C(g, n)
ε2

(1− |x|2)2
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on B1, from which the first half of (102) follows. Using also the equation, it follows that

|u| ≤ C(g, n) and |∆gu| ≤ C(g,n)
ε2

on B15/16, which easily imply the bound

|du|g ≤
C(g, n)

ε

on B7/8. Indeed, the bounds |ũ| + |∆g̃ũ| ≤ C(g, n) for ũ(x) := u(εx) on B15/16ε

(with the rescaled metric g̃) easily give the desired bound |dũ|g̃ ≤ C(g, n) on any ball

B1/8(x) ⊆ B7/8ε(0), hence on B7/8ε (as ε ≤ 1).

It is interesting to observe that, even without assumptions on the energy of u on

B1, the previous inequalities give Eε(u;B1/2) ≤
C(g,n)
ε2

(which is sharp, for the trivial

unstable solution u ≡ 0).

In order to improve on the previous pointwise bound for |du| = |du|g, we observe that

∆g
|du|2

2
≥ ⟨du, d∆gu⟩+Ricg(du, du) ≥ −1− |u|2

ε2
|du|2 − ∥Ricg ∥L∞ |du|2

by Bochner’s formula, and

∆g
1− |u|2

2ε2
=

|u|2

ε2
· 1− |u|2

ε2
− |du|2

ε2
.

As a consequence, the difference

f :=
|du|2

2
− (1 + ε2∥Ricg ∥L∞)

1− |u|2

2ε2

satisfies

∆gf ≥ 2|u|2

ε2
f.

In particular, the positive part f+ is subharmonic, and it follows that

f ≤ C(g,Λ, n)|log ε|

on B7/8. Also, by the bound |du| ≤ C(g,n)
ε and Proposition A.5 below, we have∫

B3/4∩{|u|≤ 1
2
}
f+ ≤ C(g, n)

∫
B3/4

W (u)

ε2
≤ C(g,Λ, n).

On the other hand, the subequation for f easily implies that∫
B7/8

φ2

[
|df+|2 + |u|2

ε2
(f+)2

]
≤ C

∫
B7/8

(f+)2|dφ|2,

for any φ ∈ C∞
c (Bn

7/8). In particular, by Cauchy–Schwarz,

∫
B3/4∩{|u|≥ 1

2
}
f+ ≤ C(g, n)

[∫
B7/8∩{|u|≥ 1

2
}
|u|2(f+)2

]1/2
≤ C(g,Λ, n)ε|log ε|,

where we used the bound 0 ≤ f+ ≤ C(g,Λ, n)|log ε| on B7/8. Together with the previous

bound, using again the subharmonicity of f+, we arrive at

f ≤ C(g, n)

∫
B3/4

f+ ≤ C(g,Λ, n)(1 + ε|log ε|)

on B1/2, which gives (103). □
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In the asymptotic analysis, the most fundamental tool is the clearing-out for the

vorticity, which we state here for arbitrary metrics (the proof is a simple localization of

the arguments from [24, Section 4.3]).

Theorem A.3. Given β ∈ (0, 1), there exist constants η(β, n) and c(β, g, n) such that,

for a geodesic ball Br(x) ⊆ Bn
1 (0) with ε ≤ r ≤ c, if Eε(u;Br(x)) ≤ ηrn−2 log(r/ε), then

|u(x)| > β.

As we saw in (13), the logarithmic growth of the energy exhibited by typical solutions

u is caused solely by the angular part ju = u∗(r2 dθ) = u1 du2−u2 du1 of the differential.

This fact relies on two inequalities: first of all, we can bound the radial part d|u| in
terms of the potential as follows (see, e.g., the argument from [7, pp. 329–331], which

readily generalizes to arbitrary metrics).

Proposition A.4. On the smaller ball B1/2 = Bn
1/2(0) we have

∫
B1/2

|d|u||2 ≤ C(g, n)

∫
B1

(1− |u|2)2

4ε2
+ C(g, n)ε2,(104)

provided that ε ≤ 1.

Also, we have the following sharp bound, which constitutes one of the main con-

tributions of [7], and allows to deduce the same bound for the previous integral of

|d|u||2.

Proposition A.5. On the smaller ball B1/2 = Bn
1/2(0) we have

∫
B1/2

(1− |u|2)2

4ε2
≤ C(g, n)

Eε(u;B1)

|log ε|
log

(
2 +

Eε(u;B1)

|log ε|

)
,(105)

provided that ε ≤ c and Eε(u;B1) ≤ ε−α0, for some c = c(g, n) and α0 = α0(n). In

particular, assuming Eε(u;B1) ≤ Λ|log ε|, it follows that∫
B1/2

(1− |u|2)2

4ε2
≤ C(g,Λ, n)

for ε small enough.

The proof relies on a covering argument using Theorem A.3 (see [7, pp. 323–328]2),

and adapts to arbitrary metrics with straightforward modifications, using balls with

respect to g in the statement of [7, Proposition 2.4] (see [12, Thereom 2.8.14] for a proof

of the Besicovitch covering theorem on Riemannian manifolds).

2Note that (2.3) in [7, Proposition 2.2] should read |uε(x)| ≤ 1 + Cε2

dist(x,∂Ω)2
(which follows from

the bound (102) in the present paper, by scaling) and that the assumption in [7, Proposition 2.2 and

Proposition 2.3] should be dist(x, ∂Ω) > ε.
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The conclusion then follows from an estimate off the vorticity set {|u| ≤ 1− σ0}, for
some σ0 small enough (see [7, Theorem 2.1]3).

On an unrelated note, we also record the following useful Lorentz estimate for a

Riesz potential, which is used in the proof of Lemma 3.3. Recall that, for a function

f : Rm → R, its L2,∞-quasinorm is defined as

∥f∥L2,∞(Rm) = sup
λ>0

λ|{|f | > λ}|1/2.

Proposition A.6. If f, g : Rn → R satisfy

|f | ≤ 1

|x|n−1
∗ |g|,

then for any y ∈ Rn−2 we have

∥f(y, ·)∥L2,∞(R2) ≤ C(n) sup
r>0

1

rn−2

∫
Bn−2

r (y)×R2

|g|.(106)

Thus, the exponent n
n−1 in the classical Sobolev bound ∥f∥Ln/(n−1),∞ ≤ C(n)∥g∥L1

can be improved to 2 (the exponent that we have on the plane), on a slice {y} × R2,

provided that we control the maximal function on the right-hand side of (106).

The proof is presented in [18, Lemma A.2] when n = 3, but it is straightforward to

adapt it to the case of general n.

Finally, we briefly show how one can obtain precise asymptotics for the (local) Green

function of ∆H , the Hodge Laplacian on k-forms, even when the metric is not Euclidean.

Let U ⊂ Rn be a bounded smooth domain (n ≥ 3), together with a smooth metric g on

U . Let us fix an orthonormal frame (ωi)i∈I for the bundle of k-forms on U .

Proposition A.7. Given a compact subset K ⊂ U , there exists Gi,p ∈ Ωk(U \ {p}) for

every p ∈ K, satisfying

∆HGi,p = δp · ωi(p)

on U , in the distributional sense, and such that the difference

Hi,p(q) := Gi,p(q)−G(dist(p, q))ωi,p(q)

obeys the bounds

|Hi,p(q)| ≤ C dist(p, q)3−n, |∇Hi,p(q)| ≤ C dist(p, q)2−n

for q ∈ U , for some constant C = C(g,K,U), where G(r) := 1
n(n−2)ωnrn−2 is the

standard Green function on Rn and dist(p, q) is the geodesic distance induced by g (the

constant C → 0 when g converges to the Euclidean metric in the smooth topology).

3We point out the following misprints: in (A.5), a = (1−θε)(2−θε)

ε2
≥ 1

2ε2
(we assume |uε| ≥ 1

2
); in

equations (A.11)–(A.12) some signs are wrong, but this does not affect the argument; most importantly,

in (A.21) the right-hand side is just C∥eε(uε)∥1/2L1(B1)
but, assuming (without loss of generality) q

q−2
≥ 2,

the last estimate on p. 347 still implies (A.23) with βq = (2− α0)
q−2
q

∈ (0, 1), as well as (A.25) with

the same βq (by (A.20) with q = 2).
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It is clear from the proof that Gi,p(q) and ∇Gi,p(q) depend continuously on the couple

(p, q), away from the diagonal {p = q}. With this proposition in hand, we can then

easily invert the Hodge Laplacian (locally): given η ∈ Ωk(U), the convolution

β(q) :=
∑

i∈I

∫
K
Gi,p(q)⟨η(p), ωi(p)⟩ d volg(p)

then satisfies ∆Hβ = η on the interior of K, and the previous bounds for Hi,p imply

that β resembles the usual convolution with the Euclidean Green function (at small

scales, or when g is almost flat).

Proof. For any (smooth) differential form ω ∈ Ωk(U) we can find a unique α ∈ Ωk(U)

such that ∆Hα = ω, with each component of α vanishing at ∂U . Such α can be obtained

by minimizing the energy

α 7→
∫
U

(
|dα|2

2
+

|d∗α|2

2
− ⟨α, ω⟩

)
in the space W 1,2

0 (U,ΛkRn) (note that ∥α∥W 1,2 ≤ C(g, U)(∥dα∥L2 + ∥d∗α∥L2) for α in

this space, by [15, Theorem 4.8] and a simple compactness and contradiction argument).

We have ∥α∥W 1,2(U) ≤ C(g, U)∥ω∥L2(U) and, by standard elliptic regularity for systems,

∥α∥Ls(U) ≤ C(g, s, U)∥ω∥Lt(U)(107)

for all s, t ∈ (1,∞) such that 1
s >

1
t −

2
n .

Fix a cutoff function χ ∈ C∞
c (U) with χ ≡ 1 near K, and let

G̃i,p(q) := χ(q)G(dist(p, q))ωi,p(q)

for any fixed p ∈ K, where ωi,p ∈ Ωk(U) is such that ωi,p(p) = ωi(p) and ∇ωi,p(p) = 0.

Using normal coordinates centered at p, it is easy to check that

|∆HG̃i,p| ≤ C(g,K,U) dist(p, q)2−n;

hence, ∆HG̃i,p coincides with a k-form φi,p ∈ Lt(U) on U \ {p}, where t ∈ (1, n
n−2).

On the other hand, an integration by parts shows that

∆HG̃i,p = δp · ωi,p(p) + φi,p = δp · ωi(p) + φi,p

on U , in the distributional sense. As explained above, by approximating φi,p with

smooth k-forms, we can then find α = αi,p such that ∆Hαi,p = φi,p and (107) holds

(with ω := φi,p). To conclude the proof, we show that |∇α(q)| ≤ C dist(p, q)2−n for

some C = C(g,K,U); the conclusion will follow by taking Gi,p := G̃i,p − αi,p.

But indeed, considering the rescaled k-form αr(x) := α(p+ rx), we see that

∥∆Hαr∥L∞(A) ≤ Cr2∥φi,p∥L∞(Br\Br/2) ≤ Cr4−n, ∥αr∥Ls(A) ≤ C(s)r−n/s

whenever 1
s > 1 − 4

n , for the annular region A := B1 \ B1/2, provided that r is small

enough (with C depending also on g,K,U). By standard elliptic regularity, we then

obtain |∇αr| ≤ C(s)(r4−n + r−n/s) on A, which gives

|∇α(q)| ≤ C(s)(dist(p, q)3−n + dist(p, q)−1−n/s).
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Taking s sufficiently close to n
n−4 (if n > 4, or to ∞ if n = 4) gives the claim for n ≥ 4;

when n = 3, from ∆Hα = φi,p we can immediately conclude that |α| ≤ C, and we can

take s := ∞ in the previous bound to conclude that |∇α(q)| ≤ C dist(p, q)−1. □
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